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Abstract

We propose nonparametric definitions of absolute and comparative naivete.

These definitions leverage ex-ante choice of menu to identify predictions of future

behavior and ex-post (random) choices from menus to identify actual behavior.

The main advantage of our definitions is their independence from any assumed

functional form for the utility function representing behavior. An individual is so-

phisticated if she is indifferent ex ante between retaining the option to choose from

a menu ex post or committing to her actual distribution of choices from that menu.

She is naive if she prefers the flexibility in the menu, reflecting a mistaken belief

that she will act more virtuously than she actually will. We propose two definitions

of comparative naivete and explore the restrictions implied by our definitions for

several prominent models of time inconsistency.
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1 Introduction

Models of dynamic inconsistency play an important role in a wide-ranging set of economic

applications, and there is strong and increasing interest in the implications of naivete

where individuals mispredict their future behavior.1 While naivete often yields surprising

and significant consequences, so far these effects are usually understood within the context

of specific utility representations, where the existence and comparison of naivete are

defined and tested through parameters like discount factors or probabilities.

In this paper, we introduce general nonparametric definitions of naivete and sophisti-

cation, as well as comparative measures of naivete. We then characterize the implications

of these definitions for a broad class of utility specifications. Our behavioral definitions

leverage two pieces of choice data. First, we use preference for commitment to measure

anticipated behavior from an ex-ante perspective before the realization of temptation.

Formally, the individual’s preferences over different option sets (or menus) capture her

demand for commitment and allow an inference of her beliefs regarding her future behav-

ior. Second, we use choices from option sets to measure actual behavior from an ex-post

perspective under the influence of temptation and after the level of commitment is fixed.

Since uncertainty about future behavior seems especially compelling under naivete and

is increasingly relevant in applied work, we formally accommodate this uncertainty by

modeling ex-post behavior as a random choice rule.

For a simple illustration of our approach, consider first an individual who makes

deterministic choices without randomization. Her ex-ante ranking of option sets is given

by a preference %, and her ex-post choice from any menu is given by a choice function C.2

When choosing between two options p and q, an individual may prefer p if committing

ex ante, {p} ≻ {q}, yet choose q if given the option ex post, C({p, q}) = q. This pattern

is indicative of time inconsistency and has been documented in numerous contexts, for

example, preferences to maintain a healthy diet, decrease spending, or engage timely

effort in a difficult task that go unfulfilled ex post. Still, additional information is needed

to determine whether the individual is sophisticated or naive about this inconsistency.

If we also observe a strict preference to retain the option p ex ante, {p, q} ≻ {q}, then

we can further infer that she (incorrectly) anticipates that p will be her ex-post choice

from the menu {p, q} and hence she is naive. Thus, observing preferences to retain the

1A recent survey of empirical applications can be found in Section 2.1 of DellaVigna (2009) and a
survey of some theoretical applications in contract theory can be found in Kőszegi (2014).

2We focus throughout the paper on choice functions rather than correspondences, which presumes the
individual uses some tie-breaking procedure to select between equally attractive options. Our primitives
for stochastic choice make similar implicit assumptions. Importantly, our results do not depend in any
way on how ties are broken. Hence, while our results can easily be extended to deal with choice corre-
spondences (and their stochastic generalizations), it is a strength of the current analysis that knowledge
of the complete set of possible options that the individual is willing to choose from a menu is not required.

1



flexibility of multiple options provides the additional information needed to delineate

between sophisticated and naive beliefs. Similarly, in the more general case of stochastic

choice, if p is chosen with probability α from the menu {p, q} at the ex-post stage,

then the relevant ex-ante comparison is between the menu {p, q} and commitment to

the appropriately weighted mixture {αp + (1 − α)q}. A strict preference for the former

indicates biased beliefs that overestimate the probability of choosing the ex-ante more

appealing alternative p to be greater than α.

Our behavioral definitions extend this approach to arbitrary choice sets. To test

absolute naivete and sophistication, we compare an individual’s predicted value for a

menu x of different options against the actual value of her ex-post choice C(x) from that

menu. Ex ante, a sophisticate correctly anticipates her future choice and is indifferent

between maintaining the flexibility to choose from x later or committing to her eventual

choice C(x) now, that is, x ∼ {C(x)}. In contrast, a naif mistakenly anticipates making

a more virtuous choice and prefers to maintain the flexibility in x, that is, x % {C(x)}.

In the case of uncertain temptations and random choice, we maintain this same basic

intuition by comparing her preference for the menu versus committing to the lottery over

outcomes induced by her distribution of choices.

Using one of the most comprehensive models of time-inconsistent preferences avail-

able, the random Strotz representation, we show that our behavioral definitions of so-

phistication and naivete characterize sharp and intuitive parametric restrictions. The

random Strotz model is general enough to include the majority of all utility representa-

tions for time-inconsistent preferences that appear in the applied literature,3 including

the naive quasi-hyperbolic discounting model of O’Donoghue and Rabin (1999, 2001) and

its stochastic extensions, and the parametric restrictions implied by our definitions boil

down to the functional-form restrictions that the literature has proposed for these mod-

els. Our first contribution is thus in unifying the different parametric notions of naivete

that have been explored for various models of time inconsistency by illuminating their

common underlying behavioral theme: underdemand for commitment.

Our second and most significant contribution is in developing behavioral definitions

of comparative naivete. Comparative measures of naivete rooted in choice behavior have

been essentially unexplored in the prior literature. Moreover, even restricting attention

to specific utility representations such as naive quasi-hyperbolic discounting, the proper

functional-form restrictions that capture increases in naivete are not fully understood

or agreed upon. In Section 2, we discuss existing proposals of parametric restrictions

for comparing naivete that have been suggested for the quasi-hyperbolic discounting

model, and we provide examples that demonstrate why these prior proposals may lead

3One important exception is models that incorporate costly self-control. We apply our definitions
to the random self-control representation as an extension in Section 5.1, and we explore alternative
definitions of naivete for self-control preferences in a companion paper Ahn, Iijima, and Sarver (2016).
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to counterintuitive behaviors: An individual ranked as more naive according to one of

these statistics may nonetheless make better use of available commitment devices or be

less subject to exploitation in market interactions, behavior that strikes one as clearly

more sophisticated.

To avoid such counterintuitive possibilities, we take the opposite approach. Our

starting point is instead to consider the behavior that seems to most reasonably capture

increases in naivete. We explore two possible notions of comparative naivete. The first

is based on comparing underdemand for commitment. Using deterministic choice to

illustrate simply, a commitment to the singleton menu {p} is beneficial if {p} ≻ {C(x)},

that is, if p is preferred ex ante to the outcome C(x) that would actually be chosen from

x. However, a naive individual may at the same time exhibit the ranking x ≻ {p}, so

she strictly prefers to maintain the flexibility of x due to the mistaken belief that she

will ultimately make a more virtuous choice. Thus, a beneficial commitment is declined

if x ≻ {p} ≻ {C(x)}. Our first definition of comparative naivete is that an individual

is more naive than another if she declines more beneficial commitments. Our second

definition compares individuals’ believed and actual indirect utilities from menus and

classifies an individual as more naive if the difference between her ex-ante anticipated

utility from x and her utility from the actual choice C(x) is larger. This comparison

manifests behaviorally as a greater willingness to overpay for the menu x, and hence the

overvaluation of menus provides another natural metric for naivete. In the case of random

choice, both comparative definitions extend by replacing the deterministic choice with the

induced lottery over outcomes. We characterize the parametric restrictions corresponding

to each of these definitions within the random Strotz model, show how the two definitions

are related, and discuss when each might be most appropriate.

Our paper is related to two strands of literature. In the empirical literature on time

inconsistency and naivete, our use of ex-ante and ex-post choice behavior has several

precedents. DellaVigna and Malmendier (2006) study both the choice of gym member-

ship, which determines the feasible set of attendance/payment pairs, and subsequent

attendance levels; Shui and Ausubel (2005) observe consumers’ choices of credit card

contracts and their subsequent borrowing behavior; Giné, Karlan, and Zinman (2010)

offer subjects commitment contracts that incentivize smoking cessation and later test

whether or not the subjects smoked; Kaur, Kremer, and Mullainathan (2015) allow sub-

jects to choose wage contracts that constrain their feasible future effort/consumption

pairs and then observe actual effort ex post; Augenblick, Niederle, and Sprenger (2015)

ask subjects to choose an intertemporal allocation of effort and a probability of being

committed to it and then observe whether subjects wish to revise that plan when the

first date of task completion arrives. Not only do these papers use similar choice data,

but those that test for naivete identify it using behavior that is closely related to our

definition.
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Our work also relates to papers in decision theory that use behavior at different time

periods to capture sophistication under time inconsistency, as surveyed by Lipman and Pesendorfer

(2013). Noor (2011) considers preferences in a recursive domain that includes ex-ante

and ex-post choice as projections; he pioneered the approach of using temporal choice

as a domain for explicitly testing the sophistication implicitly assumed in most ex-ante

axiomatic models of temptation. Kopylov (2012) relaxes Noor’s sophistication condition

and considers agents who choose flexibility ex ante that is subsequently unused ex post.

Kopylov eschews mistaken or naive beliefs, but rather interprets the relaxation of sophis-

tication as reflecting a direct psychic benefit of maintaining positive self-image. Finally,

Dekel and Lipman (2012) observe that ex-ante and ex-post choice can be combined to

empirically distinguish random Strotz representations from others that involve costly self-

control. Much of the technical apparatus from Dekel and Lipman (2012) ends up being

useful in studying naivete, as we will explain in the body of the paper.

The remainder of the paper is organized as follows. In Section 2, we use the special

case of quasi-hyperbolic discounting to illustrate some of the problems with existing

proposals and to outline our approach. Then, the following sections contain our formal

results. We begin with the special case of deterministic choice in Section 3 to introduce

and ground concepts, and then move on to the more general case of stochastic choice in

Section 4. Finally, Section 5 discusses several extensions of our analysis.

2 Examples and Motivation

We preview our definitions by focusing attention to the naive quasi-hyperbolic discounting

model introduced by O’Donoghue and Rabin (1999, 2001). In this model, the agent would

ideally discount future utility by the factor δ. But she is tempted by instantaneous

gratification and at the time of choice will discount the future by an additional present-

bias factor β, leading to overconsumption in the present and underconsumption in the

future relative to her ideal plan. If she is sophisticated, she correctly anticipates this

present bias. The innovation of O’Donoghue and Rabin (1999, 2001) is to allow the

agent to incorrectly anticipate the magnitude of present bias and instead believe that she

will use the present-bias factor β̂.

As suggested by O’Donoghue and Rabin (1999, 2001), sophistication is intuitively

captured by the parametric restriction β̂ = β, while naivete is captured by β̂ ≥ β.4

We provide foundations for these parametric restrictions. Our proposal for a behavioral

criterion for sophistication is that the decision-maker is indifferent between choosing from

a menu of available options and committing to the particular option that she will actually

choose from that menu, correctly anticipating her future choice. Our criterion for naivete

4Here, we mean (weak) naivete to include the boundary case of sophistication.
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is that she prefers the menu to her eventual selection, incorrectly anticipating making a

more virtuous choice. We show that these criteria are respectively equivalent to β̂ = β

and β̂ ≥ β for the quasi-hyperbolic model. Moreover, we demonstrate that these criteria

also correspond to intuitive restrictions in a broad class of models extending beyond

quasi-hyperbolic discounting. Our contribution to understanding absolute naivete is in

providing behavioral foundations that apply across a variety of models, thus illuminating

a common structure that they share.

While the notion of absolute naivete for a single quasi-hyperbolic agent is relatively

unambiguous, how to compare naivete across individuals is more controversial. In the

literature, various notions of “more naive” have been proposed for the quasi-hyperbolic

model. For example, DellaVigna and Malmendier (2004) and Bousquet (2017) suggest

an agent is more naive if the statistic β̂−β is greater, while Augenblick and Rabin (2015)

suggest an agent is more naive if the statistic 1−β̂
1−β

is smaller. These proposals appear

intuitively plausible at first glance, but the following examples suggest that an agent

ranked as more naive according to these statistics may nonetheless engage in behavior

that seems patently more sophisticated.

2.1 Problems with Existing Approaches

To illustrate the counterintuitive behaviors associated with existing proposals for com-

paring naivete, we use two examples. The first is a stylized consumption-savings problem

where the agent is given the opportunity to advantageously place assets in an illiquid

account as a commitment device for saving. Illiquid savings instruments that preempt

instantaneous gratification seem among the most canonical and oft-mentioned examples

of policy interventions motivated by insights from behavioral economics, so they seem like

a natural first test of how well different rankings perform under real-world applications.

Example 1 (Consumption-savings problem). Consider two risk-neutral individuals fac-

ing a consumption-savings problem. The agents are quasi-hyperbolic discounters with a

common discount factor δ = 1, a common period 0 (ex-ante) utility function ui(c1, c2) =

c1 + c2, and period 1 utility functions vi(c1, c2) = c1 + βic2. Both individuals are strictly

naive. At date 0, individual 1 believes that her future β equals β̂1 = 0.9, while the true

value is β1 = 0. Individual 2 believes that her future β equals β̂2 = 0.98, while the true

value is β2 = 0.9. Note that β̂1 − β1 > β̂2 − β2 and 1−β̂1

1−β1
< 1−β̂2

1−β2
, so agent 1 would be

considered more naive under the discussed parametric proposals.

In period 0, both individuals are endowed with unit wealth of 1 dollar and have the

opportunity to commit to a savings plan which forces them to save all consumption until

period 2. This commitment plan has an interest rate of 2%. If they refuse the savings

plan, then in period 1 they have the opportunity to save for period 2 and earn 3% interest;
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in other words, they face the choice set x = {(c1, (1.03)(1− c1)) : 0 ≤ c1 ≤ 1} at date 1.

Since βi × 1.03 < 1 for i = 1, 2, both individuals would decide to consume all their

endowment immediately in period 1 if given the opportunity: Ci(x) = (1, 0) for i = 1, 2.

Consider now the behavior of the agents at date 0. Since β̂1 × 1.03 < 1, individual 1

correctly anticipates that C1(x) = (1, 0). Preferring the consumption plan (0, 1.02) to the

consumption plan (1, 0), she therefore commits to the forced savings plan at date 0. In

contrast, since β̂2 × 1.03 > 1, individual 2 believes that she will select (0, 1.03) from x,

and thus she forgoes the profitable commitment opportunity (0, 1.02). In this decision

problem, individual 1 perfectly forecasts her future behavior without commitment, while

individual 2 optimistically believes she will save her income when in fact she will not.

So although individual 1 would be considered more naive than individual 2 by some

parametric criteria in the literature, its seems insensible to call individual 1 more naive

than individual 2. �

Example 1 illuminates that some existing comparisons will lead to scenarios where

the supposedly more naive individual accepts the commitment device and leaves herself

better off, while the supposedly more sophisticated individual rejects the advantageous

commitment and instead ends up consuming a worse alternative. In the next example,

adapted from DellaVigna and Malmendier (2004), we show that these proposals also lead

to scenarios where the individual deemed as more sophisticated will be subject to more

exploitation from a profit-maximizing monopolist. This is because the difference between

the anticipated value and the actual value of a contract for the purportedly “more naive”

individual is in fact less than than the difference for the “more sophisticated” individual.

Example 2 (Monopoly profit). A monopolist produces a service whose consumption

results in delayed benefits, for example, a fitness club offers access to exercise that provides

future health benefits. The firm offers a two-part tariff at period 0 that specifies (L, p)

where L is a fixed payment like monthly dues for gym membership and p is the price of

using the service like a per-visit fee at the gym. The consumer decides at date 0 whether

to accept the contract. If she accepts, the consumer decides at date 1 whether to use

the service. Both payments L and p are made at date 1, but the benefits of the service

are not realized until date 2. Specifically, if the consumer uses the service at date 1, she

receives a delayed benefit b at date 2. The cost of providing the service equals c for the

firm. We assume that b > c, meaning that the surplus from the service is positive. The

utility received by the consumer if she does not take up the contract is normalized to 0.

Now consider a quasi-hyperbolic consumer (β̂, β, δ), and take δ = 1 for simplicity.

Suppose that the consumer considers the contract (L, p). She anticipates using the service

in date 1 if and only if β̂b ≥ p. Therefore, at date 0, she accepts the contract if and only

if

− L+ (b− p) β̂b≥p ≥ 0. (1)
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The firm knows (β̂, β) and offers a contract (L, p) that maximizes its expected profit of

L+ (p− c) βb≥p, (2)

subject to Equation (1). The inequality in Equation (1) must be binding since otherwise

the firm could raise L and increase its profits. This pins down the value of L as a function

of p, L = (b − p) β̂b≥p. Substituting this value into the profit function in Equation (2)

yields

(b− p) β̂b≥p + (p− c) βb≥p,

which simplifies to

(b− c) βb≥p
︸ ︷︷ ︸

social surplus

+(b− p) β̂b≥p>βb
︸ ︷︷ ︸

overvaluation

. (3)

The first term in Equation (3) is the social surplus generated from the contract, and

the second term captures the consumer’s overvaluation of the surplus that she will receive

from the contract due to her underestimation of her future impatience. Now consider two

quasi-hyperbolic discounters such that β̂1 = 1, β1b > c > β2b, and β̂2 > β2 is sufficiently

close to β2 to imply that individual 2 would be considered less naive than individual 1

based on either of the measures β̂ − β or (1− β̂)/(1− β). Since β1b > c, it is easy to see

from Equation (3) that the profit-maximizing contract to individual 1 is the same as the

optimal contract under sophistication (for instance, L = b − c, p = c), and individual 1

does not incur any welfare loss due to her naivete. But since β2b < c, the firm can earn

more than the total social surplus by offering an exploitative contract to individual 2

that sets a price p = β2b+ ǫ for some small ǫ > 0. This exploitative contract guarantees

that individual 2 naively accepts the contract in anticipation of using the gym, but in

actuality does not use the service ex post.5 This example shows that the firm’s ability to

exploit the consumer’s misprediction is not monotonic in either β̂−β or (1− β̂)/(1−β),

but instead depends on the consumer’s overvaluation of contracts.6 �

2.2 Our Proposed Alternative

These examples demonstrate that existing parametric comparisons of naivete for the

quasi-hyperbolic discounting model may lead to situations where the individual forgoes

5The use of an exploitative contract by the firm in this example does not rely on the assumption of
monopoly power. It is not difficult to show that introducing competition between firms will drive down
the fixed fee L, but firms will continue to set a price p that both deters individual 2 from using the
service ex post and causes her to have the incorrect ex-ante belief that she will use the service.

6Note that in their related analysis, DellaVigna and Malmendier (2004) fix the value of β. While this

example shows that monopoly profits are not, in general, monotone in the difference β̂−β, in the special
case of fixed β our results will imply that increasing β̂ leads to an increase in overvaluations and hence
monopoly profits.
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a beneficial commitment or gives up more rents to a monopolist, despite being deemed

as more sophisticated. These examples were specifically motivated by and designed to

foreshadow our proposed nonparametric comparisons. We propose two approaches to

comparing naivete across individuals. In the first approach, we compare underdemand

for commitment and say an individual is more naive if she rejects more beneficial com-

mitments than the other. Comparing demand for commitment is economically relevant

because commitment devices are often proposed as a policy intervention to manage self-

control problems, as in Example 1. In the second approach, we say an individual is more

naive if her overvaluation for a menu, measured as the difference between her anticipated

indirect utility and her actual indirect utility, is larger than the other’s overvaluation for

that menu. This approach is economically relevant because a monopolist can extract the

overvaluation through a fixed-fee component of a contract, as demonstrated in Example 2.

We will show in Section 3 that for the case of deterministic choice these two approaches

to comparing naivete converge, so an agent forgoes more advantageous commitments if

and only if she overvalues menus more. In particular, for the quasi-hyperbolic discount-

ing model, comparing underdemand for commitment and comparing overvaluation both

yield the same parametric restriction: either β̂1 ≥ β̂2 ≥ β2 ≥ β1, or individual 2 is so-

phisticated (β̂2 = β2). Note that this is more demanding than the mentioned criteria of

comparing differences or ratios of β̂ and β. That is, our criterion is less finely ordered and

leaves some pairs of individuals as unordered that these prior quantitative comparisons

would erroneously rank.

2.3 Stochastic Present Bias

Our general results compare the naivete of individuals who exhibit randomness in their

ex-post choices due to uncertainty about the nature or degree of time-inconsistency. The

relationship between our two suggested approaches to comparing naivete—comparing

underdemand for commitment and comparing overvaluation of menus—is more subtle

in the general case than suggested by the special deterministic case. When choice is

possibly random, the equivalence breaks down and the comparison of underdemand for

commitment is a strictly more demanding criterion than the comparison of overvaluations.

Here, we preview these differences by continuing to focus attention on quasi-hyperbolic

discounting. Consider a generalization of the (β̂, β, δ) model where the level of present

bias β is stochastic, governed by the cumulative distribution function (abbreviated as cdf)

F . To model naivete, the individual’s belief about her future behavior is also stochastic,

but governed by the distribution F̂ .

The standard extension of an order on a deterministic space to the space of beliefs

is through stochastic dominance. This turns out to nicely extend the absolute definition

of naivete. Recall that a deterministic quasi-hyperbolic discounter is naive if and only

8



β1

1

0
0

F1

F2
F̂2

F̂1

(a) Equations (4) and (5) are both satisfied.

β1

1

0
0

F1

F2
F̂2

F̂1

(b) Equation (5) is satisfied, but not (4).

Figure 1: Comparisons of naivete for stochastic choice.

if β̂ ≥ β. We will show that a random quasi-hyperbolic discounter whose present bias

actually follows distribution F , but is believed to follow distribution F̂ , satisfies our

behavioral definition of naivete if and only if F̂ (β) ≤ F (β) for all β. That is, she is naive

if and only if her belief F̂ first-order stochastically dominates the distribution F .

While prior notions of comparative naivete were not without controversy in the case

of deterministic choice (as our prior examples illustrated), comparisons of naivete for

stochastic choice have been largely unexplored in the existing literature. Our results help

to remedy this gap. We will show that our two proposed criteria for comparing naivete

lead to novel parametric restrictions. First, an individual has greater underdemand for

commitment than another if and only if either

F̂1(β) ≤ F̂2(β) ≤ F2(β) ≤ F1(β) (4)

for all β, or the second individual is sophisticated (F̂2 = F2). When each of these distribu-

tions is concentrated on a single value, this first-order stochastic dominance relationship

between the distributions specializes to the aforementioned restriction for the determinis-

tic case: β̂1 ≥ β̂2 ≥ β2 ≥ β1. Second, the comparison of overvaluations across individuals

yields a different, and more permissive, ordering in stochastic environments. We show

that an individual has greater overvaluation than another for every menu if and only if

F1(β)− F̂1(β) ≥ F2(β)− F̂2(β) (5)

for all β.

Equation (5) is a strictly weaker restriction than Equation (4), as Figure 1 illustrates.

Thus, the approach of ranking naivete by the level of overvaluation is strictly more
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β1

1

0
0

β1 β2 β̂2 β̂1

F1 F2 F̂2 F̂1

Figure 2: Equation (5) implies Equation (4) for degenerate distributions

(deterministic choice), provided β̂2 > β2.

general and will order more pairs of individuals than the approach of ranking naivete

by underdemand for commitment. However, as noted previously, the two approaches

are equivalent in the special case of deterministic choice. When each distribution is a

deterministic Dirac measure, the differences Fi(β) − F̂i(β) can only take values of 1 or

0, and both of our parametric restrictions become equivalent to β̂1 ≥ β̂2 ≥ β2 ≥ β1 (or

β̂2 = β2). Figure 2 illustrates why these generally different orderings become equivalent

without randomness.

The following examples illustrate how our two comparative measures can be used in

practice. Example 3 shows that for some applications, the more permissive ordering of

naivete captured by Equation (5) is the appropriate comparative, and it is not neces-

sary to resort to the more restrictive ordering of naivete from Equation (4). However,

Example 4 then illustrates that for other applications, our weaker ordering can lead to

counterintuitive behavior, and the more restrictive ordering is instead appropriate.

Example 3 (Monopoly profit with random choice). Consider the setting of Example 2,

the only difference being that the agent is a random quasi-hyperbolic discounter who

believes that her future β is distributed according the cdf F̂ , while the true distribution

is given by F . The incentive-compatibility constraint from Equation (1) is modified into

− L+

∫ 1

p/b

(b− p) dF̂ (β) ≥ 0, (6)

while the expected profit of the firm now equals

L+

∫ 1

p/b

(p− c) dF (β). (7)

Rewriting Equation (7) by substituting the value of L obtained in Equation (6) shows
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that the firm’s expected profit equals

∫ 1

p/b

(b− c) dF (β)

︸ ︷︷ ︸

social surplus

+

∫ 1

p/b

(b− p) d(F̂ (β)− F (β))

︸ ︷︷ ︸

overvaluation

. (8)

When F and F̂ have continuous cumulative distribution functions, the monopoly profit

can be written as

(b− c)
(

1− F
(p

b

))

︸ ︷︷ ︸

social surplus

+(b− p)
(

F
(p

b

)

− F̂
(p

b

))

︸ ︷︷ ︸

overvaluation

.

This final expression makes most clear why overvaluation is increasing in F (·) − F̂ (·),

although this is generally true even without a continuous cdf. �

As mentioned, while Equation (5) is equivalent to comparing overvaluation, it is too

broad of a criterion to capture underdemand for commitment. That is, one individual

might have greater overvaluations for all menus, yet fail to exhibit greater underdemand

for commitment. Instead, to compare take-up of commitment devices, the appropriate

parametric restriction is the one in Equation (4). We illustrate this point by revisiting

the consumption-savings problem from Example 1, but with a simple stochastic element.

Example 4 (Consumption-savings problem with random choice). As in Example 1,

suppose x = {(c1, (1 + r)(1 − c1)) : 0 ≤ c1 ≤ 1}. The savings commitment plan forces

savings and has a return rc, giving consumption (1 + rc) in period 2. Individuals i = 1, 2

have no present bias (β = 1) with probability θi and have the common present bias

parameter β = β∗ with the remaining probability 1 − θi.
7 The individuals have naive

beliefs that they will instead have no present bias with probability θ̂i ≥ θi and will have

present bias β∗ with probability 1 − θ̂i. The scope for naivete is thus in overoptimism

about the probability of avoiding present bias, and not in the level of that present bias if it

actualizes. Assuming β∗(1 + r) < 1, individual i will therefore choose (c1, c2) = (0, 1+ r)

with probability θi and (c1, c2) = (1, 0) with probability 1 − θi. Denote the vector of

expected values of actual consumption from x in each period by

cθi = (1− θi, θi(1 + r)),

and likewise let cθ̂i denote the anticipated expected values of consumption from x. Since

the utility functions are linear in consumption, the actual ex-ante expected utility for an

7That is, Fi(β) = 0 for β ∈ [0, β∗), Fi(β) = 1 − θi for β ∈ [β∗, 1), and Fi(1) = 1. This sim-
ple binary model of stochastic temptation was previously studied by Eliaz and Spiegler (2006) and
Chatterjee and Krishna (2009).
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(a) Expected values of consumption for
perceived and actual stochastic choice.
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F̂2

F̂1

β∗
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r

(b) Individual 2 mistakenly forgoes the
savings commitment device.

Figure 3: Stochastic naivete and the uptake of savings commitment devices.

individual is therefore8

(1− θi) + θi(1 + r) = 1 + θir.

Given her naive beliefs, individual i instead anticipates utility 1 + θ̂ir from the menu x.

Suppose
rc
r

> θ1, θ2 and θ̂2 >
rc
r

> θ̂1. (9)

The first inequality implies that rc > θir for i = 1, 2, so both individuals would benefit

from the savings commitment device. The second inequality implies that individual 2

will forgo the commitment device, while individual 1 will make use of the device. Thus, 2

exhibits greater underdemand for commitment than 1 in this decision problem. However,

it is easy to see that the parameter restrictions in Equation (9) can be satisfied even

when individual 2 has lower overvaluations than 1, that is, when θ̂2 − θ2 ≤ θ̂1 − θ1. This

example demonstrates that individual 2 can have lower overvaluations than individual 1,

yet still exhibit greater underdemand for commitment.9 Figure 3a illustrates anticipated

and actual expected values of consumption that satisfy these conditions together with

the ex-ante indifference curve through the commitment consumption plan (0, 1+ rc). �

Note that the basic argument in Example 4 applies to any perceived and actual

cumulative distributions functions for present bias factors β that violate Equation (4).

To illustrate, suppose Fi and F̂i are continuous for i = 1, 2 and let β∗ = 1/(1+ r). Then,

when confronted with the consumption-savings problem from this example, individual i

8Risk neutrality is assumed in this example for expositional simplicity, but is in no way central to the
main qualitative conclusions. Our main results neither require nor assume risk neutrality.

9In contrast, Equation (4), which corresponds to θ̂1 ≥ θ̂2 ≥ θ2 ≥ θ1 in this example, is incompatible
with Equation (9) and hence requires that individual 1 have greater underdemand for commitment.
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will choose to save with probability θi = 1−Fi(β
∗), but naively believes that she will save

with probability θ̂i = 1 − F̂i(β
∗). Thus, by Equation (9), if (r − rc)/r < F1(β

∗), F2(β
∗)

then the savings commitment device is beneficial to both individuals, and if F̂2(β
∗) <

(r − rc)/r < F̂1(β
∗) then individual 2 passes up this beneficial commitment device and

only individual 1 utilizes it. Figure 3b illustrates how this is possible even in the case

where individual 1 has greater overvaluations than individual 2.10

The main distinction between the two previous examples is that in Example 3, the

monopolist can design a custom contract for each individual in the population using

knowledge of their distributions F and F̂ . This assumption is reasonable if the popu-

lation is roughly homogeneous or if the firm has detailed consumer data on potential

customers. In this case, the exploitation of an individual due to naivete is increasing in

her overvaluations (equivalently, the parametric comparison in Equation (5)). In con-

trast, Example 4 considers the welfare impact of a single fixed policy instrument offered

across an entire population of individuals who might be heterogeneous in their distri-

butions F and F̂ . In this case, the welfare loss due to naivete increases with greater

underdemand for commitment (equivalently, Equation (4)), but not necessarily in the

level of overvaluations. Thus, which of our two proposed comparisons of naivete is most

suitable depends on the specifics of the information structure and whether contracts (or

commitment devices) are designed at the individual or population level.

3 Deterministic Choice

We begin our analysis by examining naivete in the context of deterministic choice and

beliefs. The next section will study the more general environment of random choice. We

feel that random choice is an important consideration given that naivete regards possibly

incorrect beliefs about future behavior. For now, this section focuses on the special case

of deterministic choice to establish intuition and avoid some of the additional technical

details required to formalize random dynamic inconsistency. While some insights are

general and extend to the random case, others are interestingly limited to deterministic

choice and have subtle variations when considering random choice.

3.1 Primitives

We study a two-stage model with an agent who initially decides on a menu of several

options and subsequently selects a particular option from that menu.

10As might be evident, another possibility when Equation (4) fails to hold is that F̂1(β
∗), F̂2(β

∗) <
(r − rc)/r and F1(β

∗) < (r − rc)/r < F2(β
∗). In this case, both individuals pass up the savings

commitment device, but this decision is only a mistake for individual 2.
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Let C be a compact and metrizable space of outcomes. Let ∆(C) denote the set of

lotteries (countably additive Borel probability measures) over C, with typical elements

p, q, . . . ∈ ∆(C). When it causes no confusion, we slightly abuse notation and write c

in place of the degenerate lottery δc ∈ ∆(C) supported on c. Let K(∆(C)) denote the

family of nonempty compact subsets of ∆(C) with typical elements x, y, . . . ∈ K(∆(C)).

These sets are interpreted as menus or budget sets. The menu determines the level of

flexibility versus commitment, with larger menus providing more flexibility and smaller

menus providing more commitment. An expected-utility function is a continuous function

u : ∆(C) → R such that u(αp+ (1− α)q) = αu(p) + (1− α)u(q) for all lotteries p, q. A

function is nontrivial if it is not constant. We write u ≈ v when u and v are expected-

utility functions and u is a positive affine transformation of v. For a fixed expected-utility

function u and menu x, let Bu(x) ≡ argmaxp∈x u(p).

We consider a pair of behavioral primitives. The first primitive is a preference rela-

tion % on K(∆(C)), with indifference ∼ and strict preference ≻ defined as usual. This

primitive provides insight into the agent’s projection regarding her future behavior. The

behavior encoded in % is taken before the direct experience of temptation but while (pos-

sibly incorrectly) anticipating its future occurrence. This is an economically important

primitive, because it also captures demand for commitment, which is an important con-

sideration when analyzing commitment instruments without mandatory take-up. The

second primitive is a (deterministic) choice function C : K(∆(C)) → ∆(C).11 This is the

standard model for economic choice, and it records the individual’s actual choices from

menus while experiencing temptation.

3.2 Absolute Naivete

We now introduce our nonparametric definition for absolute naivete. In a nutshell, an

individual is naive if she overvalues a menu relative to the actual choice that she would

ultimately make from that menu.

Definition 1. An individual is sophisticated if x ∼ {C(x)} for all menus x. An individual

is naive if x % {C(x)} for all menus x. An individual is strictly naive if she is naive and

not sophisticated.

A sophisticated individual correctly anticipates choosing C(x) from x. A naive indi-

vidual erroneously overvalues the option to retain the other alternatives in x, thinking

that her final choice will be more virtuous than C(x). Many decisions that open or

11Note that all of our definitions and theorems can be modified to accommodate choice correspondences
instead of choice functions. We choose to work with choice functions in order to make our primitives as
undemanding as possible in terms of richness of the required choice data.
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restrict future options can be modeled as menus and can therefore be related to our def-

initions. For example, purchasing an unlimited gym membership can be modeled as the

option set that includes any number of monthly visits, each paired with the fixed cost

of the membership. Similarly, many financial decisions, like opening a line of credit or

placing savings in an illiquid retirement account, can be viewed as adding or removing

options from future decisions. In these examples, we argue that some consumers may

strictly prefer x to C(x), indicating a lack of sophistication in the form of excess optimism

about their future choices. The examples in Section 2 provide concrete illustrations of

such violations of sophistication. Of course, the opposite violation with overdemand for

commitment, where {C(x)} ≻ x, is also potentially interesting and certainly indicates a

violation of sophistication (in this case, in the form of excess pessimism). Many of our

results have straightforward analogous statements with appropriate changes in signs for

this opposite case. However, this direction receives less attention and seems less empiri-

cally relevant, so we focus our analysis on traditional naivete in the form of underdemand

for commitment throughout the paper.12

Our definition of sophistication is similar to the Independence of Redundant Alter-

natives axiom that Gul and Pesendorfer (2005) use to study deterministic choice in a

finite-outcome setting, but our definition of naivete has not been considered in the liter-

ature.13 After presenting the main result of this section, we will discuss the connection

to other related papers, most notably Noor (2011), and we will also touch on some of the

assumptions implicit in our definition.

The ubiquitous Strotz model of dynamic inconsistency offers a general application

for these concepts. The sophisticated Strotz model is specified by two preferences. The

first is her ex-ante commitment preference over future consumption, as represented by

the utility function u. The second is her temptation preference that governs her actual

consumption choices at the ex-post stage, as represented by the utility function v. Naivete

requires divergence between believed and actual consumption. Specification of a naive

Strotz individual therefore requires a third preference to capture her possibly erroneous

beliefs about her future behavior, as represented by the utility function v̂.14

Definition 2. A Strotz representation of (%, C) is a triple (u, v, v̂) of nontrivial expected-

utility functions such that the function U : K(∆(C)) → R defined by

U(x) = max
p∈Bv̂(x)

u(p)

12What is difficult and we leave open is what happens when violations of sophistication are not
uniformly in the same direction, so {C(x)} ≻ x for some menus x and {C(y)} ≺ y for other menus y. We
suspect that not much can be said in that case, at least not using the techniques in this paper.

13Grant, Kajii, and Polak (2000) and Siniscalchi (2011) employ similar ideas to formalize sophistica-
tion in different settings of belief updating.

14Recall that a utility function is nontrivial if it is not constant, and Bv(x) = argmaxq∈x v(q).

15



is a utility representation of % and

C(x) ∈ Bu(Bv(x)).

While she anticipates maximizing v̂, a naive Strotzian agent’s ex-post behavior C

actually maximizes v. Note that both the domain of choice and the representation itself

are quite general. For example, C could be a set of infinite-horizon consumption streams,

and hence quasi-hyperbolic discounting (β-δ preferences) is a special case of the Strotz

representation (see Section 3.4).

The following result demonstrates that our behavioral definition of naivete charac-

terizes sharp parametric restrictions on v̂ and v. A naive individual believes that her

future behavior will be more virtuous than it actually is. For the parameters of the

Strotz model, this means that the anticipated temptation utility v̂ is more aligned with

the commitment utility u than the actual utility v that will govern future consumption.

The alignment has a specific structure: v̂ is a linear combination of u and v, that is,

v̂ ≈ αu + (1 − α)v.15 The belief v̂ puts additional unjustified weight on the normative

utility u, but aggregates u with v in a linear manner. Other cases where the believed

temptation differs from the actual temptation in a less structured way are also allowed

in our primitives and correspond to a form of misprediction, but these cases fail to sat-

isfy our proposed behavioral test of naivete. For example, our definition excludes an

individual who actually will be tempted to indulge in sweet treats but believes she will

be tempted to indulge in salty treats. This structure also relies crucially on the linear

structure of the domain of lotteries and the assumed expected-utility functions.

Definition 3. Let u, v, v̂ be expected-utility functions. Then v̂ is more u-aligned than v,

written as v̂ ≫u v, if either v̂ ≈ αu+ (1− α)v for some α ∈ [0, 1] or v ≈ −u.

Any strict convex combination of u and v is more u-aligned than v. One case that

is tedious is when v = −u because u and −u have, up to positive affine transformations

and excluding trivial preferences, no convex combinations except u and −u themselves.

We therefore adopt as convention that any expected-utility function is more u-aligned

than −u, since −u is maximally divergent from u.16

Theorem 1. Suppose (%, C) has a Strotz representation (u, v, v̂). Then the individual is

naive if and only if v̂ ≫u v (and is sophisticated if and only if v̂ ≈ v).

15Recall that v̂ ≈ αu+ (1− α)v means that v̂ is a positive affine transformation of αu+ (1− α)v and
hence the two functions share the same set of maximizers.

16Incorporating this special exception for this boundary case into the definition of the order ≫u also
tidies the conclusions of the following characterization theorems, that would otherwise have to read
“v̂ ≫u v or v ≈ −u.”
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Theorem 1 is a special case of one of the main results of Section 4 (see Theorem 3),

where we turn to the more general case of random choice and uncertain beliefs.

We close this section with a discussion of several important assumptions that are

implicit in our definitions of sophistication and naivete, which will also help to further

clarify how this paper connects with the related literature. First, our definitions assume

there is not a nontrivial preference for flexibility, that is, there is no uncertainty about

what constitutes virtuous behavior. Suppose an agent faces no temptation but is unsure

what her future tastes will be. Then she may prefer to keep the flexibility of the menu

rather than be forced to choose ex ante, in order to maintain the option value of waiting

to see what taste realizes. While the possibility of uncertain normative preferences is

substantively important, we suppress that consideration here and focus attention exclu-

sively on misprediction of temptation.17 Throughout this paper, we implicitly assume

that the normative preference or taste has already been realized or is known to the deci-

sion maker. Of course, in many policy applications, balancing the benefits of flexibility

and of commitment is important, as in deciding penalties for early withdrawals from re-

tirement accounts. However, even a parametric model of naive choice with both kinds of

uncertainty is still outstanding. Section 5.2 discusses some of these issues in more depth.

Second, in our definition, inferring sophistication from x ∼ {C(x)} assumes conse-

quentialism, that is, the individual is indifferent between committing to her (correctly)

anticipated choice C(x) from x at the ex-ante stage and selecting the menu x with the

belief that she will choose C(x) ex post. Put differently, adding or removing unchosen

options has no effect on the evaluation of a menu. In contrast, an individual who exerts

costly willpower to avoid choosing tempting options as in Gul and Pesendorfer (2001)

does not evaluate a menu only by its choice consequences. In this case, she may strictly

prefer to remove these unchosen temptations.18 In Section 5.1, we show that if individuals

can exert costly self-control then our behavioral test of naivete can lead to false negatives,

but not false positives: Satisfying our definition of naivete in the presence of costly self-

control implies a fortiori that the individual is naive; however, violating our definition

of naivete does not preclude the possibility that an individual with Gul and Pesendorfer

(2001) preferences is in fact naive.

Since our definitions do not tightly characterize sophistication and naivete in the

case of the self-control preferences of Gul and Pesendorfer (2001), a natural question is

whether a tight characterization is in fact possible. The answer is affirmative, but only

in the case of deterministic choice. As an axiom en route to characterizing a recursive

17Ahn and Sarver (2013) characterize sophistication for the case of uncertain normative preferences
and demand for flexibility, rather than the demand for commitment that arises with temptation, and
propose the failure to anticipate future preference realizations as a form of unforeseen contingencies.

18Alternatively, an agent that derives self-satisfaction from exercising willpower may strictly prefer to
include tempting options that she will not consume.
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model of temptation, Noor (2011) proposes a definition of sophistication for the self-

control model.19 Noor’s definition requires that whenever {p} ≻ {q} (that is, p is the

preferred ex-ante commitment), p is the unique ex-post choice from the menu containing

both lotteries if and only if {p, q} ≻ {q}. While not intended for the consequentialist

models we have in mind in this paper, there is nonetheless a close connection between his

sophistication condition and the one proposed in this paper when applied to the Strotz

model. A companion paper, Ahn, Iijima, and Sarver (2016), modifies the definition of

sophistication from Noor (2011) to provide a tight behavioral characterization of naivete

for both deterministic self-control preferences and deterministic Strotz preferences. In

that paper, it is shown that Noor’s definition of sophistication is equivalent to the one

in our Definition 1 for Strotz preferences, but the two definitions diverge for self-control

preferences. Moreover, that paper extends Noor’s work by proposing a definition of

naivete and characterizing a recursive model of self-control that allows for naivete as well

as sophistication. However, Ahn, Iijima, and Sarver (2016) also show that a tight charac-

terization of naivete is impossible when self-control and random choice are simultaneously

permitted; this impossibility result is closely related to the lack of unique identification

of parameters in a random self-control representation. In contrast, Definition 1 in this

paper extends easily to the case of random choice and characterizes sophistication and

naivete within the random Strotz model, as we will establish in Section 4.

3.3 Comparative Naivete

In this section, we introduce two definitions for comparing naivete across individuals.

The first naturally extends our proposed test for absolute naivete by comparing the sets

of forgone opportunities for beneficial commitment. The second directly measures the

difference between anticipated and actual indirect utilities for menus. We show that, in

the deterministic case, both definitions turn out to be equivalent.

Recall that a naive agent satisfies x % {C(x)}, that is, there is a potential gap between

her value for the menu x and the value of her eventual choice C(x). To compare the

degree of naivete across agents, our first definition measures the size of this gap using

underdemand for commitment.

Definition 4. Individual 1 is more naive than individual 2 if, for all menus x and

lotteries p,

x ≻2 {p} ≻2 {C2(x)} =⇒ x ≻1 {p} ≻1 {C1(x)}.

Any singleton {p} that is ex-ante ranked strictly between a menu x and its resulting

choice {C(x)} presents a welfare-enhancing commitment that will be unfortunately de-

clined: p is preferred ex ante to C(x) yet the individual chooses to maintain the flexibility

19A variation of this axiom is also used by Kopylov (2012).
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of x due to the naive belief that she will make a more virtuous choice. Thus, the beneficial

opportunity to commit to consuming p instead of C(x) will be naively rejected. Defini-

tion 4 classifies an individual as more naive than another if she has greater underdemand

for commitment, that is, if she forgoes more beneficial commitments. Singleton menus

like {p} are especially useful in comparing naivete because there is no ambiguity about

the eventual choice from such menus.20

Our second proposal for comparing naivete is based on the utility difference between

a menu x and the actual choice C(x). In many applications of time inconsistency and

naivete to industrial organization and contract theory, the firm’s ability to extract excess

surplus is tied to the extent to which the individual overestimates the utility that she

will receive from a set of options or from an action-dependent contract.21 For example,

if a monopolist can charge a fixed fee, then it can extract the difference between the

anticipated and actual indirect utility for a contract, above the standard extraction of

the social surplus. This motivates the following definition.

Definition 5. Suppose (%, C) has a Strotz representation (u, v, v̂). The coefficient of

overvaluation of a menu x is defined by:

OV (x) = max
p∈Bv̂(x)

u(p)

︸ ︷︷ ︸

believed indirect utility

− max
p∈Bv(x)

u(p).

︸ ︷︷ ︸

actual indirect utility

Our second definition of comparative naivete requires that OV1(x) ≥ OV2(x) for all

menus x, reflecting the idea that individual 1 makes a larger mistake when she contem-

plates her future behavior than individual 2. Early in this paper, Example 2 studied a

monopolist designing contracts for naive agents. There, the coefficient of overvaluation

appeared in the monopolist’s profit in Equation (3), where it was interpreted as the extra

profit, above and over the standard social surplus, extracted by the monopolist because

of the agent’s mistaken beliefs. Thus, another way to interpret this comparison is that

a monopolist can extract more excess surplus from individual 1 (above social surplus)

than from individual 2. Note that even without the assumption of quasilinear preferences

20By definition, an agent is less naive if she takes better advantage of full commitments, that is, of
singleton commitments. However, this does not imply that a less naive individual will make better use of
partial commitment devices. That is, suppose x ⊂ y and C(x) ≻ C(y), but x is not a singleton. Then it is
entirely possible for the more naive agent to take up the beneficial partial commitment (x ≻ y), while the
less naive agent forgoes that partial commitment (y ≻ x). Several models in the literature demonstrate
that naive individuals may mistakenly pay (in the form of money, effort, or foregone options) for partial
commitment devices that are too weak to actually be effective, e.g., Heidhues and Kőszegi (2009). In
these situations, becoming less naive in the sense of Definition 4 may make an individual worse off: She
becomes sophisticated enough to recognize the potential benefits of commitment, but not sophisticated
enough to recognize that a partial commitment will leave temptations that she will be unable to resist.

21Some applications are reviewed in Spiegler (2011) and Kőszegi (2014, Section 6).
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that was used in Example 2, this measure OV (x) of overvaluation has cardinal meaning

because we consider lotteries and expected-utility preferences.

Underdemand for commitment provides one criterion for comparing naivete. Overval-

uations provide another criterion. The following theorem shows that both approaches are

equivalent in the deterministic setting. It also shows that these comparisons of naivete

for two individuals are equivalent to a direct restriction on the parameters of the Strotz

representations for those individuals.

Theorem 2. Suppose (%1, C1) and (%2, C2) are naive and have Strotz representations

(u, v1, v̂1) and (u, v2, v̂2). Then the following are equivalent:

1. Individual 1 is more naive than individual 2.

2. OV1(x) ≥ OV2(x) for all menus x.

3. v̂1 ≫u v̂2 ≫u v2 ≫u v1, or v̂2 ≈ v2 (individual 2 is sophisticated).

Theorem 2 is a corollary of our more general results for stochastic choice in Section 4

(see Theorems 4 and 5).

When comparing a pair of naive individuals, individual 1 always has greater underde-

mand for commitment whenever individual 2 is sophisticated. This is because individual 2

never forgoes a beneficial commitment, thus rendering the required implication in Defini-

tion 4 vacuously true. That is, all sophisticated individuals are less naive than all naive

individuals. In all other cases, where both individuals are strictly naive, the last con-

dition in Theorem 2 imposes sharp and intuitive restrictions on the believed and actual

temptations of both agents in the Strotz model: While they share common normative

preferences over singleton commitments, individual 1 is more optimistic about her future

behavior than individual 2, as reflected in the requirement v̂1 ≫u v̂2. However, indi-

vidual 1’s actual ex-post choices are even less virtuous than individual 2’s choices, as

reflected in v2 ≫u v1. A more naive individual is more optimistic about the virtuousness

of her future behavior while actually exercising less virtue. In our view, since naivete

concerns the difference between believed and actual behavior, v̂ and v, both parameters

should be implicated in comparing naivete.22 Geometrically, Figure 1 illustrates that if

individual 2 is strictly naive then comparative naivete implies that both individuals’ an-

ticipated temptations v̂i and actual temptations vi are convex combinations of the shared

commitment utility u and the more naive individual’s actual temptation v1, progressively

located on the arc connecting u and v1.

22See also Lemma 3 in the appendix, which shows that with shared commitment preferences, indi-
vidual 1 is more naive than individual 2 if and only if she is less temptation averse and rejects more
commitments ex ante (that is, {p} ≻2 x whenever {p} ≻1 x) and she makes less virtuous choices from
every menu ex post (that is, {p} ≻1 {C(x)} whenever {p} ≻2 {C(x)}).
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Figure 4: Alignment of believed and actual utilities implied by comparative naivete
in the deterministic Strotz representation, in the case where individual 2
is strictly naive (Theorem 2).

As suggested in Section 2 and formally proven in Section 4, with random choices,

while having greater underdemand for commitment will imply having higher overvalua-

tions, the converse fails and one can have higher overvaluation without having greater

underdemand for commitment. That is, in general, comparing naivete through underde-

mand for commitment is a more strenuous criterion that orders fewer individuals than

comparing overvaluations, and the equivalence stated in Theorem 2 fails to generalize to

random choice.

3.4 Application to Quasi-Hyperbolic Discounting

To illustrate the usefulness of our definitions, in this subsection we consider their implica-

tions for the ubiquitous quasi-hyperbolic discounting model. These applications extend

the insights observed in the examples in Section 2.

Let C = [a, b]N be a set of infinite-horizon consumption streams, with elements

c = (c1, c2, . . . ) ∈ C.23 A lottery p ∈ ∆(C) resolves immediately and yields a con-

sumption stream. We focus on the simple case with one-shot resolution of uncertainty

for expositional parsimony, but all of the following results generalize to richer settings that

incorporate temporal lotteries or true dynamic choice.24 In these more general dynamic

environments, simple atemporal lotteries over consumption streams provide sufficient

23The product topology on C is compact and metrizable.
24Kreps and Porteus (1978) provide the first complete analysis of dynamic choice with uncer-

tainty that resolves gradually through time (i.e., temporal lotteries). The models of temptation in
Gul and Pesendorfer (2004) and Noor (2011) use an infinite-horizon version of such a setting.
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choice observations to apply the following comparative statics. Note that our treatment

here is not fully dynamic, because the entire stream of consumption is settled immedi-

ately. This allows us to finesse the agent’s assessments of her future beliefs, her future

beliefs about even further future beliefs, and so on. Our point here is that sophisti-

cation and naivete can be distinguished without appeal to these higher-order epistemic

assessments.

Suppose the commitment preference is represented by an expected-utility function

whose values u(c) = u(δc) over deterministic streams (that is, whose Bernoulli utility

indices) comply with exponential discounting,

u(c) =
∞∑

t=1

δt−1w(ct), (10)

for some instantaneous utility function w : [a, b] → R. The quasi-hyperbolic discount-

ing model captures present bias with an additional discount factor applied to all future

periods: If the present-bias factor is β, then ex-post (period 1) choice from a menu of

consumption streams x will maximize

vβ(c) = w(c1) + β
∞∑

t=2

δt−1w(ct). (11)

In the deterministic quasi-hyperbolic discounting model, the individual’s ex-ante (pe-

riod 0) behavior may reflect an incorrect belief that her future present-bias parameter is

β̂, while her ex-post behavior actually uses the present-bias parameter β. It is immedi-

ate that this choice procedure corresponds to a special case of the deterministic Strotz

representation.

Definition 6. A quasi-hyperbolic (QH) representation of (%, C) is a tuple (w, β, β̂, δ) of

a continuous and nontrivial function w : [a, b] → R and scalars β, β̂ ∈ [0, 1] and δ ∈ (0, 1),

such that (u, vβ, vβ̂) defined as in Equations (10) and (11) for these parameters is a Strotz

representation for (%, C).

Corollaries 1 and 2 illustrate the implications of our absolute and comparative defini-

tions in the QH representation. These results follow immediately from Theorems 1 and

2, respectively, together with the observation that vβ̂ ≫u vβ if and only if β̂ ≥ β.

Corollary 1. Suppose (%, C) has a QH representation (w, β, β̂, δ). Then the individual

is naive if and only if β̂ ≥ β (and is sophisticated if and only if β̂ = β).

Corollary 2. Suppose (%1, C1) and (%2, C2) are naive and have QH representations

(w, β1, β̂1, δ) and (w, β2, β̂2, δ). Then the following are equivalent:
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1. Individual 1 is more naive than individual 2.

2. OV1(x) ≥ OV2(x) for all menus x.

3. β̂1 ≥ β̂2 ≥ β2 ≥ β1, or β̂2 = β2 (individual 2 is sophisticated).

The parametric restriction for comparative naivete in Corollary 2 includes the special

cases where individuals share the same ex-post behavior and differ only in their beliefs

(i.e., β1 = β2 and β̂1 ≥ β̂2), and where they share the same ex-ante beliefs can differ only

in their actual behavior (i.e., β̂1 = β̂1 and β2 ≥ β1). However, these particular cases of

comparative naivete are sometimes too restrictive, in that they permit the comparison

fewer individuals. Our characterization of comparative naivete permits a more complete

ordering of individuals by allowing differences in both ex-ante beliefs and ex-post behav-

ior, yet still rules out the counterintuitive predictions that could arise from other, more

permissive parametric comparisons. In particular, Corollary 2 implies that comparing

differences or ratios of parameters is not sensible for the quasi-hyperbolic discounting

model, as already suggested in Section 2.

4 General Results

In many environments, temptation is more realistically modeled as a random phenomenon.

For example, someone might be motivated to work out at the gym on some days but lack

enough willpower on other days. Uncertainty about future behavior is arguably even

more compelling when considering naivete about temptation: Even if her actual future

behavior is deterministic, a naive agent who cannot precisely predict her behavior might

more naturally be modeled as having uncertainty about her future temptation, rather

than making a resolute but incorrect prediction.

As is standard in ubiquitous applications, random choice data should be interpreted

as an idealization of repeated observations of choices from menus. We stress that the

case of random choice is a pure generalization of deterministic choice, since deterministic

choice is the special case where the distribution of choices is concentrated on a single

object. That is, random choice only increases the range of observable environments

relative to the deterministic case, and environments where only a single choice is observed

still fall under the purview of our model. That all said, we choose to study the general

case because the literature suggests compelling reasons to accommodate randomness, and

random temptation has been a part of many recent applications of time inconsistency and

naivete, ranging from optimal contracting (Eliaz and Spiegler (2006), Spiegler (2011))

to credit markets (Heidhues and Kőszegi (2010)) to the design of commitment devices

(Duflo, Kremer, and Robinson (2011)).
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In measuring naivete, as is the case for any model of mistaken beliefs, one important

and subtle consideration that arises when making repeated observations of choices from

menus is the potential for learning; the agent may learn about her tendency to be tempted

from her past choices and therefore become more sophisticated over time (e.g., Ali (2011)).

For example, if an agent initially exhibits a preference x ≻ {p} but finds herself repeatedly

and frequently choosing an alternative q ∈ x that is ex-ante dominated by p, she may

revise her beliefs and consequently update her ranking of menus to {p} ≻ x over the

course of an experiment. However, while we must observe repeated choices from menus

to elicit the entire distribution of random ex-post choice, our analysis of ex-ante choice

only concerns the initial beliefs held by the agent at the beginning of the experiment. As

such, we only need a single set of observations of her choices between menus to elicit her

initial deterministic menu preference. That is, for our purposes, it suffices to observe just

the initial ranking of x and {p} to determine the beliefs held prior to any learning. Any

effects of learning on menu preference after the initial ranking can be ignored as outside

the purview of our model.

4.1 Primitives

We again consider a pair of behavioral primitives. As before, the first primitive is a

preference relation % on K(∆(C)), which captures the agent’s demand for commitment

and hence her ex-ante beliefs about future temptations. However, the second primitive is

now a random choice rule λ : K(∆(C)) → ∆(∆(C)) such that λx(x) = 1, where ∆(∆(C))

denotes the space of lotteries over ∆(C). The behavior encoded in λ is taken while

experiencing temptation ex post. For each x ∈ K(∆(C)), λx is a probability measure

over lotteries, with λx({p}) denoting the probability of choosing the lottery p ∈ x out of

this menu. More generally, λx(y) denotes the probability of choosing a lottery in the set

y ⊂ x when the choice set is the menu x.

A random choice rule λ is deterministic if λx is degenerate for all menus x, that is,

λx = δp for some p ∈ x. Identifying the Dirac measure δp with p itself, in this case we

can express λ as a standard choice function C : K(∆(C)) → ∆(C) by taking C(x) = p for

δp = λx. Thus the behavioral primitives in this section are a strict generalization of the

deterministic environment considered in Section 3.

4.2 Absolute Naivete

The conceptual apparatus just introduced for the deterministic case extends to random

choice. For any (compound) lottery λx ∈ ∆(∆(C)), its average choice m(λx) is the

expectation of the identity function under λx or, formally, m(λx) =
∫
p dλx ∈ ∆(C). That

is, m(λx) reduces the compound lottery λx into a single lottery in ∆(C). For example,
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suppose lottery p gives outcome c with probability 1, and q gives c with probability 2/3

and c′ with probability 1/3, so p = δc and q = (2/3)δc + (1/3)δc′ . Suppose also that p is

chosen from the menu {p, q} with probability λ{p,q}({p}) = 1/2. Then the unconditional

probability of outcome c given this menu is 5/6: m(λ{p,q}) = (5/6)δc + (1/6)δc′ . This

reduction from a distribution over multiple lotteries to a single lottery does not assume

any attitude towards risk, such as risk neutrality, over deterministic outcomes in C.25

Definition 7. An individual is sophisticated if x ∼ {m(λx)} for all menus x. An

individual is naive if x % {m(λx)} for all menus x. An individual is strictly naive if she

is naive and not sophisticated.

A sophisticate is indifferent between selecting the choice set x for tomorrow and com-

mitting to the actual distribution of outcomes m(λx) that would result from her choices

from that menu. A naif incorrectly anticipates making more virtuous choices and hence

expects a more attractive distribution of outcomes from x than will occur in actual-

ity. As noted above, deterministic second-stage choice formalized as a choice function

C : K(∆(C)) → ∆(C) is a special case of the random choice framework. The corre-

sponding random choice rule λ satisfies λx({p}) = 1 if and only if C(x) = p, and hence

m(λx) = C(x). In this case, the conditions for sophistication and naivete in Definition 7

reduce to our prior definitions, x ∼ {C(x)} and x % {C(x)}, respectively.

Our definitions lend themselves to simple tests of violations of sophistication and

naivete even when choices are random. Consider a binary menu {p, q} where {p} ≻ {q},

and let α = λ{p,q}({p}). Then, m(λ{p,q}) = αp+(1−α)q and thus sophistication (naivete)

implies

{p, q} ∼ (%) {αp+ (1− α)q}.

In other words, a sophisticate is indifferent between the option set {p, q} and a mixture of

these lotteries that matches her ex-post choice frequencies, whereas a naif prefers keeping

her options open. One possible experimental design that implements our approach would

be to elicit the ranking of {p, q} and {α̂p + (1 − α̂)q} for various values of α̂ and then

compare these rankings to the actual choice frequencies α of a group of subjects.26

We now apply our general definitions to the random Strotz model, which generalizes

the classic Strotz model to allow uncertainty about future temptations. Dekel and Lipman

(2012) provide a thorough analysis of the random Strotz model. Just as a single tempta-

tion is parametrized using a single expected-utility function in the deterministic Strotz

model considered in Section 3, a random temptation is analogously parametrized using

25Our analysis does implicitly assume indifference to compounding. However, indifference to com-
pounding can be relaxed by considering appropriate certainty equivalents for compound lotteries rather
than assuming indifference between λx and m(λx).

26This experimental design is implemented in Le Yaouanq (2015) to measure individual-level naivete
about memory lapses.
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a probability measure over expected-utility functions. When defining the random Strotz

representation, it will be mathematically convenient to associate expected-utility func-

tions with their corresponding Bernoulli utility indices. Formally, let V denote the set of

all continuous functions v : C → R, and endow V with the supremum norm and corre-

sponding Borel σ-algebra. Thus, V is the set of all continuous Bernoulli utility indices

on the consumption space C, and each element v ∈ V can also be identified (with slight

abuse of notation) with its corresponding expected-utility function on ∆(C) by letting

v(p) ≡
∫

C
v(c) dp. Note that V is a vector space.

Definition 8. A probability measure µ on V has finite-dimensional support if there

exists a finite set of expected-utility functions {v1, . . . , vn} ⊂ V such that supp(µ) ⊂

span({v1, . . . , vn}).

We will restrict attention to random Strotz representations with finite-dimensional

support. This is arguably a mild restriction, as we are unaware of any application of

the random Strotz model that does not have finite-dimensional support. For example,

any deterministic Strotz representation (see Section 3) or any random quasi-hyperbolic

discounting representation (see Section 4.4) has finite-dimensional support. In addition,

if the consumption space C is finite, then any probability measure µ on V trivially has

finite-dimensional support.

Without loss of generality, we also restrict attention to probability measures on V

that are nontrivial, in the sense of assigning probability zero to constant functions.27

Definition 9. A random Strotz representation of (%, λ) is a triple (u, µ, µ̂) of a nontrivial

expected-utility function u and nontrivial probability measures µ and µ̂ over V with finite-

dimensional support such that the function U : K(∆(C)) → R defined by

U(x) =

∫

V

max
p∈Bv(x)

u(p) dµ̂(v)

is a utility representation of % and, for all menus x and all measurable y ⊂ x,

λx(y) = µ(p−1
x (y))

for some measurable selection function px : V → x with px(v) ∈ Bu(Bv(x)) for all v ∈ V.

The interpretation of the representation of the ex-ante preference % is straightforward.

To understand the representation of the ex-post random choice rule λ, note that after the

realization of a temptation utility v ∈ V , the individual’s choice of lottery is an element

27The restriction to nontrivial measures in the definition of the random Strotz representation is without
loss of generality since any weight assigned to constant functions can be moved to the commitment utility
u without altering the ex-ante preference or ex-post random choice rule.
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of the set Bu(Bv(x)) of lexicographic maximizers of v then u. There may be multiple

elements in this set for a fixed v, and the individual’s tie-breaking procedure among

these is modeled using a selection function px from the correspondence v 7→ Bu(Bv(x))

mapping temptations to possible choices.28 Given this mapping from temptation utilities

to choices, the distribution of temptation utilities then determines the stochastic choice

of the individual. The probability of choosing an element of the subset y ⊂ x is equal to

the probability under µ of an ex-post expected-utility function v for which the optimal

choice is in y, that is, λx(y) = µ({v ∈ V : px(v) ∈ y}).

The functional characterization of naivete for the random Strotz representation is the

stochastic generalization of the definition for deterministic Strotz. In the deterministic

case, naivete implies the believed v̂ is more u-aligned than v: v̂ ≫u v. In the random

case, the believed distribution over all possible temptations stochastically dominates the

actual distribution of temptations, where stochastic dominance is with respect to the ≫u

order. As is standard, a stochastically dominant measure puts more weight on the upper

contour sets of the basic ordering ≫u over the state space. The following definitions

adapt the technology developed by Dekel and Lipman (2012).

Definition 10. Let u be an expected-utility function. A measurable set U ⊂ V is a

u-upper set if, for any v ∈ U and v′ ∈ V, if v′ ≫u v then v′ ∈ U .

We let ≫u denote both the basic ordering over expected-utility functions and the

induced stochastic order over measures on expected-utility functions.

Definition 11. Let u be an expected-utility function, and let µ, µ̂ be probability measures

over V. Then µ̂ is more u-aligned than µ, written as µ̂ ≫u µ, if µ̂(U) ≥ µ(U) for all

u-upper sets U .

Note that v̂ ≫u v (in the determinate sense) is equivalent to δv̂ ≫u δv (in the stochastic

sense). We write µ̂ ≈ µ whenever both µ̂ ≫u µ and µ ≫u µ̂, that is, when µ̂(U) =

µ(U) for all u-upper sets U . In this case, it can be shown that the measures induce

identical distributions over ex-post expected-utility preferences and can differ only by

affine transformations of the utility functions in their supports.29 They are therefore

identical in every respect that is relevant for both ex-ante and ex-post choice.

Generalizing our earlier result, absolute naivete is equivalent to µ̂ dominating µ in

the stochastic order generated by ≫u.

28Since there may be a multiplicity of selection functions, there may in turn be multiple maximizing
choice probabilities over x for a fixed probability measure µ over V. That is, just as there can be a
multiple choice functions induced by a choice correspondence, there can be multiple random choice rules
that maximize the same random Strotz representation. However, this multiplicity is not important for
our results since observing any maximizing random choice rule provides sufficient information for our
comparatives.

29The formal statement and proof of this claim can be found in Dekel and Lipman (2012); in particular,
see their Theorem 3 and its proof.
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Theorem 3. Suppose (%, λ) has a random Strotz representation (u, µ, µ̂). Then the

individual is naive if and only if µ̂ ≫u µ (and is sophisticated if and only if µ̂ ≈ µ).

The proof of this result makes use of a characterization by Dekel and Lipman (2012)

of comparative temptation aversion for ex-ante preferences with random Strotz represen-

tations. They say that %2 is more temptation averse than %1 if, for all menus x and

lotteries p,30

{p} ≻1 x =⇒ {p} ≻2 x.

Dekel and Lipman (2012) show that if %i has a random Strotz representation (u, µi)

for i = 1, 2, then %2 is more temptation averse than %1 if and only if µ1 ≫u µ2. To

prove Theorem 3, we apply this comparative to the measures µ̂ and µ in our two-period

random Strotz representation for a single individual. In particular, we show that naivete

is equivalent to the condition

∫

V

max
p∈Bv(x)

u(p) dµ̂(v) = U(x) ≥ u(m(λx)) =

∫

V

max
p∈Bv(x)

u(p) dµ(v), ∀x.

This condition implies that the hypothetical ex-ante preference %∗ generated by the

representation with correct beliefs (u, µ) is more temptation averse than the actual ex-

ante preference % with representation (u, µ̂), and hence µ̂ ≫u µ.

4.3 Comparative Naivete

In this section, we adapt the comparatives introduced in the deterministic case to the

stochastic setting. Similar to our strategy for extending the absolute definition of naivete,

our basic approach to extending deterministic comparisons of naivete to the random case

is based on replacing the deterministic choice with the average choice.

4.3.1 Comparing Underdemand for Commitment

Definition 12 generalizes Definition 4 by detecting failures to choose beneficial commit-

ment opportunities.

Definition 12. Individual 1 is more naive than individual 2 if, for all menus x and

lotteries p,

x ≻2 {p} ≻2 {m(λx
2)} =⇒ x ≻1 {p} ≻1 {m(λx

1)}.

30This formal definition appears with different interpretations in Ahn (2008) and Sarver (2008). It
is also similar in spirit to the behavioral comparisons of ambiguity aversion in Epstein (1999) and
Ghirardato and Marinacci (2002), who compare arbitrary acts to unambiguous acts in the same manner
that we compare arbitrary menus to singleton menus.
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The parametric restrictions implied by Definition 12 in the random Strotz model gen-

eralize the result obtained in Theorem 2: Unless individual 2 is sophisticated, individual 1

is more naive if she is both more optimistic and less virtuous.

Theorem 4. Suppose (%1, λ1) and (%2, λ2) are naive and have random Strotz represen-

tations (u, µ1, µ̂1) and (u, µ2, µ̂2). Then individual 1 is more naive than individual 2 if

and only if

µ̂1 ≫u µ̂2 ≫u µ2 ≫u µ1,

or µ̂2 ≈ µ2 (individual 2 is sophisticated).

4.3.2 Comparing Overvaluation

We now turn to generalizing the quantification of naivete with overvaluation introduced

in the deterministic case. The following generalization of Definition 5 introduces the

coefficient of overvaluation in the random setting.

Definition 13. Suppose (%, λ) has a random Strotz representation (u, µ, µ̂). The coeffi-

cient of overvaluation of a menu x is defined by:

OV (x) =

∫

V

max
p∈Bv(x)

u(p) dµ̂(v)

︸ ︷︷ ︸

believed indirect utility

−

∫

V

max
p∈Bv(x)

u(p) dµ(v)

︸ ︷︷ ︸

actual indirect utility

.

A natural conjecture given Theorem 2 in the deterministic case is that comparing

naivete through underdemand for commitment is equivalent to comparing overvaluations.

This is generally false outside the deterministic case: Our behavioral comparative is

sufficient but not necessary. With random temptation, an individual can have larger

overvaluations than another but fail to have greater underdemand for commitment. The

most direct way to see this is to observe that if individual 2 is strictly naive and is less

naive than individual 1, then for every menu x,31

∫

V

max
p∈Bv(x)

u(p) dµ̂1(v)

︸ ︷︷ ︸

1’s believed indirect utility

≥

∫

V

max
p∈Bv(x)

u(p) dµ̂2(v)

︸ ︷︷ ︸

2’s believed indirect utility

≥

∫

V

max
p∈Bv(x)

u(p) dµ2(v)

︸ ︷︷ ︸

2’s actual indirect utility

≥

∫

V

max
p∈Bv(x)

u(p) dµ1(v)

︸ ︷︷ ︸

1’s actual indirect utility

.

(12)

31By Theorem 4, if individual 2 is strictly naive and is less naive than individual 1, then µ̂1 ≫u µ̂2 ≫u

µ2 ≫u µ1. By the Dekel and Lipman (2012) characterization of temptation aversion (see Theorem 7),
this condition is equivalent to Equation (12).
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The inequalities in Equation (12) exclude some cases where individual 1 is more

susceptible to exploitation than individual 2. For example, consider a binary choice

set {p, q} where p is ex-ante desirable, but q is tempting. Suppose that individual 1

anticipates that she chooses p from {p, q} with probability 90%, while she actually always

selects q. Suppose that individual 2 anticipates that she chooses p with probability 91%,

but her actual probability equals 89%. Individual 1 is not more naive than individual 2

according to Definition 12 because she is not more optimistic ex ante (µ̂1 6≫u µ̂2), but

the overvaluation of the menu {p, q} is nonetheless higher for 1 than for 2: OV1({p, q}) =

0.9(u(p)− u(q)) > OV2({p, q}) = 0.02(u(p)− u(q)).

This example shows that the behavioral comparison of naivete based on greater un-

derdemand for commitment is no longer equivalent to the functional comparison of higher

overvaluations once we move beyond the deterministic setting of Section 3. Thus, we will

instead develop an alternative behavioral foundation for comparing overvaluations that

is valid in both the deterministic and the random choice settings.

Our general model incorporates all relevant dimensions of consumption into the space

C. But for the sake of developing intuition for how to calibrate overvaluation from choice

data, consider a special quasilinear environment where ex-ante choices are over pairs of

a menu x ∈ K(∆(C)) and a money transfer t ∈ R, and ex-ante utility takes the form

V (x, t) = U(x) + t. By definition, the overvaluation of the menu x must satisfy

(x, 0) ∼ (m(λx), OV (x)).

The required monetary premium for x relative to m(λx) immediately quantifies over-

valuation for quasilinear preferences. Moreover, OV1(x) ≥ OV2(x) is equivalent to the

behavioral comparative that individual 1 is willing to overpay more for any menu x than

individual 2:

(x, 0) %2 (m(λx
2), t) =⇒ (x, 0) %1 (m(λx

1), t).

Since our general model does not assume quasilinearity, we must take a different

approach to calibrating overvaluation. As a side benefit of assuming expected utility, we

can use linearity in probabilities in a similar manner to the role of the money numeraire

in the previous discussion. That is, we can use additional odds of winning a good prize

to quantify the value of x relative to m(λx). The following definition takes this approach

to converting overvaluation into a behavioral measure.

Definition 14. Fix any lotteries p, q such that {q} ≻ {p}. The probability premium of

a menu x is defined by:

P (x; p, q) = sup
{
α ∈ [0, 1] : (1− α)x+ α{p} % (1− α){m(λx)}+ α{q}

}
.
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The probability premium indicates how much a menu x can be mixed with an inferior

alternative with the individual still preferring it to m(λx) mixed with a superior alter-

native. To see its implications, suppose that % admits an affine utility representation.

Then, note that P (x; p, q) = 0 if and only if x ∼ {m(λx)}. In particular, the individual is

sophisticated if and only if P (x; p, q) = 0 for all x. If instead x ≻ {m(λx)}, then mixing

these menus with the lotteries p and q, respectively, where {q} ≻ {p}, could reverse this

preference. The weighting α needed for an individual to choose the commitment lottery

(1−α){m(λx)}+α{q} over (1−α)x+α{p} thus provides a quantitative measure of the

difference in the values assigned by the individual to x and m(λx).

While more permissive than comparing underdemand for commitment, comparing

overvaluations still yields several useful equivalent characterizations for random Strotz

preferences. First, having greater overvaluations is equivalent to having greater proba-

bility premiums. Second, there is an additional interesting parametric restriction that

exposes itself in the random case. In particular, if an individual has larger overvaluations

than another, then the difference between her anticipated and actual distributions over

the realization of temptation will first-order stochastically dominate that difference for

the other individual.

Theorem 5. Suppose (%1, λ1) and (%2, λ2) are naive and have random Strotz represen-

tations (u, µ1, µ̂1) and (u, µ2, µ̂2). Fixing any lotteries p, q with {q} ≻i {p}, the following

are equivalent:

1. P1(x; p, q) ≥ P2(x; p, q) for all menus x.

2. OV1(x) ≥ OV2(x) for all menus x.

3. µ̂1(U) − µ1(U) ≥ µ̂2(U) − µ2(U) for all u-upper sets U ; equivalently, µ̂1 − µ1 ≫u

µ̂2 − µ2.

The parametric restriction on distributions in the last condition of Theorem 5 is

strictly weaker than the ordering of distributions that characterized underdemand for

commitment in Theorem 4. We therefore have as a corollary that comparing naivete

through underdemand for commitment is always a more selective criterion than compar-

ing overvaluations. Recall, however, that in the deterministic case, the two restrictions

become equivalent (see Theorem 2) because then all the distributions are degenerate and

their differences can only take the values 0 or 1.

Corollary 3. Suppose (%1, λ1) and (%2, λ2) are naive and have random Strotz represen-

tations (u, µ1, µ̂1) and (u, µ2, µ̂2). If individual 1 is more naive than individual 2, then

OV1(x) ≥ OV2(x) for all menus x.
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4.4 Application to Random Quasi-Hyperbolic Discounting

The standard quasi-hyperbolic discounting model assumes completely confident beliefs

about future behavior, an assumption that seems less palatable under naivete when these

beliefs are incorrect. We explore a generalization of the QH representation that allows for

naive and uncertain beliefs about β. Several applications in different areas employ naive

uncertainty about future present bias. Heidhues and Kőszegi (2010, Section 4) employ

random quasi-hyperbolic discounting to explain the structure of credit markets and its

consequent welfare implications. In their study of fertilizer adoption decisions by Kenyan

farmers, Duflo, Kremer, and Robinson (2011) estimate a specification of random quasi-

hyperbolic discounting where naivete is parameterized by a mistakenly believed positive

chance of virtuous exponential discounting. Admitting uncertainty about intertemporal

substitution also often usefully serves as a reduced-form proxy for a shock in the economy,

like wage uncertainty, or for heterogeneity across agents in an aggregate economy, like

the distribution of wealth. Similarly, random present-bias can provide a parsimonious

channel for capturing uncertainty about external factors that affect present-bias.

In this subsection we establish the implications of our general results for the special

case of the random quasi-hyperbolic discounting representation. Definition 15 generalizes

Definition 6 by allowing the agent to be uncertain about the future value of her discount

factor β.

Definition 15. A random quasi-hyperbolic (RQH) representation of (%, λ) is a quadru-

ple (w,F, F̂ , δ) of a continuous and nontrivial function w : [a, b] → R, a scalar δ ∈ (0, 1),

and cumulative distribution functions F and F̂ on [0, 1] such that when u and vβ are

defined as in Equations (10) and (11), the function U : K(∆(C)) → R defined by

U(x) =

∫ 1

0

max
p∈Bvβ

(x)
u(p) dF̂ (β)

is a utility representation of % and, for all menus x and all measurable y ⊂ x,

λx(y) = F (p−1
x (y))

for some measurable selection function px : [0, 1] → x with px(β) ∈ Bu(Bvβ(x)) for all

β ∈ [0, 1].32

The following corollaries show how our definitions of absolute and comparative naivete

translate into stochastic generalizations of Corollaries 1 and 2 for the RQH representation.

32We are abusing notation slightly and using F to also denote the probability measure on [0, 1] that
has F as its distribution function. That is, for any measurable set A ⊂ [0, 1], we write F (A) to denote
∫

A
dF (β). Hence λx(y) =

∫ 1

0
1[px(β)∈y] dF (β).
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A naive individual underestimates the degree of her present bias, which is reflected

in her belief F̂ putting more likelihood on larger values of β than the actual distribution

F that governs her ex-post choices. Let ≥FOSD denote the usual first-order stochastic

dominance order, with F̂ ≥FOSD F if F̂ (β) ≤ F (β) for all β ∈ [0, 1].

Corollary 4. Suppose (%, λ) has a RQH representation (w,F, F̂ , δ). Then the individual

is naive if and only if F̂ ≥FOSD F (and is sophisticated if and only if F̂ = F ).

As in the case of the general random Strotz representation, comparing naivete via

overvaluations is weaker than comparing underdemand for commitment. The following

corollary characterizes the implications of each.

Corollary 5. Suppose (%1, λ1) and (%2, λ2) are naive and have RQH representations

(w,F1, F̂1, δ) and (w,F2, F̂2, δ).

1. Individual 1 is more naive than individual 2 if and only if

F̂1 ≥FOSD F̂2 ≥FOSD F2 ≥FOSD F1,

or F̂2 = F2 (individual 2 is sophisticated).

2. Individual 1 has greater probability premiums than individual 2 if and only if indi-

vidual 1 has greater overvaluations than individual 2 if and only if

F1(β)− F̂1(β) ≥ F2(β)− F̂2(β), ∀β ∈ [0, 1].

The RQH representation is a member of a more general subclass of the random Strotz

representation where the possible temptations are ordered by a one-dimensional param-

eter. We analyze this subclass, called the uncertain intensity Strotz representation, in

Appendix B. Corollaries 4 and 5 follow directly from the results in that section.

5 Extensions and Robustness

5.1 Costly Self-Control

So far we have not considered the possibility of an agent’s costly effort to resist temp-

tations. We now turn to analyzing the robustness of our results in the presence of such

costly self-control. In particular, following Gul and Pesendorfer (2001), the individual’s

self-control cost of choosing alternative p from the menu x is maxq∈x v(q) − v(p), the

difference between the temptation utility of the most tempting option and that of p. The
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individual maximizes her commitment utility u subject to these self-control costs, and

therefore chooses the option that maximizes the compromise u(p) + v(p) of commitment

utility and temptation utility. The following definition permits uncertainty about the

temptation utility, as in Stovall (2010), as well as possibility of incorrect beliefs about

the distribution of temptation utilities.

Definition 16. A random Gul-Pesendorfer representation of (%, λ) is a triple (u, µ, µ̂) of

a nontrivial expected-utility function u and nontrivial probability measures µ and µ̂ over

V with finite-dimensional support such that the function U : K(∆(C)) → R defined by

U(x) =

∫

V

[

max
p∈x

(u(p) + v(p))−max
q∈x

v(q)
]

dµ̂(v)

is a utility representation of % and, for all menus x and all measurable y ⊂ x,

λx(y) = µ(p−1
x (y))

for some measurable selection function px : V → x with px(v) ∈ Bu+v(x) for all v ∈ V .

Dekel and Lipman (2012) show that under a mild continuity assumption, the menu

preference alone cannot distinguish the random Gul-Pesendorfer model and the random

Strotz model. However, they also find that a random Gul-Pesendorfer representation of

% implies different ex-post choice probabilities than those implied by a random Strotz

representation of %. Analyzing whether our results can be extended to deal with self-

control preferences is therefore important since the identification of naivete proposed in

Sections 3 and 4 relies on a particular model of ex-ante behavior.33

The following theorem states that if the individual is naive and admits a random

Gul-Pesendorfer representation, then the ex-ante beliefs derived from the representation

are optimistic. More precisely, naivete implies that any random Gul-Pesendorfer rep-

resentation predicts ex-post choices that are more virtuous than the actual ones. The

intuition is the following: Self-control costs increase the attractiveness of commitment

since tempting options can be undesirable ex ante even if they are not chosen ex post.

Thus the definition of absolute naivete proposed in Section 4 serves as a conservative and

robust test to reveal an individual’s optimism even in the presence of costly self-control.

Theorem 6. Suppose that (%, λ) has a random Gul-Pesendorfer representation (u, µ, µ̂),

and that the individual is naive. Then, for any u-upper set U ,

µ̂({v ∈ V : u+ v ∈ U}) ≥ µ({v ∈ V : u+ v ∈ U}). (13)

33Dekel and Lipman (2012) show that both representations can be distinguished with the additional
observation of ex-post choices if we require the agent’s beliefs to be correct under these representa-
tions. Otherwise, the models are indistinguishable because of possible disagreement between actual and
perceived distributions.
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In addition, if the individual is strictly naive, Equation (13) is satisfied with strict in-

equality for some U .

It is important to note that the converse of Theorem 6 fails. In particular, even if

µ̂ = µ and the individual has correct beliefs about her future behavior, the desire to

avoid self-control costs may result in {m(λx)} ≻ x for some menus, in violation of both

our behavioral definitions of naivete and sophistication. Thus our behavioral definition

of naivete is sufficient but not necessary for overoptimistic beliefs when individuals have

self-control preferences.

In a companion paper Ahn, Iijima, and Sarver (2016), we explore alternative behav-

ioral conditions that tightly characterize naivete for deterministic self-control preferences.

We also show that there is an impossibility result when randomness is permitted: It is

impossible to construct a behavioral definition that tightly characterizes naivete for the

random Gul-Pesendorfer representation. This impossibility is closely related to the lack

of tight identification in this model—the random Gul-Pesendorfer representation of ex-

ante choice is not unique. That is, there are multiple different measures µ̂ that can be

used to represent the same ex-ante menu preference, but these different measures do

generate different ex-post random choices. Therefore, depending on which measure is

used to represent ex-ante beliefs, the same combination of ex-ante and ex-post behavior

could potentially be classified as naive (i.e., overly optimistic), sophisticated, or overly

pessimistic. In light of this impossibility of a tight characterization, Theorem 6 is perhaps

the best result that one can hope to obtain in the presence of random self-control costs.

5.2 Uncertainty in Normative Preferences

The random Strotz interpretation of commitment preferences relies on the assumption

that normative preferences are certain ex ante. The elicitation of naivete provided in

Section 4 is therefore suited to situations where long-term preferences are known and

where deviations are always undesirable (e.g., temptations, addictions, memory lapses).

In some situations, however, the individual might expect future shocks to her normative

preferences. In that case, her menu choices trade off commitment versus flexibility and

the condition x ≻ {m(λx)} does not necessarily indicate unrealistic expectations: An

individual who anticipates receiving some information about her normative ranking prior

to selecting an option might rationally refuse to commit to her average choice.

Identifying the flexibility-loving part from the commitment-loving component of pref-

erences in order to detect naive anticipations requires additional assumptions. For ex-

ample, in some contexts, the normative states are tied to objective contingencies that

can be directly observed by the analyst (e.g., financial events, weather, health status).

In this case, the identification of naivete can be performed essentially as described in
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Section 4 conditional on each normative state, assuming the choice between menus can

be conditioned on the realization of the state. Extensions of our analysis might also be

possible without objective states. For instance, Stovall (2018) considers a model where

both the normative uncertainty (over u) and the temptation uncertainty (over v) are

resolved in an interim period prior to the direct experience of temptation. We conjecture

that our approach could be adapted to any model such as this where uncertainty about

the normative preference is resolved before temptation occurs.

Even in cases where these workarounds are not possible and our techniques are not

immediately applicable, the sophistication hypothesis nonetheless imposes some necessary

properties on choice data. In particular, options can be relevant ex ante only if they

are chosen with some probability ex post, an axiom that Ahn and Sarver (2013) call

consequentialism: x ∼ supp(λx) for all menus x is a necessary condition for the existence

of a sophisticated representation. In contrast, the condition x ≻ supp(λx) indicates that

the individual incorrectly estimates the virtue of her choices inside x.

As an illustration, suppose that an individual is considering buying a membership

that gives her free access to the gym. Let x denote the option set that includes any

number of gym visits, and let p ∈ x denote zero visits. Observing that she values the

membership ex ante (x ≻ {p}) but that she attends the gym with probability zero ex post

(λx({p}) = 1) is sufficient to conclude that she had unrealistic expectations regarding

her gym attendance.34 Relatedly, suppose that the individual can self-impose a penalty

for smoking. Her initial choice set is {p1, p2} (smoking or not) but she can replace p1 by

a contract p3 according to which smoking results in the payment of a penalty. Observing

that she selects the contract ({p3, p2} ≻ {p1, p2}) but continues smoking with probability

one despite the penalty (λ{p3,p2}({p3}) = 1) is sufficient to conclude that her menu choice

was led by naive anticipations.35

34Note that all of the options in x are in fact pairs consisting of a number of visits together with the
expense of the gym membership. Letting q denote zero visits without the paying for the membership,
the choice to join the gym corresponds to the preference x ≻ {q}. Since {q} ≻ {p} by dominance (the
individual prefers not to pay the cost of the membership without going), we have x ≻ {p} = supp(λx).

35This argument implicitly assumes that the individual weakly prefers having the option to quit to
being forced to smoke ({p1, p2} % {p1}) and that the individual prefers not to pay the penalty all else

equal ({p1} ≻ {p3}). Thus {p3, p2} ≻ {p1, p2} % {p1} ≻ {p3} = supp(λ{p3,p2}).
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A A Comparative from Dekel and Lipman (2012)

In this section, we summarize a relevant result from Dekel and Lipman (2012) that will play

a central role in our proofs of Theorems 3, 4, and 5. Recall the definition of comparative

temptation aversion: Individual 2 is more temptation averse than individual 1 if, for all menus

x and lotteries p,

{p} ≻1 x =⇒ {p} ≻2 x.

Theorem 7 (Dekel and Lipman (2012)). Suppose %1 and %2 have random Strotz representa-

tions (u, µ1) and (u, µ2). Then %2 is more temptation averse than %1 if and only if µ1 ≫u µ2.

Dekel and Lipman (2012) consider only a finite prize space C in their paper. In the Supple-

mental Appendix, we prove that their result can be extended to any compact metric space C

and any random Strotz representation (with finite-dimensional support) defined on that space.36

This extension to compact spaces is not merely a technical exercise, as it is critical for many of

the applications of our results, such as dynamic consumption problems where C = [a, b]N.

B Uncertain Intensity Random Strotz

In this section, we highlight a useful special case of the random Strotz representation where the

uncertainty over future behavior is only over the magnitude of the future temptation, and not in

its basic direction. For example, the individual may know that she will crave sweet snacks (but

not salty snacks) ex post, but is uncertain of how strong her craving for sweets will be. This

uncertain intensity Strotz representation encompasses the random quasi-hyperbolic discounting

model studied in Section 4.4 where the individual is uncertain of the intensity of her present

bias, and the corollaries presented below provide a bridge between our main theorems and the

results in that section.

Two expected-utility functions u and v are independent if they are nontrivial and it is not

the case that v ≈ u or v ≈ −u.

Definition 17. An uncertain intensity Strotz representation of (%, λ) is a quadruple (u, v, F, F̂ )

of two independent expected-utility functions u, v and two cumulative distribution functions F, F̂

on [0, 1] such that the function U : K(∆(C)) → R defined by

U(x) =

∫ 1

0
max

p∈Bαu+(1−α)v(x)
u(p) dF̂ (α)

36Although Definition 9 and Theorem 7 impose the restriction that the measure µ in the random Strotz
representation must have finite-dimensional support, our proof in the Supplemental Appendix shows
that the “if” direction in Theorem 7 is true even without the finite-dimensional support assumption. It
remains an open question whether the “only if” direction can be extended to probably measures with
arbitrary support. However, we view the exploration of additional generalizations of this results as a
purely technical question. As we discussed in Section 4, we are not aware of any application of the
random Strotz model that does not have finite-dimensional support.
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is a utility representation of % and, for all menus x and all measurable y ⊂ x,

λx(y) = F (p−1
x (y))

for some measurable selection function px : [0, 1] → x with px(α) ∈ Bu(Bαu+(1−α)v(x)) for all

α ∈ [0, 1].

For the case of an uncertain intensity Strotz representation, the direction of the temptation

is known to be v, but the magnitude of that temptation relative to the virtuous utility u is

uncertain. A naive individual underestimates the influence of v, and this bias is reflected in

her belief F̂ over the intensities in [0, 1] putting more likelihood on larger weighting of u (hence

lower weighting of v) than F .

Corollary 6. Suppose (%, λ) has a uncertain intensity Strotz representation (u, v, F, F̂ ). Then

the individual is naive if and only if F̂ ≥FOSD F (and is sophisticated if and only if F̂ = F ).

Corollary 7. Suppose (%1, λ1) and (%2, λ2) are naive and have uncertain intensity Strotz

representations (u, v, F1, F̂1) and (u, v, F2, F̂2).

1. Individual 1 is more naive than individual 2 if and only if

F̂1 ≥FOSD F̂2 ≥FOSD F2 ≥FOSD F1,

or F̂2 = F2 (individual 2 is sophisticated).

2. Individual 1 has greater probability premiums than individual 2 if and only if individual

1 has greater overvaluations than individual 2 if and only if

F1(α)− F̂1(α) ≥ F2(α)− F̂2(α), ∀α ∈ [0, 1].

C Proofs

C.1 Proof of Theorem 3

Suppose the random choice rule λ has a random Strotz representation (u, µ). Consider the

hypothetical sophisticated ex-ante preference %∗ that is also be represented by (u, µ). The

following lemma shows how this hypothetical preference can be determined from λ and u.

Lemma 1. Suppose λ has a random Strotz representation (u, µ). Then for any menu x,

u(m(λx)) =

∫

V
max

p∈Bv(x)
u(p) dµ(v).

In particular, if we define a binary relation %∗ on K(∆(C)) by

x %∗ y ⇐⇒ u(m(λx)) ≥ u(m(λy)),

38



then (u, µ) is a random Strotz representation for %∗.

Proof. If (u, µ) represents λ then by definition there exists, for all menus x, a measurable

selection function px : V → x with px(v) ∈ Bu(Bv(x)) such that

λx(y) = µ(p−1
x (y))

for all measurable y ⊂ x. Thus λx is the distribution on x induced by the random variable

px defined on the measure space (V , µ). Therefore, the standard change of variables formula

together with the linearity and continuity of u imply

∫

V
max

p∈Bv(x)
u(p) dµ(v) =

∫

V
u(px(v)) dµ(v)

=

∫

x
u(p) dλx(p) = u

(∫

x
p dλx(p)

)

= u(m(λx)),

as desired. �

Turning now to the proof of Theorem 3, fix a random Strotz representation (u, µ, µ̂) for

(%, λ), and define %∗ as in Lemma 1. To establish sufficiency, suppose the individual is naive.

Then for all menus x and lotteries p,

{p} ≻ x =⇒ {p} ≻ {m(λx)} (naivete)

=⇒ u
(
m
(
λ{p}

))
= u(p) > u(m(λx))

=⇒ {p} ≻∗ x.

Thus %∗ is more temptation averse than %. Since (u, µ) represents %∗ by Lemma 1, Theorem 7

implies that µ̂ ≫u µ. If the individual is sophisticated, then a similar argument shows that the

converse also holds: % is also more temptation averse than %∗ (in particular, %=%∗) and hence

µ ≫u µ̂ also holds, i.e., µ̂ ≈ µ.

To establish necessity, suppose µ̂ ≫u µ. By Theorem 7, %∗ is more temptation averse than

%. By contrapositive, this is equivalent to the condition

x %∗ {p} =⇒ x % {p}.

Note that for any menu x, if we take p = m(λx) then

u(m(λx)) = u(p) = u
(
m
(
λ{p}

))

and hence x ∼∗ {p} = {m(λx)}. Since %∗ is more temptation averse than %, this implies

x % {m(λx)}. Thus the individual is naive. If we also have µ ≫u µ̂ then another application

of Theorem 7 implies the condition above can be strengthened to x %∗ {p} ⇐⇒ x % {p}. In

this case, x ∼∗ {m(λx)} implies x ∼ {m(λx)} and hence the individual is sophisticated.
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C.2 Proof of Theorem 4

Our proof of this theorem is based on two lemmas. This first lemma shows that once we exclude

the case where individual 2 is sophisticated, our condition for more naive in Definition 12 is

equivalent to the analogous condition but with weak preferences rather than strict.

Lemma 2. Suppose (%1, λ1) and (%2, λ2) are naive and have random Strotz representations

(u, µ1, µ̂1) and (u, µ2, µ̂2). Then individual 1 is more naive than individual 2 if and only if either

x %2 {p} %2 {m(λx
2)} =⇒ x %1 {p} %1 {m(λx

1)}, (14)

or individual 2 is sophisticated.

Proof. The “if” direction is straightforward and is therefore omitted. To prove the “only if”

direction, suppose individual 1 is more naive than individual 2. We will show that if individual 2

is strictly naive (i.e., naive but not sophisticated), then Equation (14) must hold. First, note

that since (%i, λi) has a random Strotz representation (u, µi, µ̂i), we have that for any menus x

and y and any α ∈ [0, 1],

u(m(λ
αx+(1−α)y
i )) = αu(m(λx

i )) + (1− α)u(m(λy
i )). (15)

This assertion is easy to verify by appealing to Lemma 1 together with the linearity of the

random Strotz value function for menus. Second, under the assumption that individual 2 is

strictly naive, there exists some menu y such that y ≻2 {m(λy
2)}. Fix any lottery q such that

y ≻2 {q} ≻2 {m(λy
2)}. Then, for any menu x and lottery p,

x %2 {p} %2 {m(λx
2)}

=⇒ αx+ (1− α)y ≻2 {αp+ (1− α)q} ≻2 {m(λ
αx+(1−α)y
2 )}, ∀α ∈ (0, 1)

=⇒ αx+ (1− α)y ≻1 {αp+ (1− α)q} ≻1 {m(λ
αx+(1−α)y
1 )}, ∀α ∈ (0, 1)

=⇒ x %1 {p} %1 {m(λx
1)}.

The first implication follows from the linearity of the random Strotz value function for menus

together with Equation (15). The second implication follows because individual 1 is more naive

than individual 2. The final implication follows by taking the limit as α → 1, given that the

random Strotz representation is continuous in the mixture operation. Thus we have shown that

Equation (14) holds. �

The following lemma decomposes the condition in Lemma 2 into two more basic conditions.

The comparative of being more temptation averse is defined in the main text. The comparative

of being more virtuous is defined for the first time in this lemma. Intuitively, individual 2 is

more virtuous than individual 1 if she makes “better” choices (as measured by her commitment

preference) from every menu than individual 1.
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Lemma 3. Suppose (%1, λ1) and (%2, λ2) are naive, and suppose %1 and %2 share the same

commitment preference, i.e., {p} %1 {q} ⇐⇒ {p} %2 {q} for all lotteries p, q ∈ ∆(C). Then

Equation (14) is satisfied if and only if both of the following hold:

1. Individual 2 is more temptation averse than individual 1: {p} ≻1 x =⇒ {p} ≻2 x.

2. Individual 2 is more virtuous than individual 1: {p} ≻2 {m(λx
2)} =⇒ {p} ≻1 {m(λx

1)}.

Proof. Equation (14) implies condition (1): Fix any menu x and lottery p such that {p} ≻1

x. By Equation (14), we cannot have x %2 {p} %2 {m(λx
2)}. Thus either {p} ≻2 x or

{m(λx
2)} ≻2 {p}. To rule out the second possibility, note that since individual 2 is naive,

we must have x %2 {m(λx
2)}. By Equation (14), this implies x %1 {m(λx

2)} %1 {m(λx
1)}.

Therefore, {p} ≻1 {m(λx
2)}, and hence {p} ≻2 {m(λx

2)} since individuals 1 and 2 have the same

commitment preference. Thus the only possibility is {p} ≻2 x, as desired.

Equation (14) implies condition (2): Fix any menu x and lottery p such that {p} ≻2

{m(λx
2)}. Since individual 2 in naive, x %2 {m(λx

2)}. By Equation (14), this implies x %1

{m(λx
2)} %1 {m(λx

1)}. Individuals 1 and 2 share the same commitment preference, and therefore

{p} ≻1 {m(λx
2)} %1 {m(λx

1)}, as desired.

Conditions (1) and (2) together imply Equation (14): If individual 2 is more virtuous

than individual 1, then we must have {m(λx
2)} %2 {m(λx

1)}. Otherwise, taking p = m(λx
1) in

condition (2) would lead to a contradiction. Therefore, since the individuals share the same

commitment preference, {p} %2 {m(λx
2)} =⇒ {p} %1 {m(λx

1)} for any lottery p. Combining

this with the contrapositive of condition (1), it follows directly that Equation (14) holds. �

We are now ready to prove Theorem 4. If individual 2 is sophisticated, then the asserted

equivalence holds trivially. Therefore, suppose that individual 2 is strictly naive. By Theorem 3,

µ̂2 ≫u µ2. Also, since individual 2 is strictly naive, Lemmas 2 and 3 imply that individual 1 is

more naive than individual 2 if and only if 2 is both more temptation averse and more virtuous

than 1. By Theorem 7, individual 2 is more temptation averse than individual 1 if and only if

µ̂1 ≫u µ̂2. The proof is therefore completed if we can show that individual 2 is more virtuous

than individual 1 if and only if µ2 ≫u µ1. To see that this is true, define %∗
1 and %∗

2 as in

Lemma 1 for λ1 and λ2, respectively. Then (u, µ1) and (u, µ2) represent %
∗
1 and %∗

2. Note that

for all menus x and lotteries p,

{p} ≻i {m(λx
i )} ⇐⇒ u(p) > u(m(λx

i )) ⇐⇒ {p} ≻∗
i x, i = 1, 2.

Therefore, individual 2 is more virtuous than individual 1 if and only if %∗
1 is more temptation

averse than %∗
2. By Theorem 7, this is true if and only if µ2 ≫u µ1.

C.3 Proof of Theorem 5

(1) ⇔ (2): Let Ui denote the value function from the representation (u, µ̂i) for the ex-ante

preference %i for i = 1, 2. Also, recall from Lemma 1 that if λi has random Strotz representation
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(u, µi), then

u(m(λx
i )) =

∫

V
max

p∈Bv(x)
u(p) dµi(v).

Thus OVi(x) = Ui(x) − u(m(λx
i )). Now, fix any lotteries p, q with {q} ≻i {p} for i = 1, 2. For

each menu x, define

Ax
i ≡

{
α ∈ [0, 1] : (1− α)x+ α{p} %i (1− α){m(λx

i )}+ α{q}
}

=
{
α ∈ [0, 1] : (1− α)Ui(x) + αu(p) ≥ (1− α)u(m(λx

i )) + αu(q)
}

=
{
α ∈ [0, 1] : (1− α)OVi(x) ≥ α(u(q)− u(p))

}
.

By definition, Pi(x; p, q) = supAx
i . Note that Ax

i is a closed interval. Moreover, since both

individuals are naive, we have x %i m(λx
i ) and therefore 0 ∈ Ax

i . Also, 1 /∈ Ax
i since {q} ≻i {p}.

This implies

α = Pi(x; p, q) ⇐⇒ (1− α)OVi(x) = α(u(q)− u(p)).

Therefore, OV1(x) ≥ OV2(x) if and only if P1(x; p, q) ≥ P2(x; p, q).

(2) ⇔ (3): For any menu x,

OV1(x) ≥ OV2(x)

⇐⇒

∫

V
max

p∈Bv(x)
u(p) dµ̂1(v)−

∫

V
max

p∈Bv(x)
u(p) dµ1(v)

≥

∫

V
max

p∈Bv(x)
u(p) dµ̂2(v)−

∫

V
max

p∈Bv(x)
u(p) dµ2(v)

⇐⇒

∫

V
max

p∈Bv(x)
u(p) d

(1

2
µ̂1 +

1

2
µ2

)

(v) ≥

∫

V
max

p∈Bv(x)
u(p) d

(1

2
µ̂2 +

1

2
µ1

)

(v).

If this is true of all menus x, then the (hypothetical) preference represented by the random

Strotz representation (u, 12 µ̂2 +
1
2µ1) is more temptation averse than the preference represented

by (u, 12 µ̂1 +
1
2µ2). Thus by Theorem 7, OV1(x) ≥ OV2(x) for all x if and only if 1

2 µ̂1 +
1
2µ2 ≫u

1
2 µ̂2 +

1
2µ1 or, equivalently,

1

2
µ̂1(U) +

1

2
µ2(U) ≥

1

2
µ̂2(U) +

1

2
µ1(U)

for every u-upper set U . Rearranging terms, this is precisely condition (3).

C.4 Proof of Theorem 6

Define the function σ : V → V by σ(v) = u + v, and define the measures ν̂ and ν on V by

ν̂(E) = µ̂(σ−1(E)) and ν(E) = µ(σ−1(E)) for any measurable set E. Observe that for any
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menu x,

∫

V
min

p∈Bv(x)
u(p)dν̂(v) =

∫

V
min

p∈Bu+v(x)
u(p)dµ̂(v) (change of variables)

≥

∫

V

[

max
p∈x

(u(p) + v(p))−max
q∈x

v(q)
]

dµ̂(v)

= U(x)

≥ u(m(λx)) (naivete)

=

∫

V
u(px(v))dµ(v)

≥

∫

V
min

p∈Bu+v(x)
u(p)dµ(v)

=

∫

V
min

p∈Bv(x)
u(p)dν(v). (change of variables)

(16)

Thus, ∫

V
min

p∈Bv(x)
u(p)dν̂(v) ≥

∫

V
min

p∈Bv(x)
u(p)dν(v),

which we rewrite as
∫

V
max

p∈Bv(x)
[−u(p)]dν̂(v) ≤

∫

V
max

p∈Bv(x)
[−u(p)]dν(v). (17)

Consider the binary relations %ν̂ and %ν defined by their Random Strotz representations

(−u, ν̂) and (−u, ν), respectively. Equation (17) shows that %ν̂ is more temptation-averse

than %ν . Theorem 7 applies since ν̂ and ν have finite-dimensional supports, and implies that

ν ≫−u ν̂.

Consider a u-upper set U , and v ∈ V \U , v′ ∈ V such that v′ ≫−u v. It is easy to show that

this latter condition is equivalent to v ≫u v′. Suppose that v′ ∈ U . Since U is a u-upper set,

the condition v ≫u v′ implies v ∈ U , which is a contradiction. Hence, v′ ∈ V \U for any v′ such

that v′ ≫−u v. This shows that V \ U is a (−u)-upper set, and therefore ν(V \ U) ≥ ν̂(V \ U),

or equivalently ν̂(U) ≥ ν(U).

We therefore have

µ̂({v ∈ V : u+ v ∈ U}) = ν̂(U) ≥ ν(U) = µ({v ∈ V : u+ v ∈ U}). (18)

To complete the proof, we show that Equation (18) is strict for some U if the individual

is strictly naive. Suppose, by contradiction, that Equation (18) is satisfied as an equality for

all u-upper sets. The arguments above imply that ν̂(U) = ν(U) for any (−u)-upper set U , i.e.,

by Theorem 7 that %ν̂ is more temptation-averse than %ν and vice versa. This implies that

Equation (17) is satisfied as an equality for all x, and therefore the system in Equation (16) only

contains equalities. In particular, U(x) = u(m(λx)) for all x, i.e., the individual is sophisticated.
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C.5 Proof of Corollary 6

Lemma 4. Suppose u and v are independent expected-utility functions, and define a function

g : [0, 1] → V by g(α) = αu+ (1− α)v.

1. Take any cumulative distribution functions F and F̂ on [0, 1], and define probability mea-

sures µ and µ̂ on V by µ ≡ F ◦ g−1 and µ̂ ≡ F̂ ◦ g−1.37 If (u, v, F, F̂ ) is an uncertain

intensity Strotz representation of a preference (%, λ), then (u, µ, µ̂) is a random Strotz

representation of (%, λ).

2. Take any cumulative distribution functions F1 and F2 on [0, 1], and define probability

measures µ1 and µ2 on V by µi ≡ Fi ◦ g
−1. Then µ1 ≫u µ2 if and only if F1 ≥FOSD F2.

Proof. (1): Note that by assumption % is represented by

U(x) =

∫ 1

0
max{u(p) : p ∈ Bg(α)(x)} dF̂ (α).

By the standard change of variables formula, this implies

U(x) =

∫

V
max{u(p) : p ∈ Bṽ(x)} d(F̂ ◦ g−1)(ṽ)

=

∫

V
max{u(p) : p ∈ Bṽ(x)} dµ̂(ṽ),

and hence (u, µ̂) is a random Strotz representation of %.

Note also that by assumption there exists, for each menu x, a measurable selection function

px : [0, 1] → x with px(α) ∈ Bu(Bg(α)(x)) for all α ∈ [0, 1] such that

λx(y) = F (p−1
x (y))

for all measurable y ⊂ x. Take any measurable selection function p̃x : V → x with p̃x(ṽ) ∈

Bu(Bṽ(x)) for all ṽ ∈ V that also satisfies px(α) = p̃x(g(α)) for all α ∈ [0, 1].38 Therefore, for

any measurable y ⊂ x,

λx(y) = F (g−1(p̃−1
x (y))) = µ(p̃−1

x (y)),

and hence (u, µ) is a random Strotz representation of λ.

37We are abusing notation slightly and using F to also denote the probability measure on [0, 1] that
has F as its distribution function. That is, for any measurable set A ⊂ [0, 1], we write F (A) to denote
∫

A
dF (α). Thus µ(E) =

∫

{α′:g(α′)∈E}
dF (α) for any measurable E ⊂ V.

38To see that such a selection function p̃x exists, fix any measurable selection function p̂x : V → x with
p̂x(ṽ) ∈ Bu(Bṽ(x)) for all ṽ ∈ V. Let V̄ = g([0, 1]) ⊂ V. When the codomain of g is restricted to V̄, i.e.,
g : [0, 1] → V̄, this function is a bijection. Now define p̃x(ṽ) = px(g

−1(ṽ)) for ṽ ∈ V̄ and p̃x(ṽ) = p̂x(ṽ)
for ṽ /∈ V̄ .
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(2): Suppose µi ≡ Fi ◦ g−1 for i = 1, 2 and µ1 ≫u µ2. Fix any α ∈ [0, 1], and let

U = {v′ ∈ V : v′ ≫u αu+ (1−α)v}. By construction, U is a u-upper set, so µ1(U) ≥ µ2(U). In

addition, g−1(U) = [α, 1]. Therefore,

F1([α, 1]) = µ1(U) ≥ µ2(U) = F2([α, 1]).

Since this is true for all α ∈ [0, 1], F1 ≥FOSD F2.

Conversely, suppose F1 ≥FOSD F2. Fix any u-upper set U . Note that for any 0 ≤ α ≤ α′ ≤

1, we have g(α′) ≫u g(α) and hence

g(α) ∈ U =⇒ g(α′) ∈ U .

This implies that the set g−1(U) is an interval from some α∗ ∈ [0, 1] to 1.39 Therefore,

µ1(U) = F1(g
−1(U)) ≥ F2(g

−1(U)) = µ2(U).

Since this is true for all u-upper sets, µ1 ≫u µ2. �

Turning now to the proof of Corollary 6, suppose (%, λ) has an uncertain intensity Strotz

representation (u, v, F, F̂ ). Define g as in Lemma 4 for u and v, define measures µ ≡ F ◦ g−1

and µ̂ ≡ F̂ ◦ g−1 on V . By part 1 of Lemma 4, (u, µ, µ̂) is a random Strotz representation for

(%, λ). Therefore, by Theorem 3 together with part 2 of Lemma 4, the individual is naive if

and only if F̂ ≥FOSD F (and is sophisticated if and only if F̂ = F ).

C.6 Proof of Corollary 7

Suppose (%1, λ1) and (%2, λ2) are naive and have uncertain intensity Strotz representations

(u, v, F1, F̂1) and (u, v, F2, F̂2). Define g as in Lemma 4 for u and v, define measures µi ≡ Fi◦g
−1

and µ̂i ≡ F̂i ◦ g−1 on V . By part 1 of Lemma 4, (u, µi, µ̂i) is a random Strotz representation

for (%i, λi) for i = 1, 2. The result follows from applications of Theorems 4 and 5, respectively,

together with part 2 of Lemma 4.

C.7 Proof of Corollaries 4 and 5

A maximally present-biased preference only values immediate consumption in period 1 and

ignores all subsequent consumption, which is equivalent to the extreme case where β = 0:

v0(c) = w(c1). Any convex combination of the virtuous utility u and maximally present-biased

v0 can be rewritten as the following familiar formula:

βu(c) + (1− β)v0(c) = w(c1) + β
∞∑

t=2

δt−1w(ct) = vβ(c).

39That is, it is equal to either (α∗, 1] or [α∗, 1], where α∗ = inf g−1(U).
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Therefore, uncertainty about the present-bias parameter β simply parameterizes uncertainty

about the intensity of u relative to v0, and β is the relative weighting of exponential discount-

ing versus extreme impatience. Thus an RQH representation (w,F, F̂ , δ) can equivalently be

expressed as an uncertain intensity Strotz representation (u, v0, F, F̂ ). With this observation,

the results follow directly from Corollaries 6 and 7 in Appendix B.
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Supplementary Appendix for

Behavioral Characterizations of naivete for

Time-Inconsistent Preferences

Abstract

Theorem 7 from Appendix A of the main paper is an extension of the char-

acterization of comparative temptation aversion from Dekel and Lipman (2012):

While their result required a finite consumption space, our extension applies to any

random Strotz representation defined on any compact and metrizable consumption

space C, provided the measure in the representation has finite-dimensional support.

As discussed in the paper, this extension is important for a number of applications,

including dynamic consumption decisions where C is a set of infinite consumption

streams. In this supplement, we provide a proof of Theorem 7.

S.1 Proof of Theorem 7

S.1.1 Sufficiency: more temptation averse =⇒ less u-aligned

The following is the relevant result from Dekel and Lipman (2012), which they proved

for the case of finite C.

Theorem S.1 (Dekel and Lipman (2012)). Suppose C has finite cardinality. Suppose

%1 and %2 have random Strotz representations (u, µ1) and (u, µ2). Then %2 is more

temptation averse than %1 if and only if µ1 ≫u µ2.

Proof. Theorem 4 in Dekel and Lipman (2012) establishes the equivalence of %2 being

more temptation averse than %1 and another condition on the representations that they

refer to as conditional dominance. However, they also establish that µ1 ≫u µ2 as an

intermediate step in their proof.40 The equivalence asserted in Theorem S.1 is also stated

explicitly in Theorem 4 of their working paper, Dekel and Lipman (2010).41 �

40To show that %2 being more temptation averse that %1 implies µ1 ≫u µ2, the relevant results in
Dekel and Lipman (2012) are the following: Lemma 3 shows that a partial order vCuv

′ used in their
paper is equivalent to our order v ≫u v′ (ignoring their normalization of utility functions). Lemmas 4,
5, and 6 and the arguments on page 1296 show that for any set W that is closed under Cu (is a u-upper
set in our terminology), µ1(W ) ≥ µ2(W ).

41Dekel and Lipman (2010) impose a normalization on the set of utility functions used in their result.
However, by the uniqueness properties of the random Strotz representation established in Theorem 3
of Dekel and Lipman (2012), the probability of any u-upper set is the same for any random Strotz
representation of the same preference. Therefore, their normalization of utilities is inconsequential for
the result.
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To prove the sufficiency part of Theorem 7, we now show that the sufficiency direction

in Theorem S.1 can be extended to any compact and metrizable space C and any random

Strotz representations (u, µ1) and (u, µ2) defined on that space, subject to our restriction

that each µi has finite-dimensional support. Our approach is to show that the relationship

between µ1 and µ2, specifically µ1 ≫u µ2, can be inferred from looking at the restriction

of the representations and preferences to a carefully chosen finite consumption space

C∗ ⊂ C.

The following preliminary result will be useful in the sequel. Recall that V denotes

the set of all continuous functions v : C → R, i.e., the set of all expected-utility functions.

Lemma S.1. Suppose the set {v1, . . . , vn} ⊂ V is linearly independent. Then there

exists a finite subset C∗ ⊂ C such that the set {v∗1, . . . , v
∗
n} is linearly independent, where

v∗i = vi|C∗ is the restriction of the function vi to C∗.

Proof. Suppose to the contrary that for every finite B ⊂ C, the collection {v1|B, . . . , vn|B}

is linearly dependent. Then for any finite B ⊂ C, the set AB ⊂ Rn defined by

AB = {α ∈ Rn : ‖α‖ = 1 and α1v1(c) + · · ·+ αnvn(c) = 0 ∀c ∈ B}

is nonempty. Note that AB is also a closed subset of the unit ball in Rn, which is itself

compact because n is finite. Let B denote the set of all nonempty finite subsets of C.

For any B1, . . . , Bk ∈ B, we have

AB1 ∩ · · · ∩ ABk
= AB1∪···∪Bk

6= ∅,

since B1 ∪ · · · ∪ Bk is finite and hence also in B. Thus the collection {AB}B∈B has the

finite intersection property. Since these sets are closed subsets of a compact set, this

implies
⋂

B∈B AB 6= ∅. However, since

⋂

B∈B

AB = {α ∈ Rn : ‖α‖ = 1 and α1v1(c) + · · ·+ αnvn(c) = 0 ∀c ∈ C},

this implies the set {v1, . . . , vn} is linearly dependent, a contradiction. �

Since µ1 and µ2 have finite-dimensional support, there exists a finite set of expected-

utility functions {v1, . . . , vn} ⊂ V such that supp(µi) ⊂ span({v1, . . . , vn}) for i = 1, 2.

Consider the set of function {u,1, v1, . . . , vn}, where 1 denotes the constant function

with 1(c) = 1 for all c ∈ C. Without loss of generality, assume that this set of functions

is linearly independent. Otherwise, we can sequentially remove the functions vi until

we obtain a linearly independent set.42 To simplify notation in what follows, let Vs ≡

span({u,1, v1, . . . , vn}) ⊂ V . Thus µ1(Vs) = µ2(Vs) = 1.

42Note that the set {u,1} must be linearly independent since u assumed to be nontrivial (i.e., not
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Take C∗ as in Lemma S.1 for the set {u,1, v1, . . . , vn}. Let V∗ denote the set of

all continuous real-valued functions on C∗ and let V∗
s ≡ span({u∗,1∗, v∗1, . . . , v

∗
n}) ⊂ V∗,

where u∗ = u|C∗ , 1∗ = 1|C∗ , and v∗i = vi|C∗ . Note that each of the functions u∗, v∗1, . . . , v
∗
n

must be nontrivial (i.e., not constant) since function 1∗ together with these functions

forms a linearly independent set.

Lemma S.2. Define a function g : Vs → V∗
s by g(v) = v|C∗, and define a measure µ∗

i on

V∗ by µ∗
i (E) = µi(g

−1(E)) for any measurable set E ⊂ V∗ for i = 1, 2.43

1. The function g is a homeomorphism. That is, g is bijection and both g and its

inverse function g−1 are continuous.

2. For any measurable set E ⊂ V, µi(E) = µ∗
i (g(E ∩ Vs)).

3. For any proper u-upper set U in V (i.e., U ( V), the set U∗ = g(U ∩ Vs) is a

u∗-upper set in V∗.

4. Let %∗
i denote the restriction of %i to sets of lotteries with support in C∗, which we

can identify with the set K(∆(C∗)). Then (u∗, µ∗
i ) is a random Strotz representation

for %∗
i for i = 1, 2.

Proof. (1): This is a standard application of the fundamental theorem of linear algebra

for finite-dimensional vector spaces. Note that g is a linear function from the linear

space Vs with basis vectors {u,1, v1, . . . , vn} to the linear space V∗
s with basis vectors

{u∗,1∗, v∗1, . . . , v
∗
n}. Since g maps each basis vector for Vs to the corresponding basis

vector for V∗
s and the number of basis vectors is the same for each space, g is a bijection.

Since any linear function between finite-dimensional spaces is continuous, both g and g−1

are continuous.44

(2): Fix any measurable set E ⊂ V . Then

µi(E) = µi(E ∩ Vs) = µi(g
−1(g(E ∩ Vs))) = µ∗

i (g(E ∩ Vs)),

constant). Moreover, if span{u,1} = span{u,1, v1, . . . , vn}, then the support of the measures in the
random Strotz representations (u, µi) must assign all probability to the set of affine transformations of
u. In this case, the representations reduce to time-consistent expected-utility maximization, and we have
µ1 ≈ µ2. Except in this trivial case, the linearly independent set of expected-utility functions whose
span contains the support of µi must contain u, 1, and at least some of the vi functions.

43In the definition of µ∗
i , we are implicitly treating g as a function from Vs into V∗. We could

equivalently define µ∗
i by µ∗

i (E) = µi(g
−1(E ∩ V∗

s )).
44A more detailed argument is as follows: Define h : Rn+2 → Vs by h(α) = α1v1+ · · ·+αnvn+αn+1u+

αn+21 and define h∗ : Rn+2 → V∗
s by h∗(α) = α1v

∗
1 + · · · + αnv

∗
n + αn+1u

∗ + αn+21
∗. By the linear

independence of these sets of functions, both h and h∗ are bijections. It is trivial that both functions are
continuous, and by Aliprantis and Border (2006, Corollary 5.24) both h−1 and h∗−1 are also continuous.
Note that g = h∗ ◦ h−1 and g−1 = h ◦ h∗−1, and hence these functions are continuous.
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where the first equality follows from µi(Vs) = 1, the second follows from g−1(g(E∩Vs)) =

E ∩ Vs (which holds because g is a bijection), and the third follows from the definition

of µ∗
i .

(3): First observe that for any v, v′ ∈ Vs,

v ≈ v′ ⇐⇒ v = av′ + b1 for some a > 0, b ∈ R

⇐⇒ g(v) = ag(v′) + b1 for some a > 0, b ∈ R

⇐⇒ g(v) ≈ g(v′).

(S.1)

Now fix any proper u-upper set U in V , and let U∗ = g(U ∩ Vs). To see that U∗ is

a u∗-upper set, fix any v∗ ∈ U∗ and v∗′ ∈ V∗ with v∗′ ≫u∗ v∗. We need to show that

v∗′ ∈ U∗. Let v = g−1(v∗) ∈ U ∩ Vs. Note that we cannot have v∗ ≈ −u∗, as this would

imply by Equation (S.1) that v ≈ g−1(−u∗) = −u, which would in turn imply by the

definition of a u-upper set that U = V , contradicting our assumption that U is a proper

subset of V . Therefore, there exists some α ∈ [0, 1] such that

v∗′ ≈ αu∗ + (1− α)v∗.

Thus there exist a > 0 and b ∈ R such that

v∗′ = aαu∗ + a(1− α)v∗ + b1∗.

Let

v′ = aαu+ a(1− α)v + b1.

Clearly v′ ∈ Vs. Moreover, since v′ ≫u v we have v′ ∈ U . Thus v′ ∈ U ∩Vs, which implies

v∗′ = g(v′) ∈ U∗.

(4): We can treat a lottery p ∈ ∆(C∗) as a measure defined only on the space C∗, or

we treat this as a lottery in ∆(C) that assigns probability zero to the set C \ C∗. Thus

we will abuse notation slightly and evaluate the lotteries p ∈ ∆(C∗) using both functions

in V∗ and functions in V . Note that for any v ∈ Vs, v(p) = v∗(p) for v∗ = g(v) ∈ V∗
s .
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Therefore, for any x ∈ K(∆(C∗)),

U∗
i (x) =

∫

V∗

max
p∈Bv∗ (x)

u∗(p) dµ∗
i (v

∗)

=

∫

V∗

s

max
p∈Bv∗ (x)

u∗(p) d(µi ◦ g
−1)(v∗) (definition of µ∗

i )

=

∫

Vs

max
p∈Bg(v)(x)

u∗(p) dµi(v) (change of variables)

=

∫

Vs

max
p∈Bv(x)

u(p) dµi(v)

= Ui(x).

Thus U∗
i is the restriction of Ui to K(∆(C∗)). Also, note that µ∗

i is nontrivial (i.e., assigns

probability zero to the set of constant functions) since

µ∗
i ({α1

∗ : α ∈ R}) = µi(g
−1({α1∗ : α ∈ R})) = µi({α1 : α ∈ R}) = 0,

by the nontriviality of µi. Hence (u∗, µ∗
i ) is a random Strotz representation of %∗

i . �

We now prove that µ1 ≫u µ2. By assumption, %2 is more temptation averse than %1.

Thus for any menu x and lottery p, {p} ≻1 x implies {p} ≻2 x. This implies a fortiori

that the same condition must hold for lotteries and menus of lotteries with support in

C∗, and hence %∗
2 is more temptation averse than %∗

1, where %∗
i is defined as in part 4

of Lemma S.2. Since C∗ is finite and (u∗, µ∗
i ) represents %∗

i for i = 1, 2, Theorem S.1

implies that µ∗
1 ≫u∗ µ∗

2.

Now fix any u-upper set U in V . If U = V , then trivially µ1(U) = µ2(U) = 1.

Otherwise, by part 3 of Lemma S.2, g(U ∩ Vs) is a u∗-upper set in V∗ and therefore

µ1(U) = µ∗
1(g(U ∩ Vs)) ≥ µ∗

2(g(U ∩ Vs)) = µ2(U),

where the equalities follow from part 2 of Lemma S.2 and the inequality follows from

µ∗
1 ≫u∗ µ∗

2. Since this is true for any u-upper set U , conclude that µ1 ≫u µ2.

S.1.2 Necessity: less u-aligned =⇒ more temptation averse

In this section we prove that the more temptation averse comparative is implied by

µ1 ≫u µ2. It is worth noting that the proof of this direction does not rely on the

assumption that these measures have finite-dimensional support.

The following preliminary result will be useful.
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Lemma S.3. Let u, v, v′ be expected-utility functions defined on ∆(C), and suppose v ≫u

v′. Then for any menu x,

max
p∈Bv(x)

u(p) ≥ max
q∈Bv′ (x)

u(q).

Proof. If v′ ≈ −u, then for any menu x,

max
q∈Bv′ (x)

u(q) = min
q∈x

u(q) ≤ u(p), ∀p ∈ x.

In particular,

max
q∈Bv′ (x)

u(q) ≤ max
p∈Bv(x)

u(p).

If we do not have v′ ≈ −u, then v ≫u v′ implies v ≈ αu + (1− α)v′ for some α ∈ [0, 1].

First, consider α = 0. In this case, v ≈ v′. Therefore Bv(x) = Bv′(x), which implies

max
p∈Bv(x)

u(p) = max
q∈Bv′ (x)

u(q).

Finally, consider the case of α > 0. Note that for any menu x and any p ∈ Bv(x) and

q ∈ Bv′(x),

αu(p) + (1− α)v′(p) ≥ αu(q) + (1− α)v′(q) and v′(q) ≥ v′(p).

Since α > 0, these inequalities imply u(p) ≥ u(q). Therefore,

max
p∈Bv(x)

u(p) ≥ max
q∈Bv′ (x)

u(q),

as claimed. �

Suppose (u, µ1) and (u, µ2) are random Strotz representations of %1 and %2, and

suppose µ1 ≫u µ2. Fix any menu x, and let [a, b] = u(x). Define fx : V → [a, b] by

fx(v) = max
p∈Bv(x)

u(p).

By Lemma S.3, v ≫u v′ implies fx(v) ≥ fx(v
′). Therefore, for any α ∈ [a, b] and v ≫u v′,

v′ ∈ f−1
x ([α, b]) ⇐⇒ fx(v

′) ≥ α =⇒ fx(v) ≥ α ⇐⇒ v ∈ f−1
x ([α, b]).

Thus f−1
x ([α, b]) is a u-upper set. Therefore,

µ1(f
−1
x ([α, b])) ≥ µ2(f

−1
x ([α, b])).
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Define distributions ηxi ≡ µi ◦ f
−1
x on [a, b] for i = 1, 2. By the preceding arguments, ηx1

first-order stochastically dominates ηx2 . Therefore, by the change of variables formula,

U1(x) =

∫

V

fx(v) dµ1(v) =

∫ b

a

α dηx1 (α) ≥

∫ b

a

α dηx2 (α) =

∫

V

fx(v) dµ2(v) = U2(x).

Since this is true for every x, and using the fact that U1({p}) = U2({p}) for any lottery

p, it follows immediately that %2 is more temptation averse than %1.
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