Fluorine in silicate glasses: A multinuclear nuclear magnetic resonance study

T. SCHALLER, ¹ D. B. DINGWELL, ¹ H. KEPPLER, ^{1,*} W. KNÖLLER, ² L. MERWIN, ¹ and A. SEBALD ¹ Bayerisches Geoinstitut, Universität Bayreuth, Postfach 101251, W-8580 Bayreuth, Germany ²Bruker Analytische Messtechnik, Silberstreifen, W-7512 Rheinstetten, Germany

(Received July 15, 1991; accepted in revised form November 20, 1991)

Abstract—Anhydrous nepheline, jadeite, and albite glasses doped with F as well as hydrous F-containing haplogranitic glasses were investigated using ¹⁹F combined rotation and multiple-pulse spectroscopy; $^{19}\text{F} \rightarrow ^{29}\text{Si}$ cross-polarization/magic angle spinning (MAS); and high-power ^{19}F decoupled ^{29}Si , ^{23}Na , and ²⁷Al MAS nuclear magnetic resonance methods. Fluorine preferentially coordinates with Al to form octahedral AIF₆³⁻ complexes in all glasses studied. In addition, F anions bridging two Al cations, units containing octahedral Al coordinated by both O and F, or tetrahedral Al-F complexes might be present. The presence of Si-F bonds cannot be entirely ruled out but appears unlikely on the basis of the $^{19}\text{F} \rightarrow ^{29}\text{Si CP/MAS}$ spectra. There is no evidence for any significant coordination of F with alkalis in the glasses studied. ²³Na spectra are identical for the samples and their F-free equivalents and the spectra do not change upon decoupling of ¹⁹F. The speciation of F in the hydrous and anhydrous glasses appears to be very similar. Over the range of F contents studied (up to 5 wt.%), there seems to be hardly any dependence of F speciation on the concentration of F in the samples. The spectroscopic results explain the decrease of the viscosity of silicate melts with increasing F content by removal of Al from bridging AlO₄-units due to complexing with F, which causes depolymerization of the melt. The same mechanism can account for the shift of the eutectic point in the haplogranite system to more feldspar-rich compositions with increasing F content, and for the peraluminous composition of most F-rich granites. Liquid immiscibility in F-rich granitic melts might be caused by formation of (Na,K)₃AIF₆ units in the melt with little or no interaction with the silicate component. The presence of F in granitic melts might increase the solubility of high field strength cations by making nonbridging O atoms available which form complexes with these cations.

INTRODUCTION

FLUORINE IS ONE OF THE MOST important volatile components of natural magmas, both in mantle-derived melts (e.g., lamproites) and in highly fractionated granitic magmas. Concentrations of several wt.% are reported in high-fluorine rhyolites (CONGDON and NASH, 1988) and in ongonites (KOVALENKO, 1973). Similar to water, the presence of F strongly reduces the viscosity of silicate melts (DINGWELL et al., 1985; DINGWELL, 1989) and increases diffusion coefficients (DINGWELL, 1985). Even small amounts of F in the order of 1 wt.% will therefore significantly change the transport properties, mobility, and eruption behavior of such magmas. The correlation between high concentrations of certain trace elements (Sn, Zr, Nb, Ta, U, Th, etc.) and high F contents in granites and granitic pegmatites (ŠTEMPROK, 1982) has stimulated the investigation of phase equilibria in F-containing granitic systems. MANNING (1981) has shown that F strongly lowers both solidus and liquidus temperatures in the haplogranite system and causes a shift of the eutectic point towards more feldspar-rich compositions. Liquid immiscibility in some F-containing granitic systems has been reported by GLYUK and ANFILOGOV (1973) and by ANFI-LOGOV et al. (1973), whereas KOSTER VAN GROOS and WYLLIE (1968) have not observed this effect. Finally, recent studies (KEPPLER and WYLLIE, 1990) have shown that the presence of F strongly increases the fluid/melt partition coefficients of U and Th in a granite-aqueous fluid system.

With the exception of one preliminary ¹⁹F nuclear magnetic resonance (NMR) study by HAYASHI et al. (1987) and a recent paper by KOHN et al. (1991), investigations of quenched silicate melts containing F have essentially been based on Raman or infrared spectroscopy (MYSEN and VIRGO, 1985a,b; LUTH, 1988a,b; FOLEY et al., 1986). In addition, X-ray absorption measurements have been used to study the chemical environment of trace elements in F-containing glasses (PONADER and BROWN, 1989; FARGES et al., 1991).

Problems commonly encountered in Raman-spectroscopic studies of glasses are band overlap (FLEET, 1986) and the assignment of bands to structural units. While there is general agreement on the assignment of Si-O stretching vibrations in silicate glasses to SiO₄ tetrahedra with different numbers of nonbridging O atoms, many other features of the spectra are poorly understood; and quantitative predictions of vibrational bands are hampered by the insufficient knowledge of atomic interaction potentials in these systems (MC MILLAN, 1984). Therefore, interpretations of vibrational spectra of glasses are usually based on the comparison of bands observed in the glasses with those found in crystalline materials. Obviously, this method can only be successful if suitable model compounds are available.

NMR, on the other hand, does not allow empirical correlations between resonances observed in the spectra of glasses and those of model compounds; but several sophisticated methods are available that can provide direct information on the existence of chemical bonds between NMR-active nuclei in the sample. These are cross-polarization (PINES et al., 1973; KLEIN DOUWEL et al., 1990) and decoupling

^{*} Author to whom all correspondence should be addressed.

702 T. Schaller et al.

experiments. In the present study, both $^{19}\text{F} \rightarrow ^{29}\text{Si}$ cross-polarization (CP/MAS) spectra and ^{19}F high-power dipolar decoupling experiments of ^{27}Al , ^{29}Si , and ^{23}Na are described.

Experimental problems associated with ¹⁹F NMR are due to strong dipolar interactions between the ¹⁹F nuclei in the sample, which can broaden the resonances to such an extent that no structural information can be obtained. Additional broadening can result from the anisotropy of the shielding tensor. In order to overcome this problem, combined rotation and multiple-pulse spectroscopy (CRAMPS) was used for measuring ¹⁹F (TAYLOR et al., 1979). This method vielded much narrower resonances than fast MAS (magic angle spinning) spectra (Fig. 1). The sidebands in fast MAS spectra covered such a large chemical shift range that they would overlap with the resonances of other ¹⁹F nuclei (Table 1). This problem was even more pronounced in the glasses, where the sidebands were even broader than for the standard compounds due to chemical shift dispersion. Furthermore, when using the fast MAS technique, the resulting spectrum contained a large background signal due to a number of fluorine-containing structural components in the probe. Such background resonances are not present in CRAMPS spectra due to the fact that the pulse sequence is only effective in regions of high B₁ field homogeneity, i.e., the center of the radio frequency (RF) coil.

The high-power ¹⁹F dipolar decoupled ²⁹Si MAS and ²⁷Al MAS spectra described in the present paper are the first experiments of this type ever reported. The present paper also contains the first application of the ¹⁹F CRAMPS method to silicate glasses.

SAMPLES

The samples investigated in this study can be divided into the following two groups:

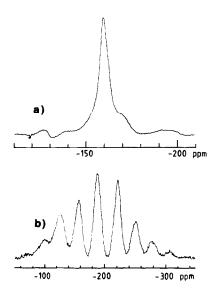


FIG. 1. Comparison of ¹⁹F CRAMPS and fast-spinning single-pulse ¹⁹F MAS spectra for Na₂SiF₆. Chemical shifts in ppm relative to CFCl₃. (a) ¹⁹F CRAMPS spectrum obtained using the MREV-8 pulse sequence (RHIM et al., 1973). Experimental parameters as in Fig. 2. Sixteen FIDs. (b) ¹⁹F MAS spectra. MAS rate = 8.7 kHz; recycle delay = 10 s; 90° pulse width = 5 μ s; 8 FIDs.

Table 1: ¹⁹F chemical shift values (± 5 ppm) of reference compounds relative to CFCl₃ as measured in this study

Compound	δ ¹⁹ F / ppm	
NaF	- 224	BURUM et al., 1978 KREINBRINK et al., 1990 MEHRING, 1970
KF · 2 H ₂ O	- 133	BURUM et al., 1978 KREINBRINK et al., 1990
AIF3	- 174	
Na ₃ AlF ₆	- 189	
K ₃ AIF ₆	- 190	
Al ₂ (F,OH) ₂ SiO ₄ (topaz)	- 140	
Na ₂ SiF ₆	- 151	
K ₂ SiF ₆	- 135	BURUM et al., 1978

- * broad resonance with ill-defined maximum
- Anhydrous glasses along the join NaAlO₂-SiO₂, doped with F. The F-free base compositions of these samples correspond to nepheline NaAlSi₀4, jadeite NaAlSi₂O₆, and albite NaAlSi₃O₈. Approximately 5 wt.% F were doped into these compositions, replacing the stoichiometrically equivalent amounts of O (2 F = 1 O). Analyses and synthesis methods of these glasses are given elsewhere (DINGWELL et al., 1985). In addition, albite glasses with 1.6 and 3.4 wt.% F were studied.
- 2) Hydrous haplogranitic glasses. The anhydrous, F-free base composition of these samples corresponds to 35 wt.% SiO₂, 40 wt.% NaAlSi₃O₈, and 25 wt.% KAlSi₃O₈. Between 2 and 5 wt.% F replace the stoichiometrically equivalent amount of O in the glasses. Mixtures of an anhydrous gel, NaF, and AlF₃ were melted together with 7 wt.% H₂O in gold capsules at 2 kbars and 800°C using cold seal vessels, and quenched to room temperature within 5 min. Analyses of the glasses for cations and fluorine by electron microprobe using a defocused beam showed that the samples are on composition within the limits of analytical error.

All glasses investigated in this study are clear without any visible crystals and give no X-ray reflections of crystalline phases. In addition to the glass samples, several crystalline compounds containing F were studied, including simple fluorides (NaF, KF \cdot 2H₂O, NaHF₂, and AlF₃), complex compounds (Na₃AlF₆, K₃AlF₆, Na₂SiF₆, and K₂SiF₆), and natural minerals (topaz, Al₂(F,OH)₂SiO₄).

EXPERIMENTAL

All NMR spectra were obtained on a modified Bruker MSL-300 spectrometer, using a modified Bruker 4 mm CP/MAS double-bearing probe. This system has a magnet operating at a field of 7 T. The relevant nuclei have corresponding Larmor frequencies of ¹⁹F: 282.404 MHz, ²³Na: 79.432 MHz, ²⁷Al: 78.206 MHz, and ²⁹Si: 59.630 MHz. Experimental details concerning the modification of the spectrometer. set-up procedures for cross-polarization from ¹⁹F, and spectroscopic implications of cross-polarization from 19F at a magnetic field strength of 7 T are given elsewhere (SEBALD et al., 1992). The experimental conditions used, including pulse length/angle, spinning speed, relaxation delay, and number of transients, are noted in the figure captions. All single-pulse MAS NMR spectra (²³Na, ²⁷Al, ²⁹Si) were obtained with ¹⁹F high-power dipolar decoupling at a B₁ field strength of ca. 50 kHz. In fact, for example, for Li₂SiF₆, the ²⁹Si resonance is broadened beyond detection in the absence of ¹⁹F high-power decoupling. The ¹⁹F CRAMPS spectra were obtained using the MREV-8 pulse sequence (RHIM et al., 1973). The eight-pulse cycle time was 47.6 μ s, corresponding to a covered shift range of 158 ppm. Off-resonance effects were carefully checked. All chemical shift values are reported

with the high-frequency positive convention. ²⁹Si shifts are reported with respect to external TMS (0.0 ppm) and were measured by replacement with the secondary reference Y₂SiBe₂O₇ (-73.3 ppm). ²⁷Al resonance positions (uncorrected for quadrupole induced shift) are reported with respect to aqueous AlCl₃ solution (0.0 ppm) and were measured by replacement of the sample with the standard. ¹⁹F CRAMPS shift values are reported with respect to CFCl₃ (0.0 ppm) and were measured by mixing with a small amount of a secondary reference compound (see Table 1). This was done in order to minimize the scaling factor errors, which arise from the MREV-8 pulse sequence. The shift values for the secondary reference compounds were established in single-pulse experiments by replacement of the sample with the standard. The ¹⁹F 90° pulse lengths were set on the narrow ¹⁹F resonance of an organic polymer containing highly mobile CF₃ groups (P. Jackson, pers. comm.). The same sample also served for shimming the probe and for setting up the CRAMPS experiment (JACKSON and HARRIS, 1988). In order to optimize resolution in the CRAMPS experiments, Delrin inserts were used in the 4 mm ZrO₂ rotors. These inserts featured a small spherical sample cavity (ca. 2.8 mm in diameter) positioned at the center of the RF coil. A broad background 19F resonance from the Kel-F rotor caps was observed in fast-spinning 19F MAS spectra; however, no such background was observed under the conditions of ¹⁹F CRAMPS.

RESULTS

¹⁹F CRAMPS spectra are shown in Fig. 2. The spectra of the dry glasses (a-c) contain some sharp spikes, which are experimental artifacts (rotor frequency lines, OLEJNICZAK et al., 1984). Aside from that, the spectra of dry and hydrous glasses are very similar. Both anhydrous and hydrous glasses show a strong resonance at ≈ −193 ppm. This is precisely the position of the ¹⁹F resonance in both crystalline Na₃AlF₆ and K₃AlF₆ (Table 1), which contain the AlF₆^{3−} complex anion (HAWTHORNE and FERGUSON, 1975). The fact that the ¹⁹F resonance of Na₃AlF₆ and K₃AlF₆ are identical, although those of NaF and KF are strongly different (Table 1), suggests that F nuclei in the AlF₆ complex experience

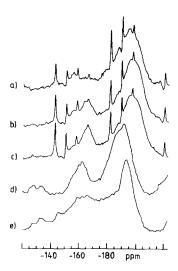


FIG. 2. ¹⁹F CRAMPS spectra obtained using the MREV-8 pulse sequence (RHIM et al., 1973). Chemical shifts in ppm relative to CFCl₃. Experimental parameters: 90° pulse width = 1.9 μ s; eightpulse cycle time = 47.6 μ s; MAS rate = 4-5 kHz; recycle delay = 15 s. The number of accumulated FIDs is given in parentheses. All spectra were transformed with 150 Hz of line broadening. (a) Dry nepheline glass, 5.2 wt.% F (500). (b) Dry jadeite glass, 6.3 wt.% F (500). (c) Dry albite glass, 5.8 wt.% F (500). (d) Hydrous haplogranite glass, 2 wt.% F (6862). (e) Hydrous haplogranite glass, 5 wt.% F (2100).

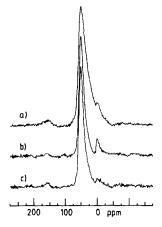


FIG. 3. ²⁷Al MAS spectra obtained under conditions of high power ¹⁹F decoupling (a) and (b) and without decoupling (c). Chemical shifts (uncorrected for quadrupolar effects) in ppm relative to dilute aqueous Al(H_2O)₈²⁺. Experimental parameters: MAS rate = 8 kHz; pulse length = 1 μ s (π /12); recycle delay = 4 s. The number of accumulated FIDs is given in parentheses. (a) Dry albite glass: 5.8 wt.% F; ¹⁹F decoupled; δ ²⁷Al = +52.1 and -1.0 ppm (80). (b) Hydrous haplogranite glass: 5 wt.% F; ¹⁹F decoupled; δ ²⁷Al = +52.1 and +0.6 ppm (616). (c) As for (b) but without decoupling.

little chemical interaction with the surrounding alkali cations. Therefore, we assign the resonance in the glasses to the octahedral AlF₆³⁻ complex. This interpretation is supported by the ²⁷Al MAS spectra (Fig. 3) of the dry and hydrous glasses. They show a weak resonance due to octahedral Al (≈ 0 ppm), in addition to the predominant signal of tetrahedral Al (\approx 52 ppm; ENGELHARDT and MICHEL, 1987). While the resonance of tetrahedral Al is relatively sharp for the hydrous glasses (Fig. 3b), it is asymmetric with a shoulder on the low-frequency side for the anhydrous samples (Fig. 3a). KOHN et al. (1991) investigated the ²⁷Al spectra of similar F-containing glasses using a higher magnetic field strength. They showed that the shoulder on the low-frequency side of the ²⁷Al resonance of dry albite glass (Fig. 3a) is probably due to a small amount of five-coordinated Al. According to our data, this species appears not to be present in hydrous glasses (Fig. 3b). This observation is consistent with the work of KOHN et al. (1989), which suggested that introducing water into albite glass causes ordering of the structure and an increase of the symmetry of the Al environment.

The resonance of octahedral Al in the spectra of both hydrous and anhydrous glasses is considerably broadened if the high-power ¹⁹F-decoupling is switched off (compare Fig. 3b and c). This confirms that at least part of the octahedral Al is coordinated by F. This observation also shows that a quantitative evaluation of the ²⁷Al spectra of F-containing glasses is impossible without ¹⁹F decoupling because, in this case, a large part or even all of the Al coordinated by F will be hidden due to the broadening of the ²⁷Al resonance caused by dipolar interactions with ¹⁹F. Estimates of the relative abundances of different Al species in the glasses given by KOHN et al. (1991) are therefore probably in error. Even with ¹⁹F decoupling, a quantitative interpretation of the ²⁷Al spectra is hardly warranted as the efficiency of the decoupling will not be equal over the entire 19F frequency range and probably never reaches 100%. Several other potential problems with the

704 T. Schaller et al.

quantification of ²⁷Al spectra have been discussed by MERWIN et al. (1991) and in references given in that paper. If, for example, in the haplogranite sample with 5 wt.% fluorine, all or almost all of the F were present as AlF₆ complex, the intensity of the resonance of octahedral Al should be about 20% of that of tetrahedral Al. The observed intensity of the octahedral Al resonance (Fig. 3b) even with ¹⁹F decoupling is clearly less than that, which could be due to the presence of other F-containing species. However, incomplete efficiency of ¹⁹F decoupling and other effects (MERWIN et al., 1991) could just as well account for this observation. Therefore, no quantitative analysis of the ²⁷Al spectra is attempted in this paper.

The other ¹⁹F resonances observed (Fig. 2) cannot be unambiguously assigned based on the ¹⁹F spectra alone because they fall into a region where resonances both of F bonded to Al and of F coordinated with Si can occur (Table 1). However, the presence of Si-F bonds appears to be rather unlikely on the basis of the $^{19}\text{F} \rightarrow ^{29}\text{Si CP/MAS}$ experiments. In these experiments, magnetization is transferred from the ¹⁹F to the ²⁹Si spin system. Spectra obtained by this method should, therefore, show a selective enhancement of the resonance of the portion of ²⁹Si that is coordinated by F. However, the single-pulse ²⁹Si MAS spectra and the ¹⁹F → ²⁹Si CP/MAS spectra are virtually identical for all contact times studied (2-100 ms; Fig. 4) and show only one resonance due to tetrahedral Si (KENNEDY and McFarlane, 1987; GRIMMER et al., 1980; THOMAS et al., 1983). In the $^{19}\text{F} \rightarrow ^{29}\text{Si}$ CP/ MAS experiments, the intensity of the resonance obtained depends on the contact time between the ¹⁹F and the ²⁹Si spin system. Figure 5 shows the intensities of the resonances as a function of contact time for two model compounds (Na₂SiF₆ topaz, Al₂(F,OH)₂SiO₄) and for albite glass doped with F. While Na₂SiF₆ contains direct Si-F bonds, F is coordinated with Al in topaz (RIBBE, 1982). For Na₂SiF₆, the maximum intensity of the ²⁹Si resonance is reached at a contact time of 10 ms, but the maximum for topaz is at 20-

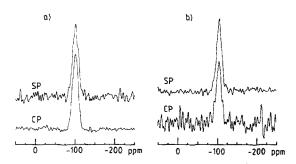


FIG. 4. ²⁹Si MAS spectra of (a) dry albite glass, 5.8 wt.% F, and (b) hydrous haplogranite glass, 5 wt.% F. MAS rate = 4.1 kHz. All spectra were transformed without line broadening. (a) Top: single-pulse ²⁹Si MAS spectrum with high-power ¹⁹F decoupling; 380 transients; 30 s recycle delay; 3 μ s 40° pulse; δ ²⁹Si = -100.5 ± 0.2 ppm. Bottom: ¹⁹F \rightarrow ²⁹Si CP/MAS spectrum. 568 transients; 20 s recycle delay; 20 ms contact time; 5 μ s ¹⁹F 90° pulse; δ ²⁹Si = -100.5 ± 0.2 ppm. (b) Top: single-pulse ²⁹Si MAS spectrum with high-power ¹⁹F decoupling. 360 transients; 30 s recycle delay; 3 μ s 40° pulse; δ ²⁹Si = -105.5 ± 0.2 ppm. Bottom: ¹⁹F \rightarrow ²⁹Si CP/MAS spectrum. 712 transients; 20 s recycle delay; 20 ms contact time; 5 μ s ¹⁹F 90° pulse; δ ²⁹Si = -105.5 ± 0.2 ppm.

Relative Intensities [%]

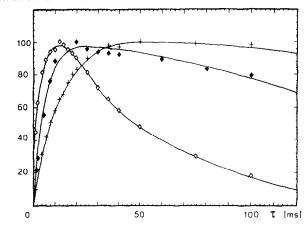


FIG. 5. Intensities of the $^{19}\text{F} \rightarrow ^{29}\text{Si}$ CP/MAS spectra of topaz (\spadesuit), Na₂SiF₆ (\diamondsuit), and dry albite glass with 5.8 wt.% F (+), plotted as a function of contact time. The vertical scale is in percent of the maximum of the respective curve. Each point on the curves is the result of the following: sixty-four transients with 20 s recycle delay and a MAS rate of 4.0 kHz, for topaz; sixty-four transients with 15 s recycle delay and a MAS rate of 4.0 kHz, for Na₂SiF₆; and one hundred, eighty transients with 20 s recycle delay and a MAS rate of 4.1 kHz, for dry albite glass.

30 ms. In addition, at long contact times, the resonance intensity of the compound containing direct Si-F bonds (Na₂SiF₆) decreases much more rapidly than in the case of topaz. The shape of the cross-polarization curve can therefore provide additional evidence on the presence or absence of Si-F bonds in a sample. The maximum of the curve for Fdoped albite glass (Fig. 5) is at even longer contact times than for topaz, and after passing the maximum, the intensity decreases even more slowly. This is consistent with the absence of direct Si-F bonds in the glass samples. It was also found that the efficiency of the cross-polarization experiments strongly decreases with increasing water content of the glasses. This is additional evidence that, at least in the hydrous samples, F is not coordinated with Si, because the presence of water would not be expected to interfere with the transfer of magnetization from ¹⁹F to ²⁹Si if these nuclei were directly bonded. We therefore conclude that the resonance between -150 and -170 ppm in the ¹⁹F spectra (Fig. 2) is probably not caused by Si-F units. Part of this resonance is actually a spinning sideband of the AlF₆ resonance at ≈ -193 ppm. The remaining component could be due to F anions bridging two octahedrally coordinated Al cations, as in crystalline AlF₃ (EVANS, 1966), or by units containing octahedral Al coordinated by both F and O, as in the crystal structure of topaz (RIBBE, 1982). The resonances of crystalline AlF₁ and of topaz are at -174 and -140 ppm, respectively (Table 1). Another possibility would be the presence of tetrahedral Al coordinated by F in the glasses.

Comparing the 29 Si spectra for F-containing glasses with those of glasses of equivalent composition without F shows small, but significant, differences in the 29 Si shifts. While δ^{29} Si is -105.5 ppm for the hydrous haplogranitic samples containing 5 wt.% F, it is -103.9 ppm for a F-free glass of otherwise identical composition. Introducing F into dry albite glass causes a similar shift of the 29 Si resonance toward lower

frequency from -97.7 ppm without F to -101.6 ppm with 5.8 wt.% F and 19 F decoupling. Without decoupling, the 29 Si resonance of albite glass with 5.8 wt.% F is at -100.8 ppm. Our 29 Si data for the F-free albite glass are in close agreement with those of Oestrike et al. (1987) and Kohn et al. (1989). The effect of F on the 29 Si spectra is probably due to the removal of some Al from the silicate network by complexing with F. As Al has a deshielding effect on the Si resonance in an alumosilicate network (Engelhardt and Michel, 1987), this will result in a low-frequency shift for 29 Si.

Changing the concentration of F in the dry albite samples from 1.6 to 5.8 wt.% or from 2 to 5 wt.% in the hydrous haplogranitic glasses has only a very minor effect on the ¹⁹F CRAMPS spectra (Fig. 2d, e). The presence of significant amounts of F coordinated to K or Na in the glasses appears unlikely on the basis of the 19F spectra because the resonances of crystallized NaF and KF fall far outside the range of the observed signals (Table 1). The absence of distinct NaF units in the glasses was confirmed by ²³Na MAS spectra. The ²³Na spectra of dry albite glass with 5 wt.% F and without F are exactly identical with a single resonance at -23.2 ppm. The hydrous haplogranitic glasses show only a slight shift of the ²³Na resonance upon introduction of F into the matrix (-17.0)ppm without F, -14.6 ppm with 5 wt.% F). ²³Na spectra with and without ¹⁹F decoupling are exactly identical (Fig. 6). Sodium is probably present as a charge balancing cation which is not directly coordinated with F.

In order to detect undissociated HF molecules in the hydrous samples, one hydrous haplogranite glass containing D₂O instead of H₂O was prepared. While ¹⁹F resonances due to fluorine coordinated with protons are typically very broad because of heteronuclear dipolar coupling, undissociated DF should give a much narrower resonance. However, only very subtle differences were observed between the spectra of the

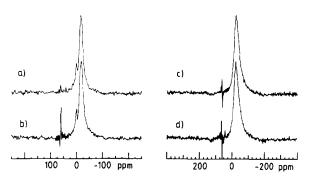


Fig. 6. 23 Na MAS spectra of hydrous haplogranitic glass (5 wt.% F, left) and dry albite glass (5.8 wt.% F, right) with and without highpower 19 F decoupling. Peak positions are given with respect to δ^{23} Na of solid NaCl = +7.1 ppm. Experimental parameters: MAS rate = 12 kHz; pulse length = 1 μ s (π /12); recycle delay = 10 s. The number of accumulated FIDs is given in parentheses. (a) Hydrous haplogranitic glass: 5 wt.% F; 19 F decoupled; -17.7 ppm; +0.4 ppm (1000). (b) As for above but with no 19 F decoupled; -22.2 ppm (400). (d) As for above but with no 19 F decoupled; -22.2 ppm (400). (d) As for above but with no 19 F decoupling (400). The spike at -60 ppm in all spectra is an experimental artifact. It occurs because the X-channel/ 19 F preamplifier matching box used is not optimized for the 23 Na resonance frequency. Rerunning the coupled 23 Na MAS spectra using a normal X-channel/ 14 H matching box, properly tuned for the 23 Na resonance frequency, yielded identical spectra without spike.

deuterated and undeuterated haplogranitic samples, so that undissociated HF does not appear to be a major species in these glasses.

Our experimental results can be summarized as follows:

- F coordinates preferentially with Al to form octahedral AlF₆³⁻ complexes in silicate glasses. An additional ¹⁹F resonance was detected, which could be caused by Al-F-Al bridges, by units containing octahedral Al coordinated by both O and F, or by tetrahedral Al-F complexes.
- 2) The presence of Si-F bonds in the glasses studied appears to be very unlikely, although it cannot be ruled out entirely.
- 3) Over the range of compositions studied, the speciation of F seems to be similar in hydrous and anhydrous glasses and almost independent of the absolute F concentration.
- 4) No clear evidence was found for coordination of F with alkalis. The environment of Na is very similar in F-containing and the corresponding F-free glasses. Undissociated HF does not appear to be a major species in the hydrous glasses.
- As complexing by F removes Al from a network-forming position in the glasses, this should cause depolymerization of the silicate network.

DISCUSSION

Previous Raman-spectroscopic studies of highly polymerized aluminosilicate glasses (MYSEN and VIRGO, 1985a) showed evidence for depolymerization of the glass structure by F. This is consistent with our results which suggest removal of Al from the silicate network by complexing with F. However, this result does not necessarily apply to other glass compositions. Adding F to depolymerized melts might actually increase the degree of polymerization (FOLEY et al., 1986; LUTH 1988a,b). This effect is easy to understand. If Al is originally present as a network former, complexing of Al with F will cause depolymerization. On the other hand, melts containing Al primarily as a network modifier will polymerize upon introduction of F into the system. In the absence of Al, F might react with other network modifiers, which will also cause polymerization.

While Raman spectroscopy is useful to investigate the effect of F on the silicate network, little information can be obtained by this method on the speciation of F itself. In their study of F in aluminosilicate glasses, MYSEN and VIRGO (1985a) suggested the presence of complexes of F with Na and Al in their samples. However, with the possible exception of one weak band component observed in the most F-rich compositions studied, they could not find any direct evidence for these species because of their low scattering intensity.

One of the major conclusions of our work is the probable absence of Si-F bonds in the samples studied. MYSEN and VIRGO (1985a) reached the same conclusion. However, in their study of the joins SiO₂-AlF₃ and SiO₂-NaF (MYSEN and VIRGO, 1985b), they observed a band between 930 and 940 cm⁻¹, which they attributed to Si-F stretching vibrations. It is very much possible that these samples do indeed contain direct Si-F bonds as their composition is very different from those investigated in the present paper. However, the Ramanspectroscopic evidence presented by MYSEN and VIRGO

706 T. Schaller et al.

(1985b) is not unambiguous. The band between 930 and 940 cm⁻¹ could also be due to Si-O stretching vibrations of metasilicate groups, which typically occur in this region (MCMILLAN, 1984). In their study of F-containing aluminosilicate glasses, Mysen and Virgo (1985a) detected metasilicate and even pyrosilicate groups in the samples. It is not obvious why these structural units should not also be present in the glasses of the joins SiO₂-AlF₃ and SiO₂-NaF (MYSEN and VIRGO, 1985b), which have a very similar overall degree of polymerization as the aluminosilicate glasses studied by MYSEN and VIRGO (1985a). In order to avoid volatilization of fluorides, MYSEN and VIRGO (1985b) synthesized their glasses in sealed Pt containers. As AlF₃ is known to be hygroscopic (GMELIN, 1934), a small amount of absorbed water in the starting mixture could also account for the band at 930-940 cm⁻¹, as this is the typical region of Si-OH stretching vibrations (STOLEN and WALRAFEN, 1976; MYSEN and VIRGO, 1986).

A quantification of the amounts of different species in Fcontaining glasses based on Raman spectroscopy is difficult because the dependence of the Raman-scattering cross sections on bulk composition is unknown for F-containing systems. Any speciation model derived from such spectra can therefore at best be semiquantitative. MYSEN and VIRGO (1985b) give data for the abundance of different species in glasses of the join SiO₂-AlF₃ and SiO₂-NaF. They suggest that there is little or no F coordinated with Al, but a substantial amount of NaF was present in the glasses studied. They conclude that complexes of F with Na are more stable than those with Al, which does not agree with our results. However, the entire calculation of MYSEN and VIRGO (1985b) is based on the assignment of the 930-940 cm⁻¹ band to Si-F vibrations. The possible problems with this assignment have already been pointed out. Furthermore, if one calculates the bulk F/Si molar ratio of the samples investigated by MYSEN and VIRGO (1985b) from the speciation model given in the same paper, the numbers obtained are much lower than according to the bulk composition of the samples. This suggests that some Frich species present in the samples were not detected.

APPLICATIONS

Our spectroscopic results suggest the removal of Al from bridging AlO₄-tetrahedra by complexing with F, which causes depolymerization of the melt. This mechanism explains the decrease of viscosity caused by F in silicate melts (DINGWELL et al., 1985; DINGWELL, 1989), and it might also be responsible for the effect of F on diffusion coefficients. An extensive discussion of the physical properties of F-containing melts and their possible relationship to melt structure can be found in the paper by DINGWELL (1985).

Haplogranitic melts can be considered to be mixtures of SiO_2 , albite $NaAlSi_3O_8$, and the potash feldspar $KAlSi_3O_8$ component. The effect of replacing O with F (e.g., 3 O = 6 F) in these melts can be rationalized by the following equation:

$$3(Na, K)AlSi_3O_8 \xrightarrow{+6}_{-3}^{+6} (Na, K)_3AlF_6 + Al_2O_3 + 9SiO_2$$

Apparently, substitution of O by F reduces the activity of the feldspar component in the melt, while the activity of SiO₂ increases. One would expect, therefore, that with increasing F content the eutectic composition in the haplogranite system contains more feldspar component and less SiO₂. This is observed (Manning, 1981); in fact, Manning et al. (1980) proposed such a mechanism on the basis of their phase equilibria studies. Complexing of Al by F probably also accounts for the peraluminous composition of most F-rich granitic rocks.

The fact that both the position and the linewidth of the ¹⁹F resonance of K₃AlF₆ and Na₃AlF₆ matches almost precisely that of the glasses investigated suggests that there is little chemical interaction between the silicate component of the glass matrix and the (Na, K)₃AlF₆ complex in the glass. Therefore, one would expect a tendency of this system to unmix, which would explain the liquid immiscibility in Frich granitic melts found by GLYUK and ANFILOGOV (1973) and ANFILOGOV et al. (1973).

Experimental studies of the solubility of zircon, ZrSiO₄ in F-containing, hydrous haplogranitic melts at 800°C and 2 kbar (KEPPLER, 1991) show a strong increase of the Zr content in the melt with increasing F-concentration. TiO₂ behaves similarly. EXAFS studies of the chemical environment of Zr in F-containing glasses (FARGES et al., 1991), however, show no evidence for any complexing of Zr by F. Rather, Zr appears to be coordinated by O in these glasses. The chemical equation for the decomposition of feldspar component in a haplogranitic melt by complexing of Al by F given above suggests that the introduction of F into the system results in an excess of Al₂O₃ component in the melt. This excess of Al₂O₃ will act as a network modifier and thereby make nonbridging oxygen ions available for complexing with high field strength ions, such as Zr. This mechanism probably accounts for the enrichment of these ions in F-rich granitic melts.

Acknowledgments—L. Merwin and A. Sebald acknowledge financial support by the German Research Foundation (DFG). We appreciate reviews by I. Farnan, G. E. Brown, Jr., and two anonymous reviewers.

Editorial handling: G. Faure

REFERENCES

ANFILOGOV V. N., GLYUK D. S., and TRUFANOVA L. G. (1973)

Phase relations in interaction between granite and sodium fluoride
at water vapor pressure of 1000 kg/cm². Geochem. Intl. 10, 3033

BURUM D. P., ELLEMAN D. D., and RHIM W. K. (1978) A multiple pulse zero crossing NMR technique and its application to ¹⁹F chemical shift measurements in solids. *J. Chem. Phys.* **68**, 1164–1169.

CONGDON R. D. and NASH W. P. (1988) High-fluorine rhyolithe: An eruptive pegmatite magma at the Honeycomb Hills, Utah. Geology 16, 1018-1021.

DINGWELL D. B. (1985) The structures and properties of fluorinerich magmas: A review of experimental studies. In *Recent Advances* in the Geology of Granite-Related Mineral Deposits (ed. R. P. TAYLOR and D. F. STRONG) pp. 1-12. Canadian Institute of Mining and Metallurgy.

DINGWELL D. B. (1989) Effect of fluorine on the viscosity of diopside liquid. *Amer. Mineral.* 74, 333–338.

- DINGWELL D. B., SCARFE C. M., and CRONIN D. J. (1985) The effect of fluorine on viscosities in the system Na₂O-Al₂O₃-SiO₂: Implications for phonolites, trachytes and rhyolites. *Amer. Mineral.* 70, 80–87.
- ENGELHARDT G. and MICHEL D. (1987) High Resolution Solid State NMR of Silicates and Zeolithes. John Wiley & Sons.
- EVANS R. C. (1966) An Introduction to Crystal Chemistry, 2nd ed. Cambridge University Press.
- FARGES F., PONADER C. W., and BROWN G. E., JR. (1991) Structural environments of incompatible elements in silicate glass/melt systems: I. Zirconium at trace levels. *Geochim. Cosmochim. Acta* 55, 1563–1574.
- FLEET M. E. (1986) X-ray diffraction and spectroscopic studies on the structure of silicate glasses and melts. *Mineralogical Association* of Canada Short Course Handbook 12, 1–35.
- FOLEY S. F., TAYLOR W. R., and GREEN D. H. (1986) The effect of fluorine on phase relationships in the system KAlSiO₄-Mg₂SiO₄-SiO₂ at 28 kbar and the solution mechanism of fluorine in silicate melts. *Contrib. Mineral. Petrol.* 93, 46-55.
- GLYUK D. S. and ANFILOGOV V. N. (1973) Phase equilibria in the system granite-H₂O-HF at a pressure of 1000 Kg/cm². *Geochem. Intl.* 10, 321-325.
- GMELIN L. (1934) Handbuch der Anorganischen Chemie, Aluminium Teil B. 8th ed. Verlag-Chemie.
- GRIMMER A. R., WEIKEV W., VON LAMPE F., FECHNER E., PETER R., and MOLGEDEY G. (1980) Hochauflösendes ²⁹Si NMR an festen Silikaten: Anisotropie der chemischen Verschiebung im Thaumasit. Z. Chem. **20**, 453.
- HAWTHORNE F. C. and FERGUSON R. B. (1975) Refinement of the crystal structure of cryolite. *Canadian Mineral.* 13, 377-382.
- HAYASHI S., KIRKPATRICK R. J., and DINGWELL D. B. (1987) MASS NMR study of F-containing Na₂O-Al₂O₃-SiO₂ glass (abstr.). *Eos* **68**, 436.
- JACKSON P. and HARRIS R. K. (1988) A practical guide to combined rotation and multiple-pulse NMR spectroscopy. *Magn. Reson. Chem.* 26, 1003-1011.
- KENNEDY J. D. and McFarlane W. (1987) Silicon, germanium, tin and lead. In *Multinuclear NMR* (ed. J. Mason) pp. 305–333. Plenum Press.
- KEPPLER H. (1991) Influence of fluorine on the solubility of high field strength trace elements in granitic melts (abstr.). *Eos* **72**, 1991 Fall Mtg. Suppl., 532–533.
- KEPPLER H. and WYLLIE P. J. (1990) Role of fluids in transport and fractionation of uranium and thorium in magmatic processes. *Nature* **348**, 531–533.
- KLEIN DOUWEL C. H., MAAS W. E. J. R., VEEMAN W. S., WERUMEUS BUNING G. H., and VANKAN J. M. J. (1990) Miscibility in PMMA/Poly (vinylidene fluoride) blends studied by fluorine-19-enhanced carbon-13 CPMAS NMR. *Macromolecules* 23, 406–412.
- KOHN S. C., DUPREE R., and SMITH M. E. (1989) A multinuclear magnetic resonance study of the structure of hydrous albite glasses. Geochim. Cosmochim. Acta 53, 2925–2935.
- KOHN S. C., DUPREE R., MORTUZA M. G., and HENDERSON C. M. B. (1991) NMR evidence for five- and six-coordinated aluminium fluoride complexes in F-bearing aluminosilicate glasses. *Amer. Mineral.* 76, 309–312.
- KOSTER VAN GROOS A. F. and WYLLIE P. J. (1968) Melting relationships in the system NaAlSi₃O₈-NaF-H₂O to 4 kbars pressure. *J. Geol.* **76**, 50-70.
- KOVALENKO V. I. (1973) Distribution of fluorine in a topaz-bearing quartz keratophyre dike (ongonite) and solubility of fluorine in granitic melts. *Geochem. Intl.* 10, 41-49.
- KREINBRINK A. T., SAZAVSKY C. D., PYRZ J. D., NELSON D. G. A., and HONKONEN R. S. (1990) Fast-magic-angle-spinning ¹⁹F NMR

- of inorganic fluorides and fluoridated apatitic surfaces. *J. Magn. Reson.* **88**, 267–276.
- LUTH R. W. (1988a) Raman spectroscopic study of the solubility mechanisms of F in glasses in the system CaO-CaF₂-SiO₂. *Amer. Mineral.* 73, 297-305.
- LUTH R. W. (1988b) Effects of F on phase equilibria and liquid structure in the systems NaAlSiO₄-CaMgSi₂O₆-SiO₂. Amer. Mineral. 73, 306-312.
- MANNING D. A. C. (1981) The effect of fluorine on liquidus phase relationships in the system Qz-Ab-Or with excess water at 1 kb. Contrib. Mineral. Petrol. 76, 206-215.
- MANNING D. A. C., HAMILTON D. L., HENDERSON C. M. B., and DEMPSEY M. J. (1980) The probable occurrence of interstitial Al in hydrous, F-bearing and F-free aluminosilicate melts. *Contrib. Mineral. Petrol.* 75, 257–262.
- MCMILLAN P. (1984) Structural studies of silicate glasses and melts—applications of Raman spectroscopy. *Amer. Mineral.* **69**, 622–644.
- MEHRING M. (1970) Spin-decoupling in the resolution of chemical shifts in solids by pulsed NMR. J. Chem. Phys. **54**, 3239–3240.
- MERWIN L. H., SEBALD A., RAGER H., and SCHNEIDER H. (1991)

 ²⁹Si and ²⁷Al MAS NMR spectroscopy of mullite. *Phys. Chem. Minerals* **18**, 47–52.
- MYSEN B. O. and VIRGO D. (1985a) Structure and properties of fluorine-bearing aluminosilicate melts: The system Na₂O-Al₂O₃-SiO₂-F at 1 atm. *Contrib. Mineral. Petrol.* **9**, 205–220.
- MYSEN B. O. and VIRGO D. (1985b) Interactions between fluorine and silica in quenched melts on the joins SiO₂-AlF₃ and SiO₂-NaF determined by Raman spectroscopy. *Phys. Chem. Minerals* 12, 77-85.
- MYSEN B. O. and VIRGO D. (1986) Volatiles in silicate melts at high pressure and temperature. 1. Interaction between OH groups and Si⁴⁺, Al³⁺, Ca²⁺, Na⁺ and H⁺. Chem. Geol. **57**, 303–331.
- OESTRIKE R., YANG W. H., KIRKPATRICK R. J., HERVIG R. L., NAVROTSKY A., and MONTEZ B. (1987) High-resolution ²³Na, ²⁷Al and ²⁹Si NMR spectroscopy of framework aluminosilicate glasses. *Geochim. Cosmochim. Acta* **51**, 2199–2209.
- OLEJNICZAK E. T., ROBERTS J. E., VEGA S., and GRIFFIN R. G. (1984) Rotor frequency lines in multiple-pulse/magic-angle sample spinning NMR spectra. *J. Magn. Reson.* **56**, 156–162.
- PINES A., GIBBY M. G., and WAUGH J. S. (1973) Proton-enhanced NMR of dilute spins in solids. *J. Chem. Phys.* **59**, 569–590.
- PONADER C. W. and BROWN G. E., JR. (1989) Rare-earth elements in silicate glass/melt systems: II. Interactions of La, Gd, and Yb with halogens. *Geochim. Cosmochim. Acta* 53, 2905-2914.
- RHIM W. K., ELLEMAN D. E., and VAUGHN R. W. (1973) Analysis of multiple pulse NMR in solids. *J. Chem. Phys.* **59**, 3740–3749. RIBBE P. H. (1982) Topaz. *Rev. Mineral.* **5**, 215–230.
- SEBALD A., MERWIN L., SCHALLER T., and KNÖLLER W. (1992) Cross polarization from ¹⁹F to ²⁹Si and ¹¹⁹Sn. *J. Magn. Reson.* (in press).
- ŠTEMPROK M. (1982) Tin-fluorine relationships in ore-bearing assemblages. In *Metallization Associated with Acid Magmatism* (ed. A. M. EVANS) pp. 321–337. John Wiley & Sons.
- STOLEN R. H. and WALRAFEN G. E. (1976) Water and its relation to broken bond defects in fused silica. *J. Chem. Phys.* **64**, 2623–2631.
- TAYLOR R. E., PEMBLETON R. G., RYAN L. M., and GERSTEIN B. C. (1979) Combined multiple pulse NMR and sample spinning: Recovery of proton chemical shift tensors. *J. Chem. Phys.* 71, 4541–4545.
- THOMAS J. M., GONZALES-CALBERT J. M., FYFE C. A., GOBBI G. C., and NICHOL M. (1983) Identifying the coordination of silicon by magic-angle-spinning NMR: Stishovite and quartz. *Geophys. Res. Lett.* **10**, 91–92.