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Abstract

The comparison of coefficients of logit models obtained for different groups
is widely considered as problematic because of possible heterogeneity of
residual variances in latent variables. It is shown how the heterogeneous
logit model can be used to account for this type of heterogeneity. A strategy
to obtain models with identifiable parameters is proposed, which works in
most applications. In contrast to the common understanding, the hetero-
geneous logit model is considered as a model that contains effect modifying
terms, which are not necessarily linked to variances but can also represent
other types of heterogeneity in the population. The alternative interpreta-
tion of the parameters in the heterogeneous logit model makes it a flexible
tool that can account for various sources of heterogeneity. Although the
model is typically derived from latent variables it is important that for the
interpretation of parameters the reference to latent variables is not needed.
Latent variables are considered as a motivation for binary models, but the
effects in the models can be interpreted as effects on the binary response.

Keywords: Heterogeneous choice model; Location-scale model; Heterogeneity
of variances; Logit model; Group comparisons

1 Introduction

Allison (1999) demonstrated that comparisons of binary model coefficients across
groups can be misleading if one has underlying heterogeneity of residual variances.
If one compares, the regression coefficients of a set of explanatory variables like
age, income, social status on a binary response one might find different coeffi-
cients for the gender groups although the effects of the explanatory variables on
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the response have equal strengths in the underlying model. The reason is that co-
efficients are confounded with differences in variation across gender groups. Since
Allison’s paper the issue has been investigated in various papers, see Williams
(2009), Mood (2010), Rohwer (2015), Karlson et al. (2012), Breen et al. (2014).

More recently, Kuha and Mills (2017) (henceforth KM) tried to convince
readers that the problem is much less serious. In their concluding remarks they
say that if researchers make sure to be clear about their target quantities of
their analysis “they will in most cases be able to conclude that comparisons of
estimates from such models between different groups or between different models
pose no fundamental problems or at least not the kinds of problems that have
been raised in the literature on this question.” They conclude “that the problem
of group comparisons is largely chimerical and that any remaining difficulties
arise from expecting these techniques to do things they were never designed to
do in the first place” (p.4).

KM reasonably distinguish between two different versions of the problem,
which have not been clearly separated in the literature. The first version is
caused by heterogeneity of variances in the underlying latent regression model, the
second refers to the comparison of effects between groups, when the individuals in
different groups have different distributions of additional explanatory variables,
which may also be seen as unobserved heterogeneity. The focus here is on the
first problem and heterogeneity as used here refers to heterogeneity of variances.
KM argue that the most important solutions to the problem are to conclude
that for the current research question the problem does not exist or that one
should improve the measurement of the response variable. Improving the response
variable is certainly a good concept, however, no solution for researchers who have
only binary data. The conclusion that the problem does not exist if one focuses
on the binary response variables and ignores potentially existing latent variable
is not without problems. It might have been inspired by the fact that when only
one explanatory variable is available a comparison of effects between groups can
indeed not account for heterogeneity because of identifiability issues. As will be
shown in the case of just one explanatory variable one can definitely not identify
the source of the differences between coefficients obtained for the groups. Since
KM mostly consider the case with only one explanatory variable they ignore that
the sources of differing coefficients can be modelled if one has more than one
variable, which is the case in most studies. The modelling may be based on the
heteroscedastic logit model, also known as heterogeneous choice model, which
is strongly related to the modelling of interaction effects as has been noted by
Rohwer (2015) and Tutz (2018).

The heterogeneous choice model has been used before to model unobserved
heterogeneity by Williams (2009) and implicitly by Allison (1999), however, iden-
tifiability issues have not been investigated in detail. It will be shown that pa-
rameters are identifiable under weak conditions that are met in most modelling
problems. The heterogeneous choice model uses a predictor that is composed of
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two factors, one factor contains the linear effects of explanatory variables, the
other modifies these effects as a function of further variables. The latter factor
models heterogeneity in the population, it can be interpreted as a model for the
heterogeneity of residual variances, but, as will be demonstrated, it can also be
interpreted as a model for the response behaviour. The present article can be
seen as an investigation of the potential of the heterogeneous choice model to
account for different forms of heterogeneity.

In the first part of the article (Section 2 and 3) we consider the problem
how to compare coefficients obtained from different groups. In Section 4 we
investigate the effects of covariates on the binary response. In Section 5 an
alternative derivation of the model is given that sheds some light on the problems
of interpreting coefficients. The paper concludes with summarizing comments.

2 Comparing Coefficients Across Logit Models

We will first consider the technical side of the problem, which has been exposed
in several papers before. It is needed to clarify issues and introduce the notation.

2.1 Binary Regression Models and Latent Variables

A common way to derive and motivate binary regression models is by assuming
that a continuous latent variable is behind the response. Let the latent regression
model have the form

Y ∗
i = α0 + xi1α1 + · · ·+ xipαp + σεi,

where εi has symmetric distribution function F (.). Although one my use any
symmetric distribution function, for simplicity we restrict consideration to the
logistic distribution F (η) = exp(η)/(1 + exp(η)). The essential concept is to
consider Yi as a dichotomized version of the latent variable Y ∗

i with the link
between the observable binary variable Yi and the latent variable Y ∗

i given by

Yi = 1 if Y ∗
i ≥ θ, (1)

where θ is some unknown threshold. It is straightforward to derive that one
obtains for the probability of Yi = 1, πi = P (Yi = 1|xi), the logit model

logit(πi) = β0 + xi1β1 + · · ·+ xipβp, (2)

where the coefficients are given by

β0 =
α0 − θ
σ

, β1 =
α1

σ
, . . . , βp =

αp
σ
.

The basic assumption behind the derivation of the model is that the observable
variable Yi is a coarser, even binary version of the latent variable Y ∗

i . In many
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applications one can imagine that an underlying continuous variable steers the
decision process that results in a categorical outcome.

It is obvious that the α-parameters are not identifiable if the variable Y ∗ is
not observable, which is assumed here. Therefore, in common derivations of the
model one typically postulates σ = 1 and θ = 0. The latter postulate is equivalent
to using Y ∗

i ≥ 0 in equ. (1), and only fixes the location on the latent scale. The
more critical postulate is the former one. It fixes the scaling of the coefficients.
Since σ is not known one could use any value for σ. The β-parameters of the
binary model can be estimated but do not yield estimates of the α-parameters
since the latter are only fixed up to a constant. This scaling problem raises
problems when comparing coefficients obtained for different groups.

2.2 Coefficients from Different Groups

Let us now consider the comparison of coefficients of separately fitted logit models
with a fixed set of covariates. Let the latent variable for the two groups, for
example females and males, be given by

Y ∗
i = α

(r)
0 + xi1α

(r)
1 + · · ·+ xipα

(r)
p + σ(r)εi, r = 0, 1,

with coefficients that may vary across groups. One obtains two logit models, one
in each group,

logit(πi) = β
(r)
0 + xi1β

(r)
1 + · · ·+ xipβ

(r)
p r = 0, 1, (3)

with the coefficients of the models given by

β
(r)
j =

α
(r)
j

σ(r)
, j = 1, . . . , p r = 0, 1.

The comparison of coefficients of the underlying regression model is determined
by α

(1)
j /α

(0)
j , whereas the comparison of coefficients across groups obtained from

the fitting of separate logit models is determined by

β
(1)
j

β
(0)
j

=
α
(1)
j

α
(0)
j

σ(0)

σ(1)
=
α
(1)
j

α
(0)
j

δ,

where δ = σ(0)/σ(1) is a scaling factor. For illustration, let us consider the simple
case, in which the coefficients in the underlying regression model are the same in
both groups, α

(0)
j = α

(1)
j . If the standard deviation in the second group is twice

the standard deviation in the first group one obtains β
(1)
j /β

(0)
j = 2, although the

effect strengths are the same in the underlying model.
Allison (1999) gave an illustration of this potentially misleading effect sizes.

In his example the binary response was promotion to associate professor from
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the assistant professor level and he found that the effect of the number of arti-
cles published by the end of each person year was about twice as large for men
than for women. If coefficients are larger for men, ”men get a greater payoff
from their published work than do females” (Williams, 2009), which seems very
unfair. However, the question is if the effect is substantial or due to unobserved
heterogeneity of variances.

It is obvious that inference on the α-parameters is not possible because they
are coefficients of a latent variable, which by definition can not be observed. In
particular one cannot estimate the variances σ(r) of the latent variable, which are
responsible for the different scaling in the groups. The consequences KM draw is
to make some serious effort to measure the latent variable itself. This is indeed
one way to go, however it does not solve the problems of all the researchers that
have to work with binary data because they are the only data available.

KM argue that the derivation of the models by the latent variable mostly has
no implications for the interpretation of the regression coefficients of the binary
model. If the binary variable is the substantially interesting response variable the
latent variable Y ∗

i is “”nothing but a hypothetical mathematical device that may
be introduced if it is helpful for motivating the binary response.”(p.9). Often one
can imagine that a latent variable Y ∗

i is behind the binary response, however, it is
indeed hypothetical. We also see the latent variable as hypothetical, it primarily
serves to motivate the binary response model. It is not needed when interpreting
regression coefficients of the binary response model. However, as will be argued
in the following, the consideration of the latent regression model is useful to
obtain models, which allow to examine the impact of explanatory variables in
an alternative way. It is important that one does not need to refer to the latent
variable when interpreting parameters in the extended models.

2.3 Comparing Groups: A Closed Model Version of the Problem

Let us consider again the problem of comparing coefficients obtained from logit
models that hold in subpopulations or groups. There is no need to fit logit models
separately in groups. One can also fit a model for both groups simulataneously,
that is, in the total population by including an indicator variable for the group.
This has conceptual advantages and directly provides tests that compare coef-
ficients within the framework of generalized linear models. Let the indicator
variable be xi0 = 1 in group 1 and xi0 = 0 in group 0. The model for the total
population that corresponds to the models for separate groups is the logit model
with specific interactions

logit(πi) = β00 + xi0β0 + xi1β1 + · · ·+ xipβp + xi0xi1β01 + · · ·+ xi0xipβ0p, (4)

The model contains main effects of the indicator variable and the explanatory
variables and all the interactions between the group indicator and the explanatory
variables. It is just a reparameterized version of the logit models (3). It is
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straightforward to derive the reparameterization, for example, one obtains that
the main effects are given by β0 = β

(1)
0 −β(0)

0 , βj = β
(0)
j and the interaction effects

by β0j = β
(1)
j − β(0)

j . Therefore, assuming that model (4) holds is equivalent to
assuming that the models (3) hold in the corresponding subpopulations. Fitting
of the model in the population is equivalent to fitting separate logit models in
the subpopulations.

The model in the total population can be derived from an underlying regres-
sion model as before (see following section). The essential point here is that one
has a model for the total population, which comprises both groups.

3 Models for Unobserved Heterogeneity

In this section we consider the modelling of unobserved heterogeneity. A widely
used model that accounts for unobserved heterogeneity is the heterogeneous
choice model. It has already been used by Allison (1999) in the original pa-
per on heterogeneity but without reference to the model. Later, Williams (2009)
showed that Allison’s method is a special case of the heterogeneous choice model.
We will in particular investigate under which conditions it is a sensible approach
to account for heterogeneity. We start with a brief derivation and description of
the model.

3.1 The Heterogeneous Choice Model

The heterogeneous choice model can be derived from the assumption of an under-
lying latent variable in a similar way as the logit model. Let the latent variable be
given by Y ∗

i = β00 +xTi α+ σiεi, where the standard deviation of the noise, σi, is
linked to the observation. One assumes that the standard deviation is determined
by the so-called variance equation

σi = exp(zTi γ),

where zi is a vector of covariates and γ a vector of coefficients. Simple derivation
shows that the resulting heterogeneous choice model has the form

P (Yi = 1|xi, zi) = F (
α00 + xTi α

exp(zTi γ)
), (5)

where xi is a vector of explanatory variables and α collects the coefficients.
The model explicitly accounts for heterogeneous variances, which are determined
by the covariate vector zi. The term in the numerator, xTi α, can be seen as
the location term, referring to the location on the continuum of the underlying
variable, and zTi γ as the scaling term. The parameter γ is referred to as scaling
or dispersion parameter. The model is also known as heteroscedastic logit model
and in its ordinal version as location-scale model (McCullagh, 1980).
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3.2 The Heterogeneous Choice Model and the Comparison of Groups

The heterogeneous choice model seems to offer the possibility to model underlying
heterogeneity of variances. It certainly is a sensible model if the vectors xi and
zi, which determine location and variance, are distinct. However, some care is
needed if the two vectors contain the same variables. This is exactly the situation
that occurs if one considers the heterogeneous choice model that corresponds to
the logit models in two groups.

Let again xi0 denote the group indicator and let the vector xi and the corre-
sponding coefficient vector be given by

xTi = (xi0, xi1, . . . , xip, xi0xi1, . . . , xi0xip), αT = (α0, α1, . . . , αp, α01, . . . , α0p).

The parameters α0, α1, . . . , αp represent main effects, the parameters α01, . . . , α0p

represent interaction effects between the group indicator and the variables. Het-
erogeneity of variances over groups is obtained by specifying σi = exp(xi0γ),
which means σi = exp(γ) if xi0 = 1 and σi = 1 if xi0 = 0. Implicitly group 0 with
a standard deviation σi = 1 is used as the reference group.

It is straightforward to derive the logit models in the two groups, which are
given by

logit(πi) =α00 + xi1α1 + · · ·+ xipαp in group 0,

logit(πi) ={α00 + α0 + xi1(α1 + α01) + · · ·+ xip(αp + α0p)}/ exp(γ) in group 1.

Thus the parameters in group 0 are given by β
(0)
0 = α00, β

(0)
j = αj, j = 1, . . . , p, in

group 1 by β
(1)
0 = (α00+α0)/ exp(γ), β

(1)
j = (αj+α0j)/ exp(γ), j = 1, . . . , p. How-

ever, in the groups fully flexible models, which means with potentially different
coefficients for all variables, are already obtained if one sets γ = 0. Consequently,
γ is not identifiable in the corresponding heterogeneous choice model. That
means, potential heterogeneity of variances cannot be captured by the model.

The derivation of the heterogeneous choice model given above uses the term
xTi α in the latent model. The obtained parameterization is very general but it
hides the link to the parameters in the latent models for the separate groups. For
completeness we give the derivation in a parameterization that provides this link.
An alternative parameterization of the latent model (with just one explanatory
variable) is given by

Y ∗
i =α

(0)
0 + xi0(α

(1)
0 − α(0)

0 ) + xi1α
(0)
1 + xi0xi1(α

(1)
1 − α(0)

1 )+

{σ(0) + xi0(σ
(1) − σ(0))}εi,

(6)

where σi = σ(0) + xi0(σ
(1) − σ(0)) represents the heterogeneity of variances. It is

immediately seen that the latent traits are Y ∗
i = α

(0)
0 + xi1α

(0)
1 + σ(0)εi if xi0 = 0

and Y ∗
i = α

(1)
1 + xi1α

(1)
1 + σ(1)εi if xi0 = 1.
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Thus, the parameters of the logit models in the separate groups, logit(πi) =

β
(j)
0 + xTi β

(j), j = 1, 2, are given by

β
(1)
0 =

α
(1)
0

σ(1)
, β

(1)
1 =

α
(1)
1

σ(1)
, β

(0)
0 =

α
(0)
0

σ(0)
, β

(1)
1 =

α
(0)
1

σ(0)
,

Again the comparison of α- parameters yields different results than the compar-
ison of β- parameters because

α
(1)
j

α
(0)
j

=
β
(1)
j

β
(0)
j

σ(1)

σ(0)
=
β
(1)
j

β
(0)
j

γ for j = 0, . . . , p.

Consequently, comparison is distorted by the scaling factor γ = σ(1)/σ(0).

3.3 Obtaining Models with Identifiable Parameters

It seems that the modelling of latent variances in the two group problem fails
because γ is not identified in the heterogeneous choice model. This is indeed true
if one has only one predictor, however, in the case of more than one predictors
there are strategies to obtain estimates of γ that typically are successful.

Models with One Explanatory Variable

Let us first consider the heterogeneous choice model with just one explanatory
variable xi1,

logit(πi) =
α00 + xi0α0 + xi1α1 + xi0xi1α01

exp(xTi0γ)
. (7)

If one has only one explanatory variable in the model the situation is certainly
hopeless. The model is not identified and variances cannot be modelled. This is
the case that is considered in detail in KM. They consider among other examples
the case in which the group represent experimental conditions with xi0 = 1
indicating treatment and xi0 = 0 the control group in a randomized experiment.
That means all the conditions are fulfilled to examine the effect of treatment on
the binary response. One is in a situation that reminds of the paper of Mood
(2010), which says in the header “Logistic regression: Why we cannot do what
we think we can do...”. Indeed one is in a situation where one cannot obtain
what one might want. This should be accepted and admitted but may be seen
under a wider view. When we fit logit models we make several assumptions
without being able to examine all of them. We assume that random variables
that generate observations are independent, that they have the same distribution
given covariates, for continuous variables often a linear effect is assumed. In
particular the assumption that all individuals follow the same distribution (given
covariates) is simplistic but necessary. In repeated measurements one could at
least include a random intercept that allows each person an own level, however,
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with just one observation per individual this does not work because random
effects are not identifiable. The problem here is of a similar nature, heterogeneity
of variances cannot be identified in a simple setting with just one predictor. It
might be present but cannot be examined. Thus, when comparing parameters
from different groups one should be aware of the problem that one implicitly
assumes that no heterogeneity is present, which might be seen as one further
assumption when using the logit model.

Models with a Vector of Explanatory Variables

The situation is different when more predictors are available. Let us consider the
heterogeneous choice model with a vector of explanatory variables. Since we still
consider the two group problem all interactions between the indicator and the
covariates are included in the predictor, yielding the model

logit(πi) =
α00 + xi0α0 + xi1α1 + · · ·+ xipαp + xi0xi1α01 + · · ·+ xi0xipα0p

exp(xTi0γ)
. (8)

The linear term is kept very general such that the resulting logit models in the
separate groups logit(πi) = α

(j)
0 + xTi α

(j), j = 0, 1, can have any parameters

α
(j)
0 ,α(j). Consequently, in this general model parameters are again not identified.

However, when several predictors are available not all parameters are unequal
zero, typically at least some interaction effects can be omitted. This can be used
to obtain identifiable sub models.

The testing strategy is simple. First, one exploits that the relevance of in-
teraction terms can be tested within the framework of generalized linear models.
Since γ is not identifiable model (8) is equivalent to the model

logit(πi) = α̃00 + xi0α̃0 + xi1α̃1 + · · ·+ xipα̃p + xi0xi1α̃01 + · · ·+ xi0xipα̃0p, (9)

in which parameters are identified (given sufficient diversity of observations). One
can consider the parameters α̃index as being given by αindex/ exp(xTi0γ).

Given model (9) one can test the hypotheses H0 : α̃0j = 0, j = 1, . . . , p. If
one of the hypotheses, say H0 : α̃0p = 0, is not rejected one can leave out the
corresponding interaction term xi0xip and assume that the reduced model

logit(πi) = α̃00+xi0α̃0+xi1α̃1+ · · ·+xipα̃p+xi0xi1α̃01+ · · ·+xi0xi,p−1α̃0,p−1 (10)

holds. Then one can fit the corresponding heterogeneous logit model

logit(πi) =
α00 + xi0α0 + xi1α1 + · · ·+ xipαp + xi0xi1α01 + · · ·+ xi0xi,p−1α0,p−1

exp(xTi0γ)
,

(11)
which can be estimated because parameters are identifiable (for a proof see Ap-
pendix). The model is actually more general than model (10) but as a hetero-
geneous logit model it allows to investigate which variables and interactions are
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actually needed if one allows for the term exp(xTi0γ) and therefore heterogeneity
of variances. Typically the model can be further simplified by omitting irrelevant
terms.

The basic procedure is simple. Since models (8) and (9) are equivalent one
investigates if interaction terms can be excluded. If α̃0p = 0 is zero also α0p = 0.
But model (10) with α0p = 0 has identifiable parameters and therefore one can
estimate parameters and further simplify the obtained model. Of course, when
simplifying model (9) one can also leave out all the interaction terms that are not
needed simultaneously. The modelling strategy is illustrated in the next section.

Table 1: Interaction model for importance of sports data

Estimate Std. Error z value Pr(>|z|)
Gender -1.4485 0.5216 -2.78 0.0055
MaritalStatus2 -0.6944 0.2690 -2.58 0.0098
MaritalStatus3 -1.4005 0.4627 -3.03 0.0025
MaritalStatus4 -1.7674 0.8829 -2.00 0.0453
age -0.0288 0.0081 -3.55 0.0004
Family -0.2062 0.0708 -2.91 0.0036
Gender:MaritalStatus2 0.6285 0.3347 1.88 0.0605
Gender:MaritalStatus3 1.2774 0.5831 2.19 0.0285
Gender:MaritalStatus4 1.2976 0.9951 1.30 0.1922
Gender:age -0.0014 0.0104 -0.14 0.8922
Gender:Family 0.1168 0.0897 1.30 0.1925

Illustrative Examples

For illustration we use a data set that is available from https://cran.r-
project.org/web/packages/CUB/index.html (dataset relgoods). The original
study aimed at measuring the evaluation of various relational goods and leisure
time, and was collected in December 2014. In our use of the data the binary
response refers to the importance of sports with category 1 representing that
sport is important in life. As explanatory variables we include gender (0: men,
1: women), age in years, the number of members of the family (variable Family)
Marital Status (1=Unmarried, 2=Married/Cohabitant, 3= Separated/Divorced,
4=Widower). We investigate if gender generates scaling effects.

Table 1 shows the fit of a logit model with all main effects and interactions
with gender. Among the interaction effects only the interaction with marital
status is significant (likelihood ratio test is 9.833 on 3 df). Therefore, we keep only
the interaction effect between gender and marital status and fit the corresponding
heterogeneous logit model. Since interactions were omitted the model parameters
are identifiable. In the following tables we give fits of the reduced model in the
parameterization (11), which includes a dispersion parameter. It is seen from
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Table 2 that the interaction with marital status becomes irrelevant if a dispersion
parameter is included. In a further step it is excluded yielding Table 3. In the
reduced model the dispersion parameter is highly significant and also the main
effects of the other variables, with the exception of gender, cannot be omitted.
Nevertheless, compared to the other models the reduced model given in Table 3
is rather sparse. It is also the best model in terms of AIC, AIC is 2394.00 for the
interaction model, 2393.77 for the heterogeneous choice model with interaction,
and 2389.99 for the main effects heterogeneous choice model.

Table 2: Heterogeneous choice model for importance of sports data

Estimate Std. Error z value Pr(>|z|)
Gender -0.8813 0.4419 -1.994 0.0461
MaritalStatus2 -0.6119 0.2555 -2.395 0.0166
MaritalStatus3 -1.2667 0.4468 -2.835 0.0045
MaritalStatus4 -1.5906 0.8644 -1.840 0.0657
age -0.0315 0.0076 -4.151 0.0000
Family -0.1435 0.0576 -2.492 0.0127
Gender:MaritalStatus2 0.4769 0.3679 1.296 0.1949
Gender:MaritalStatus3 1.0308 0.6137 1.680 0.0930
Gender:MaritalStatus4 0.9333 1.0721 0.871 0.3840

disp.Gender 0.1010 0.3334 0.303 0.762

Table 3: Reduced heterogeneous choice model for importance of sports data

Estimate Std. Error z value Pr(>|z|)
Gender -0.2394 0.2426 -0.987 0.3236
MaritalStatus2 -0.4682 0.2147 -2.180 0.0292
MaritalStatus3 -0.9394 0.3866 -2.430 0.0151
MaritalStatus4 -1.3643 0.6005 -2.272 0.0230
age -0.0360 0.0065 -5.492 0.0000
Family -0.1791 0.0565 -3.170 0.0015

disp.Gender 0.4795 0.1728 2.774 0.00553

As a second example we consider data from the general social survey of social
science, in short ALLBUS, a study by the German institute GESIS. The data
is available from http://www.gesis.org/allbus. Our analysis is based on a subset
containing 2935 respondents of the ALLBUS in 2012. The response is the con-
fidence in the federal government (1: strong confidence, 0: no confidence). As
explanatory variables we consider the gender (0: male, 1: female), the income
in thousands of Euros with a linear and a quadratic term, the age in decades
(centered at 50) with a linear and a quadratic term and the self reported interest
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in politics from 1 (very strong interest) to 5 (no interest at all). Table 4 shows
the fit of the interaction model. Since the interaction between gender and income
is not significant it is omitted, yielding the heterogeneous logit model given in
Table 5. After deleting the interaction effects, which are not needed, one obtains
the reduced main effects model in Table 6.

Table 4: Fit of interaction model for confidence data

Estimate Std. Error z value Pr(>|z|)
(Intercept) 0.5250 0.2012 2.61 0.0091
gender 0.5680 0.3092 1.84 0.0662
interest -0.1703 0.0495 -3.44 0.0006
income 0.1526 0.0504 3.03 0.0024
age -0.0364 0.0320 -1.14 0.2548
agesqrt 0.0726 0.0183 3.96 0.0001
gender:interest -0.1413 0.0758 -1.86 0.0624
gender:income 0.0315 0.0932 0.34 0.7357
gender:age -0.1360 0.0475 -2.86 0.0042
gender:agesqrt 0.0288 0.0259 1.11 0.2659

Table 5: Fit of heterogeneous model for confidence data

Estimate Std. Error z value Pr(>|z|)
gender 0.0215 0.1210 0.178 0.8586
interest -0.1856 0.0418 -4.440 0.0000
income 0.1327 0.0395 3.359 0.0007
age -0.0367 0.0319 -1.148 0.2508
agesqrt 0.0708 0.0181 3.907 0.0009
gender:age -0.0692 0.0437 -1.583 0.1135
gender:agesqrt -0.0073 0.024503 -0.299 0.7647

disp:gender -0.4747 0.2565 -1.851 0.0642

Table 6: Fit of reduced heterogeneous model for confidence data

Estimate Std. Error z value Pr(>|z|)
gender -0.0399 0.1133 -0.352 0.7247
interest -0.1748 0.0373 -4.678 0.0000
income 0.1281 0.0382 3.350 0.0008
age -0.0810 0.0195 -4.153 0.0000
agesqrt 0.0610 0.0137 4.454 0.0000

disp:gender -0.5567 0.2168 -2.568 0.0102
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In both applications the linear predictor in the heterogeneous model is re-
duced to a main effects model after including the dispersion parameter. Thus,
the interactions between gender and the other covariates, which will show in dif-
ferent effects in groups when separate models are fitted, seem to be generated
by variance heterogeneity and one might be tempted to see them as artifacts.
However, then interpretation has to refer to the latent model, which should and
can be avoided. Instead of sticking to the latent trait model one should take
the binary response seriously and interpret effect of covariates instead of single
coefficients, which is outlined in the next section.

4 Beyond Unobserved Heterogeneity: The Effects of Vari-

ables in the Heterogeneous Choice Model

Following the construction of the model, the parameters in the heterogeneous
choice model are traditionally interpreted as location and dispersion effects, which
means that implicitly one uses the latent variable when interpreting parameters.
However, as in the derivation of the simple logit model it can be seen as a mere
motivation and effects on the variables can be interpreted without reference to a
latent variable.

Let us first consider the case where the location term contains the binary vari-
able xi0, which is also present in the variance term, but no interactions between
xi0 and explanatory variables are included. Models of this form were obtained in
the applications. In general, the model has the form

logit(πi) = {α00 + xi0α0 + xi1α1 + · · ·+ xipαp}/exp(xi0γ).

The predictor term on the right hand side is composed of two components,
the usual linear term, which contains the explanatory variables, and the factor
exp(−xTi0γ). The latter can be seen as an effect modifying term since it modifies
the effects of the explanatory variables. Since the seminal paper of Hastie and
Tibshirani (1993) varying coefficients models are in common use, see also Cai
et al. (2000), Fan and Zhang (1999), Park et al. (2015). They allow that all or
parts of the parameters in a regression model are functions of other variables, the
so-called effect modifiers. As shown in the following xi0 is a effect modifier which
simultaneously modifies the effects of xi1, . . . , xip.

We use in particular that in logit models the impact of a covariate effect can
be measured by the increase of the logits if covariate xij increases to xij + 1. Let
π(xij) denote the probability of observing Yi = 1 when the j-th covariate has
value xij and π(xij + 1) denote the probability if the j-the covariate has value
xij + 1; all other variables are kept fixed. One obtains for the effect strength of
the j-th covariate (j ≥ 1)

logit(π(xij + 1))− logit(π(xij + 1)) = αj/exp(xi0γ).
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That means the effect is αj if xi0 = 0 and αj/e
γ if xi0 = 1. The effect modifying

factor changes the effects of all the explanatory variables, which may be seen as
a specific interaction between xi0 and the explanatory variables. As in general
varying coefficients models one allows for a modification of effects but there is no
need to postulate a latent variable.

Before looking at examples let us consider the effect of the group variable,
that is, we consider only the term (α00 +xi0α0)/exp(xTi0γ). It is immediately seen
that the term is α00 in group 0, and (α00 + α0)/exp(γ) in group 1. That means
the effects, and therefore the basic response levels, are typically different in the
two groups, provided γ 6= 0, even if α0 = 0.

For illustration let us consider the importance of sports example. The effect
modifying factor generated by gender is eγ = e0.4795 = 1.6152. Since xi0 = 1
codes women, the effects of variables are weaker in the female population. This
is illustrated in Figure 1 where the odds for the two metrically scaled variables
age and family are shown; drawn line refers to men, dashed line refers to women.
The level for women is generally lower than for men, which is an effect of the mod-
ification of the term α00 + xi0α0, and means that women have a weaker tendency
to consider sports important. The coefficient of gender in the linear predictor
is very small, it could be even considered as being equal to zero. Nevertheless,
the probabilities for men and women are distinctly different due to the effect
modifying term. The modification of the effect strengths of the explanatory vari-
ables age and family is seen from the different slopes of the curves. For men the
decrease is much stronger than for women.
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Figure 1: Odds for men (drawn line) and women (dashed line) for sports exam-

ple plotted against age (Marital Status=0, Family=20) and family size (Marital

Status=0, Age=40).

The effect modifying term seems rather restrictive since it modifies all the
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effects of explanatory variables in the same way. However, this restriction is
only strong if no further interactions are included in the linear predictor. If
interaction effects are present the effects of variables are modified by the effect
modifying term but they can nevertheless have stronger or weaker effects. Let
us consider the general case in which some interactions are included in the linear
part of the model. Then, ηi = α00 + xi0α0 + xi1α1 + · · · + xipαp is replaced by
ηi = α00 + xi0α0 + xi1α1 + · · · + xipαp + · · · + xi0xijαij + . . . , which contains
some but, for reasons of identifiability, not all interaction terms between xi0 and
explanatory variables. If an interaction term with the j-th covariate is included,
the effect has to be modified to

logit(π(xij + 1))− logit(π(xij + 1)) = (αj + xi0α0j)/exp(xi0γ).

This means, in addition to the effect modifying term one has the interaction
effect α0j in the linear predictor, which can be positive or negative and therefore
change the effect. In particular, the interaction term can take values that allow
to have the same effect in both groups. If α0j = αj exp(γ) − αj one obtains in
both groups the coefficient αj. Therefore, the general model does not postulate
that all effects have to be different in the groups. The flexibility is obtained since
the interaction effect α0j is variable-specific in contrast to the effect modifying
term. Although interactions in the linear effects are allowed, in our examples
main effects turned out to be sufficient.

5 Models with Individual-Level Heterogeneity

As has already been shown in the previous section for the interpretation of effects
latent variables are not needed. The case is strengthened in the following by giv-
ing a quite different motivation for the effect modifying term in the heterogeneous
logit model. Let us consider the model

logit(πi) =eδi(α0 + xTi α), (12)

where xi is a vector of covariates. The essential modification is that the factor
eδi is subject-specific and very general. Thus, each individual is allowed to have
its own parameter eδi .

As considered above, in logit models the impact of a covariate effect can be
measured by the increase of the logits if covariate xij increases to xij + 1. One
obtains for the effect of the j-th covariate

logit(π(xij + 1))− logit(π(xij + 1)) = eδiαj.

That means the effect strength increases with δi. If δi is small the effect strength
is weak, in the extreme case, δi → −∞, the covariate has no effect at all. Thus,
eδi represents the subject-specific modification of the impact of covariates. One
gets for extreme values of δi the following.
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If δi →∞ one has

P (Yi = 1) = 1 if α0 + xTi α > 0, P (Yi = 0) = 1 if α0 + xTi α < 0.

Thus, individuals with a large δi show a strong preference for categories.
They are strong discriminators, in a questionnaire, they definitely know
which category, 0 or 1, they prefer.

If δi → −∞ one obtains P (Yi = 0) = P (Yi = 1) = 0.5. Thus, individuals
with a small δi choose rather randomly between the response categories. In
a questionnaire this may be a sign that the person is undecided or lacks
concentration.

In summary, the parameter δi can be seen as modelling the subject-specific deci-
siveness or discriminatory power. For large δi the person has strong preferences,
for small δi the person tends to a choose one of the response categories at random.

Although each person may have its own parameter, it can not be estimated
without having repeated measurements. However, one can link the discriminatory
power to covariates. A model of this type is obtained if one replaces the parameter
δi by xi0δ. It can be seen as a model in which discriminatory power depends on
the group. More general one can use the model

logit(πi) =ez
T
i δ(α0 + xTi α), (13)

where zi is a vector of covariates and δ is a parameter vector that determines
how the distinctness of the response is determined by the covariates in zi. It is
immediately seen that the model is equivalent to the heterogeneous choice model
(5) if one sets δ = −γ.

Let us first consider the case of a binary indicator variable in the factor and
consider the effects of variables and their interpretation as distinctness when the
linear predictor includes interactions. Then the effect strength of a variable has
to be modified. One obtains for the effect strength of the j-th covariate, which
is assumed to have an interaction effect,

logit(π(xij + 1))− logit(π(xij + 1)) = exi0δ(αj + xi0α0j).

Thus, the effect strength is determined by two components

exi0δ represents the distinctness of the response, which depends on the
group. It is eδ in group 1 and one in the reference group 0. It accounts for
the possibility that, for example, women might have more distinct prefer-
ences than men. The term exi0δ is the same for all variables and modifies
the effect strengths of all variables in the same way.
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In contrast, αj + xi0α0j contains the variable-specific effect strength. The
first parameter, αj, can be seen as the effect strength in group 0, the interac-
tion parameter α0j represents the change if one switches to group 1. These
are variable-specific effects beyond the impact of possible group-specific dis-
tinctiveness. If groups refer to gender, α0j and α0j+α0j might represent the
group-specific effects of age or gender on the outcome beyond the strength
of preference found in gender groups.

The important point is that the derivation of the model does not use latent
variables. The model can be seen as linking the response directly to the covariates
with a clear interpretation of the coefficients. The factor ez

T
i δ accounts for the

heterogeneity or the distinctness in the preference for response categories, which
is not available in the simple model. The same factor is considered to represent
latent heterogeneity of variances in the traditional derivation of the heterogeneous
logit model. Since the models are the same there is no way to decide which
interpretation is to be preferred from the formulae. If one considers, for example,
the importance of sports as response, both interpretations might apply. In other
cases the interpretation as distinctiveness might not be the best choice. However,
even in Allison’s example it is not so clear what the correct interpretation of effects
is. In his example the response was promotion to associate professor and effects
of variables like number of articles was twice the size for gender. This might
have been generated by heterogeneity of variances in the hypothetical latent
trait model with assumed standard deviations being twice the size for women
than for men. However, it is also conceivable that the committee that decides
on promotion handles men and women in a different way. If the committee,
given the values of variables like number of articles, tends to have a more distinct
opinion for male applicants than for females the effect is the same as the assumed
heterogeneity of variances.

Essentially one has the multiplicative structure of the predictor

ηi = ez
T
i δ(α0 + xTi α),

which contains two factors,

the linear predictor α0 + xTi α, which is always found in logit models, and
which can contain variables from zi and interactions between variables,

the factor ez
T
i δ, which may represent heterogeneity of variances or distinc-

tiveness of the response.

In both cases the descriptive effect of covariates is the same.

6 More General Heterogeneous Choice Models

So far the heterogeneous choice model has been used to model the coefficients in
two groups. This case has been considered in most of the literature on heterogene-
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Table 7: General heterogeneous model for the importance of sports

Estimate Std. Error z value Pr(>|z|)
Gender -0.2428 0.0783 -3.098 0.0019
age -0.0278 0.0042 -6.499 0.0000
Family -0.0730 0.0255 -2.864 0.0041

disp.Gender 0.3249 0.1204 2.698 0.0069
disp.MaritalStatus2 0.5351 0.1584 3.377 0.0007
disp.MaritalStatus3 1.2722 0.7031 1.809 0.0703
disp.MaritalStatus4 -0.7168 0.3941 -1.819 0.0689
disp.age -0.0246 0.0050 -4.906 0.0000
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Figure 2: Odds for men (drawn line) and women (dashed line) for sports exam-

ple plotted against age (Marital Status=0, Family=20) and family size (Marital

Status=0, Age=40) with multiple variables in the effectmodifying term.

ity of variances. It is definitely interesting if the main question is the comparison
of groups but ignores that the effect modification by variance heterogeneity or dis-
tinctness can be generated by more variables. The general heterogeneous model,
however, explicitly allows to include a vector of covariates in the effect modifying
term. Therefore we briefly consider an application of the general model.

For illustration we consider again the sports example and include all the
variables in the effect modifying term. Wald tests show that not all of them are
needed. In Table 7 the parameter esimates of the already reduced model is given.
It is seen that in addition to gender at least age should be considered as an effect
modifier. The presence of age in the effect modifier changes the effect strength of
the other covariables. Figure 2 shows the corresponding effects of age and gender,
which differ from the effects found in Figure 1, which shows the effects if only
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gender is considered an effect modifier. It is seen that the inclusion of the other
variables modifies the curves, for income the difference between gender groups
becomes definitely stronger.

For the interpretation of parameter it is important that the parameters in
Table 7 are the γ-parameters from the representation logit(πi) = (α0+x

T
i α)/ez

T
i γ ,

since the software that was used fits the heterogeneous logit model. To obtain
the δ-parameters one simply has to change the sign because δ = −γ. The
gender effect in the liner term is -0.242, which means that for women (coded
as 1) sports tends to be less interesting than for men. The dispersion effect of
gender is eγGender = e0.379 = 1.46, which means stronger dispersion in the female
population. Alternatively, one can consider the factor eδGender = e−0.379 = 0.68,
which means a less distinct response for females than for males. In both cases
the effect is that the response probabilities for females tend to be closer to 0.5
than the response probabilities for males.

It should be noted that the model given in Table 7 is rather sparse. The
response probabilities are described by few parameters. A logit model (without
dispersion) that includes all the interactions contained in the model would have
to include almost all two factor interactions between explanatory variables and
the effects would be hard to interpret.

7 Concluding Remarks

It has been shown that the heterogeneous choice model can be used to model
underlying heterogeneity in most cases because reduced models are identifiable.
However, when one has only one observation per individual one should be cau-
tious when interpreting single coefficients in the heterogeneous model. Since the
interpretation of effects is not unique in many cases it might be preferable to
see the factor in the model as an effect modifier without trying to specify its
substantial meaning. One should focus on the effects of explanatory variables on
the binary response rather than trying to estimate effects of hypothetical latent
variables and their variances. This is in agreement with the arguments of KM,
however, they did not offer a modelling strategy beyond saying that the problem
does not exist if the research questions are about the binary responses.

In the present study the potential of the heterogeneous model is investigated.
It is a useful tool to investigate the possibly complex effects of explanatory vari-
ables and account for interactions in a specific sparse way. Specific advantages of
the model are:

it can account for effect modifiers, which might represent heterogeneity or
distinctiveness,

several variables can be included in the effect modifying term,
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it allows for sparse models, most often one obtains a main effects model in
the linear predictor.

The second point is important since the investigation of the effect structure
by using simple logit models with interaction terms is restricted to very few,
typically just one, potential effect modifier. If more than one variable is involved
in interactions, which is quite possible, the inclusion of all the possible interactions
yields such large models that they are very hard to interpret, and often estimates
will not exist. In contrast, the heterogeneous model can include several variables
and it can be examined which ones are needed.

It should be noted that in our use of the model, we do not have to assume
that one knows at least for one of the coefficients of the underlying model that
it is the same in both groups, as was assumed by Allison (1999). Constraints
of this type have rightfully criticized by KM since they might shift assumptions
from one part of the model to another, they produce different estimates but are
equivalent in terms of fit.

We considered the binary logit model because it is the most important cat-
egorical regression model, but the same modelling strategies can be used in or-
dered categorical regression. In particular the family of cumulative models, which
contains the proportional odds model as its most prominent member, can be ex-
tended to include heterogeneity terms. Ordered categorical regression models are
extensively discussed in Tutz (2012), Agresti (2013), heterogeneous choice models
with ordinal responses were considered by McCullagh (1980), Williams (2009),
Williams (2010).

All the computations in the present paper were done with the statistical soft-
ware R (R Core Team, 2016). We used the function clm() to estimate the hetero-
geneous choice model, it is available in the package ordinal (Christensen, 2015).
Alternatively, one can also use STATA programs, see Williams (2010).

Appendix

Let us consider the model (4) and assume that one of the interaction parameters
is zero. Without loss of generality we assume α0p = 0. Then one has the model

logit(πi) =
α00 + xi0α0 + xi1α1 + · · ·+ xipαp + xi0xi1α01 + · · ·+ xi0xi,p−1α0,p−1

exp(xTi0δ)
.

Let α00, . . . , α0,p−1, δ and α̃00, . . . , α̃0,p−1, δ̃ be two parameterizations of the
model. It has to be shown that the two parameterizations are identical.

Let again π(xij) denote the probability of observing Yi = 1 when the j-
th covariate has value xij and π(xij + 1) denote the probability if the j-the
covariate has value xij + 1; all other variables are kept fixed. In addition we let
π(xij, xi0 = g) denote the probability of observing Yi = 1 when the j-th covariate
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has value xij and xi0 = g, correspondingly π(xij + 1) denotes the probability if
the j-the covariate has value xij+1 and xi0 = g; all other variables are kept fixed.

(1) One obtains immediately

logit(π(xip + 1))− logit(π(xip) = exi0δαp

and therefore, provided αp 6= 0,

logit(π(xip + 1, xi0 = 1))− logit(π(xip, xi0 = 1))

logit(π(xip + 1, xi0 = 0))− logit(π(xip, xi0 = 0))
= eδ.

Since the equations hold for both parameterizations one obtains eδ = eδ̃ and
therefore δ = δ̃.

(2) For all variables j 6= p one has

logit(π(xij + 1))− logit(π(xij) = exi0δ(αj + xi0α0j).

This yields for xi0 = 0 that αj = α̃j holds, and for xi0 = 1 that α0j = α̃0j holds.
(3) The only left parameters, which have to be identified, are α00 and α0. By

using for xi0 = 0
logit(πi) = α00 + xi1α1 + · · ·+ xipαp

and for xi0 = 1

logit(πi) =
α00 + xi0α0 + xi1α1 + · · ·+ xipαp + xi0xi1α01 + · · ·+ xi0xi,p−1α0,p−1

exp(xTi0δ)

one obtains α00 = α̃00 and α0 = α̃0, which concludes the proof.
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