This Month in GASTROENTEROLOGY Editor
J. Thomas LaMont
Boston, Massachusetts

Editorial Staff
Ann Marie Link, Managing Editor
Barbara J. Burnham, Editorial Assistant
Lynnette P. Oftedahl, Editorial Assistant
Jacque M. Deetz, Editorial Assistant

Laurence J. Miller
Mayo Clinic
Rochester, Minnesota

Jorge Rakela
Mayo Clinic
Rochester, Minnesota

Joseph H. Szurszewski
Mayo Clinic
Rochester, Minnesota

Special Section Editors
Selected Summaries Editor
Henry J. Binder
New Haven, Connecticut

Book Review Editor
Jonathan E. Clain
Rochester, Minnesota

Chairman of Editorial Board
Sidney Cohen
Philadelphia, Pennsylvania

Officers of the American Gastroenterological Association
President Don W. Powell
Galveston, Texas

President-Elect John H. Walsh
Los Angeles, California

Vice President James W. Freston
Farmington, Connecticut

Secretary Thomas A. Brasitus
Chicago, Illinois

Treasurer Martin L. Greene
Seattle, Washington

Members of the Council
Sidney Cohen, Philadelphia, Pennsylvania
Stanley B. Goldberg, Berkeley, California
Walter J. Hogan, Milwaukee, Wisconsin
Jon I. Isenberg, San Diego, California
J. Thomas LaMont, Boston, Massachusetts

W. B. Saunders Company
A Division of Harcourt Brace & Company
The Curtis Center
Independence Square West
Philadelphia, Pennsylvania 19106-3399
This Month in GASTROENTEROLOGY

ALIMENTARY TRACT

3 Occult Enteric Infection by *Ancylostoma caninum*: A Previously Unrecognized Zoonosis
 J. Crgese, A. Loukas, J. Opdebeeck, and P. Prociv

13 Gastroesophageal Reflux During Gastrostomy Feeding
 M. Cohen, A. Weintraub, A. J. DiMarino, Jr., and S. Cohen

19 Increased Fibronectin-Receptor Expression in Colon Carcinoma-Derived HT 29 Cells Decreases Tumorigenicity in Nude Mice

28 Enterotoxic Effect of Stool Supernatant of *Cryptosporidium*-Infected Calves on Human Jejunum
 A. Guarino, R. B. Canani, E. Pozio, L. Terracciano, F. Alhano, and M. Mazzio

35 The Effect of Dexamethasone Administration on Rat Intestinal Permeability: The Role of Bacterial Adherence

42 Association of p53 Mutations With Short Survival in Colorectal Cancer

49 Response of Rat Immature Enterocytes to Insulin: Regulation by Receptor Binding and Endoluminal Polyamine Uptake

60 Do Continuous Infusions of Omeprazole and Ranitidine Retain Their Effect With Prolonged Dosing?
 H. S. Merkt and C. H. Wilder-Smith

65 *Saccharomyces boulardii* Inhibits Secretagogue-Mediated Adenosine 3',5'-Cyclic Monophosphate Induction in Intestinal Cells
 D. Czerucka, I. Roux, and P. Rampal

73 Exposure of the Rat Small Intestine to Raw Kidney Beans Results in Reorganization of Absorptive Cell Microvilli
 S. J. Hagen, J. S. Trier, and R. Dambrauskas

85 Proliferative Responses of HT29 and Caco2 Human Colorectal Cancer Cells to a Panel of Lectins
 S. D. Ryder, J. A. Smith, E. G. H. Rhodes, N. Parker, and J. M. Rhodes

94 Effects of Dietary Menhaden Oil on Mucosal Adaptation After Small Bowel Resection in Rats
<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>Application of the Crypt-Isolation Technique to Flow-Cytometric Analysis of DNA Content in Colorectal Neoplasms</td>
<td>S. Nakamura, J. Goto, M. Kitayama, and I. Kino</td>
</tr>
<tr>
<td>108</td>
<td>Esophageal Clearance Function Following Treatment of Esophagitis</td>
<td>D. Williams, D. G. Thompson, L. Heggie, T. O’Hanrahan, and J. Banczewicz</td>
</tr>
<tr>
<td>117</td>
<td>Peanut Lectin Stimulates Proliferation in Colonic Explants From Patients With Inflammatory Bowel Disease and Colon Polyps</td>
<td>S. D. Ryder, N. Parker, D. Eccleston, M. T. Haqqani, and J. M. Rhodes</td>
</tr>
<tr>
<td>143</td>
<td>Prevention of Ischemia/Reperfusion Injury in the Rat Liver by Atrial Natriuretic Peptide</td>
<td>M. Bilzer, R. Witthaut, G. Paumgartner, and A. L. Gerbes</td>
</tr>
<tr>
<td>152</td>
<td>Phosphatidylcholine Protects Against Fibrosis and Cirrhosis in the Baboon</td>
<td>C. S. Lieber, S. J. Robini, J. Li, L. M. DeCarli, K. M. Mak, J. M. Fasulo, and M. A. Leo</td>
</tr>
<tr>
<td>168</td>
<td>Inhibition of Nonlysosomal Calcium-Dependent Proteolysis by Glycine During Anoxic Injury of Rat Hepatocytes</td>
<td>J. C. Nichols, S. F. Bronk, R. L. Mellgren, and G. J. Gores</td>
</tr>
<tr>
<td>185</td>
<td>Autoantibodies in Sclerosing Cholangitis Against a Shared Peptide in Biliary and Colon Epithelium</td>
<td>A. Mandal, A. Dasgupta, L. Jefferis, L. Squillante, S. Hyder, R. Reddy, E. Schiff, and K. M. Das</td>
</tr>
<tr>
<td>193</td>
<td>Autoantibodies Against Integral Membrane Proteins of the Nuclear Envelope in Patients With Primary Biliary Cirrhosis</td>
<td>R. E. Nickowitz, R. W. Wozniak, F. Schaffner, and H. J. Worman</td>
</tr>
<tr>
<td>Page</td>
<td>Title</td>
<td>Authors</td>
</tr>
<tr>
<td>------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>200</td>
<td>Potentiating Effect of Insulin on Exocrine Secretory Function in Isolated Rat Pancreatic Acini</td>
<td>K. Matsushita, Y. Okabayashi, M. Koide, H. Hasegawa, M. Otsuki, and M. Kasuga</td>
</tr>
<tr>
<td>239</td>
<td>Albumin Messenger RNA as a Marker of Circulating Hepatocytes in Hepatocellular Carcinoma</td>
<td>S. Hillaire, V. Barbu, E. Boucher, M. Moukhtiar, and R. Poupon</td>
</tr>
</tbody>
</table>

CASE REPORTS

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>248</td>
<td>Cholestatic Hepatitis Leading to Hepatic Failure in a Patient With Organ-Transmitted Hepatitis C Virus Infection</td>
<td>H. L. Lim, G. K. K. Lau, G. L. Davis, D. J. Dolson, J. Y. N. Lau</td>
</tr>
</tbody>
</table>

EDITORIALS

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>252</td>
<td>Cryptosporidiosis: The Complexity of Intestinal Pathophysiology</td>
<td>C. L. Sears and R. L. Guerrant</td>
</tr>
<tr>
<td>255</td>
<td>Adherent Bacteria: Breaching the Mucosal Barrier?</td>
<td>E. C. Boedeker</td>
</tr>
<tr>
<td>257</td>
<td>Prevention of Alcohol-Induced Hepatic Fibrosis by Phosphatidylcholine</td>
<td>E. Mezey</td>
</tr>
<tr>
<td>259</td>
<td>Contrast-Enhanced Computed Tomography in Acute Pancreatitis: Is It Beneficial or Harmful?</td>
<td>E. J. Balthazar and P. C. Freeny</td>
</tr>
<tr>
<td>262</td>
<td>Recurrence of Gallstones Following Nonsurgical Therapy With Extracorporeal Shock-Wave Lithotripsy</td>
<td>J. W. Marks</td>
</tr>
</tbody>
</table>
An Assay for Micrometastatic Hepatocellular Carcinoma
B. L. Carr

Fecal Occult Blood Testing Can Decrease Colorectal Cancer Mortality

The Pathogenesis of Gallstone-Induced Pancreatitis

Maximal Bile Acid Biosynthesis in Humans

Is Barrett’s Guilty As Charged?

Cancer Surveillance in Barrett’s Esophagus: What Is the End Point?

Fecal Occult Blood Testing Will Fail to Detect Colonic Polyps

Cancer Mortality Rates in Ulcerative Colitis Surveillance Programs

Detection of Colorectal Adenomas by Fecal Occult Tests

Serum Hyaluronan and Changes in Sinusoidal Perfusion

Hypercoagulability in Inflammatory Bowel Disease

Quality of Life: A Valid and Reliable Measure of Therapeutic Efficacy in the Treatment of Inflammatory Bowel Disease

Eicosanoid Production by a Differentiated Canine Colonic Epithelial Cell Line, VNCC
L. E. LeDuc, J. A. McRoberts, and A. Vidrich

Role of Shiga-like Toxin I in Bacterial Enteritis: Comparison Between Isogenic Escherichia coli Strains
318 The Effect of Intestinal Hypoperfusion on Intestinal Absorption and Permeability During Cardiopulmonary Bypass

324 Ionizing Radiation Reduces Neurally Evoked Electrolyte Transport in Rat Ileum Through a Mast Cell-Dependent Mechanism
W. K. MacNaughton, K. E. Leach, L. Prud'homme-Lalonde, W. Ho, and K. A. Sharkey

336 Spasmolytic Polypeptide: A Trefoil Peptide Secreted by Rat Gastric Mucous Cells

346 The Role of Endogenous Nitric Oxide and Platelet-Activating Factor in Hypoxia-Induced Intestinal Injury in Rats
M. S. Caplan, E. Hedlund, N. Hill, and W. MacKendrick

353 MUC1 Mucin Expression as a Marker of Progression and Metastasis of Human Colorectal Carcinoma
S. Nakamori, D. M. Ota, K. R. Cleary, K. Shirotani, and T. Irimura

362 Rectal Proliferation and Polyp Occurrence in Patients With Familial Adenomatous Polyposis After Sulindac Treatment
M. T. Spagnesi, F. Tonelli, P. Dolara, G. Caderni, R. Valanzano, A. Anastasi, and F. Bianchini

367 Endogenous Nitric Oxide in Gastric Alkaline Response in the Rat Stomach After Damage
K. Takeuchi, T. Ohuchi, and S. Okabe

375 Mediation of the Trophic Effects of Short-Chain Fatty Acids on the Rat Jejunum and Colon

381 Cholinergic Responses in the Cat Lower Esophageal Sphincter Show Regional Variation
H. G. Preiksaitis, L. Tremblay, and N. E. Diamant

389 Increased Tumorigenicity After Differentiation of Colon Cancer Cell Line: Absence of Association With Mucin Synthesis
Y. Niv, C. R. Boland, and Y. S. Kim

399 Butyrate, Mesalamine, and Factor XIII in Experimental Colitis in the Rat: Effects on Transglutaminase Activity
G. D'Argenio, V. Cosenza, I. Sorrentini, F. De Ritis, A. Gatto, M. Delle Cave, F. P. D'Armiento, and G. Mazzotta

405 A Glucocorticoid Prodrug Facilitates Normal Mucosal Function in Rat Colitis Without Adrenal Suppression
A. D. McLeod, R. N. Fedorak, D. R. Friend, T. N. Tozer, and N. Cui

414 The Endocytosis of Transferrin by Rat Intestinal Epithelial Cells
G. J. Anderson, L. W. Powell, and J. W. Halliday
Kinetic Studies on the Metabolism of Short-Chain Fatty Acids and Glucose by Isolated Rat Colonocytes
M. R. Clausen and P. B. Mortensen

Aflatoxin B1-Adduct Formation in Rat and Human Small Bowel Enterocytes
J. C. Kolans, P. Benedict, P. Schmiedlin-Ren, and P. B. Watkins

Substance P Attenuates Gastric Mucosal Hyperemia After Stimulation of Sensory Neurons in the Rat Stomach
J. E. Grønbech and E. R. Lacy

Hepatic Injury and Lethal Shock in Galactosamine-Sensitized Mice Induced by the Superantigen Staphylococcal Enterotoxin B

Clinical Aspects of Incomplete Septal Cirrhosis in Comparison With Macronodular Cirrhosis

Hepatotoxicity of Germander in Mice
J. Loeper, V. Descatotre, P. Letteron, C. Moult, C. Degott, P. Dansette, D. Fau, and D. Pessayre

Long-Term Ethanol Feeding Selectively Impairs the Attachment of Rat Perivenous Hepatocytes to Extracellular Matrix Substrates
D. Xu, M. F. Sorrell, C. A. Casey, D. L. Clement, and D. J. Tuma

Impairment of Glucagon-Induced Hepatic System A Activity by Short-Term Ethanol Administration in the Rat
M. E. Mailliard, R. Cariappa, and R. K. Banks

Is the Plasma Amino Acid Consumption Test an Accurate Test of Exocrine Pancreatic Insufficiency?
A. Maringhini, D. K. Nelson, J. D. Jones, and E. P. Di Magno

A Double-Blind, Controlled Trial of Oral-Pulse Methotrexate Therapy in the Treatment of Primary Sclerosing Cholangitis
T. A. Knox and M. M. Kaplan

Diffuse Hemorrhagic Gastroenteropathy: Report of a New Entity
V. A. Fishbein, A. M. Rosen, E. E. Lack, E. A. Montgomery, and D. Fleischer

Oral Hairy Leukoplakia in a Patient With Ulcerative Colitis

Esophageal Infections: Risk Factors, Presentation, Diagnosis, and Treatment
P. H. Baehr and G. B. McDonald
<table>
<thead>
<tr>
<th>SECTION</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>VIEWPOINTS ON DIGESTIVE DISEASES</td>
<td>533</td>
</tr>
<tr>
<td>Cytokines in Intestinal Inflammation: Pathophysiological and Clinical Considerations</td>
<td>R. B. Sartor</td>
</tr>
</tbody>
</table>

| EDITORIALS | 540 |
| Entercolitis Associated With Shiga-like Toxin Production: An Appropriate Animal Model at Last? | P. I. Tarr |

| SELECTED SUMMARIES | 544 |
| Endoscopic Laser Therapy for Radiation-Induced Mucosal Hemorrhage: Have We Seen the Light? |

| BOOK REVIEWS | 546 |
| Should You be Following Carcinoembryonic Antigen Levels in Your Patients With Colon Cancer? |

| CORRESPONDENCE | 553 |
| Cell Cycle Abnormalities in Barrett's Esophagus: Further Insights |

| | 553 |
| Mesalazine as Maintenance Treatment in Crohn's Disease |

| | 554 |
| What Constitutes Compliance? |

| | 555 |
| Progression of Primary Biliary Cirrhosis on Ursodeoxycholic Acid |

| NOTICES | 556 |

| NO. 3 MARCH 1994 | 557 |
| This Month in GASTROENTEROLOGY |

| ALIMENTARY TRACT | 559 |
| Evidence for a Lactate-Anion Exchanger in the Rat Jejunal Basolateral Membrane | C. I. Cheeseman, S. Shariff, and D. O'Neill |

| | 567 |
| Acute Indomethacin-Induced Jejunal Injury in the Rat: Early Morphological and Biochemical Changes | G. Nygård, A. Anthony, C. Piaszcki, M. A. Trevethick, M. Hudson, A. P. Dhillon, R. E. Pounder, and A. J. Wakefield |

| | 576 |
| Vasoactive Intestinal Polypeptide Modulates the In Vitro Immunoglobulin A Production by Intestinal Lamina Propria Lymphocytes | M. Boirivant, S. Fais, B. Annibale, D. Agostini, G. Delle Fave, and F. Pallone |
583 Effects of Duodenal Distention on Fasting and Postprandial Antropyloroduodenal Motility in Humans
M. Edelbroek, M. Horowitz, J. Dent, W. M. Sun, C. Malbert, A. Smout, and L. Akkermans

593 The Yield of a Second Screening Flexible Sigmoidoscopy in Average-Risk Persons After One Negative Examination

596 Aberrant Binding of Lamina Propria Lymphocytes to Vascular Endothelium in Inflammatory Bowel Diseases
M. Salmi, K. Granfors, R. MacDermott, and S. Jalkanen

606 Ileal Distention Relaxes the Canine Colon: A Model of Megacolon?
G. Basilisco and S. F. Phillips

615 Bacterial Overgrowth Without Clinical Malabsorption in Elderly Hypochlorhydric Subjects

624 Effects of LY267108, an Erythromycin Analogue Derivative, on Lower Esophageal Sphincter Function in the Cat
B. Greenwood, D. Dieckman, H. A. Kirst, and J. S. Gidda

629 Free Radicals and Pathogenesis During Ischemia and Reperfusion of the Cat Small Intestine

637 Novel Genetic Association Between Ulcerative Colitis and the Anti-inflammatory Cytokine Interleukin-1 Receptor Antagonist

643 Smoking Habits and Recurrence in Crohn's Disease

649 Origins of Motility Patterns in Isolated Arterially Perfused Rat Intestine
P. Berčik, D. Armstrong, R. Fraser, P. Dutot, C. Emde, M.-P. Primi, A.-L. Blum, and P. Kužera

658 Dose-Dependent Effects of Oral Misoprostol on Renal Function in Alcoholic Cirrhosis
F. Wong, D. Massie, P. Hsu, and F. Dudley

664 In Vitro Experimental Infection of Primary Human Hepatocytes With Hepatitis B Virus
P. R. Galle, J. Hagelstein, B. Kommerell, M. Volkmann, P. Schranz, and H. Zentgraf

674 Determination of Hepatic Iron Concentration in Fresh and Paraffin-Embedded Tissue: Diagnostic Implications
J. K. Olynyk, R. O'Neill, R. S. Britton, and B. R. Bacon
678 Plasma Arginine Vasopressin Response to Oral, Gastric, and Intravenous Water Load in Patients With Cirrhosis
G. Castellano, J. A. Solis-Herruzo, A. Gonzalez, J. D. Morillas, D. Moreno, T. Muñoz, and L. Larrodera

686 Comparative Efficacy of Interferon Alfa in Cirrhotic and Noncirrhotic Patients With Non-A, Non-B, C Hepatitis
P. Jouët, F. Roudot-Thoraval, D. Dhumeaux, J.-M. Météreau, and Le Groupe Français pour l'Etude du Traitement des Hépatites Chroniques NANB/C

691 Toxic Oil Stimulates Collagen Synthesis Acting at a Pretranslational Level in Cultured Fat-Storing Cells

702 Distorted Microangioarchitecture and Impaired Angiogenesis in Gastric Mucosa of Portal Hypertensive Rats
Y. Ichikawa, A. Tarnawski, I. J. Sarfeh, T. Ishikawa, and H. Shimada

709 Time Course of Circulatory and Humoral Effects of Rapid Total Paracentesis in Cirrhotic Patients With Tense, Refractory Ascites

720 Prognostic Factors of Hepatocellular Carcinoma in Patients Undergoing Hepatic Resection

728 Serum Levels of Pancreatitis-Associated Protein As Indicators of the Course of Acute Pancreatitis

735 Influence of Inflammation and Atrophy on Pancreatic Secretory Trypsin Inhibitor Levels Within the Gastric Mucosa
R. J. Playford, A. M. Hanby, C. Quinn, and J. Calam

742 Lipid Intolerance Does Not Account for Susceptibility to Alcoholic and Gallstone Pancreatitis
P. S. Haber, J. S. Wilson, M. V. Apte, W. Hall, K. Goumas, and R. C. Pirollo

749 Diffusion of Substances Into Human Cholesterol Gallstones
J. R. Sanabria, G. A. Upadhya, R. P. C. Harvey, and S. M. Strasberg

755 Identification of a 130-Kilodalton Human Biliary Concanavalin A Binding Protein as Aminopeptidase N
G. D. Offner, D. Gong, and N. Z. Afdhal

763 Cholecystokinin-Coupled Intracellular Signaling in Human Gallbladder Muscle
P. Yu, G. De Petris, P. Biancari, J. Amaral, and J. Behar

CASE REPORTS

771 Successful Intestinal Transplantation for Microvillus Inclusion Disease
M. M. Oliva, J. A. Perman, J. M. Saavedra, J. Young-Ramsaran, and K. B. Schwarz
<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>775</td>
<td>Diarrhea and Autonomic Dysfunction in a Patient With Hexosaminidase B Deficiency (Sandhoff Disease)</td>
<td>R. Modigliani, M. Lemann, S. B. Melançon, J. Mikol, M. Potier, M. Salmeron, G. Said, and P. Poitras</td>
</tr>
<tr>
<td>782</td>
<td>Central Nervous System Whipple’s Disease: Relapse During Therapy With Trimethoprim-Sulfamethoxazole and Remission With Cefixime</td>
<td>G. S. Cooper, E. W. Blades, B. F. Remler, R. A. Salata, K. W. Bennert, and G. H. Jacobs</td>
</tr>
<tr>
<td>803</td>
<td>Colon Cancer Screening: Beyond Efficacy</td>
<td>D. Lieberman</td>
</tr>
<tr>
<td>807</td>
<td>Smoking: Good or Bad for Inflammatory Bowel Disease?</td>
<td>J. Rhodes and G. A. O. Thomas</td>
</tr>
<tr>
<td>810</td>
<td>Is There a Relationship Between Hypertriglyceridemia and Development of Alcohol- or Gallstone-Induced Pancreatitis?</td>
<td>P. P. Toskes</td>
</tr>
<tr>
<td>813</td>
<td>Gastroenterologists: Get to Know Gelsolin!</td>
<td></td>
</tr>
<tr>
<td>814</td>
<td>Gastrocolonic Response: Food for Thought</td>
<td></td>
</tr>
<tr>
<td>815</td>
<td>Hereditary Nonpolyposis Colorectal Cancer (Lynch Syndrome): New Insights From Genetic Linkage</td>
<td></td>
</tr>
<tr>
<td>820</td>
<td>Disorder of Bile Acid Metabolism Unmasked by Pregnancy?</td>
<td></td>
</tr>
<tr>
<td>820</td>
<td>Endoscopic Ultrasonography in the Diagnosis of Hypertrophic Gastropathy</td>
<td></td>
</tr>
<tr>
<td>820</td>
<td>Fentanyl and the Wooden Chest</td>
<td></td>
</tr>
<tr>
<td>821</td>
<td>Is There an Editorial Trade Embargo on Scientific Imports?</td>
<td></td>
</tr>
<tr>
<td>822</td>
<td>Possible Immunopathogenesis for Fibrosing Colestatic Hepatitis</td>
<td></td>
</tr>
<tr>
<td>823</td>
<td>HIV Infection and Isolated Detection of Anti-HBc</td>
<td></td>
</tr>
<tr>
<td>824</td>
<td>Correction</td>
<td></td>
</tr>
<tr>
<td>825</td>
<td>NOTICES</td>
<td></td>
</tr>
</tbody>
</table>
NO. 4
APRIL 1994

This Month in GASTROENTEROLOGY

ALIMENTARY TRACT

827 Reciprocal Expression of Laminin A-Chain Isoforms Along the Crypt-Villus Axis in the Human Small Intestine
J-F. Beaulieu and P. H. Vachon

839 Platelets Circulate in an Activated State in Inflammatory Bowel Disease
C. E. Collins, M. R. Cabill, A. C. Newland, and D. S. Rampton

846 Gastrointestinal Lymphoma in Adults: Clinical Features and Management of 300 Cases
M. H. Amer and S. El-Akkad

859 Local Secretion of Corticotropin-Releasing Hormone by Enterochromaffin Cells in Human Colon

866 Premicellar Taurocholate Enhances Calcium Uptake From All Regions of Rat Small Intestine

875 Failing Deglutitive Inhibition in Primary Esophageal Motility Disorders
D. Sifrim, J. Janssens, and G. Vantrappen

883 Biochemical Epidemiology of Colon Cancer: Effect of Types of Dietary Fiber on Colonic Diacylglycerols in Women
B. S. Reddy, B. Simi, and A. Engle

890 Rectal Epithelial Expression of Protein Kinase A Phosphorylation of Cystic Fibrosis Transmembrane Conductance Regulator
M. C. Rao, G. B. Bissonnette, T. Mahaffey, W. B. Guggino, and J. L. Goldstein

899 Folinic Acid and 5-Fluorouracil as Adjuvant Chemotherapy in Colon Cancer
G. Francini, R. Petrioli, L. Lorenzini, S. Mancini, S. Armenio, G. Tanzini, S. Marsili, A. Aquino, G. Marzocca, S. Civitelli, L. Mariani, D. De Sando, S. Bovenga, and M. Lorenzi

907 Omeprazole Versus H2-Receptor Antagonists in Treating Patients With Peptic Stricture and Esophagitis

916 Determinants of Response to a Prokinetic Agent in Neuropathic Chronic Intestinal Motility Disorder
M. Camilleri, R. K. Balm, and A. R. Zinsmeister
Small Bowel Motility Following Major Intra-abdominal Surgery: The Effects of Opiates and Rectal Cisapride

M. J. Benson, J. P. Roberts, D. L. Wingate, J. Rogers, J. J. Deeks, F. D. Castillo, and N. S. Williams

Increased Chemocytotoxicity to Colon Cancer Cells by Shock Wave-Induced Cavitation

Predominant Symptoms in Irritable Bowel Syndrome Correlate With Specific Autonomic Nervous System Abnormalities

A. Aggarwal, T. F. Cutts, T. L. Abell, S. Cardoso, B. Familoni, J. Bremer, and J. Karas

Intestinal Vessels Express a High Density of Somatostatin Receptors in Human Inflammatory Bowel Disease

J. C. Reubi, L. Mazzucchelli, and J. A. Laisiss

Tissue Interleukin 1 and Interleukin-1 Receptor Antagonist Expression in Enterocolitis in Resistant and Susceptible Rats

Human Esophageal Secretion: Mucosal Response to Luminal Acid and Pepsin

Z. Namiot, J. Sarosiek, R. M. Rouk, D. P. Hetzel, and R. W. McCallum

Circadian Variations of Epithelial Cell Proliferation in Human Rectal Crypts

Role of Endothelin 1 in Hemorrhagic Shock-Induced Gastric Mucosal Injury in Rats

Quantitation of Hepatitis C Virus RNA in Liver Transplant Recipients

A Long-term Follow-up Study of Asymptomatic Hepatitis B Surface Antigen–Positive Carriers in Montreal

Distinguishing Between Acute and Symptomatic Chronic Hepatitis B Virus Infection

Altered Control of Vascular Tone by Adenosine Triphosphate–Sensitive Potassium Channels in Rats With Cirrhosis

R. Moreau, H. Komeichi, P. Kirstetter, M. Ohsuga, S. Cailmail, and D. Lebrec
1024 Increased Spermidine or Spermine Level is Essential for
Hepatocyte Growth Factor–Induced DNA Synthesis in Cultured
Rat Hepatocytes

1032 A New, Effective, and Safe Therapeutic Option Using Proton
Irradiation for Hepatocellular Carcinoma
Y. Matsuoka, T. Osuga, Y. Saito, Y. Chuganji, N. Tanaka, J. Shoda, H. Tsuji,
and H. Tsujii

1042 The Changing Scene of Hepatic Vein Thrombosis: Recognition
of Asymptomatic Cases
A. Hadengue, M. Poliquin, V. Vilgrain, J. Belghiti, C. Degott, S. Erlinger,
and J.-P. Benhamou

1048 Displacement of Hepatitis B Virus by Hepatitis C Virus as the
Cause of Continuing Chronic Hepatitis
Y.-F. Liaw, S.-L. Tsai, J.-J. Chang, I.-S. Sheen, R.-N. Chien, D.-Y. Lin,
and C.-M. Chu

1054 Altered Expression of MUC2, MUC4, and MUC5 Mucin Genes in
Pancreas Tissues and Cancer Cell Lines
C. Balague, G. Gambus, C. Carrato, N. Porchet, J.-P. Aubert, Y. S. Kim,
and F. X. Real

1062 Diagnosis of Choledocholithiasis by Endoscopic
Ultrasonography
P. Amouyal, G. Amouyal, P. Lévy, S. Tuzet, L. Palazzo, V. Vilgrain, B. Gayet,
J. Belghiti, F. Fekete, and P. Bernades

CASE REPORTS

1068 Dystonia, Hyperintense Basal Ganglia, and High Whole Blood
Manganese Levels in Alagille's Syndrome
A. G. Devenyi, T. F. Barron, and A. C. Mamourian

1072 Hypervariable Region of Hepatitis C Virus Envelope
Glycoprotein (E2/NS1) in an Agammaglobulinemic Patient
U. Kumar, J. Monjardino, and H. C. Thomas

SPECIAL REPORTS AND
REVIEWS

1076 Gene Therapy: Applications to the Treatment of Gastrointestinal
and Liver Diseases
A. G. Y. Chang and G. Y. Wu

1085 Alcohol and the Liver: 1994 Update
C. S. Lieber

RAPID
COMMUNICATIONS

1106 Accelerated Healing of Duodenal Ulcers by Oral Administration
of a Mutein of Basic Fibroblast Growth Factor in Rats
S. Szabo, J. Folkman, P. Vattay, R. E. Morales, G. S. Pinkus, and K. Kato

EDITORIALS

1112 The Clinical Pharmacology of Motility Disorders: The Perils
(and Pearls) of Prokinesia
E. M. M. Quigley
Functional Gastrointestinal Disease and the Autonomic Nervous System: A Way Ahead
M. Camilleri and M. J. Ford

Hepatitis C Virus Pathogenicity: The Corner Pieces of the Jigsaw Puzzle Are Found
J. B. Zeldis and P. Jensen

SELECTED SUMMARIES
1121 Big and Tall: Protective Against Colorectal Cancer?
1122 Specific Regulation of a Mucosal Addressin
1123 Role of Cathepsin B in the Pathogenesis of Acute Pancreatitis

BOOK REVIEWS
1126

CORRESPONDENCE
1128 Dysplastic Barrett’s: Is Continued Surveillance Appropriate?
1129 Surveillance for Ulcerative Colitis Does Not and Cannot Work
1131 Low-Dose Captopril for Patients With Liver Cirrhosis: What Is Low?
1132 Can Esophageal Physiology Predict Anatomy?
1133 Correction

NOTICES
1134

NO. 5
MAY 1994

1137 This Month in GASTROENTEROLOGY

AMERICAN GASTROENTEROLOGICAL ASSOCIATION
1139 Our New President—John H. Walsh, M.D.
T. Yamada

ALIMENTARY TRACT
1143 Rat Cluster of Differentiation 1 Molecule: Expression on the Surface of Intestinal Epithelial Cells and Hepatocytes

1150 Signal Transduction in Human Epithelial Cells Infected With Attaching and Effacing Escherichia coli In Vitro
M. Dytoc, L. Fedorko, and P. M. Sherman

1162 Effect of Calcium Supplementation on Rectal Epithelial Hyperproliferation in Intestinal Bypass Subjects
G. Steinbach, J. Lupton, B. S. Reddy, J. G. Kral, and P. R. Holt
<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>1168</td>
<td>Effect of Intravenous Human Gastrin-Releasing Peptide on Food Intake in Humans</td>
<td>J.-P. Gutzwiller, J. Drewe, P. Hildebrand, L. Rossi, J. Z. Lauper, and C. Beglinger</td>
</tr>
<tr>
<td>1174</td>
<td>A Critique of Therapeutic Trials in Helicobacter pylori-Positive Functional Dyspepsia</td>
<td>N. J. Talley</td>
</tr>
<tr>
<td>1190</td>
<td>Inhibition of Short-Chain Fatty Acid Absorption and Na$^+$ Absorption During Acute Colitis in the Rabbit</td>
<td>J. D. Butzner, J. B. Maddings, and V. Dalal</td>
</tr>
<tr>
<td>1199</td>
<td>Protection of Cultured Rat Gastric Cells Against Oxidant-Induced Damage by Exogenous Glutathione</td>
<td>H. Hiraishi, A. Terano, S. Ota, H. Mutoh, T. Sugimoto, T. Harada, M. Razandi, and K. J. Ivey</td>
</tr>
<tr>
<td>1215</td>
<td>An Animal Model of Necrotizing Enterocolitis Induced by Infant Formula and Ischemia in Developing Piglets</td>
<td>K. D. Crissinger, D. L. Burney, O. R. Velasquez, and E. Gonzalez</td>
</tr>
<tr>
<td>1233</td>
<td>The Polymorphic Expression of Lactase in Adults Is Regulated at the Messenger RNA Level</td>
<td>O. Fajardo, H. Y. Naim, and S. W. Lacey</td>
</tr>
<tr>
<td>1251</td>
<td>Appendectomy Protects Against Ulcerative Colitis</td>
<td>P. Rutgeerts, G. D’Haens, M. Hiele, K. Geboes, and G. Vantrappen</td>
</tr>
<tr>
<td>1254</td>
<td>Fibroblast Growth Factors Modulate Intestinal Epithelial Cell Growth and Migration</td>
<td>A. U. Dignass, S. Tsunekawa, and D. K. Podolsky</td>
</tr>
<tr>
<td>1263</td>
<td>Plasma Gastrin Concentrations Are Normal in Patients With Colorectal Neoplasia and Unaltered Following Tumor Resection</td>
<td>I. D. Penman, E. El-Omar, J. E. S. Ardill, J. R. McGregor, D. J. Galloway, P. J. O'Dwyer, and K. E. L. McColl</td>
</tr>
<tr>
<td>Page</td>
<td>Title</td>
<td>Authors</td>
</tr>
<tr>
<td>------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>1271</td>
<td>Metronidazole Inhibits Leukocyte–Endothelial Cell Adhesion in Rat Mesenteric Venules</td>
<td>H. Arndt, K.-D. Palitzsch, M. B. Grisham, and D. N. Granger</td>
</tr>
<tr>
<td>1291</td>
<td>Cryoglobulinemia in Chronic Liver Diseases: Role of Hepatitis C Virus and Liver Damage</td>
<td>F. Lunel, L. Musset, P. Cacoub, L. Frangeul, P. Cresta, M. Perrin, P. Grippon, C. Hoang, J. C. Piete, J.-M. Huraux, and P. Opolon</td>
</tr>
<tr>
<td>1301</td>
<td>Biosynthesis of Platelet-Activating Factor and Its 10-Acyl Analogue by Liver Fat-Storing Cells</td>
<td>M. Pinzani, V. Carloni, F. Marra, D. Ricardi, G. Laffi, and P. Gentilini</td>
</tr>
<tr>
<td>1326</td>
<td>Intermediate Filaments in Rat Pancreatic Acinar Tumors, Human Ductal Carcinomas, and Other Gastrointestinal Malignancies</td>
<td>K.-H. Herzig, M. Altmannsberger, and U. R. Fölsch</td>
</tr>
<tr>
<td>1333</td>
<td>Ursodeoxycholate Conjugates Protect Against Disruption of Cholesterol-Rich Membranes by Bile Salts</td>
<td>D. M. Heuman and R. Bajaj</td>
</tr>
<tr>
<td>1342</td>
<td>Reversible Jaundice in Primary Biliary Cirrhosis Due to Hyperthyroidism</td>
<td>N. P. Thompson, S. Leader, C. P. Jamieson, W. R. Burnham, and A. K. Burroughs</td>
</tr>
<tr>
<td>1344</td>
<td>Adaptation of Hepatitis C Virus for Persistent Infection in Patients With Acute Hepatitis</td>
<td>K. Yamaguchi, E. Tanaka, K. Higashi, K. Kiyosawa, A. Matsumoto, S. Furuta, A. Hasegawa, S. Tanaka, and M. Kohara</td>
</tr>
<tr>
<td>1349</td>
<td>Cellular and Subcellular Calcium Signaling in Gastrointestinal Epithelium</td>
<td>M. H. Nathanon</td>
</tr>
</tbody>
</table>
VIEWPOINTS ON DIGESTIVE DISEASES 1365 Advances in Clinical Nutrition
C. R. Fleming and K. N. Jeejeebhoy

EDITORIALS 1374 Gastrin-Releasing Peptide and Satiety
J. Gibbs, G. P. Smith, and T. C. Kirkham

1376 Regulatory Mechanisms of Lactase Activity in Adult Intestine
S. Auricchio

1378 Adhesion Molecules and Gastrointestinal Malignancies
R. S. Bresalier

1382 Appendectomy and Ulcerative Colitis: What Connection?
R. Logan

1384 Transjugular Intrahepatic Portosystemic Shunts: A Note of Caution
P. S. Kamath and M. A. McKusick

SELECTED SUMMARIES 1388 Immunity to Hepatitis B Virus: Passing the Torch
1390 Acute and Chronic Pancreatitis: Are They Really Different?
1391 Fundoplication: Is It Time for a Resurrection?
1393 Crohn's Disease: No Longer Feeding by Bits and Pieces?

BOOK REVIEWS 1395

CORRESPONDENCE 1397 PGE₂ May Be an NANC Transmitter in the LES
1397 Is VIP a Key Neuropeptide in Achalasia?
1398 H. pylori and Gastric Cancer: Limitations of Retrospective Studies
1400 An Earlier Report of Cholelithoptysis
1400 The Safety of Omeprazole: True or False?

NOTICES 1402

NO. 6 JUNE 1994

1403 This Month in GASTROENTEROLOGY

ALIMENTARY TRACT 1405 Natural Gastric Infection With Helicobacter pylori in Monkeys:
A Model for Spiral Bacteria Infection in Humans
A. Dubois, N. Fiala, L. M. Heman-Ackah, E. S. Drazek, A. Tarnawski,
W. N. Fishbein, G. I. Perez-Perez, and M. J. Blaser
<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>1418</td>
<td>Glutamine Stimulates Prostaglandin-Sensitive Na(^+)-H(^+) Exchange in Experimental Porcine Cryptosporidiosis</td>
<td>R. A. Argenzio, J. M. Rhoads, M. Armstrong, and G. Gomez</td>
</tr>
<tr>
<td>1436</td>
<td>Superficial-Type Adenomas and Adenocarcinomas of the Colon and Rectum: A Comparative Morphological Study</td>
<td>T. Minamoto, K. Sawaguchi, T. Obta, T. Itoh, and M. Mai</td>
</tr>
<tr>
<td>1444</td>
<td>Characterization of Nitric Oxide Synthase in the Opossum Esophagus</td>
<td>J. A. Murray and E. D. Clark</td>
</tr>
<tr>
<td>1467</td>
<td>Vasoactive Intestinal Polypeptide Gene Expression Is Characteristically Higher in Opossum Gastrointestinal Sphincters</td>
<td>A. Bandyopadhyay, S. Chakder, R. B. Lynn, and S. Rattan</td>
</tr>
<tr>
<td>1477</td>
<td>The Effects of Psychological Stress on the Esophagogastric Junction Pressure and Swallow-Induced Relaxation</td>
<td>R. K. Mittal, W. R. Stewart, M. Ramahi, J. Chen, and D. Tisdelle</td>
</tr>
<tr>
<td>1493</td>
<td>Interleukin 1 Induces a Neurally Mediated Colonic Secretion in Rats: Involvement of Mast Cells and Prostaglandins</td>
<td>V. Theodorou, H. Eutamene, J. Fioramonti, J. L. Junien, and L. Bueno</td>
</tr>
<tr>
<td>1501</td>
<td>Do Characteristics of Adenomas on Flexible Sigmoidoscopy Predict Advanced Lesions on Baseline Colonoscopy?</td>
<td>T. M. Zarchy and D. Ershoff</td>
</tr>
<tr>
<td>1505</td>
<td>Rat Gastric Motor Response to Food Protein-Induced Anaphylaxis</td>
<td>A. G. Catto-Smith, D. Tan, D. G. Gall, and R. B. Scott</td>
</tr>
<tr>
<td>1514</td>
<td>Mononuclear Cells From Infants Allergic to Cow’s Milk Secrete Tumor Necrosis Factor (\alpha), Altering Intestinal Function</td>
<td>M. Heyman, N. Darmon, C. Dupont, B. Dugai, A. Hirribaren, M.-A. Blaton, and J.-F. Desjeux</td>
</tr>
<tr>
<td>Page</td>
<td>Title</td>
<td>Authors</td>
</tr>
<tr>
<td>------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>1524</td>
<td>The Role of Capsaicin-Sensitive Sensory Neurons in Healing of HCl-Induced Gastric Mucosal Lesions in Rats</td>
<td>K. Takeuchi, K. Ueshima, T. Obuchi, and S. Okabe</td>
</tr>
<tr>
<td>1533</td>
<td>Inhibition of Phase III Activity by Acidifying Stomach in Vagally Denervated and Innervated Dogs With Gastric Pouches</td>
<td>O. Yamamoto, Y. Matsumaga, N. Haga, A. Mizumoto, and Z. Itoh</td>
</tr>
<tr>
<td>1554</td>
<td>Modulation of Host Response to Escherichia coli O157:H7 Infection by Anti-CD18 Antibody in Rabbits</td>
<td>E. Elliott, Z. Li, C. Bell, D. Stiel, A. Buret, J. Wallace, I. Brusyczak, and E. O'Loughlin</td>
</tr>
<tr>
<td>1562</td>
<td>Localization of Bicarbonate Transport Along the Crypt-Villus Axis in Rabbit Ileum</td>
<td>B. S. Minhas and M. Field</td>
</tr>
<tr>
<td>1568</td>
<td>Interleukin 1ß Inhibits Gastric Emptying in Rats: Mediation Through Prostaglandin and Corticotropin-Releasing Factor</td>
<td>G. Süto, Á. Király, and Y. Taché</td>
</tr>
<tr>
<td>1576</td>
<td>Adaptation of Enteroendocrine Cells in Response to Jejunal-Ileal Transposition in the Rat</td>
<td>K. D. Aiken, W. Yu, J. R. Wright, Jr., and K. A. Roth</td>
</tr>
<tr>
<td>1584</td>
<td>Allelic Deletions of MCC/APC and p53 Are Frequent Late Events in Human Gastric Carcinogenesis</td>
<td>M.-G. Rhyu, W.-S. Park, Y.-J. Jung, S.-W. Choi, and S. J. Meltzer</td>
</tr>
<tr>
<td>1589</td>
<td>p53 Mutations in Barrett's Adenocarcinoma and High-Grade Dysplasia</td>
<td>K. Nesbat, C. A. Sanchez, P. C. Galipeau, P. L. Blount, D. S. Levine, G. Jeslyn, and B. J. Reid</td>
</tr>
<tr>
<td>1603</td>
<td>Analysis of Hepatitis C Virus Genome in Patients With Autoimmune Hepatitis Type 2</td>
<td>K. Michitaka, M. Durazzo, H. L. Tillmann, D. Walker, T. Philipp, and M. P. Manns</td>
</tr>
<tr>
<td>Page</td>
<td>Title</td>
<td>Authors</td>
</tr>
<tr>
<td>------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>1625</td>
<td>Selective Induction of CCAAT/Enhancer Binding Protein Isoforms Occurs During Rat Liver Development</td>
<td>A. M. Diehl, P. Michaelson, and S. Q. Yang</td>
</tr>
<tr>
<td>1638</td>
<td>Adenovirus-Mediated Transfer of Human Lipase Complementary DNA to the Gallbladder</td>
<td>H. Maeda, C. Danel, and R. G. Crystal</td>
</tr>
<tr>
<td>1645</td>
<td>Frequent Alterations of the Tumor Suppressor Genes $p53$ and DCC in Human Pancreatic Carcinoma</td>
<td>B. Simon, R. Weinel, M. Höhne, J. Watz, J. Schmidt, G. Körtner, and R. Arnold</td>
</tr>
<tr>
<td>1676</td>
<td>Immunogenetics of Chronic Liver Diseases</td>
<td>M. P. Manns and M. Krüger</td>
</tr>
<tr>
<td>1698</td>
<td>L-Glutamine in Intestinal Sodium Absorption: Lessons for Physiology, Pathobiology, and Therapy for Diarrhea</td>
<td>S. A. Levine, S. K. Naib, C. M. Tse, C. Yun, and M. Donowitz</td>
</tr>
<tr>
<td>1702</td>
<td>Targeting Colonoscopy</td>
<td>J. V. Selby</td>
</tr>
<tr>
<td>1705</td>
<td>New Paradigms for the Pathophysiology of Infectious Diarrhea</td>
<td>D. W. Powell</td>
</tr>
<tr>
<td>1708</td>
<td>$p53$: Tumor Suppression Through Control of the Cell Cycle</td>
<td>S. E. Kern</td>
</tr>
</tbody>
</table>
| 1711 | Gene Therapy for Exocrine Pancreatic Insufficiency
 | J. Ramakrishna and R. J. Grand |

SELECTED SUMMARIES

1714	Do We Understand How Surgery Prevents Gastroesophageal Reflux?
1716	Pain and an Intact Gallbladder: Is the Sphincter of Oddi to Blame?
1717	A Mechanism for Esophageal Tumor-Derived Immunosuppression
1718	A New Endoscopic Procedure Provides Insight Into an Old Disease: Acute Acalculous Cholecystitis

BOOK REVIEWS

| 1721 | |

CORRESPONDENCE

1723	Diagnostic Gold Standard for Chronic Hepatitis
1723	Somatostatin-Receptor Scintigraphy in Endocrine Tumors
1724	Alcoholics' Impaired Lymphocyte Response Is Caused by Alcohol
1726	“H₂ Nonproducers” and Malabsorption of Carbohydrate
1726	Anti-inflammatory Activity Without NSAID-Related Gastropathy
1727	Microscopic Colitis: A “Transatlantic” Unifying Concept

NOTICES

1728	
1730	Author Index to Volume 106
1743	Subject Index to Volume 106
Prevention of Ischemia/Reperfusion Injury in the Rat Liver by Atrial Natriuretic Peptide

MANFRED BILZER, ROCHUS WITTHAUT, GUSTAV PAUMGARTNER, and ALEXANDER L. GERBES
Department of Medicine II, Klinikum Grosshadern, University of Munich, Munich, Germany

Background/Aims: Atrial natriuretic peptide (ANP) protects against hypoxia/reoxygenation-induced damage of cultured hepatocytes, thus suggesting a therapeutic potential in the liver. Therefore, the effects of ANP on hepatic ischemia/reperfusion injury after warm ischemia were studied. Methods: Livers of male Sprague-Dawley rats subjected to 60 minutes of warm ischemia at 37°C were perfused in the presence or absence of 200 and 20 nmol/L ANP. Results: Sinusoidal lactate dehydrogenase efflux increased to 2000 ± 264 and 126 ± 50 μmol·min⁻¹·g liver⁻¹ after 1 minute and 60 minutes of reperfusion, but it only increased to 1240 ± 160 and 22 ± 16 μmol·min⁻¹·g liver⁻¹ in the presence of 200 nmol/L ANP during the preischemic and posts ischemic perfusion period. The posts ischemic bile flow (0.67 ± 0.18 μL·min⁻¹·g liver⁻¹) was significantly improved with 200 nmol/L ANP (0.92 ± 0.05) and showed a linear correlation to biliary glutathione excretion. In contrast, 20 nmol/L ANP had no protective effects. Administration of 200 nmol/L ANP during the preischemic perfusion period alone (but not after starting reperfusion) markedly preserved posts ischemic liver function. Conclusions: Continuous ANP administration or ANP pretreatment alone prevents hepatic ischemia/reperfusion injury, possibly because of influences on intracellular signal transduction processes. The correlation between bile flow and biliary glutathione excretion supports the hypothesis that biliary glutathione transport is one of the osmotic driving forces in posts ischemic bile formation.

Ischemia/reperfusion-induced injury of the liver is a major clinical problem after liver transplantation, partial he patectomy, and shock. The mechanisms of ischemic liver injury are not yet fully understood. Depletion of adenine triphosphate, disturbance of intracellular calcium homeostasis, and activation of phospholipase A₂ are proposed as major pathophysiological processes during ischemia leading to cell injury, but the sequence of these events remains controversial. The reperfusion of ischemic organs may lead to the aggravation of ischemic injury, which is generally referred to as reperfusion injury. Inflammatory products of activated Kupfer’s cells and recruited granulocytes, such as reactive oxygen species, could contribute to hepatic reperfusion injury.

The incomplete understanding of the ischemia/reperfusion injury may explain the lack of established pharmacological interventions preventing ischemic liver damage. Recent studies suggest a therapeutic potential of the atrial natriuretic peptide (ANP), a circulating hormone released mainly by the atria of mammalian hearts in response to volume expansion or cardiac hypoxia. ANP, infused upon reperfusion, preserves kidney function after renal ischemia. As a possible mechanism, the antagonism of catecholamine-mediated renal vasoconstriction resulting in an increase of glomerular filtration rate and tubular flow and the prevention of intratubular obstruction by protein casts have been discussed. Furthermore, ANP protects cultured hepatocytes against damage induced by hypoxia/reoxygenation or oxidative stress. It has been proposed that ANP exerts this cytoprotective effect by a cyclic guanosine monophosphate (cGMP)-mediated decrease of intracellular calcium.

So far, the effect of ANP on the intact or ischemic liver has not been investigated. Therefore, we studied the effects of ANP on the ischemia/reperfusion damage after 60 minutes of warm ischemia using the isolated perfused rat liver. The sinusoidal release of lactate dehydrogenase (LDH), bile flow, and the carrier-mediated excretion of glutathione into bile were determined as parameters of cell damage and posts ischemic liver function.

Materials and Methods

Perfusion of Rat Liver

Male Sprague-Dawley rats weighing 250–300 g were purchased from SAVO (Kisslegg, Germany) and housed in a climatized room with a 12-hour light-dark cycle. The animals had free access to chow (Standard-Diet, Altromin 1314 Lage, Germany) and water up to the time of the experiments. After anesthetizing the animals with pentobarbital (50 mg/kg body wt, intraperitoneally), the livers were perfused in situ with saline.

Abbreviations used in this paper: ANP, atrial natriuretic peptide; DTNB, 5,5'-dithiobis(nitrobenzic acid); GSH, reduced glutathione; GSSG, glutathione disulfide; LDH, lactate dehydrogenase; NADPH, nicotinamide adenine dinucleotide phosphate. © 1994 by the American Gastroenterological Association 0016-5085/94/$3.00.
hemoglobin-free and albumin-free, bicarbonate-buffered Krebs–Henseleit solution (pH 7.4, 37°C) gassed with 95% O₂ and 5% CO₂. The perfusion medium was pumped through the livers with a membrane pump at a constant flow rate of 30 mL·min⁻¹·g liver⁻¹ in a nonrecirculating fashion. The bile duct was cannulated with polyethylene PE 10 tubing, and bile was collected in preweighed tubes containing 4% sulfosalicylic acid to prevent autoxidation of reduced glutathione (GSH). After cannulation of the portal vein, the livers were perfused for 30 minutes. Thereafter, the perfusion flow was turned off for 60 minutes to produce warm ischemia (37°C). Then, the perfusion was continued for another 60 minutes. Portal perfusion pressure was monitored continuously during the total perfusion time (90 minutes). The study was registered with the local animal welfare committee.

Experimental Design

Two groups of rats were studied with continuous liver perfusion without ischemia, and five groups were subjected to ischemia/reperfusion. Group 1 underwent continuous perfusion as follows: (1) controls, continuous perfusion for 90 minutes (n = 6); and (2) 200 nmol/L ANP, continuous perfusion for 90 minutes with administration of dose between 40 and 70 minutes of perfusion (n = 4). Group 2 was subjected to ischemia/reperfusion as follows (Figure 1): (1) untreated, 30 minutes of perfusion, 60 minutes of ischemia, and reperfusion for 60 minutes (n = 5); (2) 20 nmol/L ANP, 20 nmol/L ANP during 20 minutes until ischemia, 60 minutes of ischemia, and reperfusion for 60 minutes with 20 nmol/L ANP (n = 4); (3) 200 nmol/L ANP, 200 nmol/L ANP during 20 minutes until ischemia, 60 minutes of ischemia, and reperfusion for 60 minutes without ANP (n = 4); and (4) 200 nmol/L ANP before ischemia, 200 nmol/L ANP during 20 minutes until ischemia, 60 minutes of ischemia, and reperfusion for 60 minutes without ANP (n = 4); and (5) 200 nmol/L ANP after ischemia, 30 minutes of perfusion, 60 minutes of ischemia, and reperfusion with 200 nmol/L ANP for 20 minutes after reperfusion (n = 4).

Rat ANP (Novabiochem, Läufelfingen, Switzerland) was dissolved in perfusion buffer and infused into the portal inflow of the perfusion system.

Analytical Methods

Glutathione disulfide (GSSG) in bile was measured by its reaction with nicotinamide adenine dinucleotide phosphate (NADPH) catalyzed by GSSG reductase at 340–400 nm in a dual-wavelength spectrophotometer. The concentration of GSH in bile and perfusate was measured together with GSSG in a kinetic assay using NADPH, GSSG reductase, and 5,5-dithiobis(nitrobenzoic acid) (DTNB). GSH values were obtained by the difference between total glutathione (GSH + GSSG) and GSSG. The release of thiols into perfusate was determined by the reaction with DTNB at 412 nm. Thiol concentrations were calculated assuming an extinction coefficient of $E = 13.6 \text{mmol}^{-1} \cdot \text{cm}^{-1}$. Glucose, lactate, pyruvate, and the activity of LDH released into the perfusate were analyzed according to standard tests.

Statistics

All data are expressed as the mean ± SD. Statistical analysis of data was performed using analysis of variance.

Results

ANP Administration and Continuous Nonischemic Liver Perfusion

During the perfusion period of 90 minutes, bile flow and the biliary excretion of GSH and GSSG declined

Table 1. Continuous Liver Perfusion in the Presence and Absence of 200 nmol/L ANP

<table>
<thead>
<tr>
<th>Time (min)</th>
<th>Portal pressure (cm H₂O)</th>
<th>LDH efflux (μmol·min⁻¹·g⁻¹)</th>
<th>Glucose efflux (μmol·min⁻¹·g⁻¹)</th>
<th>Lactate efflux (μmol·min⁻¹·g⁻¹)</th>
<th>Lactate-pyruvate ratio</th>
<th>Bile flow (μL·min⁻¹·g⁻¹)</th>
<th>Biliary GSSG release (nmol·min⁻²·g⁻²)</th>
<th>Biliary GSH release (nmol·min⁻²·g⁻²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>4.6 ± 1.0</td>
<td>4.6 ± 1.8</td>
<td>0.90 ± 0.15</td>
<td>0.77 ± 0.19</td>
<td>5.2 ± 0.3</td>
<td>1.31 ± 0.05</td>
<td>0.70 ± 0.24</td>
<td>2.44 ± 0.80</td>
</tr>
<tr>
<td>60</td>
<td>4.2 ± 0.7</td>
<td>4.2 ± 1.2</td>
<td>0.61 ± 0.23</td>
<td>0.74 ± 0.29</td>
<td>6.4 ± 2.9</td>
<td>1.07 ± 0.1</td>
<td>0.61 ± 0.13</td>
<td>1.73 ± 0.97</td>
</tr>
<tr>
<td>90</td>
<td>3.8 ± 0.6</td>
<td>10.4 ± 5.4</td>
<td>1.04 ± 0.23</td>
<td>0.63 ± 0.27</td>
<td>5.2 ± 1.8</td>
<td>0.19 ± 1.0</td>
<td>0.94 ± 0.14</td>
<td>1.03 ± 0.60</td>
</tr>
</tbody>
</table>

NOTE. Livers were continuously perfused with oxygenated Krebs–Henseleit buffer for 90 minutes (control, n = 6) and compared with livers exposed to 200 nmol/L ANP from 40 to 70 minutes of perfusion time (n = 4). Biliary and sinusoidal efflux rates are calculated from biliary and sinusoidal concentrations multiplied by the rate of bile flow and perfusate flow per minutes and grams liver weight. Data are given as mean ± SD. There was no significant difference between ANP-treated livers and controls.
slowly (Table 1), which is comparable with previous results.²⁸,²⁹ Thirty minutes after cannulating the portal vein, the biliary excretion of total glutathione (sum of GSH and GSSG) was 3.92 ± 1.26 nmol·min⁻¹·g liver⁻¹ (expressed in GSH equivalents) and decreased to 2.07 ± 0.92 nmol·min⁻¹·g liver⁻¹ at 90 minutes, corresponding to 52% ± 7% of the value at 30 minutes. Portal pressure remained nearly constant during the perfusion period. LDH release into the perfusate increased slightly, indicating negligible cell damage until the end of perfusion. Sinusoidal glucose and lactate efflux rates decreased continuously until the end of perfusion. When 200 nmol/L ANP was infused over 30 minutes, neither portal pressure nor bile flow nor biliary excretion of GSH and GSSG were affected. Thus, the excretion of total glutathione (1.95 ± 0.74 nmol·min⁻¹·g liver⁻¹; 60% ± 11%) was similar to that of untreated controls at the end of perfusion. Equally, 200 nmol/L ANP did not influence the lactate-pyruvate ratio or the sinusoidal efflux rates of glucose, lactate, and LDH. Thus, bile acid-independent bile flow, biliary glutathione transport, and hepatic glucose production are not modulated by 200 nmol/L ANP.

Continuous Administration of ANP and Ischemia/Reperfusion Damage of the Liver

When livers were reperfused after 60 minutes of warm ischemia, LDH release markedly increased in the first minute of reflow to 2000 ± 264 mU·min⁻¹·g liver⁻¹ (Table 2) and decreased rapidly during the following 10 minutes of reperfusion, but did not return to basal values (Figure 2). LDH release again increased rapidly within 30 minutes of reperfusion, reflecting considerable cell damage. Administration of 200 nmol/L ANP during the preischemic and posts ischemic perfusion period resulted in a diminution of the peak LDH efflux (1240 ± 116 mU·min⁻¹·g liver⁻¹) 1 minute after starting reperfusion (Table 2). The LDH release then decreased to 7–14 mU·min⁻¹·g liver⁻¹, which was comparable with LDH efflux rates of livers continuously perfused without ischemia for the same duration (Table 1). In contrast, the time course of posts ischemic LDH release was uninfluenced in the presence of 20 nmol/L ANP.

In good agreement with previous results,²⁸ the sinusoidal efflux rates of thiols, GSH, and lactate were markedly increased during the initial washout phase (Table 2), reflecting accumulation of these metabolites in the extracellular space during ischemia. In ANP-treated livers, the efflux of thiols and GSH was significantly reduced (similar to LDH release), indicating that leakiness of cell membranes as a consequence of ischemic damage may be partially eliminated by ANP. During the following reperfusion period, the excretion of thiols and GSH by ANP-exposed livers was similar to that of untreated livers. The peak efflux rate of lactate was not affected by

Table 2. Sinusoidal Efflux Rates of LDH, Thiols, GSH, Glucose, and Lactate During Reperfusion

<table>
<thead>
<tr>
<th></th>
<th>1 min of reperfusion</th>
<th>60 min of reperfusion</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Untreated</td>
<td>200 nmol/L ANP</td>
</tr>
<tr>
<td>LDH (mU·min⁻¹·g⁻¹)</td>
<td>2000 ± 264</td>
<td>1240 ± 160ᵃ</td>
</tr>
<tr>
<td>Thiol (nmol·min⁻¹·g⁻¹)</td>
<td>226 ± 44</td>
<td>137 ± 33ᵇ</td>
</tr>
<tr>
<td>GSH (nmol·min⁻¹·g⁻¹)</td>
<td>91 ± 22</td>
<td>64 ± 12ᵇ</td>
</tr>
<tr>
<td>Lactate (μmol·min⁻¹·g⁻¹)</td>
<td>12.3 ± 1.3</td>
<td>12.8 ± 1.4</td>
</tr>
<tr>
<td>Lactate-pyruvate ratio</td>
<td>ND</td>
<td>ND</td>
</tr>
</tbody>
</table>

NOTE. Livers were perfused for 30 minutes and then subjected to 60 minutes of warm ischemia. Sinusoidal efflux rates of untreated livers (n = 5) after 1 minute and 60 minutes of reperfusion are compared with livers exposed to 200 nmol/L ANP (n = 4) during the preischemic and posts ischemic perfusion period. Data are expressed as mean ± SD. ND, not determined.
ᵃP < 0.01 (treated vs. untreated group).
bP < 0.05 (treated vs. untreated group).
ANP administration. After 60 minutes of reperfusion, lactate release was higher in ANP-treated livers, whereas the lactate-pyruvate ratio was unaffected (Table 1).

Postischemic bile flow reached 0.68 ± 0.18 μL·min⁻¹·g liver⁻¹ under control conditions and 0.93 ± 0.04 in the presence of 200 nmol/L ANP (Figure 3). This significant improvement of postischemic bile flow was paralleled by an augmented biliary release of total glutathione (GSH plus GSSG) and GSSG, which recovered to 50% ± 9% vs. 28% ± 15% and 78% ± 15% vs. 48% ± 23% of preischemic efflux rates (Figure 4). Thus, the postischemic recovery of bile flow and biliary glutathione excretion were found to be similar to the values obtained in continuously perfused livers after 90 minutes. Again, 20 nmol/L ANP showed no significant effects on postischemic bile flow and biliary glutathione release (Figures 3 and 4).

During reperfusion, portal pressure increased markedly (Figure 5), reflecting an impaired hepatic microcirculation that may trigger postischemic cell damage and liver dysfunction. The time course of portal pressure during the reperfusion period was unaffected by administration of ANP (Figure 5), suggesting that the vasorelaxant nature of ANP may not be responsible for the observed protective effects.

Effects of Preischemic or Postischemic ANP Administration on Ischemia/Reperfusion Damage

To investigate the importance of the temporal relationships of ANP administration and ischemia for the protective action of ANP in more detail, livers were perfused with 200 nmol/L ANP in the preischemic or postischemic perfusion period only. As shown in Figure 6, LDH release at 60 minutes of reperfusion was significantly reduced by preischemic ANP infusion for 20 minutes (23 ± 5 mU·min⁻¹·g liver⁻¹), comparable with the time course of LDH release of continuously ANP-treated livers. In contrast, LDH release was slightly, but not significantly decreased (70 ± 42 mU·min⁻¹·g liver⁻¹) when ANP was administered during the reflow period only. The postischemic bile flow was markedly improved by ANP pretreatment (0.86 ± 0.16 μL·min⁻¹·g liver⁻¹) but not by postischemic infusion of ANP (0.64 ± 0.23 μL·min⁻¹·g liver⁻¹) (Figure 7). Thus, ANP pretreatment only, but not postischemic ANP administration, protects the liver against ischemia/reperfusion-induced damage.

Postischemic Bile Flow and Biliary Excretion of Glutathione

As shown in Figures 3 and 4, the improvement of bile flow by preischemic and postischemic ANP treatment was accompanied by a concomitant increase in biliary glutathione excretion. Similar results were obtained by preischemic ANP treatment, but not by postischemic administration. The observed changes in bile flow appeared to be independent of changes in bile acid excretion because a bile acid-free perfusion buffer was used. To examine whether postischemic bile flow depends on the biliary transport of glutathione, the data of all experimental groups were pooled to establish the correlation between bile flow and biliary excretion of total glutathione. Figure 8 illustrates the relation between bile flow and glutathione release after 60 minutes of continuous perfusion. A linear correlation (r = 0.96; P < 0.001) between bile flow and glutathione release was found, indicating that glutathione may be one of the osmotic driving forces in bile acid-independent bile formation also after hepatic ischemia.

Thus, preservation of postischemic bile flow by ANP can be partially explained as the consequence of improved biliary excretion of glutathione. The positive y-intercept in the plot (0.54 μL·min⁻¹·g liver⁻¹) indicates that in addition to glutathione, there are other compounds responsible for bile acid-independent bile secretion.

Discussion

Preservation of Postischemic Liver Function by ANP

The aim of the present study was to test the hypothesis that ANP protects against ischemia/reperfusion injury of the liver. This was based on observations that ANP prevented cell damage after hypoxia and reoxygenation in cultured hepatocytes. Furthermore, ANP protects cultured hepatocytes against damage induced by
 oxidants16,17 that may contribute to hepatic ischemia/reperfusion injury.7

To investigate the influence of ANP on ischemia/reperfusion damage of the liver without additional effects of endogenous ANP,30 we chose the model of the isolated perfused rat liver.31,32 Reperfusion after 60 minutes of warm ischemia at 37°C resulted in a sustained increase of LDH efflux, indicating irreversible cell damage. Furthermore, bile flow (as an index of postischemic liver function)33 recovered to only 50\%–60\% of values obtained in continuously perfused rat livers after the same perfusion period. These observations agree with previous reports on perfused rat livers subjected to 60 minutes of ischemia at 37°C34 and prolonged warm ischemia (120 minutes) at room temperature.28 Thus, a model of considerable hepatic ischemia/reperfusion damage was applied to study the pharmacological potential of ANP. Using this approach, we have shown that ANP protects the liver against ischemia/reflow–induced irreversible cell damage, yielding an improved postischemic liver function. The results showed that (1) 200 nmol/L ANP infused during the preischemic and postischemic perfusion period markedly reduced LDH release into the effluent perfusate on reperfusion, indicating diminuation of cell damage; (2) postischemic recovery of biliary glutathione excretion and bile flow, which reflect postischemic liver function,33 were improved and similar to values obtained in the continuously perfused rat liver after 90 minutes of perfusion; and (3) biliary parameters of continuously perfused livers were unaffected by ANP, rendering unlikely an ANP-induced stimulation of bile flow or transport processes that could mimic improved liver function.
Possible Mechanism of ANP Protection

After starting reperfusion, portal pressure transiently increased, then decreased and almost reached preischemic values after 10–20 minutes, reflecting impairment and consecutive redistribution of perfusate flow through the liver. The protective effects of vasodilating agents on liver function after long hypothermic preservation support the contention that an impairment of hepatic microcirculation may trigger postischemic cell damage.35 We have recently shown that ANP antagonizes phenylephrine-induced vasoconstriction in the perfused rat liver.36 Maximal vasodilating effects were observed at physiological ANP concentrations (40 pmol/L). In contrast, 200 nmol/L ANP had no effect on the time course of postischemic portal pressure. However, improvement of microcirculation need not necessarily result in changes of portal pressure, which may depend on the capacity of collateral shunt pathways. Moreover, 20 nmol/L ANP, three orders of magnitude higher than the physiological ANP concentration with maximal vasorelaxant effects, showed no protection. With respect to the vasodilating potency of ANP, the used concentrations are extremely high. Thus, different influences of both ANP concentrations on the hepatic microcirculation seem unlikely. These results suggest that the hepatic microcirculation is not improved by vasodilating effects of ANP or that improvement of microcirculation is not responsible for the observed protection. Consistent with this interpretation, infusion of 200 nmol/L ANP after starting reperfusion did not exhibit any significant effect on hepatic functional recovery, whereas ANP administration before ischemia improved postischemic liver function. Moreover, cultured hepatocytes subjected to hypoxia and reoxygenation were protected by preischemic ANP addition, but only to a minor extent by postischemic administration.16 These findings lend additional support for a nonhemodynamic mechanism of ANP protection.

The beneficial effect of preischemic ANP treatment suggests that ANP-induced protective mechanisms must be initiated before ischemia to operate during ischemia. This view is supported by the marked reduction of LDH, thiol, and GSH efflux rates during the first minute of reperfusion in the presence of ANP. These molecules, which are not (or only to a minor extent) taken up by the liver, accumulate in the sinusoidal space as a consequence of increased cell leakiness during ischemia. The decreased efflux rates during the washout period thus reflect reduced damage of cell membranes during the ischemic period. Consequently, ANP protects against ischemic damage of the liver.

LDH efflux of untreated livers increased rapidly within 30 minutes of reperfusion, indicating aggravation of ischemic injury, which is generally referred to as reperfusion injury.5,37,38 This later increase of LDH efflux was prevented by ANP. These findings suggest that ANP can...
also protect against hepatic reperfusion injury. Intracellular and vascular oxidant stress and the production of mediators of inflammation by activated Kupffer's cells may contribute to early reperfusion damage.\(^{5,10,11,34}\) Besides these proposed pathomechanisms and their possible modulation by ANP, it is the extent of ischemic cell damage that may determine the vulnerability of hepatocytes to reperfusion injury. Then, prevention of hepatic reperfusion injury may be the consequence of the reduction of ischemic cell damage by ANP.

The lower dose of ANP (20 nmol/L) used in this protocol did not show any significant effects on hepatic functional recovery and cell damage after ischemia. This observation is quite consistent with experiments in the isolate-perfused kidney, which showed preservation of postischemic renal function by 300 nmol/L ANP, whereas 30 nmol/L ANP was without protective effects.\(^{15}\) The physiological effects of ANP are mediated by ANP receptors\(^ {39}\) and may explain the concentration dependency of protection. Binding to the ANP-R1 receptor results in the activation of particulate guanylate cyclase, which converts guanosine triphosphate to cGMP, the second messenger that mediates most physiological effects of ANP.\(^ {40,41}\) Studies with cultured hepatocytes showed a concentration-dependent increase of cGMP that was maximal in the range of 0.1–1.0 μmol/L ANP.\(^ {16}\) These data and the findings that ANP-mediated protection against hypoxic damage of cultured hepatocytes is eliminated in the presence of an inhibitor of guanylate cyclase\(^ {16}\) suggest a cGMP-mediated mechanism of cytoprotection. In contrast, the protective effect of ANP on hepatocytes can be blocked by pertussis toxin without lowering elevated cGMP levels, suggesting the involvement of G-proteins in the protective action of ANP.\(^ {17}\) Furthermore, ANP binds to ANP-R2 receptors, the physiological function of which is still poorly understood.\(^ {39}\) It has been suggested that the ANP-R2 receptor is associated with the activation of phospholipase C and increased formation of inositol phosphates.\(^ {42}\) Moreover, inhibition of sodium transport\(^ {17,43}\) and adenylate-cyclase\(^ {44}\) are discussed as ANP-R2 receptor-mediated processes; their role in prevention of ischemic organ damage has not been investigated.

Damage of cultured hepatocytes by oxidative stress and the accompanying increase in intracellular Ca\(^ {2+}\) were simultaneously prevented by ANP, indicating that the maintenance of intracellular Ca\(^ {2+}\)-homeostasis may contribute to the cytoprotective effects of ANP.\(^ {16}\) The increase in cytosolic Ca\(^ {2+}\) is considered to be one of the principal factors responsible for the initiation of cell damage induced by ischemia, anoxia, or oxidative stress in the liver.\(^ {2,45,46}\) However, other studies showed no increase of intracellular Ca\(^ {2+}\) until the onset of lethal cell injury,\(^ {47}\) suggesting that Ca\(^ {2+}\) increase is a consequence of cell damage. Thus, the modulation of other important pathophysiological processes by ANP, such as adenosine triphosphate depletion or cellular proteolysis during ischemia,\(^ {48,49}\) should be investigated to clarify the mechanism of ANP cytoprotection in further detail.

Postischemic Bile Flow and Biliary Glutathione Transport

Because a bile acid–free perfusion buffer was used, the detected bile flow mainly represents the bile acid–independent bile formation,\(^ {50}\) which accounts for about half of the total canalicular bile flow in the rat. Ischemia/reperfusion injury impairs preferentially bile acid–independent bile flow.\(^ {51}\) To characterize postischemic bile formation in more detail, we quantified the biliary excretion of actively transported GSH\(^ {20,21}\) and GSSG,\(^ {18,19}\) which partially contribute to the bile acid–independent bile secretion in rat liver.\(^ {52}\) The biliary release of total glutathione and GSSG was markedly decreased during the reflow period. The carrier-mediated transport of molecules depends on their intracellular concentration. As shown previously, the intracellular concentration of GSH and GSSG is not substantially altered after 30 or 120 minutes of warm ischemia,\(^ {28,53}\) suggesting that biliary transport of GSH and GSSG is impaired after ischemia. ANP-treated livers showed an increased recovery of biliary glutathione and GSSG efflux during reperfusion. When postischemic bile flow was plotted against the biliary excretion of total glutathione, a linear correlation was obtained similar to studies under nonischemic conditions.\(^ {52}\) This shows that an increase in glutathione excretion is associated with an increase in postischemic bile formation. These findings provide strong support for the hypothesis that biliary transport of GSH and GSSG is one of the osmotic driving forces for hepatic bile formation after ischemia as well. However, these results cannot exclude the possibility that bile flow and glutathione transport are being affected in parallel but independently. The biliary GSSG–GSH ratio, a sensitive index of an intracellular oxidant stress,\(^ {18,54}\) and the sinusoidal efflux of GSH were not increased in the presence of ANP. This indicates that augmented biliary GSH and GSSG release is not the consequence of stimulated intracellular GSH synthesis or GSH oxidation to GSSG. It is more likely that improved transport of GSH into bile with subsequent autoxidation to GSSG or, in addition, preservation of both transport processes by ANP explain our results; this agrees with the finding that ANP did not increase the export of these molecules in continuously perfused livers. The enhanced transport of glutathione may explain the improvement of postischemic bile salt–independent bile flow. Other molecules additionally contribute to
postischemic bile flow, as shown by the positive y-intercept in the plot of bile flow vs. glutathione export.

In conclusion, continuous preischemic and postischemic administration of 200 nmol/L ANP or preischemic ANP infusion alone reduced ischemia/reperfusion damage of the liver. This was accompanied by improved postischemic bile flow and biliary excretion of glutathione. Thus, evidence was found that ANP can act as a hepatoprotective hormone that preserves postischemic liver function after 60 minutes of warm ischemia. The strong correlation between postischemic bile flow and biliary glutathione excretion indicates that transport of glutathione is an important osmotic driving force for hepatic bile formation after liver ischemia. Finally, these results could suggest a therapeutic potential of ANP in liver resection and graft storage for liver transplantation, which requires further investigation using in vivo models.

References