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Abstract. The viscoelastic behavior of silicate melts has 
been measured for a range of compositions (NaA1Si308, 
NaCaAlSi2OT, CaMgSi206, Li2Si409, Na2Si409, 
K2Si409, Na2Si3OT, K2Si307 and Na2Si2Os) using the 
fiber elongation method. All compositions exhibit New- 
tonian behavior at low strain-rates, but non-Newtonian 
behavior at higher strain-rates, with strain-rate increas- 
ing faster than the applied stress. The decrease in shear 
viscosity observed at the high strain-rates ranges from 
0.3 to 1.6 loglo units (Pa s). The relaxation strain-rates, 
~relax, of these melts have been estimated from the low 
strain-rate, Newtonian, shear viscosity, using the Max- 
well relationship; +rel,x = r - 1 = ( r l s / G ~ )  - 1. For all com- 
positions investigated, the onset of non-Newtonian rheo- 
logy is observed at strain-rates 2.5 _+ 0.5 orders of magni- 
tude less than the calculated relaxation strain-rate. This 
difference between the non-Newtonian onset and the re- 
laxation strain-rate is larger than that predicted by the 
single relaxation time Maxwell model. Normalization of 
the experimental strain-rates to the relaxation strain-rate 
predicted from the Maxwell relation, eliminates the com- 
position- and temperature-dependence of the onset of 
non-Newtonian behavior. The distribution of relaxation 
in the viscoelastic region appears to be unrelated to melt 
chemistry. This conclusion is consistent with the torsion- 
al, frequency domain study of Mills (1974) which illus- 
trated a composition-invariance of the distribution of 
the imaginary component of the shear modulus in melts ~ 
on the N a 2 0 - S i O 2  join. The present, time domain 
study of viscoelasticity contrasts with frequency domain 
studies in terms of the absolute strains employed. The 
present study employs relatively large total strains (up 
to 2). This compares with typical strains of l 0 - 8 in ultra- 
sonic (frequency domain) studies. The stresses used to 
achieve the strain-rates required to observe viscoelastic 
behavior in this study approach the tensile strength of 
the fibers with the result that some of our experiments 
were terminated by fiber breakage. Although the break- 
age is unrelated to the observation of non-Newtonian 
viscosity, their close proximity in this and earlier studies 
suggests that brittle failure of igneous melts, may, in 

general, be preceded by a period of non-Newtonian 
rheology. 

1, Introduction 

Numerous investigations of the rheology of silicate melts 
at super-liquidus temperatures have demonstrated that 
the relationship between stress and strain in molten sili- 
cates is Newtonian, i.e. the strain-rate is linearly propor- 
tional to the applied stress (Bockris et al. 1955; Scarfe 
et al. 1983; Dingwell et al. 1985). Viscosity is a state 
variable and thus a strain-rate independence of viscosity 
implies that the thermodynamic state of the melt is inde- 
pendent of applied stress and the resultant strain-rate. 
Thus the observation of Newtonian viscosity simplifies 
considerably the thermodynamic description of silicate 
melts. 

In contrast, the glass science literature contains sever- 
al examples of the non-Newtonian behavior of silicate 
glasses (Li and Uhlmann 1970; Simmons et al. 1982; 
Manns and Brfickner 1988; Simmons et al. 1988). Using 
viscoelastic models (Tool 1948; Narayanaswamy 1971; 
Scherer 1984), the effects of thermal and stress history 
on the physical properties of silicate melts have been 
modeled and compared with volume and shear relaxa- 
tion studies (Ritland 1954; Kurkjian 1963; Mills 1974; 
Larsen et al. 1974; Perez et al. 1981). 

The transition from viscous to viscoelastic behavior 
is the traditional definition of the glass transition in mac- 
roscopic, mechanical terms; with structural relaxation 
yielding viscoelastic behavior. Recognition of the onset 
of viscoelastic behavior in molten silicates is essential 
for the correct interpretation of experimental studies of 
melt properties. Similarly, modeling of the behavior of 
igneous magmas in stress fields requires a clear under- 
standing of the limit of the purely viscous response. 

In this study we have recorded the stress - strain 
behavior of a range of synthetic melt compositions just 
above their glass transition temperatures. The results de- 
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Fig. 1. The viscosity and strain-rate regions commonly attained 
using several different experimental techniques including ultrasonic 
wave propagation (1), concentric cylinder (Couette) viscometry (2), 
oscillation viscometry (3), fiber elongation (4), torsion pendulum 
(5), micropenetration (6) and falling sphere (7) viscometry. The 
line labelled structural relaxation is an estimate of the glass transi- 
tion using Eq. 1 and a mean value of 25 GPa for the high frequency 
shear modulus. Also drawn are lines at 2 and 3 log~o units from 
the relaxation line (see text for discussion) 

scribe the onset  o f  measurable viscoelastic behavior  in 
silicate melts. We used the Maxwell  relationship to esti- 
mate  the locat ion o f  the glass transit ion (Dingwell and 
Webb 1989) and planned our  experiments to cross f rom 
the viscous to the viscoelastic regime as a funct ion o f  
applied stress. 

Figure 1 illustrates the viscosity and strain-rate 
ranges o f  several experimental  sources o f  viscosity data.  
The line labelled "s t ruc tura l  re laxa t ion"  is an estimate 
o f  the structural  relaxation rate in silicate melts obtained 
f rom the Maxwell  relat ionship;  

~relax  = "[7 - 1  = ( ~ s / G o o )  - 1  ( ~ )  

where ~relax is the relaxation rate, z is the relaxation time, 
r/s is the shear viscosity and Go~ is the high frequency 
shear modulus  set to 25 G P a  (Bansal and Doremus  
1986). It  can be seen f rom Fig. 1 tha t  ultrasonic,  tors ion 
and fiber e longat ion techniques can access the strain- 
rates required, at a given viscosity, to approach  the glass 
transition. The fiber e longat ion experiments are time do- 
main  studies and require relatively high strains to 
achieve high strain-rates. In contrast ,  ul trasonic and tor- 
sional studies are conduc ted  in the frequency ' domain  
where high strain-rates are achieved with high frequency 
but  low strains ( e ~ 1 0  - s ,  Nye  1957). We have chosen 
the fiber e longat ion me thod  to simulate the response 
o f  natural  melts undergoing  macroscopic  strain during 
geologic processes. One consequence o f  the requirement  
o f  relatively large strains ( -  2 in this study) is the brittle 
failure o f  fibers at  stresses near the tensile strength o f  
the melts. This behavior  was observed in the present 
s tudy and gives insight into the relationship between 
viscoelastic behavior  and brittle failure. 

The results o f  this s tudy are compared  with the pre- 

dict ion o f  the Maxwell  relationship. The difference be- 
tween the Maxwell  predict ion and  the experimental  ob- 
servation o f  the onset  o f  non -Newton ian  behavior  is in- 
dependent  o f  compos i t ion  and temperature  over the 
range o f  this study. U p o n  normal iz ing strain-rate to the 
relaxation time o f  each melt composi t ion,  calculated us- 
ing Eq. 1, all composi t ion-dependence  o f  the onset  o f  
non -Newton ian  behavior  is removed.  This observat ion 
is a valuable simplification o f  the onset  o f  non-Newton-  
ian rheology and a useful approx imat ion  for model ing 
o f  igneous behavior.  

2. Experimental Method 

The starting glasses for the alkali silicate melts were synthesized 
from reagent-grade oxide and carbonate powders. Li2COa, 
NazCOa, K2CO3 and SiO2 powders were dried at 400 ~ C overnight 
and stored at 150 ~ C until use. Twenty gram powder mixtures (de- 
carbonated equivalent) of the alkali silicate compositions were 
fused in a P t 9 5 A u  5 crucible at 1200 ~ C until bubble-free. 

The CaMgSi20 6 glass is from the viscosity study of Dingwell 
(1989). The NaAISiaO8 and NaCaA1Si207 glasses, donated by M. 
Brearley, were synthesized at Corning Glass. As the albite was 
vesicular, a 100 g batch was melted stepwise into a 50 cm 3 Pt9sAus 
crucible and loaded into a viscometry furnace (Dingwell 1989) and 
held at 1600 ~ C. A Pt8oRh2o spindle was used to stir the melt 
at 10 rpm for several days until glass fibers that were optically 
free of bubbles could be drawn. The glass fibers were analysed 
for composition and homogeneity using a Cameca SX-50 micro- 
probe. The post-experiment compositions of the fibers are pre- 
sented in Table 1. 

Fibers with diameters ranging from 0.1 to 0.5 mm were drawn 
from each melt. The ends of each fiber were fired to form beads 
of 1.5 mm diameter, with the final fiber being 9-20 mm in length. 
All fibers were observed by optical microscopy to be bubble and 
crystal free except for the diopside fibers which had partially crys- 
tallized on the support beads during flaming. The crystals appeared 
to be restricted to the ends of the diopside glass fibers and there 
is nothing in the resultant diopside data to suggest that the crystals 
in the support beads have influenced the melt viscosity data (see 
below). 

The stress - strain rate behavior was determined using the 
fiber elongation technique. The fiber strain was measured in an 
argon gas flow (5 cc/min) using a vertically mounted silica glass 
dilatometer equipped with a Kanthal| wire-wound three-zone fur- 
nace (Model TMA 402, Netzsch Gerfitebau, Selb, West Germany). 
A I~  correction was applied to the measured temperature in 
order to correct for the radial temperature gradient between the 
type S thermocouple and the melt fiber. The silica glass holder 
of the dilatometer supports the beaded glass fiber in a fork, with 
the lower bead being held in the fork of a second, movable, silica 
glass rod. This second rod is connected to a weight pan at the 
top of the dilatometer via a vanadium rod. Tensile stress is applied 
to the sample by loading weights on the weight pan. The elongation 
of the fiber is monitored by the movement of the vanadium rod 
through the center of a calibrated linear voltage displacement trans- 
ducer. 

In the present determinations of viscosity, a tensile stress is 
applied to a melt fiber and the viscosity is determined as the ratio 
of the applied stress, ~r, to the observed strain-rate, L In this geome- 
try, the observed viscosity r/elo, * is the elongational viscosity and 
is related to the shear viscosity t/s by; 

a 9 r/~ r h (2) 
t/~l~ = ~ = 3~/v + ~/s 

where r/v is the volume viscosity (e.g. Mazurin 1986). 



Table 1. Analyses of glass compositions (wt%) 

CaMgSi206 NaA1Si3Os  NaCaA1Si207 Na2Si3Ov  Na2Si409 Li2Si409 
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MgO 16.39(14) - 0AI(01) - - - 
Li20 . . . . .  10.70" 
K20 - - - 0.03(02) - - 
NazO 0 . 0 7 ( 0 2 )  1 1 . 2 9 ( 1 4 )  11.79(10) 21.63(22) 20.55(18) 
S i O z  5 6 . 8 0 ( 2 4 )  6 9 . 3 7 ( 2 8 )  46.46(27) 77.18(26) 79 .52(37)  88.92(18) 
CaO 25.85(20) - 21.42(15) 0.03(01) 0 . 0 2 ( 0 1 )  0.02(0/) 
A1203 0 . 4 0 ( 0 2 )  1 9 . 9 3 ( 2 9 )  19.69(25) 0.36(03) 0 . 3 5 ( 0 2 )  0.36(02) 

Total 99.51 100.59 99.47 99.23 100.44 100.00 

Cameca SX-50 wavelength dispersive analyses using 15 kV, 15 nA on brass, 30 gm defocused beam, 
20 sec count times. Standards; diopside (Mg, Ca), FezO3 (Fe), orthoclase (K, AI), and synthetic glass 
DGG1 (Na, Si). 

" Li20 by difference, numbers in brackets are one standard deviation 

Each fiber was initially annealed in argon at temperature with 
a load of ~10 MPa for a period of 104 s (strain ~ 5 x  10-2). This 
equilibration time is two orders of magnitude greater than both 
the shear and volume relaxation times of a melt with r/v= r/S ~ 1012 
Pa s and Go (shear modulus) ~K~ (bulk modulus) ~25 GPa 
(Zv~ zs~ 40 s). The determinations of non-Newtonian viscosity 
were begun with this initial stress of 10 MPa (k~10-5; qolo,g~ 
1012 Pa s); the applied stress being increased in steps of ~25%. 
After the application of each additional mass, the elongation of 
the fiber was monitored on a 1.2 s time interval for > 300 s. The 
stress and strain-rate were recalculated at each 1.2 s time interval 
to allow for the changing dimensions of the fiber. 

Viscosity was determined from a point by point calculation 
of the stress and strain-rate experienced by the fiber. For strain- 
rates of the order 10 .6 s -~, errors in calculated viscosity were 
approximately 0.1 loglo Pa s; with increasing strain-rate to 10 -4 
s -~ this error was reduced to 0.01 loglo Pa s. It was found that 
constant values of strain-rate (within the 5-25% uncertainty asso- 
ciated with the calculated strain-rate for strain-rates < 5 x 10 -s 
s-~) were obtained within 100 s of applying the weight. For a melt 
with z =40 s, the calculated unrelaxed strain-rate is within 8% of 
the relaxed strain-rate for times greater than 100 s, illustrating that 
the stress - strain rate behavior approaches equilibrium within 
the timescale of the measurement and that the calculated shear 
viscosities are within error of the relaxed shear viscosities of the 
melt. This analysis neglects any changes in cross-sectional area 
and length due to elastic deformation. For the strains (> 5 x 10-3) 
of the present measurements, the effect of elastic deformation on 
the calculated stress and strain-rate is negligible (< 0.02%). The 
0.01 log~o Pa s uncertainty in viscosity includes the errors in length 
and cross-sectional area of the fibers, the errors in strain-rate deter- 
mination and a further error due to temperature fluctuations and 
gradients. 

Although infinite shear strains are possible in a melt, volume 
strain must be limited in magnitude (Mazurin 1986). The volume 
viscosity of a melt therefore approaches an infinite value with in- 
creasing time, and Eq (2) becomes; 

r/~lo,~g = 3 t h (3) 

for time >>z (Ferry 1980; Mazurin 1986). For periods >100s, 
the shear viscosity calculated using Eq (3) is at most 0.02 log~o 
Pa s less than the relaxed shear viscosity. The linear viscoelastic 
theory used to derive Eqs. 2 and 3 is applicable as ~r < 1 (v ~40 s; 

< 2.5 x 10-z s-~) for all compositions (Christensen 1982). 
In an earlier study of the viscosity of Little Glass Mountain 

rhyolite at T = 856 ~ C (Webb and Dingwell 1990) Newtonian shear 
viscosity was observed over a stress range of 30 kPa to 200 MPa 
and a strain-rate range of 8 x 10- 8 _ 4 x 10- 4 s- 2. Having observed 

Newtonian viscosity over this large range of stress and strain-rate, 
the stress employed in the present measurements was increased 
in order to produce strain-rates approaching the calculated relaxa- 
tion strain-rate of the melts. The temperature at which each melt 
composition was investigated was chosen in order to set the shear 
viscosity to ~ 10 I2 Pa s as this is the optimal Newtonian viscosity 
for determination of non-Newtonian behavior in the present dilat- 
ometer. 

3. Results and Discussion 

With  increasing s t rain-rate  the rheology of  all melts in- 
vestigated was seen to become n o n - N e w t o n i a n  (pseudo- 
plastic), with a decrease in shear viscosity of  0.3-1.6 
loglo uni ts  (Pa s) be ing observed. It  is possible tha t  such 
a decrease in viscosity could be caused by viscous heat ing 
of  the melt. However,  f rom the tempera ture  dependence  
of  the viscosity of  rhyoli te (Webb and  Dingwell  1990) 
or the present  sodium-tetrasi l icate  (Dingwell  u n p u b -  
lished), it is found  that  a t empera ture  increase of  > 8 ~ C 
is necessary to cause the observed decrease in  viscosity. 
The m a x i m u m  tempera ture  increase of  the fiber (above 
the tempera ture  of  the furnace)  can be calculated assum- 
ing radiat ive heat  t ransfer  f rom the fiber;  

I42= a~ V = 4  e S T 3 A A T = ~ )  (4) 

(S immons  et al. 1982) where IYis the rate of  do ing  work 
on the fiber, V is the vo lume of  the fiber, e is emissivity, 
S is the S te fan-Bol tzmann  cons tan t  (5 .67x 10 -8  J s -1 
m - t  K - 4 ) ,  A is the surface area of  the fiber, A T is 
the increase in  fiber tempera ture  and  0 is the rate of  
radiat ive heat  loss. Setting the emissivity to be >0 .3 ,  
the increase in fiber t empera ture  which can be main-  
ta ined with radiat ive heat  loss f rom the fiber is _< 0.1 ~ C. 
The N e w t o n i a n  viscosities de termined are in good agree- 
men t  with previous studies where da ta  are available (e.g. 
NazSi409 ,  Poole 1948; diopside, Tauber  a nd  A r n d t  
1987). 

In  the case of sodium-tetrasi l icate,  the onset  of  n o n -  
N e w t o n i a n  behavior  was observed at 6 temperatures  
over a 478-505~ C range (log~o q (Pa s )=10 .72-12 .06)  
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Fig. 2. The viscosity of N a 2 S i 4 0 9  melt as a function of strain-rate 
at temperatures of 474, 479, 482, 493, 504, and 506 ~ C. The onset 
of non-Newtonian viscosity is indicated by the departure of the 
data from the horizontal lines 
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Fig. 3. The stress - strain rate relationship for Na2Si409 melt at 
temperatures of 474, 479, 482, 493, 504, and 506 ~ C. Non-Newton- 
ian behavior is indicated by departure of the data from the lines 
with slopes of value 1 
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Fig. 5. The stress - strain rate relationships for alkali silicate melts. 
Non-Newtonian behavior is indicated by departure of the data 
from the lines with slopes of value 1 

(Table 2). The viscosity versus strain-rate behavior  for  
this compos i t ion  is p lot ted in Fig. 2, with the stress ver- 
sus strain-rate data  plot ted in Fig. 3. 

The rheology  o f  Li2Si409,  K2Si409,  Na2SiaOv,  
K2SiaOT, Na2SizOs,  NaA1Si3Os,  NaCaA1Si207 and 
CaMgSi206  was investigated at temperatures  f rom 849 
to 446 ~ C (Table 3). The viscosities o f  the alkali silicates 
are plot ted versus strain in Fig. 4 and  the stress - strain 

rate relationships are given in Fig. 5. Taking the elastic 
shear modulus  o f  Na2Si409 to be 22 G P a  (Mills 1974), 
the measured  shear viscosity, normal ized to the Newton-  
ian shear viscosity has been plot ted in Fig. 6a  as a func-  
t ion o f  the reduced strain-rate, h/kreia x. This reduced 
strain-rate is testing the assumpt ion  o f  thermorheologi -  
cal simplicity o f  the melt  behavior.  F r o m  Fig. 3 it is 
evident that  a simple linear shift fac tor  (i.e., the Newton-  
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Table 3. Strain-rate dependence of melt viscosities 

Composition log~o -loglo loglo 
& temperature (~ stress strain-rate viscosity 

(Pa) (s- l) (Pa s) 

Composition 
& temperature (~ 

loglo 
stress 
(Pa) 

-loglo 
strain-rate 
(s -1) 

Li2Si40 9 (489) 7.51 4.59 11.63 
7.61 4.52 11.66 
7.66 4.47 11.65 
7.70 4.41 11.64 
7.75 4.35 11.62 
7.80 4.30 11.62 
7.80 4.31 11.63 
7.86 4.20 11.58 
7.92 4.09 11.54 
7.97 4.02 11.51 
8.07 3.85 11.44 
8.19 3.60 11.31 
8.28 3.39 11.18 
8.35 3,24 11.11 
8.41 3.05 10.97 
8.41 3.03 10.95 
8.46 2.82 10.80 

KzSi40 9 (488) 6.89 5.95 12.36 
7.45 5.22 12.20 
751 5.27 12.31 
7.56 5.26 12.35 
7,61 5.22 12.35 
7.65 5.16 12.33 
7,73 5.06 12.32 
7.91 4.66 12.10 
8.02 4,42 11.97 
8.15 4,23 11.91 
8.16 4,11 11.80 
8,25 3,98 11.74 
8.33 3.42 11.27 
8.37 3,36 11.25 
8.38 3.27 11.28 
8.40 3.12 11.05 
8.02 4.45 11.99 
8.15 4.23 11.91 
8.16 4.11 11.80 
8.25 4.00 11.77 
8.32 3.42 11.26 
8,37 3.39 11.29 
8.41 3.12 11.05 
8.41 3.04 10.98 

K2Si30 7 (479) 6.83 5.71 12.06 
7.40 5.12 12.04 
7.45 5.16 12.13 
7.51 5.11 12.14 
7.51 5.12 12.15 
7.55 5.08 12.15 
7.61 5.01 12.14 
7.67 5.00 12.19 
7.83 4.72 12.07 
7.97 4.51 12.00 
8.06 4.33 11.92 
8.17 4.14 11.83 
8.18 4.02 11.72 
8.24 3.92 11.68 
8.30 3.48 11.30 
8.30 3.39 11.21 
8.31 3.35 11.19 
8.32 3.30 11.14 
8.33 3.15 11.01 

Na2SiaO7 (465) 7.19 5.14 11.85 
7.32 4.99 11.83 

Na2Si205 (447) 

NaA1Si3Os (849) 

CaMgSi20 6 (711) 

7.42 
7.49 
7.56 
7,65 
7.70 
7.75 
7.82 
7.87 
7.92 
7.89 
8.12 
8.13 
8.27 
8.32 

7.02 
7.15 
7.32 
7.39 
7.46 
7.53 
7.57 
7.63 
7.69 
7.74 
7.85 
7.91 
7.96 
8.14 
8.15 
8.11 
8.12 

6.65 
6.94 
7.01 
7.07 
7.13 
7.18 
7.39 
7.58 
7.71 
7.82 
7.95 
8.05 
8.10 
8.15 
8.22 
8.26 
8.29 
8.31 
8.37 
8.42 
8.42 
8.43 

6.94 
7.50 
7.54 
7.58 
7.62 
7.65 
7.68 
7.71 
8.01 

4.89 
4.79 
4.72 
4.60 
4.54 
4.49 
4.40 
4.33 
4.26 
4.30 
4.01 
3.95 
3.75 
3.56 

5.42 
5.25 
5.06 
5.00 
4.93 
4.85 
4.80 
4.71 
4.64 
4.58 
4.43 
4.33 
4.24 
3.94 
3.86 
3.92 
3.87 

5.33 
5.10 
5.03 
4.95 
4.91 
4.86 
4.65 
4.47 
4.34 
4.22 
4.13 
3.98 
3.95 
3.89 
3.81 
3.76 
3.72 
3.68 
3.60 
3.52 
3.51 
3.47 

5.54 
4.89 
4.89 
4.85 
4.76 
4.72 
4.68 
4.61 
4.14 

loglo 
viscosity 
(Pa s) 

11.83 
11.81 
11.80 
11.78 
11.76 
11.76 
11.74 
11.72 
11.71 
11.72 
11.65 
11.61 
11.54 
11.40 

11.97 
11.92 
11.90 
11.91 
11.91 
11.90 
11.90 
11.87 
11.85 
11.84 
11.80 
11.77 
11.72 
11.60 
11.54 
11.54 
11.51 

11.50 
11.56 
11.56 
11.54 
11.56 
11.56 
11.57 
11.57 
11.57 
11.57 
11.61 
11.55 
11.57 
11.56 
11.55 
11.55 
11.53 
11.52 
11.50 
11.45 
11.45 
11.42 

12.00 
11.92 
11.95 
11.95 
11.90 
11.90 
11.89 
11,84 
11,67 
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Table 3. (continued) 

Composition 
& temperature (~ 

log~o -log~o 1og~o 
stress strain-rate viscosity 
(Pa) (s- 1) (Pa s) 

NaCaA1Si20~ (655) 

8.02 4.07 11.61 
8.14 3.95 11.61 
8.16 3.84 11.52 
8.24 3.73 11.49 
8.30 3.43 11.25 
8.37 3.32 11.21 
8.42 2.94 10.88 
8.50 2.68 10.69 

6.90 5.82 12,25 
7.46 5.29 12.28 
7.51 5.30 12.33 
8.54 5.26 12.33 
7.58 5.24 12.34 
7.61 5.21 12.34 
7.64 5.19 12.35 
7.67 5./5 12.33 
7.73 5.08 12.34 
7.73 5.09 12.34 
7.92 4.85 12.29 
8.12 4.62 12.26 
8.23 4.45 12.21 
8.29 4.34 12.16 
8.33 4.26 12.11 
8.39 4.15 12.07 
8.40 4.05 11.98 
8.43 4.00 11.95 
8.45 3.87 11.84 
8.46 3.83 11.81 
8.55 3.40 11.47 
8.55 3.34 11.41 
8.56 3.32 11.40 

0.0 

- 0 . 5  
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Fig. 6. 6a. A reduced plot of viscosity (relative to Newtonian) ver- 
sus strain-rate (relative to relaxation strain-rate) for Na2Si409 at 
temperatures of 474, 479, 482, 493,504, and 506 ~ C. 6b. A reduced 
plot of viscosity versus strain-rate for the alkali silicates, albite 
and diopside melts. These reduced plots, based on Eq. 1 (the Max- 
well equation) remove the temperature and composition depen- 
dence of the non-Newtonian viscosity of silicate melts. 

ian viscosity or the Maxwell relaxation time) is sufficient 
to remove the temperature-dependence of the onset of 
non-Newtonian viscosity in NazSi4Og. 

Similarly, using the Maxwell relaxation time as a nor- 
malizing factor, the compositional dependence of the 
onset of non-Newtonian behavior is removed (G~o data 
from Bansal and Doremus 1986). It can be seen from 
Fig. 6b that there is little or no variation in reduced 
viscosity versus strain-rate behavior over this range of 
silicate compositions. 

A number of studies of silicate melts in the glass 
transition region (e.g., torsional, Mills 1974, ultrasonics, 
Sato and Manghnani 1985) indicate more complex relax- 
ation behavior than that described by a single relaxation 
time. Any distribution of shear relaxation times will re- 
sult in a broadening of the width of the relaxation zone 
and the occurrence of non-relaxed behavior at lower 
strain-rates than predicted from the single relaxation 
strain-rate theory employed in the derivation of the 
Maxwell relationship. 

Dingwell and Webb (1989, 1990) illustrated that re- 
laxation in silicate melts occurs on a timescale similar 
to that of S i - O  bond exchange (Farnan and Stebbins 
1990). Thus non-Newtonian behavior is expected as the 
rate of deformation of the melt approaches the rate of 
S i - O  bond exchange. Increasing strain-rate beyond the 
relaxation strain-rate of S i - O  bonds might result in 
another linear stress - strain rate regime with further 
deviations from linear stress - strain rate behavior (in 
effect a second glass transition) as the rate of deforma- 
tion approaches the rate of relaxation of other configur- 
ational degrees of freedom in the melt (e.g. alkali ex- 
change). These latter, "fas t"  relaxations in the melt 
structure carry strong electrical modulus signals (Pro- 
venzano et al. 1972; M. Rosenhauer 1989, personal com- 
munication) and produce internal friction peaks in sili- 
cate glasses (Day and Steinkamp 1969). Thus it is of 
interest to further investigate the possible overlap of the 
S i - O  bond relaxation and the "fas t"  relaxations with 
increasing strain-rate. 

4. Summary 

The non-Newtonian rheology of a wide range of silicate 
melts has been experimentally observed using the fiber 
elongation technique at high stresses and strain-rates. 
The strain-rates at which non-Newtonian behavior oc- 
curs can be estimated from the Maxwell relationship. 
In the present study, melts become significantly non- 
Newtonian at strain-rates corresponding to deformation 
timescales 2-3 orders of magnitude slower than the cal- 
culated relaxation time with no compositional variation 
being observed. 
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