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Abstract

Cryptocurrencies as an investment have received increasing attention by media and
international governments over the last years. However, little is known yet about
the dynamics that drive these highly volatile alternative assets. This thesis studies
the dynamic interdependencies between the volatility of Bitcoin, Litecoin, Ripple,
Dogecoin and Feathercoin via the Dynamic Conditional Correlation model by Engle
(2002) with the multivariate Student-t distribution. The main question is whether
a multivariate approach improves the Value at Risk forecasting accuracy for the
conditional heteroscedasticity in comparison to univariate GARCH-type models.
Results show that there is a high interconnectedness between the volatility of the
currencies. However, the Dynamic Conditional Correlation model can not deliver
better forecasting results than the univariate GARCH-type models for the individ-

ual cryptocurrency return series.
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1. INTRODUCTION

1 Introduction

Over the last years, the public interest in cryptocurrencies has increased dramati-
cally. The decentralized peer-to-peer system makes cryptocurrencies an attractive
phenomenon on the internet and many enthusiasts see it as an independent alterna-
tive towards the traditional financial market which has experienced bad reputation
ever since the market turmoil of 2008. Since mid 2017, many cryptocurrencies have
experienced an extreme price increase which provided the early adopters with an
immense return for their former low priced investments. The cryptocurrency market
has been extremely volatile since then, which has lead to a lot of economic and sci-
entific attempts to understand and predict the risk of investment. Previous analyses
have focused on the determinants of cryptocurrency prices or their interconnected-
ness with traditional markets. Other authors studied the sociodemographic profile
of cryptocurrency buyers and tried to find relations with social media and browsing
activities. Yelowitz and Wilson (2015) analysed Google trends data and found that
a high interest in Bitcoin is positively correlated with computer programming and
illegal activity search terms online.

Many academic analyses focus on understanding the highly volatile behaviour of the
price developments. Using GARCH-type models to determine the risk of Bitcoin
and other cryptocurrencies has become a popular topic in academic research over
the last two years. However, less is known yet about the interdependencies between

the volatility behaviour of different coins.

The main attempt of this thesis is to explore whether a multivariate approach can
improve the modelling and forecasting of volatility for the selected cryptocurrencies.
It is to find out if there are any correlations and mutual dynamics in the altcoin
market that help to determine the volatility of the single currencies or if the trends
are very particular for every currency and they are modelled more appropriately
via a univariate approach. Therefore, there are GARCH-type models applied to
the univariate log return series first. Several variance models from the GARCH
family are utilized to model the evolution of the conditional variance of the return
series. For the distribution of the innovations, heavy-tailed and skewed alternatives
are applied next to the Gaussian distribution since previous research has brought
up findings in favour of heavy-tailed distributions for the returns of financial as-
sets. The different models with different distribution assumptions are going to be
evaluated via model diagnostics and information criteria, as well as their ability to

forecast the downside portfolio risk (VaR). Next to the single return series of the
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five analysed currencies, an aggregated portfolio is also modelled via a univariate
approach.

The results of the univariate empirical analysis are going to be used to proceed to
a multivariate volatility modelling approach. The residuals of the selected GARCH
models are implemented to model the time-varying covariance of the volatility of
the five currencies. The multivariate Dynamic Conditional Correlation model by
Engle (2002) thus is applied to the multivariate log return series. The fit of the
multivariate Normal distribution for the innovations is outperformed by the multi-
variate Student-t distribution. After fitting the DCC model, its ability to forecast
Value at Risk for an aggregated portfolio is evaluated and eventually compared to
the results for the univariate GARCH models.

The thesis is organized as follows: First, there is an introduction on the cryptocur-
rencies used in this paper. The currencies Bitcoin (BTC), Litecoin (LTC), Ripple
(XRP), Dogecoin (DOGE) and Feathercoin (FTC) are selected because they have
been operational for some time already, which is in favour of statistical time series
analysis. There is a short description of the single currencies, pointing out the main
technical differences between them. This is followed by a review of previous litera-
ture on volatility modelling for cryptocurrencies. The majority of authors focus on
GARCH-type models for Bitcoin - the most popular currency on the altcoin market.
The choice for a certain GARCH model differs, but most authors have found the
Gaussian distribution to be inappropriate to model the innovations of the log re-
turn series and proceed to skewed alternatives. Other authors analyse the dynamics
between cryptocurrencies and the traditional asset market. Fewer have focussed on

the multivariate dynamics between the volatility of different crypto coins so far.

It follows a theoretical section with an explanation of the model equations of the
different applied GARCH type models. Also there is an overview of the different dis-
tributions that the innovations are assumed to follow. Besides the Normal distribu-
tion, the heavy-tailed Student-t distribution, as well as its skewed modification and
the skewed Generalized Error distribution are described. The Maximum-Likelihood
estimation for the simple GARCH model by Bollerslev (1986) is outlined. Then,
there is an explanation of the different model diagnostics that are appropriate for
financial volatility analysis. Since the models are also evaluated by their ability to
forecast the realized portfolio loss, the riskmetric Value at Risk and its application
to GARCH processes is introduced.

Next, the results for the univariate empirical analysis of the five crypto return se-

ries are presented. First, the stylized facts are shown, which highlight the skewed
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and heavy-tailed distribution of the log returns that is typical for financial time
series. Also, an analysis of the autocorrelation of the returns reveals conditional
heteroscedasticity in the data, which justifies the application of GARCH models.
The different GARCH models, namely the simple GARCH, eGARCH, iGARCH,
apARCH, c¢s-GARCH and gjr-GARCH with the different distribution assumptions
for the innovations are applied to the series and compared via diagnostic checking,
information criteria and Value at Risk forecasts. The results show that the Gaussian
distribution is clearly outperformed by the heavy-tailed distributions when it comes
to model fit and forecasting performance. The apARCH, eGARCH and ¢sGARCH,
combined with the skewed Student-t or skewed Generalized error distribution for
the innovations, seem to be most appropriate to model and forecast the dynamics of
the univariate volatility. Then, the out-of-sample rolling forecast is executed with
a higher number of model refits for the aggregated portfolio. It shows that a more
frequent update of model parameters does not improve the forecasting results.
The next section outlines the theoretical framework for the multivariate analysis.
Since the estimation of Dynamic Conditional Correlation models requires higher
computational effort, the presence of multivariate conditional heteroscedasticity in
the data should be detected ex ante. Therefore, it is useful to apply the multivariate
Ljung-Box test to find time-variant dependencies in the cross correlation matrix.
Then, the Dynamic Conditional Correlation model by Engle (2002) is defined. The
model estimates the dynamic correlation matrix of the standardized innovations
from the univariate series and thus models dynamics between the data. The condi-
tional distribution of the multivariate volatility can be modelled by a multivariate
Gaussian distribution or the multivariate Student-t distribution. Next, the 2-stage
estimation of the DCC via Quasi-Maximum-Likelihood is described. At the first
stage, the volatility of the univariate return series is obtained and the standard-
ized residuals are used to estimate the mutual conditional correlation matrix at
the second stage. The last chapter for the theoretical framework gives an overview
of additional model diagnostic techniques that can be applied to the multivariate
residuals.

After that, the results for the multivariate part of the empirical analysis are pre-
sented. Multivariate conditional heteroscedasticity in the sample correlation ma-
trix is detected, which justifies the application of the DCC. Several DCC orders
are applied with the conditional multivariate Normal and multivariate Student-t
distribution, using the results from the univariate GARCH analysis to estimate the
correlation of volatilities. It shows that a simple DCC order of lags (1,1) with the

multivariate Student-t distribution provides the most appropriate fit according to
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information criteria. After fitting the model, a rolling out-of-sample forecast for the
Value at Risk is performed. Therefore, an aggregated portfolio is created. Its dis-
tribution is determined by the forecasted mean and covariance matrix of the DCC,
according to the approach by Bauwens and Laurent (2005). However, the Value at
Risk forecast with the multivariate approach does not show more accurate results
than the univariate approach for the aggregated portfolio. Moreover, Value at Risk
forecasting of the univariate individual return series can not be outperformed by
the aggregated univariate or multivariate approach.

As a final conclusion, the results and their limitations are discussed and implications

for further research are given.

2 Background on Cryptocurrencies

A cryptocurrency can be defined as ”a digital asset designed to work as a medium of
exchange using cryptography to secure the transactions and to control the creation
of additional units of the currency” (Chu et al., 2017, pg. 1).

In the following section, there is a brief overview on the five cryptocurrencies that are
used in this study. Cryptocurrencies are digital currencies and mainly characterized
by their decentralization and trading on an online peer-to-peer network. The digital
coins are generated via cryptographic techniques and recorded and verified by the
community. Bitcoin was the first decentralized currency emerging in 2008 and
has entailed many successors. The website Coinmarketcap.com lists 1969 different
operating cryptocurrencies in September 2018. The five currencies used in this
thesis were chosen since they are operational for a long time and provide a high

observation span, which is of benefit to statistical analysis.

Bitcoin (BTC) is the first cryptocurrency and has been operational since 2009.
In 2008, a person with the pseudonym ”Natoshi Sakomoto” created a document on
the alternative currency, which has become the most traded coin on the market to-
day. It was the first decentralized currency that runs on a peer-to-peer network with
transactions between users happening without mediation by a third party (e.g. a
financial institution). The transactions are recorded via a Blockchain, an extendible
list of datasets that are connected by cryptographic procedures and verified by a
network of individuals using the Bitcoin software. The individuals who offer their
computer power to keep track of the transactions are called miners. Miners solve

a cryptographic puzzle that uses the transaction data. This is how Bitcoins are

4
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created, which gives further incentive to miners on top of transaction fees (Chuen
et al., 2017). When Sakomoto first published his document on the new cryptocur-
rency, there were still 50 BTC generated during the mining process of one block.
The supply of Bitcoin is limited to 21 million and the reward drops by 50% after
every 210.000 transaction blocks (Nakamoto, 2008). In September 2018, the reward
for every mined block is 12.5 coins and only 18 percent of the Bitcoins are left to
be mined (Blockchainhalf.com).

Due to the immense consumption of computation power - a regular PC would need
several years to solve a puzzle - mining has become non profitable for individuals
and mainly been commercialized over the last years (Chuen et al., 2017).

The usage of cryptographic techniques ensures that transactions of Bitcoins can
only be executed by the Bitcoin owners and the currency can not be spent twice.
The system is safe against transaction hackers since changing the transaction his-
tory would require redoing all puzzles of all blocks linked together in the chain.
That again would take enormous computational power for the hacker (Nakamoto,
2008).

The source code for Bitcoin is publicly available online on Github.com, which has
motivated many successors to create alternative cryptocurrencies with improved

qualities.

Litecoin (LTC) released in October 2011, is one of the most important successors
of Bitcoin and its operation is nearly identical to Bitcoin. It is a peer-to-peer decen-
tralized currency based on an open source security protocol, published in October
2011 by Charles Lee (Chuen et al., 2017). The only difference to Bitcoin is that
blocks are generated faster (2,5 minutes instead of 10), which is why transactions
by users can be made faster. Therefore, higher trading volumes can be handled and

the network is scheduled to produce 84 million coins eventually (Litecoin.org).

Ripple (XRP) was developed completely independent from Bitcoin. It is built
on an open source decentralized consensus protocol, even though the deployment
is provided by Ripple Labs who hold 25% of the currency, next to 20% held by
the founders. It is operating since 2012. In general, Ripple is based on a public
data bank where different account balances are registered. Additionally, the register
contains options on goods and traditional currencies (Dollar, Yen, etc.) which can
be bought in the system using the intern currency "XRP”. XRP can either be
traded itself or used to make payments for other goods and currencies.

In the Ripple system there are users who make payments, market makers who enable
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the trading in the system, and validating servers that run the protocol in the system
to check and validate transactions. All historic transactions and account balances
are publicly available.

Just like Bitcoin, the transactions in the Ripple system are ensured by an Elliptic
Curve Digital Signature Algorithm. But instead of using miners, Ripple relies on
the consensus of the validating servers to vote for the correct transaction in the
system. While Bitcoin transactions can only be confirmed after mining the blocks,
which takes an hour on average, the consensus in Ripple system is reached within

a few seconds. Therefore, faster payments are supported (Armknecht et al., 2015).

Dogecoin (DOGE) was usually intended as a parody of Bitcoin and is named
after the Shiba Inu dog ”Doge” which became a popular internet phenomenon in
2013. Dogecoin is based on the same operating system as Bitcoin and Litecoin,
but the block generating algorithms work even faster than for Litecoin with one
block being produced every minute. The ultimate number of Dogecoins is not
limited (Dogecoin.com). The currency, which was originally intended as a joke, has
experienced immense popularity after its creation in 2013. The trading of DOGE
is processed in social networks like Reddit and Twitter (Chuen et al., 2017).

Feathercoin (FTC) is another cryptocurrency which is based on the Bitcoin op-
erating system and was released in April 2013. Just like other Bitcoin successors it
works with a faster average block time of one minute. The total number of Feather-
coins is limited to 336 millions, with a block reward halving every 2.1 million blocks.
A special feature of Feathercoin is the Neoscript Algorithm that is used for mining
and requires less computer power than the Bitcoin algorithms (Feathercoin.com).
Therefore, Feathercoin experienced a hype in late 2013 /early 2014 - see figure (1)

in section (5) - but was eventually outperformed by other emerging currencies.
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3 Previous Research on Volatility of Cryptocur-

rencies

The interest in the analysis of the variation in cryptocurrency prices mainly arises
since they are highly volatile compared to traditional currencies. When invested at
the right time, they provided their owners with immense profits. In the past two
years, researchers have made effort to study the variations of cryptocurrency returns
via Generalized Autoregressive Conditional Heteroscedasticity (GARCH) models.
However, fewer studies have made effort to study the multivariate dynamics of the
crypto market.

Most studies so far focus on the modelling of Bitcoin only, which is the first and
most popular cryptocurrency. Its high market volume and long observation span
makes it most attractive for statistical analysis. Since Bitcoin and other cryptocur-
rencies have experienced immense popularity over the last years, a lot of academic
effort has been made to determine the development of prices. A lot of studies have
focused on the interconnectedness between Bitcoin and Twitter or Google activities.
Georgoula et al. (2015) have shown that the Twitter sentiment ratio is positively
related with Bitcoin prices. Other authors like Ciaian et al. (2016) have focused
on the impact of investors and macro-economics and found that market forces and
Bitcoin attractiveness for investors have a big influence on the short run but does
not seem to influence the overall long-term price development.

Concerning stylized facts, cryptocurrency time series are characterized similarly to
other financial time series. They exhibit time-varying volatility, extreme observa-
tions and an asymmetry of the volatility process to the sign of past innovation
(Catania et al., 2018). Just like other econometric time series, the log returns of
the cryptocurrencies have been found to show major deviations from normality.
Chu et al. (2017) find that seven of the most important currencies are positively
skewed. They also show extreme volatility compared to traditional assets, espe-
cially with regard to inter-daily prices. Gkillas and Katsiampa (2018) study the
heavy-tail behaviour of Bitcoin, Bitcoin Cash, Etherum, Ripple and Litecoin. They
find that cryptocurrencies are more risky and volatile than traditional currencies
and also show heavier tail behaviour. Bitcoin and Litecoin showed to be the least
risky currencies of the five analysed coins. Phillip et al. (2018) study the stylized
facts of 224 different cryptocurrencies and find that they show leverage effects and
a negative correlation between one-day ahead volatility and returns. They also find
that the returns follow a Student-t distribution rather than a Normal distribution.

Besides stylized facts, many authors have studied the conditional variance of the
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individual cryptocurrency return series via Generalized Autoregressive Conditional
Heteroscedasticity (GARCH) models. Chen et al. (2016) give one of the first anal-
ysis of the dynamics in the CRIXindex family. The CRIX (CRypto currency In-
deX) provides market information based on the 30 most important currencies and is
modelled by a ARIMA(2,0,2)-t-GARCH(1,1) process to capture the volatility of the
index return series. Chu et al. (2017) apply different univariate GARCH-type mod-
els to seven of the most popular currencies (Bitcoin, Dash, Litecoin, MaidSafeCoin,
Monero, Dogecoin and Ripple) and mainly claim the iGARCH and gjrGARCH
to be the best models to explain univariate volatility for those currencies. They
also show that cryptocurrencies exhibit extremely high volatility when they look at
inter-daily prices.

Katsiampa (2017) explores several conditional heteroscedasticity models to Bitcoin
and finds the autoregressive compenent GARCH model to fit the data best, which
has both a long-run and a short-run component of conditional variance. Katsampias
study has been replicated by Charles and Darné (2018) who use robust QML es-
timators to fit the GARCH-type models instead of standard Maximum-Likelihood
estimators to take the conditional non-normality of the returns into account. Im-
provements in the estimation method again result in the choice of an AR-csGARCH
process to describe the conditional heteroscedasticity in the Bitcoin return series.
However, both papers miss out to investigate whether an alternative distribution
like the Student-t or skewed Student-t distribution might fit the log returns better.
Several studies have found that fat-tailed, possibly skewed distributions are more
adequate to describe financial data (Kuester et al., 2006).

Angelini and Emili (2018) attempt to forecast the volatility for six cryptocurrencies
with GARCH-type models. They compare the forecasting performance of the simple
GARCH, eGARCH, tGARCH, GARCH-M and apARCH with a training dataset
of 700 daily prices, combined with a Student-t distribution for the innovations.
Then, they perform h = 1, ..., 7 steps-ahead forecasts with a recursive window. The
eGARCH seems to perform best for the higher forecast horizons overall, however,
results differ between the different currencies and forecasting horizons.

Catania and Grassi (2017) claim that standard volatility models like the GARCH
are outperformed by alternatives like the Score Driven model with conditional Gen-
eralized Hyperbolic Skew Student-t innovations (GHSKT). With the chosen model
they legitimately react to the skewness of the distribution of the log returns, how-
ever, they miss out on comparing the models via Value at Risk - performance is
evaluated by AIC and BIC.

Other studies also explore the dynamics between Bitcoin price volatility and the
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US stock market. Conrad et al. (2018) use the GARCH-MIDAS model to extract
long-term and short-term volatility components of the Bitcoin price series. They
find that the S&P realized volatility has a negative and highly significant effect on
long-term Bitcoin volatility. According to their results, Bitcoin volatility is nega-
tively correlated to the US stock market volatility.

However, fewer literature has focussed on the dynamic correlation of volatility be-
tween the different cryptocurrencies yet, with the most papers on this issues being
published in 2018. Corbet et al. (2018) study the relationship between Bitcoin,
Ripple and Litecoin and other traditional financial indices by generalized variance
decomposition methods and find that the price developments of cryptocurrencies
are highly connected to each other while they are disconnected to mainstream assets
on the long run. Spillovers between Bitcoin and traditional indices (e.g. SP500 and
VIX) can only be observed on the short run.

Katsiampa (2018) employs an Asymmetric Diagonal BEKK multivariate GARCH
model with a multivariate Student-t distribution for the error terms to the log re-
turns of Bitcoin, Etherum, Ripple, Litecoin and Stellar to estimate the dynamic
volatility of those currencies. He found that the conditional covariances were sig-
nificantly affected by the past covariances of the innovations. The conditional cor-
relation between the five currencies has shown to be mainly positive but changing
over time.

The analysis of the evolution of different cryptocurrency volatilities has been a
popular field of econometric research for the last two years. Many authors have
already compared several univariate GARCH-type models to predict Value at Risk
forecasts for the most popular cryptocurrencies and few focused on the dynamic in-
terdependencies of conditional covariances. This thesis attempts to combine those
two approaches and find out whether the performance of Value at Risk forecasting

can be improved by employing a multivariate approach.
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4 Univariate Volatility Modelling

This section deals with the theoretical framework for univariate volatility modelling
and Value at Risk forecasting.

Volatility models are also referred to conditional heteroscedasticity models. Here,
volatility means ”the conditional standard deviation of the underlying asset return”
(Tsay, 2005, pg. 109). Volatility modelling provides a simple approach to calculat-
ing Value at Risk of a financial position in risk management. It can improve the
efficiency in parameter estimation and the accuracy in interval forecasting. Volatil-
ity is not directly observable, however, it has some characteristics that are common
for asset return series. First, there are volatility clusters - volatility may be high
for certain periods and low for others. Second, volatility evolves over time in a
continuous manner. Third, volatility does not diverge to infinity, but varies within
some fixed range. Fourth, volatility seems to react differently to a big price increase

or a big price drop, which is referred to as ”leverage effect”. (Tsay, 2005).

4.1 Structure of Univariate Volatility Models

Let r; be the log return of an asset at time index ¢. In volatility modelling the series
ry is serially uncorrelated but dependent. The conditional mean and variance of r;

given F;_; can be described as
He = E(Tt|Ft—1)a 0,52 = VOW’(THFt—l) = E[(Tt - ,ut)2|-Ft—1]7 (1)

where F;_; denotes the information available at time t—1. If the serial dependence of
ry is weak, a simple time series model for y; can be entertained, such as a stationary

Autoregressive Moving Average (ARMA-p, ¢)-process:
Ty = ft + g, (2)
p q k
Mt = Z Give-1 — Z Osas—i, e =1¢ — Po — Z Bitit, (3)
i=1 i=1 i=1

where k, p and ¢ are nonnegative integers, and z;; are explanatory variables. 7, rep-
resents the adjusted return series after removing the effect of explanatory variables.

a; is referred to as the shock or innovation of a time series. Combining equation

10
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(1) and (3) gives:
of = Var(r|Fi_1) = Var(a|F_1). (4)

Conditional heteroscedasticity models are concerned with the evolution of o7. The
patterns under which o2 evolves over time distinguishes one volatility model from
another. Equation (4) is referred to as the volatility equation of r; (Tsay, 2005).

In volatility modelling, the first step is to test for conditional heteroscedasticity, also
known as Autoregressive Conditional Heteroscedasticity (ARCH) effects. These can
be detected by applying the univariate Ljung-Box Test (McLeod and Li, 1983). Let
a; = ry — pi be the residuals to the mean equation, then the test statistic Q(m) can
be applied to the [a?] series. The null hypothesis is that the first m lags of the Auto

Correlation Function of a? are zero. The test statistic is defined as:

m

Qm) =TT +29Y 5)

where T is the length of the return series, p, is the estimated autocorrelation at lag ¢
and m is the maximum number of tested lags. The test is rejected if Q(m) > x7_, 4

for d degrees of freedom.

Variance Model. The most common approach to model conditional heteroscedas-
ticity for univariate time series is a simple GARCH model (Generalized Au-
toregressive Conditional Heteroscedasticity) (Bollerslev, 1986)). Here, a; follows a
GARCH-(m, s) model if

Ay = Ot€yq, (6)

and the volatility of the innovations evolves according to:
m S
o =ao+ Y ua;+ Y Biot (7)
i=1 j=1

where [¢] is a sequence of iid random variables with mean zero and variance one.
For m = 0 the process reduces to the ARCH(s)-process, while for m = s = 0 the
innovations a; are assumed to be white noise (Bollerslev, 1986). For the simplest

version of a GARCH-(1, 1) model, the equation can be reduced to

ol =g +aaal |+ ot 0<ap,0<a,B <1, (a1 +p5) <1 (8)

11
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The latter constraint on («;+ ;) implies that the conditional variance of a; is finite,
whereas its conditional variance of af evolves over time. A large shock a;_; or a
large 0,1 will give rise to a larger o,. The tail distribution of a GARCH process is
heavier than that of the Normal distribution. The model provides a simple para-
metric function that can be used to describe the evolution of volatility (Tsay, 2005).
This version of the GARCH model can be denoted as the standard GARCH-(1,1)
model.

Furthermore, there is the strictly stationary integrated GARCH model (iGARCH)
(Engle and Bollerslev, 1986) for the particular case of the standard GARCH(1,1)
model where o1 + $; = 1. This change of the constraint on the o and g parame-
ters makes the model stationary, therefore, structural breaks in the data should be
investigated ex ante (Ghalanos, 2018).

Some models take the asymmetry of positive and negative shocks into account. The
market might react differently to a large negative shock in terms of the evolution
of volatility than to a large positive shock. This is modelled by the exponential
GARCH (eGARCH) model (Nelson, 1991), where the volatility equation can be

written as
log(o}) = ao + vy + " llas—1| — E(|as])] + Bilog(of ), (9)

for 0 < ap,0 < 1,0 < 1,0 < 7. ay captures the sign effect and v, captures the
size effect of the past innovation.

Another asymmetric GARCH is denoted by the GJR-GARCH model due to
Glosten et al. (1993):

O'tQ = Qg + ala?,1 + ’Yl]t—latzfl + ﬁlaf—la (10)
for 0 < ap,0 < 1,0 < 51,0 < vy, where I, ; = 1if a1 < 0 and [;_; = 0 if
a;—1 > 0. Here, 7, represents the asymmetric parameter since a positive shock will
affect 02 by oy and a negative shock by a; + 7.

The asymmetric Power ARCH (Ding et al., 1993) denoted by

o) = ag + ai([a;_| = ma)’ + oy, (11)
for 0 < ap,0 < 1,0 < B1,1 < 71,0 < d models for both the leverage and the effect
that the sample autocorrelation of absolute returns are usually larger than that of
squared returns. The ¢ parameter of the apARCH is a parameter for the Box-Cox

transformation and ~; is a leverage parameter (Chu et al., 2017). It is equivalent to

12
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the standard GARCH if § = 2 and v; = 0 and to the gjrGARCH if § = 2 (Ghalanos,
2018).

The component standard GARCH model (csGARCH) (Engle and Lee, 1999)
contains a time-varying intercept and decomposes the conditional variance into
permanent and transitory components to investigate long- and short-run moments

of volatility. The model is deployed as follows:

ol =q +ai(a;_y — q1) + Bi(o7_; — q-1), (12)
Gt = o + pgi—1 + ¢(a§—1 - 03—1)7 (13)

for 0 < g, 0 < 1,0 < (1,0<6,0<¢. If a7+ p1 <1 and p < 1 weak stationarity
holds. ¢; represents the permanent component of the conditional variance. It can
be seen as a time-varying intercept for the conditional heteroscedasticity.

The simple GARCH, iGARCH, eGARCH, apARCH, gjrGARCH and ¢sGARCH

are going to be applied to the five cryptocurrency time series.

Distribution model In the standard version of the GARCH-model, ¢; follows
an independent identically Gaussian distribution. The simple GARCH-(1,1) model

with Normal distribution assumption is then denoted by:

Ty = Wy + O,

2 2 2
o; = oo + aja; | + frojq,

€ N~ N(O, ].)

However, for financial time series analysis it has shown to be more appropriate to
assume that ¢, follows a heavy-tailed distribution, such as a standardized Student-
t distribution (see Kuester et al. 2006). Cryptocurrency log returns have already
been found to follow a Student-t distribution by Phillip et al. (2018). Let z, be a
Student-t distribution with v degrees of freedom. Then, Var(z,) = v/(v — 2) for
v > 2, and we use ep = x,,/ m . The probability function of €, is

iy — T+ 1)/ g
) = o (V_Q)W(1+V_2) Cus2

where I'(z) is the usual Gamma function (Tsay, 2005). Besides fat tails, empirical
distributions of fiancial asset returns may also be skewed. Skewed and heavy-tailed
distributions have shown to provide better forecasting results than the Normal
distribution (Kuester et al. 2006, Lee et al. 2008). For this purpose, the standard-

13
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ized Student-t distribution can been modified to be become a skew distribution.
Ferndndez and Steel (1998) proposed introducing skewness into any unimodal and
symmetric distribution. Applying their method to the Student-t distribution gives
the resulting probability density function for the skewed Student-t distribution:

caeefllee+ @] if e < —w/o

2 | , (15)
ol loe +@)/€lv] ife > —w/o

g(erlév) =

where f(-) is the probability density function of the standardized Student-t distri-
bution in equation 14 and £ € R* is the skew parameter, implying symmetry for
E=1.

Another useful distribution for financial assets is the Skewed Generalized Error
distribution which belongs to the exponential family and is a transformation of the
Generalized Error distribution (Theodossiou, 2000). Its density function can be
described as:

kl—l/k 1 |€t _m’k

-1 1
AT exp(_E(l—i—sng(et—m))\)kwk’ (16)

fler) =

where m is the mode of ¢, v is a scaling constant derived from the standard
deviation of €;, A is a skewness parameter, k is a kurtosis parameter, I'() is the

gamma function and sgn is the sign function:

—1 if € —m < 0
sng(e —m) = (17)
1 if € —m > 0

k controls the heavy tails and peakness of the distribution, while A\ controls the
skewness (Theodossiou, 2000). As k increases, the density becomes flatter. For the
original version of the Generalized Error distribution, it tends towards the Normal
distribution for the case when k = 2 (Ghalanos, 2018). The skewed Generalized
Error distribution has already shown to provide better Value at Risk forecasts in
GARCH modelling for the traditional financial market than the more common dis-
tribution assumptions (Lee et al., 2008). Since it has been found that GARCH type
models paired with Student-t and skewed distributions deliver better forecasting re-

sults for financial data, they are going to be utilized next to the Normal distribution.
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4.2 Estimation

GARCH models are usually estimated via Maximum-Likelihood. According to
Bollerslev (1986) the GARCH-(m, s) process can be written as a regression model

with a; being the innovations in a linear regression:
a; = y; — b, (18)

where 1, is the dependent variable, z; a vector of explanatory variables and b a
vector of unknown parameters.

Then, if 2] = (1,42 {,....,a? 02 |,...,02,), W = (g, a1, ..., s, B1, ..., Bs) and 0 €
© with § = (b',w') and © being a subspace of the Euclidian space such that the
second moments of a; are finite. The true parameters are denoted 6y € ©. Bollerslev
(1986) then rewrites the model as:

at‘Fh NN(an—t)> (19)

Oy = z;w, (20)

under normality assumption of the distribution for the innovations. The Log Like-

lihood can then be written as:

Lo(®) =TS 16), (21)

1 1
1(0) = —élog(at) - iafat_l. (22)

After differentiating with respect to w, we receive:

alt . ]_ 7180} a?
2w 3% 3_w<a_t L, (23)
021, a? 0 [1 _,004 1 ,00,a?
Tt (a—t - 1) 9 [5% %] "% oy (24)
with
8at . ® a@'t,i
%—Zt—i—;ﬁz a(,u . (25)

The Fisher’s information matrix for w can be estimated only by the sample analogue
of the last term in equation (24) since the conditional expectation of the first term

1S zero.
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Differentiating with respect to b parameters yields:

ol 1 0
—t:atxtat + = at ot (—t— ),

ob ob
(26)
02l ., 1 ,00,00, (a? 5, Ooy a? 0 [1 00y
Phor = % P50 gy (a—) — 20wy <a - 1) o [5 o 6b} ’
(27)
with
aat:—QZaxt i Z+Zﬁja(’”. (28)

Since there is no closed-form solution for the Maximum-Likelihood estimates, there
is a need for an iterative procedure. Bollerslev (1986) names the algorithm by
Berndt, Hall, Hall, and Hausman (1974). To find the true parameter , let ()
denote the estimates after the ith iteration. Then A+ for the i + 1th iteration is

calculated by:

t -1 7
) ) ol, 0l ol
gli+D — i) 4\, tild -t 2

T\ Lo ) Lo (29)

with A being a pre-defined variable to maximize the likelihood function in the given
direction. The Maximum-Likelihood estimator 8 is consistent for 6, and asymptot-
ically normal with mean 6y and covariance matrix F ' = E(9%;/0000")~!

For this thesis the package rugarch (Ghalanos, 2018) in R is used to estimate the
different univariate GARCH models.

16
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4.3 Diagnostic Checking
For a correctly specified GARCH model the standardized residuals

Qg

€ = g (30)
are randomly independent identically distributed with mean zero and variance one.
To check whether the volatility of a return series has been modelled correctly, the
Ljung Box-Test can be applied to the standardized squared residuals to detect
remaining ARCH effects. The distribution assumption can be validated by quantile-
to-quantile plots and parameters for skewness and kurtosis (Tsay, 2005).
Another method to detect for remaining serial dependence in the residuals is the
ARCH LM test by Engle (1982). The alternative hypothesis assumes remaining

autocorrelation for the standardized residuals:
Hy:e& =ag+aie; |+ ...+ amer,, +us, (31)

with u; as an error term for the autoregressive model of €2. Under the Hy there are

no remaining ARCH effects in the residuals, thus
Hy:ap=0a1=...=ay =0, (32)

applies. The F test statistic is asymptotically distributed as x? with m degrees of
freedom under the null hypothesis.

4.4 Value at Risk

Regular model diagnostics are useful to detect for violations in the model assump-
tions and error terms. But the fit of GARCH models should also be evaluated by its
forecasting performance. An important aspect is how well the model can determine
potential portfolio losses.

Value at Risk is a popular concept of market downside risk. It was first introduced
in 1994 by JP Morgan in a technical document which revealed their methodologies
on financial risk measurement (Xu and Chen, 2012). Generally, the VaR, covers the
losses of a portfolio return distribution by stating that the portfolio loss will exceed
a certain threshold with the small probability a. Technically, the Value at Risk for

a certain period t + h at the a-level can be described as the negative a-quantile of
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the conditional return distribution:

VaRy, = —Qa(rin|Fi) = —inf{x € R: P(ryyp < 2|F) > o}, 0<a<l,
(33)

with Q4(+) denoting the quantile function and F;, being the past information avail-
able up to time t. There are several approaches to determine the distribution of r; in
equation (33). In the case of GARCH models, it is calculated by using r; = s+ 0yéy,
with o; being modelled by a GARCH process (Kuester et al., 2006).

To evaluate the predictive performance of volatility models, Christoffersen (1998)
has set up a framework to evaluate out-of-sample interval forecasts. Therefore, he
defines the sequence of violations H, = I(r; < —VaR;) which has to be independent
from any variable in the information set F;_;. The VaR forecast is efficient with
respect to Fy_q if E(H;|F;_1) = A. Assuming efficiency, H; follows the Bernoulli
distribution: Hy|F,_1 % B(\), for t = 1,..., T (Kuester et al., 2006).

This leads to the first test of unconditional coverage:
Hy:E(Hy) =X ws. Hy:E(H) # A\ (34)
The likelihood ratio test statistic
LRy, =2 |L(\, Hy,..., Hy) — LI\, Hy, ..., Hy)| %0 2, (35)

tests for the correct number of unconditional violations, with L(-) denoting the log
likelihood. The ML-estimator X is the ratio of the number of violations to the total
number of observations.

The test of independent violations checks for violation clusters in the VaR inter-
val forecasts. Under the null hypothesis, a violation at ¢ has no influence on the
violation at t 4+ 1. The test statistic

LR, =2 [L(f[, Ho, ..., Hy|Hy) — L(IL, Hy, ..., HT\Hl)] 22 (36)

tests for the conditional coverage of violations as well as the correct number of
unconditional violations, with IT denoting a first-order Markov-Chain model corre-
sponding to the independence of violations (Christoffersen, 1998). Both of the tests

provide an evaluation on the performance of the Value at Risk forecasts.

Previous research has shown that one-day-ahead Value at Risk forecasts provide
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better results of coverage than, for example, weekly forecasts (Kole et al., 2017).
Therefore, the following analysis will focus on VaR forecasts for the next day.

The GARCH models described in section (4.1) are going to be utilized to forecast the
return distribution function of the five cryptocurrency series. Also the aggregated
portfolio of all five currencies is going to be modelled. Kole et al. (2017) show that
lower levels of aggregation lead to better forecasting results. This might be the
case, because an extreme development of one asset can lead to biased forecasting
results for the whole portfolio. However, this method is going to be applied to make
the univariate GARCH models comparable to a multivariate Dynamic Correlation
model which forecasts the aggregated return series also by means of the dynamic

conditional correlation between the innovations of the different return series.
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5. UNIVARIATE EMPIRICAL RESULTS

5 Univariate Empirical Results

In this chapter, the historical price developments of the used cryptocurrencies will
be described, next to the stylized facts of the logarithmic returns. It will be shown
that the return series show typical characteristics of financial time series and, fur-
thermore, are appropriate for GARCH-type modelling. Next, the model fit of the

different conditional heteroscedasticity models will be compared due to their model

fit and VaR forecasting performance.
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Figure 1: The evolution of daily closing prices in $US for Bitcoin,
Litecoin, Dogecoin, Ripple and Feathercoin from 17" of December

2013 until 14" of March 2018.
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The most appropriate models are chosen to implement them for the first stage es-

timation of the Dynamic Conditional Correlation model in the next section.

The data used are daily closing prices for the five cryptocurrency series Bitcoin,
Litecoin, Dogecoin, Feathercoin and Ripple. It is publicly available online at
Coingecko.com. The evolution of prices since December 2013 until March 2018
is shown in figure (1). Dogecoin and Feathercoin have just emerged in 2013 and
experience a price increase in late 2013 that fades out in 2014. The most noticeable
development is the enormous growth in prices during the hype in mid 2017 which is
followed by a short stagnation and another price increase in 2018. All crypto series
experienced an extreme multiplication of their value, just before an immense price
drop by the end of 2017. Figure (1) thus implicates that the price developments of

the five different coins are driven by mutual determinants.

Bitcoin Litecoin Dogecoin Feathercoin  Ripple Portfolio

Market Cap in USD  155,921,695,042  9,761,938,418 447,366,961 44,076,840  30,826,633,076 -

n. obs 1544 1544 1544 1544 1544 1544
Minimum -25.18 -54.72 -94.04 -94.00 -91.34 -52.40
Maximum 28.71 51.44 84.33 72.76 88.13 36.83
Mean 0.15 0.11 0.13 -0.02 0.21 0.14
Median 0.19 -0.08 -0.36 -0.69 -0.17 -0.04
Variance 17.51 38.03 76.22 126.05 59.05 39.05
Stdev 4.18 6.17 8.73 11.23 7.68 6.24
Skewness -0.42 0.34 0.72 0.51 0.84 -0.57
Kurtosis 6.91 14.66 29.88 9.09 34.08 9.09
Jarque-Bera 3128.9 13901 57742 5399.4 75116 5420.7

Table 1: Summary Statistics for daily log returns x 100 of cryp-
tocurrencies.

Log returns are calculated using: r, = 100 x In(P;/P;_1).

Returns are observed until 14** of March 2018.

Market cap is captured at 14" of March 2018.

Jarque-Bera-Test checks for deviation from normality (skewness S
different from zero and kurtosis K different from 3): JB = T(S/6 +
(k — 3)2/24), is distributed as X?(2) with 2 degrees of freedom. Its
critical value at the five-percent level is 5.99 and at the one-percent
it is 9.21.

Stylized Facts. Table (1) shows the summary statistics for the cryptocurrency
log return series. The log returns are calculated by taking the natural logarithm of
PtF’il x 100. For numerical
stability in the statistical software R the returns are multiplied by 100. Next to the

the ratio of two consecutive daily closing prices: r;, = In
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individual series, there is also a return series for an aggregated portfolio calculated.
The portfolio return is simply the sum of the individual returns, divided by the
number of currencies: 7pp; = %Zle Tit-

The data was downloaded on 14" of March 2018. Since the main attempt is to anal-
yse the dynamic correlation and multivariate volatility, the datasets are trimmed
to the same length with Dogecoin being the youngest currency. This leads to an
overall observation span of T" = 1544 for the log returns. The market capitalization
in US Dollar reflects the market value and trading volume of the coins. Bitcoin
is the most popular currency with the highest market capitalization, followed by
Ripple, Litecoin and Dogecoin. Feathercoins market capitalization is the lowest.
All currencies except Feathercoin show a positive mean log return. The median of
all currencies except for Bitcoin is smaller than zero, which leads to a positive skew-
ness in combination with a positive mean. The standard deviation of the returns
is in all cases larger than the mean, which is a typical property of highly volatile
financial data (Theodossiou, 1998).

It can be noted that Feathercoin has the lowest median return and minimum out
of all currencies with the third highest maximum after Dogecoin and Ripple. Also
it shows the highest variance. Bitcoin shows the lowest variance and is the only
currency that is negatively skewed, which is congruent with the results by Cata-
nia and Grassi (2017) and Catania et al. (2018). Also negative skewness implies
that more values bigger than the mean of a distribution were observed, specifically
more positive returns. Gkillas and Katsiampa (2018) found Bitcoin to be the least
risky coin among the five most popular cryptocurrencies. The other currencies are
positively skewed, which has also been shown by Chu et al. (2017). That means
that there is more mass on the left side of the density function, i.e. on the negative
returns.

The kurtosis £ is higher for all currencies than it should be expected for a Normal
distribution (k = 3). This is a typical characteristic of financial asset returns since
a lot of extreme values are observed and the distribution is highly peaked. The
Jarque-Bera-Test for normality (Jarque and Bera, 1987) is rejected for all curren-
cies, so the log returns deviate from the Gaussian distribution. For financial data
the Central Limit Theorem - stating that the distribution of the sum of a random
variable is going to converge to normality for big samples - does not apply in many
cases. This is because daily log returns often show higher order moment depen-
dencies like asymmetric volatility or conditional heteroscedasticity (Theodossiou,
1998). The Augmented-Dickey-Fuller test (Said and Dickey, 1984), testing the null

hypothesis that the time series x has a unit root, is applied to all currencies and
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shows that all log return series are stationary.

Figure (2) shows the histograms for the density of the log returns. To visualize the
deviation from normality, the black line illustrates the theoretical Normal distri-
bution, given the same mean and variance. It is visible that Feathercoin has the
highest variance and many extreme observations, while Bitcoin has many observa-
tions around the return of zero. Dogecoin also shows more heavy-tail behaviour.
Figure (3) shows the evolution of the calculated log returns over the available ob-
servation span. It shows that Bitcoin has the least risky and volatile behaviour,
while Feathercoin and Ripple have a bigger span of variation.

Since the returns for the aggregated portfolio are averaged over the five currencies,
the span of the data is smaller, and standard deviation and kurtosis take values on
an average level, see table (1). The histogram also shows that there are less extreme

observations and more data is located around a return of zero.

Another typical characteristic of financial time series is the autocorrelation of re-
turns. If the evolution of the price experiences an upward or downward dynamic,
then the returns are positively correlated for a period of time. Figure (3) shows that
for all currencies the returns exhibit periods of higher and lower volatility (volatility
clusters). Volatility is extremely high in the period of the cryptocurrency hype dur-
ing 2017. Figure (12) in the Appendix shows the Auto Correlation Function of the
squared returns. For all currencies there is a significant correlation of returns with
the preceeding days that fades out after a couple of days, with some peaks around
lag ¢ = 20 or ¢ = 30. This structure is typical for ARCH-effects and justifies the
application of GARCH-models (Tsay, 2005). Furthermore, the Ljung-Box-Test for
serial correlation identifies a dependency within the first in(7") = In(1544) = 7.34
lags of the squared innovations a; from equation (2), that were calculated by sub-

tracting the mean return from the daily return: a, = r; — 7, (Tsay, 2005).
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Figure 2: Histograms of the log returns of the five cryptocurrencies
and the aggregated portfolio in blue.

Log returns are calculated using: r, = 100 x In(P;/P;_1).

Black line shows the density of the Normal distribution that would
occur for the empirical mean and standard deviation:

x ~ N(T;\/Var(r;)).

T=1544.
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Dogecoin, Ripple, Feathercoin and the aggregated portfolio until 1
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Univariate GARCH Models. After conditional heteroscedasticity has been de-
tected for all five cryptocurrencies, the GARCH models discussed in chapter (4.1)
are applied to the univariate log return series. Since the descriptive analysis of
the returns has shown fat tails, not only the Gaussian distribution is going to be
used for the residual terms but also the Student-t, skewed Student-t and skewed
Generalized Error distribution.

All GARCH-type models with different distribution assumptions for the error terms
are applied to the univariate time series. The fit is evaluated by diagnostic check-
ing and information criteria. More interesting, however, is which model is able to
provide the best Value at Risk forecasts. The results are going to be used in chap-
ter (7) to model the DCC model. Additionally, the GARCH models are going to
be applied to the combined portfolio time series consisting of the five currencies.
The goal is to find out whether a multivariate approach incorporating the dynamic

correlation improves the Value at Risk forecasts for an aggregated portfolio.

To model the mean of the time series, a simple ARMA-(1,1) process is defined for p
equivalent to equation (3). When defining the volatility equation (4), the first step
is determine to the order of the ARCH effects. This can be done by looking at the
PACF of the squared innovations a; which can be estimated by the squared series
of mean adjusted returns: a; = r; — ;. For all five currencies the partial autocorre-
lation function reveals significances at higher order lags (around 10 to 100 days). In
this case, it is more appropriate to choose the more parsimonious GARCH-model,
instead of applying higher order ARCH-models. For the GARCH process usually a
lower order model like the GARCH-(1,1) or GARCH-(2,1) is appropriate in most
applications (Tsay, 2014).

A GARCH-(1,1) process is defined for the standard GARCH, iGARCH, iGARCH,
gjr-GARCH, apARCH and csGARCH models with the Normal, Student-t, skewed
Student-t, and skewed Generalized Error distribution for each logarithmic return

series of the five currencies. The models are estimated via Maximum-Likelihood.
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Bitcoin norm t skewed t sged

AIC BIC AIC BIC AIC BIC AIC BIC
sGarch 5.3652 5.3860 5.1142 5.1384 5.1142 5.1418 5.0974 5.1251
iGarch 5.3639 5.3812 5.1127 5.1334 5.1127 5.1369 5.0960 5.1202
eGarch 5.3492 5.3734 5.0981 5.1257 5.0979 5.1290 not converged
apArch 5.3664 5.3941 5.1012 5.1323 5.1008 5.1354 5.0960 5.1306
csGARCH 5.3388 5.36651 5.1055 5.1366 5.1058 5.1404 5.0895 5.1241
gjrGarch 5.3657 5.3899 5.1151 5.1428 5.1151 5.1462 5.0986 5.1297
Litecoin norm t skewed t sged

AIC BIC AIC BIC AIC BIC AIC BIC
sGarch 6.1702 6.1910 5.5229 5.5472 5.5227 5.5504 5.5456 5.5732
iGarch 6.1736 6.1909 5.5213 5.5420 5.5210 5.5453 5.5440 5.5683
eGarch 6.1293 6.1535 5.4984 5.5261 5.4973 5.5285 not converged
apArch 6.1650 6.1927 5.5003 5.5315 5.4985 5.5331 5.5399 5.5745
csGARCH 6.1635 6.1911 5.5075 5.5386 5.5058 5.5404 5.5376 5.5722
gjrGarch 6.1709 6.1951 5.5217 5.5494 5.5215 5.5526 5.5457 5.5768
Ripple norm t skewed t sged

AIC BIC AIC BIC AIC BIC AIC BIC
sGarch 6.4823 6.5031 5.8276 5.8519 5.8289 5.8566 5.8442 5.8719
iGarch 6.4811 6.4984 5.8262 5.8470 5.8275 5.8517 5.8427 5.8669
eGarch 6.4740 6.4982 5.8259 5.8536 5.8266 5.8578 not converged
apArch 6.4674 6.4951 5.7947 5.8258 5.7951 5.8297 5.8354 5.8700
csGARCH 6.3950 6.4227 5.7937 5.8248 5.7944 5.8290 5.8139 5.8485
gjrGarch 6.4622 6.4864 5.8286 5.8563 5.8298 5.8610 5.8446 5.8757
Dogecoin norm t skewed t sged

AIC BIC AIC BIC AIC BIC AIC BIC
sGarch 6.3902 6.4109 6.0487 6.0729 6.0414 6.0691 6.0592 6.0869
iGarch 6.3885 6.4058 6.0472 6.0680 6.0399 6.0641 6.0577 6.0820
eGarch 6.3536 6.3779 6.0333 6.0610 6.0247 6.0559 not converged
apArch 6.3907 6.4149 6.0484 6.0761 6.0413 6.0724 6.0588 6.0899
csGARCH 6.3029 6.3306 6.0276 6.0588 6.0209 6.0555 6.0360 6.0706
gjrGarch 6.3907 6.4149 6.0484 6.0761 6.0413 6.0724 6.0588 6.0899
Feathercoin norm t skewed t sged

AIC BIC AIC BIC AIC BIC AIC BIC
sGarch 7.4188 7.4396 7.1496 7.1738 7.1426 7.1703 7.1356 7.1633
iGarch 7.4183 7.4356 7.1483 7.1690 7.1413 7.1655 7.1368 7.1610
eGarch 7.3963 7.4205 7.1387 7.1664 7.1314 7.1625 not converged
apArch 7.3838 7.4115 7.1381 7.1692 7.1309 7.1655 7.1268 7.1614
csGARCH 7.4205 7.4481 7.1572 7.1884 7.1491 7.1837 7.1350 7.1696
gjrGarch 7.4122 7.4364 7.1486 7.1763 7.1414 7.1725 7.1340 7.1652
Portfolio norm t skewed t sged

AIC BIC AIC BIC AIC BIC AIC BIC
sGarch 6.2541 6.2749 6.0194 6.0436 6.0208 6.0485 6.0222 6.0499
iGarch 6.2529 6.2702 6.0186 6.0394 6.0194 6.0437 6.0209 6.0451
eGarch 6.2332 6.2574 6.0051 6.0327 6.0053 6.0364 not converged
apArch 6.2544 6.2821 6.0098 6.0409 6.0103 6.0449 6.0194 6.0540
csGARCH 6.1949 6.2226 6.0058 6.0369 6.0065 6.0411 6.0061 6.0407
gjrGarch 6.2563 6.2805 6.0181 6.0458 6.0189 6.0500 6.0211 6.0523

Table 2: AIC and BIC for the estimated GARCH-type models.

pe is modelled via an ARMA-(1,1) process. oy is modelled via a
GARCH-type process of order (1,1). T=1544.

Lowest AICs and BICs per group are written in bold letters.

Table (2) shows the AIC and BIC for the fitted GARCH-type models with differ-
ent distribution assumptions for the innovations. The models that performed best
for every currency or the portfolio according to the Akaike or Bayes Information
Criterion are written in bold letters. As a first result, it shows that the Gaussian
distribution for the error terms is outperformed by its heavy-tailed alternatives.
AIC and BIC indicate a lower fit here over all different currencies. The eGARCH
in combination with the skewed Generalized Error distribution showed convergence
problems for all currencies that remained even after several adjustments of solver
options.

For Bitcoin and Feathercoin, the skewed Generalized Error distribution delivers the
best fit for almost all models. AIC is lowest for the csGARCH, nearly followed by
the iGARCH for Bitcoin and the apARCH for Feathercoin. This is supported by
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the findings by Katsiampa (2017), who also showed that the component-standard
GARCH provides the best fit to model Bitcoins volatility according to information
criteria. The quantile-to-quantile plot and the ACF of the squared residuals indi-
cate a good fit. For Litecoin, the skewed Student-t distribution seems to be most
appropriate and works best along with the eGARCH model. For Dogecoin, the
eGARCH, ¢sGARCH and apARCH deliver the best information criteria with the
apARCH showing most reasonable plots in model diagnostics on the error terms.
The apARCH with Student-t distribution works best for Ripple according to resid-
ual plots. However, the skew parameter for the equivalent model with the skewed
Student-t distribution is significant. For the aggregated portfolio, the information
criteria show that the return series is best modelled via the Student-t distribution
with an eGARCH, however, the shape parameter for the corresponding model with
a skewed Student-t distribution is also significant and reports good information

criteria and residual plots.

In general, the univariate GARCH models show that there is a need for skewed
distributions to model the volatility process of the currencies. The apARCH, cs-
GARCH and eGARCH models seem to work best according to AIC and BIC,
however, there is usually only a slight difference between the models if the right
distribution for error terms is chosen. Bitcoin is most accurately modelled via a
csGARCH, which is supported by the findings of Katsiampa (2017). Bitcoin and
Feathercoin show a good model fit if the innovations are modelled via the skewed
Generalized error distribution. It should be noted that the apARCH and eGARCH
are more parsimonious than the csGARCH which contains a time-varying intercept
for the conditional variance. However, the models should also be evaluated via
their performance on Value at Risk forecasting. The choice of the right distribution

assumption for the error terms is of great importance here.

28



5. UNIVARIATE EMPIRICAL RESULTS

Value at Risk. Now it is interesting to find out which of the models produce the
best Value at Risk forecasts.

1 day-ahead

training data .
= rolling forecast

t=1 =800 t=1100 t=1400  T=1544

refit 1 refit 2 refit 3

Figure 4: Outline for the 1-day-ahead forecast.

The time line shows the training data set of length T=800 in black
and the rolling out-of-sample forecast of length T=744 in green.
Red arrows indicate the observations included in the three parameter
re-estimations (recursive window).

Since the altcoin market is quite young, the length of the return series is short in
comparison to other traditional currencies or indices. Therefore, it is more appro-
priate to estimate the rolling forecast based on a recursive window. That means all
past observations are included in the estimation of the current parameters in con-
trast to a moving window where all the previous data is used for the first estimation
and then moved by a pre-defined length for every forecast.

Figure (4) shows the outline for the forecast. The rolling forecast starts at ¢ = 800,
which leaves 744 one-day-ahead forecasts. The parameters are refitted every 300
days, thus the model parameters are refitted three times. The red arrows show
the past observations that are included for the estimation of the model parameters.
Within the refitting period, the parameters are fixed but data is updated for every
trading day.

Table (3) reports the backtesting results for the Value at Risk forecast. VaR is
calculated for every GARCH model and distribution at the 1%-, and 5%-level and
evaluated via VaR backtesting described in section (4.4). The percent violations
show how many times the returns dropped below the VaR for o = 0.01 and o« = 0.05
predicted by the model in relation to the total number of forecasts. Additionally,
the p-values for the tests of conditional and unconditional coverage are reported.
The models where the tests for conditional or unconditional coverage were rejected

at the 95% confidence level are written in bold.
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VaR 1%

Bitcoin norm t skewed t sged

Model % Viol Lye Lee % Viol Lyec Lee % Viol Lye Lee % Viol Lyc Lee
sGarch 2.3 0.006 0.017 1.3 0.37 0.584 0.9 0.87 0.923 0.8 0.583 0.819
iGarch 2.3 0.003 0.007 1.2 0.578 0.767 0.9 0.87 0.923 0.8 0.583 0.819
eGarch 2.3 0.003 0.007 0.7 0.339 0.612 0.5 0.165 0.373 not converged

apArch 2.4 0.001 0.003 0.4 0.063 0.175 0.4 0.063 0.175 0.5 0.165 0.373
csGarch 2 0.014 0.037 1.3 0.37 0.585 1.5 0.221 0.41 0.8 0.853 0.819
gjrGarch 2.2 0.006 0.017 1.2 0.578 0.767 0.9 0.87 0.923 0.7 0.339 0.612
Litecoin norm t skewed t sged

Model % Viol Loye Lece % Viol Laye Lee %Viol Layc Lece % Viol Lyc Lee
sGarch 0.7 0.339 0.612 0.9 0.87 0.923 1.1 0.838 0.898 0.5 0.165 0.373
iGarch 0.8 0.535 0.819 0.9 0.87 0.923 1.1 0.838 0.898 0.5 0.165 0.373
eGarch 0.5 0.165 0.273 0.8 0.583 0.819 0.8 0.583 0.819 not converged

apArch 0.7 0.339 0.612 0.5 0.165 0.373 0.7 0.339 0.612 0.5 0.165 0.373
csGarch 0.9 0.87 0.923 1.2 0.878 0.787 1.6 0.123 0.125 0.5 0.165 0.373
gjrGarch 0.7 0.339 0.612 1.1 0.838 0.898 1.1 0.383 0.895 0.5 0.165 0.373
Ripple norm t skewed t sged

Model % Viol Lyc Lee % Viol Luyc Lee % Viol Lyc Lee % Viol Luyc Lee
sGarch 0.7 0.339 0.612 0.8 0.583 0.819 0.8 0.583 0.819 0.4 0.063 0.175
iGarch 0.7 0.339 0.612 0.9 0.87 0.923 0.8 0.583 0.819 0.5 0.165 0.373
eGarch 1.3 0.37 0.584 0.5 0.165 0.373 0.5 0.165 0.373 not converged

apArch 3.6 0.000 0.000 0.7 0.339 0.612 0.7 0.339 0.612 0.5 0.165 0.373
csGarch 2.4 0.001 0.003 0.7 0.339 0.612 0.7 0.339 0.612 0.8 0.583 0.819
gjrGarch 1.2 0.578 0.767 0.8 0.583 0.819 0.8 0.583 0.819 0.5 0.165 0.373
Dogecoin norm t skewed t sged

Model %Viol Lyc Lce % Viol Lyc Lece % Viol Lyc Lcc % Viol Lyc Lece
sGarch 0.9 0.87 0.923 0.8 0.583 0.819 0.8 0.538 0.819 0.8 0.538 0.819
iGarch 0.9 0.87 0.923 0.8 0.583 0.819 0.8 0.538 0.819 0.8 0.538 0.819
eGarch 1.1 0.838 0.898 0.7 0.339 0.612 0.8 0.538 0.819 not converged

apArch 0.8 0.583 0.819 0.5 0.165 0.273 0.8 0.538 0.819 0.8 0.538 0.819
csGarch 0.9 0.87 0.923 1.1 0.838 0.898 1.3 0.538 0.819 0.9 0.87 0.923
gjrGarch 1.1 0.838 0.898 0.8 0.583 0.819 0.8 0.538 0.819 0.8 0.538 0.819
Feathercoin norm t skewed t sged

Model %Viol Lyc Lee %Viol Lye Lee %Viol Lyec Lee % Viol Lyec Lee
sGarch 1.3 0.37 0.584 0.8 0.538 0.819 1.1 0.838 0.898 1.1 0.838 0.898
iGarch 1.2 0.578 0.767 0.8 0.538 0.819 1.1 0.838 0.898 0.9 0.87 0.932
eGarch 1.2 0.578 0.767 0.5 0.165 0.373 0.9 0.87 0.932 not converged

apArch 1.3 0.37 0.584 0.7 0.339 0.612 0.8 0.538 0.819 1.1 0.838 0.898
csGarch 1.3 0.37 0.584 0.8 0.583 0.819 1.1 0.838 0.898 1.1 0.838 0.898
gjrGarch 1.5 0.221 0.400 0.8 0.583 0.819 1.1 0.838 0.898 1.1 0.838 0.898
Portfolio norm t skewed t sged

Model % Viol Lyc Lee % Viol Lye Lee % Viol Lyec Lee % Viol Lyec Lee
sGarch 1.7 0.064 0.143 0.7 0.339 0.612 1.1 0.838 0.898 0.8 0.583 0.819
iGarch 1.6 0.123 0.25 0.7 0.339 0.612 1.1 0.383 0.898 0.7 0.339 0.612
eGarch 1.5 0.221 0.4 0.5 0.165 0.373 0.9 0.87 0.923 not converged

apArch 1.9 0.031 0.075 0.5 0.165 0.373 0.7 0.339 0.612 0.5 0.165 0.373
csGarch 1.7 0.064 0.143 1.5 0.221 0.400 1.9 0.031 0.075 1.5 0.221 0.400
gjrGarch 1.7 0.064 0.143 0.8 0.583 0.819 1.2 0.578 0.767 0.8 0.583 0.819
VaR 5%

Bitcoin norm t skewed t sged

Model % Viol Loye Lee % Viol Layec Lee %Viol Layc Lee Y% Viol Lyc Lece
sGarch 5.1 0.893 0.142 6.2 0.153 0.028 6 0.203 0.027 5 0.973 0.118
iGarch 4.8 0.839 0.289 6.2 0.153 0.028 6 0.203 0.027 4.8 0.839 0.095
eGarch 5.1 0.893 0.142 6.2 0.203 0.027 5.8 0.341 0.078 not converged

apArch 4.8 0.839 0.289 5.6 0.428 0.074 5.6 0.428 0.074 4.7 0.709 0.073
csGarch 5.1 0.893 0.382 6.6 0.058 0.023 6.6 0.058 0.023 4.8 0.839 0.289
gjrGarch 5 0.973 0.339 6.3 0.113 0.009 6 0.203 0.027 4.8 0.839 0.095
Litecoin norm t skewed t sged

Model % Viol Lyc Lee % Viol Luyc Lee % Viol Lyc Lee % Viol Luyc Lee
sGarch 2.3 0.000 0.001 4.4 0.472 0.142 4.6 0.585 0.187 3.2 0.03 0.015
iGarch 1.9 0.000 0.000 4.4 0.472 0.142 4.4 0.472 0.142 3.4 0.165 0.373
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eGarch 1.6 0.000 0.000 4 0.211 0.047 4.3 0.371 0.103 not converged

apArch 2.6 0.001 0.003 4 0.211 0.16 4.3 0.371 0.103 3.2 0.018 0.029
csGarch 2.7 0.002 0.006 5.6 0.428 0.074 6.6 0.058 0.023 3.2 0.018 0.029
gjrGarch 0.7 0.339 0.612 4.6 0.585 0.053 1.1 0.383 0.895 3.2 0.018 0.029
Ripple norm t skewed t sged

Model %Viol Lyc Lce % Viol Luyc Lee % Viol Lyc Lee % Viol Luyc Lece
sGarch 2.6 0.001 0.002 4.3 0.371 0.585 4 0.211 0.361 2.8 0.003 0.007
iGarch 2.6 0.002 0.007 4.3 0.283 0.469 4 0.211 0.361 2.7 0.002 0.004
eGarch 2.8 0.003 0.011 4.7 0.709 0.897 4.3 0.371 0.629 not converged

apArch 5.8 0.341 0.203 4.4 0.472 0.701 4.2 0.283 0.469 3 0.006 0.02
csGarch 4.4 0.472 0.166 5.1 0.893 0.99 4.8 0.839 0.96 3.9 0.152 0.11
gjrGarch 3.1 0.01 0.018 4.7 0.709 0.565 4.2 0.283 0.469 3.9 0.152 0.11
Dogecoin norm t skewed t sged

Model % Viol Lyc Lcc % Viol Lyc Lee % Viol Lyc Lec % Viol Lyec Lee
sGarch 2.7 0.002 0.006 3.9 0.152 0.109 4.7 0.709 0.073 3.5 0.047 0.138
iGarch 2.7 0.002 0.006 3.8 0.106 0.071 4.6 0.585 0.187 3.5 0.047 0.138
eGarch 2.3 0.000 0.001 3.2 0.018 0.059 4.6 0.585 0.808 not converged

apArch 2.7 0.002 0.006 3.1 0.01 0.035 4 0.211 0.447 3.5 0.047 0.138
csGarch 3 0.003 0.02 4.3 0.371 0.301 5.4 0.642 0.059 4.3 0.371 0.301
gjrGarch 2.6 0.001 0.003 3.9 0.152 0.266 4.4 0.472 0.142 3.5 0.047 0.138
Feathercoin norm t skewed t sged

Model % Viol Lyc Lee % Viol Lye Lee % Viol Lyec Lee % Viol Lyec Lece
sGarch 2 0.000 0.000 3.4 0.003 0.002 4 0.211 0.16 3.1 0.01 0.035
iGarch 1.9 0.000 0.000 3.4 0.03 0.092 4 0.211 0.16 2.6 0.001 0.002
eGarch 2.2 0.000 0.000 2.7 0.000 0.000 3.4 0.03 0.092 not converged

apArch 2 0.000 0.000 3 0.006 0.02 3.8 0.106 0.188 3.2 0.018 0.059
csGarch 2.3 0.000 0.000 3.5 0.047 0.138 4.6 0.585 0.187 3.2 0.018 0.059
gjrGarch 2.2 0.000 0.000 3.2 0.018 0.059 4.4 0.472 0.142 3.5 0.047 0.081
Portfolio norm t skewed t sged

Model % Viol Lyc Lee % Viol Lye Lee % Viol Lyec Lee % Viol Lye Lee
sGarch 2.8 0.003 0.007 4.2 0.283 0.541 4.6 0.585 0.761 3.4 0.030 0.092
iGarch 2.7 0.002 0.004 4.2 0.283 0.146 4.6 0.585 0.761 3.4 0.030 0.039
eGarch 3.2 0.018 0.027 4.4 0.1472 0.705 4.6 0.585 0.761 not converged

apArch 3.6 0.072 0.071 4.2 0.283 0.541 4.7 0.706 0.793 3.6 0.072 0.198
csGarch 3.8 0.106 0.271 5.4 0.642 0.892 6 0.203 0.439 4.6 0.585 0.761
gjrGarch 2.8 0.003 0.007 4.3 0.371 0.629 4.6 0.585 0.761 3.2 0.018 0.027

Table 3: 1%- and 5%-Value at Risk results for the univariate
GARCH-type models.

1-day-ahead rolling forecast with recursive window, model parame-
ters refitted every 300 observations. Model is built on a training data
set of 800 observations, which leaves 744 out-of-sample forecasts.

% Viol: Percentage of VaR violations at o = 1% and « = 5%.

Ly.: p-value for test of unconditional coverage; L..: p-value for test
of conditional coverage. Values printed bold if p < 0.05.

The VaR forecasts prove some of the findings of the previous section right. The
results for the Gaussian distribution of innovations are mainly outperformed by
the heavy-tailed alternatives. At the 5%-VaR level, the tests for unconditional and
conditional coverage are rejected for most models and currencies if the Normal dis-
tribution is applied. For all currencies, except for Bitcoin, also the Student-t and
skewed Generalized Error distribution is outperformed by the skewed Student-t
distribution according to the backtesting results. At the 5%-level, there are more
incorrect violations found than at the 1%-level. The skewed Generalized Error dis-
tribution combined with an exponential GARCH has convergence problems that

remain even after several adjustments of solver options.
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The results for Bitcoin draw a different picture than for the other currencies. The
Gaussian and the Student-t distribution for the error terms are outperformed by
the skewed alternatives. The percentage of violations are highest for the Normal
distribution of error terms at the 1% VaR level, and also both the tests for condi-
tional and unconditional coverage are rejected for all six GARCH models at the 1%
VaR level. For the Student-t distribution, L,. and L.. are non-significant, but the
percentage of violations are still outperformed by the skew alternatives in general.
At the 5-% VaR level, the test results indicate inaccurate VaR violations for both
versions of the Student-t distribution in some cases. The skewed Generalized Error
distribution produces the smallest number of violations in combination with a good
model fit.

For Litecoin, the skewed Generalized Error distribution clearly produces the best
VaR forecasts for all models with violations lower than 1%, but QQ-plots show
that the SGED-distribution assumption for the error terms is not inconsiderably
violated. At the 1%-VaR level, the backtests by Christoffersen (1998) are rejected
in many cases. The skewed Student-t distribution produces the best results with
the apARCH or eGARCH, wich both show reasonable residual plots next to a low
AIC or BIC. Therefore, the more parsimonious eGARCH is chosen.

A similar picture can be seen for Ripple that seems to have a better overall fore-
casting performance at the 1%-VaR level for the SGED distribution, but models
fail diagnostic checkings here and backtesting at the 5%-VaR. The csGARCH along
with Student-t distribution reported the best AIC, however, the skewed Student-t
distribution performs equally well during forecasting. The apARCH is chosen over
the csGARCH since it shows fewer model violations in the residual plots and has
an equal forecasting performance. It also models for a leverage effect but is more
parsimonious.

For Dogecoin, the best backtesting results can be found for the skewed Student-t
distribution. Again, the apARCH performs well during the forecast and shows low
model violations in the residual plots, next to good values for the AIC and BIC.
While table (2) indicates a good fit of the skewed Generalized Error distribution for
Feathercoin, the 5%-VaR backtesting results draw a different picture. The tests for
conditional and unconditional coverage is rejected in many cases with the SGED
distribution. The apARCH in combination with the skewed Student-t distribution
provides a better fit. For the combined portfolio return, the Student-t and skewed
Student-t distribution have the best forecasting performance, with the eGARCH
combined with Student-t distribution giving the best model fit. However, the shape
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parameter of the skewed Student-t is significant for the eGARCH.

It can also be noted that the percentage of violations for the aggregated portfolio
tends to be somewhat higher than for the individual return series on average. This
finding is supported by previous research, where lower levels of portfolio aggregation
provided better VaR forecasting results. This might be the case since more extreme
developments in the volatility of one asset can lead to biased volatility forecasts for
the whole portfolio (Kole et al., 2017).

It shows that also for the Value at risk forecasts, the Gaussian distribution model
is outperformed by its skewed alternatives. This result is already very well docu-
mented in the literature, where the Normal distribution has shown to be inappro-
priate to model the forecasts for innovations of financial time series (Kuester et al.,
2006). The analysis has shown that these findings are also valid for cryptocurrency
return series. The skewed Generalized Error distribution does indeed in many cases
produce a low number of VaR violations, which has already been shown by Lee
et al. (2008). However, it produces worse backtesting results at the same time and
shows convergence problems in combination with the eGARCH.

Since the Dynamic Conditional Correlation model requires a mutual distribution
for the multivariate standardized error terms - see DCC estimation in section (6.3)
- all univariate time series are going to be modelled with a skewed Student-t distri-
bution model at the first stage estimation of the DCC.

Table (4) shows the model parameters for the selected GARCH models for the DCC.
The model equations have been described in section (4.1). Analysis of the Value at
Risk performance and model diagnostics have shown that the Asymmetric Power
ARCH and the Exponential GARCH fit the data best. Especially the apARCH that
allows for leverage effects seems to perform best for the cypto currency return series.
Both models take the asymmetry of positive and negative shocks into account. The
market thus reacts differently to a positive shock in terms of volatility than to a
negative shock. Both models are also more parsimonious than the csGARCH, while
their forecasting performance is just as good. Almost all the model parameters are
significant. Especially the significance of the skewness and shape parameters for
the skew Student-t distribution show the need for a skew, heavy-tailed distribution
model. The Ljung-Box test on the squared residuals at lag 10 and the Arch LM
test at lag 5 are all non significant, therefore, the null hypothesis for no remaining
ARCH effects and no autocorrelation in the residuals cannot be rejected. Figure
(13) in the Appendix shows the quantile-to-quantile plots for the models in table

(4). The auto correlation of the squared residuals can be seen in figure (14).
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Bitcoin Litecoin Ripple Dogecoin Feathercoin Portfolio

Variance Model apARCH eGARCH apARCH apARCH apARCH eGARCH
Distribution Model skew Student-t skew Student-t skew Student-t skew Student-t skew Student-t Skew student-t

m 0.0867 0.0415%** -0.2719%** -0.0945 -0.3379* 0.0136
AR(1) 0.3727%** 0.4444%** 0.4336*** -0.0628 0.3170%** 0.3574%**
MA(1) -0.4236%** -0.5372%** -0.4784%** -0.0869 -0.4437*** -0.4060%**
const ag 0.1294* 0.0636*** 0.2947*** 0.1768* 1.3941 0.2528*
ARCH aq 0.3067*** 0.0428 0.4430%** 0.2780%** 0.3385%** 0.0697*
GARCH 4 0.8325%** 0.9864%** 0.6651%** 0.8219%** 0.6395%** 0.9270%**
E-GARCH ~ 0.6221%** 0.5134%**
AP-ARCH ~ -0.0350 -0.0665%** 0.0584 -0.2678%*

AP-ARCH § 1.1477%%* 0.5621%** 1.1527%** 0.8607***

skew 0.9543%** 1.0505%** 0.9902%** 1.1212%%* 1.1174%%* 1.0410%**
shape 2.4802%** 2.0948*** 2.2813%** 2.7988%** 2.6690%** 3.0782%**
Q(10) 0.4719 0.9984 1.000 1.000 0.5917 0.9993
ARCH(5) 0.5091 0.8707 0.9979 0.5093 0.4730 0.9952

Table 4: Model parameters of the selected GARCH models.

e is modelled via an ARMA-(1,1) process. T=1544.

*#* pvalue < 0.001; ** p-value < 0.01; * p-value < 0.05.

Q(10): p-value of Ljung-Box test on squared standardized residuals
for lag ¢ = 10; ARCH(5): p-value for weighted ARCH LM test for
lag £ = 5.

The GARCH models selected in this chapter are going to be utilized to built a mul-
tivariate Dynamic Conditional Correlation model that takes account of volatility
interdependencies and forecasts the downside risk of an aggregated cryptocurrency
portfolio. The results are compared to the performance of the univariate approach

for VaR estimation with the simple eGARCH for the aggregated portfolio.

Figure (5) shows the forecasted 1%- and 5%-Value at Risk for the combined port-
folio return series of the selected eGARCH with skewed Student-t distribution with
parameter re-estimation every 300 days. The red dots mark the seven days where
the portfolio loss exceeds the forecasted 1%- and 5%-VaR limit. From 2017, after
the general cryptocurrency hype, the expected portfolio loss becomes higher. In
late 2016, the predicted volatility is more stable. The most violations are found
during the cryptocurrency hype in late 2017 and early 2018. At the 5%-VaR level
in figure (5b), there are more violations allowed than at the 1%-level. There are 34
violations found, especially during the hype in late 2017 and early 2018 the portfolio

loss exceeds the forecasted Value at Risk.
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Daily Returns and Value-at-Risk Exceedances
(Series: Cryptos, alpha=0.01)
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(a) 1%-Value at Risk. Parameters re-estimated every 300 days. % Viol: 0.9, p-Values:
LRy :0.87, LR :0.923.
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(b) 5%-Value at Risk. Parameters re-estimated every 300 days. % Viol: 4.6, p-Values:
LR,.:0.585, LR :0.761.

Figure 5: Value at Risk forecasts for the 1-day-ahead rolling fore-
cast of the 1/k portfolio estimated with a univariate eGARCH with
skewed Student-t distribution.

The model is built on a training data set of 800 observations, which

leaves 744 out-of-sample forecasts.
Parameters are re-estimated every 300 days with a recursive win-

dow, which leads to a total number of 3 refits.
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Since the crypto market shows different patterns of volatility over time, it is worth
considering to re-estimate the model parameters on a more frequent basis. For the
combined portfolio, a VaR forecast with a re-estimated eGARCH every ten days is
utilized. The 744 out-of-sample one-day-ahead rolling forecast with recursive win-
dow has now 75 parameter refits.

The results for Value at Risk forecasting do not improve with a more frequent refit.
Figure (6a) shows the forecasted 1%-Value at Risk for the combined portfolio return
series of the selected eGARCH with skewed Student-t distribution and parameter
re-estimation every 10 days. There are six VaR exceedances observed at the 1%-
VaR level instead of seven, which makes a violation rate of 0.8%. The tests for
conditional and unconditional coverage are not rejected. A more frequent update,
thus, improves the violation rate by 0.1% for the « = 1% VaR level. At the 5%-VaR
level, there are 38 violations found, which results in a violation rate of 5.1%. Com-
pared to the forecast based on the refit every 300 days, this is not an improvement,
see figure (5b). Both the tests for unconditional and conditional coverage are not
rejected (pLR,. : 0.839, pLR.. : 0.799). On average, the more frequent update of

model parameters has not delivered better Value at Risk forecasting results.
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Daily Returns and Value-at-Risk Exceedances
(Series: Cryptos, alpha=0.01)
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(a) 1%-Value at Risk. Parameters re-estimated every 10 days. % Viol: 0.8, p-Values:
LR, :0.583, LR.. :0.819.
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(b) 5%-Value at Risk. Parameters re-estimated every 10 days. % Viol: 5.1, p-Values:
LR,.:0.893, LR.. :0.731.

Figure 6: Value at Risk forecasts for the 1-day-ahead rolling fore-
cast of the 1/k portfolio estimated with a univariate eGARCH with

skewed Student-t distribution.
The model is built on a training data set of 800 observations, which

leaves 744 out-of-sample forecasts.
Parameters are re-estimated every 10 days with a recursive window,
which leads to a total number of 75 refits.
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eGARCH fit coefficients (across 75 refits) with robust s.e. bands
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Figure 7: Model parameters for the rolling forecast of the aggregated
portfolio.

eGARCH fit coefficients with robust standard error bands across 75
refits.

Parameters are re-estimated every 10 days with a recursive window
on a 744 day out-of-sample rolling 1-day-ahead forecast.

Figure (7) shows the estimated eGARCH parameters across 75 refits for the out-of-
sample forecasting period. Updating the model parameters more frequently during
the rolling forecast has made no improvements to the VaR performance at the
a = 1%-level. In fact, the model parameters show only slight variations over the
forecasting horizon. The intercept (omega) for the conditional variance decreases
over the rolling forecast, while [y, the autoregressive coefficient for oy, increases
over time. The shape parameter tends to increase as well, but an overlay of the
robust standard error bands indicates statistical insignificance. Overall, the VaR

forecasting performance does not improve by more frequent parameter updates.

One of the key findings of the univariate analysis is that (skewed) heavy-tailed
distributions seem to provide a better model fit and VaR forecasts than the Normal
distribution for innovations. This stands in contrast with the results by Chu et al.
(2017) who found that the iGARCH with Normal innovations provides a good fit to

model the volatility of seven of the top cryptocurrencies. The paper by Katsiampa
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(2017) names the component standard GARCH as the most appropriate GARCH-
type model for Bitcoin. This is supported by the findings of this chapter. The high
performance of the apARCH and eGARCH, which allow for the leverage effect, is
congruent with the results by Catania et al. (2018). They found that the volatility
process of cryptocurrencies show an asymmetry to the sign of past innovations. As
in the survey by Angelini and Emili (2018), it has been shown that the eGARCH
also provides good forecasting results, especially for Litecoin and the aggregated
portfolio. A more frequent update for the parameters does not lead to improvements
regarding the accuracy of forecasting results and parameter plots show only a few

changes over the whole forecasting horizon.
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6 Multivariate Volatility Modelling

In the following section, the theoretical framework for multivariate volatility mod-
elling is described. After discussing multivariate conditional heteroscedasticity in
general, the Dynamic Conditional Correlation model is introduced. Finally, there

is a discussion of diagnostic checkings for the DCC.

6.1 Multivariate Conditional Heteroscedasticity

Since multivariate GARCH models are time consuming to implement and estimate,
it should be checked ex ante whether the data shows multivariate ARCH effects
(Bauwens et al., 2006).

The previous results have shown that there is some source of conditional het-
eroscedasticity in the univariate time series of the cryptocurrency returns. However,
the main goal here is to detect some kind of multivariate time-dependent variation
and model it. The multivariate equivalent to the time-dependent o; of the univari-
ate time series is the volatility matrix 3; of the k-dimensional time series z;. If a;,
are the innovations of the multivariate time series z;, then, 3, = Cov(a,|F;_1) is
the covariance matrix of the innovations, with F;_; being the »-field generated by
the past data (Tsay, 2013).

Similarly to the univariate case, the multivariate time series z; can be decomposed

as
zZ = M+ ay, (37)

where py = E(z¢|F;_1) is the conditional expectation of z; given F;,_;. The inno-
vation a; is unpredictable because it is serially uncorrelated. The shock a; can be

written as
a, = 2%, (38)

where [€] is a sequence of independent and identically distributed random vectors,
such that E(e;) = 0 and Cov(e;) = I, and 3, /2 denotes the positive definite square-
root matrix of ;.

Like in the univariate case, the conditional heteroscedasticity of a multidimensional
time series can be tested. If a; has no conditional heteroscedasticity then its condi-
tional covariance matrix X, is time-invariant. This implies that any shock at time
t does not depend on the shock at ¢t — ¢ for ¢ > 0.
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Dependencies could either way exist through autocorrelation within the individual
return series, which has already been shown in chapter (5), or lagged correlation
between the series. To test the null hypothesis Hy : p1,= ... = p,, = 0 for lag
¢ = 1,...,m the multivariate Ljung-Box Test can be applied to the conditional

correlation matrix p. The test statistic is defined as

Qelm) =T 3" ot (P1a 1) (39)

=1
Under the null hypothesis, Q, is asymptotically distributed as X2, (Tsay, 2013).
The test assumes the innovations a; to be Gaussian. Therefore, Tsay proposes
some robustness modifications for heavy tails in financial data to avoid misleading
results. One simple procedure to reduce the effect of heavy tails is trimming away
data in the upper 5% tail. Another approach is a rank based test of autocorrelation

for the standardized series ¢, = a,X; 'a, — k. Tsay (2013) combines all of those
tests in his R-package MT'S.

6.2 Dynamic Conditional Correlation Models

A simple class of models for multivariate volatility is the Dynamic Conditional
Correlation model (DCC). It uses the covariance matrix ¥; = [0;;,] as the volatility
matrix of the k-dimensional innovation a; to the asset return series z,. The DCC
model takes advantage of the fact that correlation matrices are easier to handle

than covariance matrices. Therefore, the conditional correlation matrix p; is used:

pt = DtEtDt, (40)

where D = dz’ag[aiﬁ, ...,a;,/jt] is the k£ x k diagonal matrix of the time-varying

standard variations at time ¢. The first step is to obtain the volatility series {o;+}
for © = 1, ..., k assets. The second step is to model the dynamic dependence of the
correlation matrix p;.

Engle (2002) introduces the first approach for DCC models. Let €; = D, 'a; be the
vector of the standardized innovations and p; the volatility matrix of €;. Then, the
DCC by Engle is defined as:

Q=S(1—-—a—p)+aQi 1+ Ple€_,), a+p<1, (41)
pr = J1Q:J, (42)
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with S being the unconditional correlation matrix of €;, Q; being positive semi-
definite and J; = [q;ll{ S q,;kliz], where ¢;;+ denotes the (7,7)-th diagonal element

Of Qt:

Varg 00 - 0

0 Va2 0 - 0
Jp = . . . .

(43)
0 0 0 - /Qukg

The dynamic conditional correlation is modelled by the two parameters o and f.

It is possible to implement additional lags ¢ = 1,..,m for Q;_,, and €;_,, and re-

ceive ayq, ..., yy, or Py, ..., By (Ghalanos, 2012). However, in most applications only
a DCC-(1,1)-process is estimated (Tsay 2013, Laurent et al. 2012).

An advantage of the DCC is that it can be estimated sequentially. The first step
is to estimate the conditional variance of k£ assets and then model the conditional
time-varying correlation between them, see section (6.3). This procedure is less
efficient, but reduces the computational effort for the likelihood (Laurent et al.,
2012).

The conditional distribution of €; can be Multivariate Standard Normal with the

probability density function

1

exp | —5(e—p)E (e—p)|, (44)

1
M= —

with mean g = (1, ..., pi) and positive-definite covariance matrix 3 = [o;;] (Tsay,
2013).

The standardized innovations €; can also follow a multivariate Student-t distribution
(Harvey et al., 1994) which is more appropriate for heavy-tailed financial data
(Katsiampa, 2018). Then, the probability density function of € is

T((v+k)/2) 1 k)

T || e WE e n o (4)

f(elv, p, %) =

where I'(v) denotes the usual Gamma function. Then, € follows a multivariate
Student-t distribution with v degrees of freedom and with location and scale pa-
rameters g and 3 (Tsay, 2013). When v tends to infinity, the Student-t distribution
tends to the Gaussian distribution. When it tends to zero, the tails of the distribu-

tion become thicker (Bauwens et al., 2006).
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6.3 Estimation

The Dynamic Conditional Correlation Model is estimated with a two-step approach.
First, the univariate conditional variance is estimated for every series, described in
section (4.2). In the second step, the conditional correlation matrix is estimated
which is denoted by p; = D3 D;. Engle and Sheppard (2001) propose a 2-stage
Quasi-Likelihood estimation method to obtain the model parameters for the DCC.
To obtain the univariate residual series for the first stage, ¥, is replaced by I}, a
k x k identity matrix. The resulting first-stage Quasi-Likelihood function for the

parameter 0] of the volatility then is:

T
1
QLi(07) = =5 D (k- log(2m) + log(|Lx]) + 2 log(| D) + ;D 1eD; ') (46)
t=1
1 T
=3 Z (k “log(2m) + 2 - log(|Dy|) + TQD;QTt) (47)
t=1
1 & .
- _52 (k; log(27) +Z (log o+ ’t>) (48)

k T

— _% Z:l (T ~log(2m) + ; (ZOQ(Uz’t + ;—Z)) , (49)

which can be seen as the sum of the log-likelihoods for the univariate GARCH
processes. After the first stage is estimated, the parameters for the dynamic cor-
relations can be found by using the standardized residuals of the first stage. The
Quasi-Likelihood for the second stage, based on the estimates of ], can be written

as:

T

1

QLy(03107) = —5 Y~ (k- log(2m) + 2 - log(|Dy|) + log(|i]) + r{ Dy 'S D' ry)
t=1

l\D

(50)

T
Z (k- log(2m) + 2 - log(|Dy]) + log (1)) + €5, 'et)

t=1

N)Ir—t

(51)

with ¢ ~ N(0,%;) denoting the standardized residuals according to equation (30).

Since the second stage Quasi-Likelihood is conditioned on éf, one can exclude the
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constant terms and simply maximize:
T
S log3l) + 455, (52

t=1

l\DlH

The Quasi-ML estimators for 8] and 6; are assumed to be consistent and asymptot-
ically normally distributed (Engle and Sheppard, 2001). For this thesis, the package
rmgarch (Ghalanos, 2012) in R is used to estimate the dynamic conditional corre-

lation model.

6.4 Diagnostic Checking

While there is a lot of literature on the diagnostics for univariate volatility mod-
els, fewer tests are devoted specifically to multivariate models. It is possible to
distinguish between diagnostics that are applied to each univariate series and mul-
tivariate tests that are applied to the & x T- dimensional time series. For the first
mentioned tests, the diagnostics can be done analogously to section (4.3). Since the
second stage of the DCC estimation is built on the residuals of the univariate series
- see chapter (6.3) - violations on the first stage are important to detect. Although
univariate tests can provide guidance, contemporaneous correlation of disturbances
entails that statistics from individual equations are not independent. Therefore,
there is a need for joint testing (Bauwens et al., 2006).

According to Ding and Engle (2001), one important moment of the model is that

the standardized error terms should follow the condition:
Cou(ef, ]t) =0, Vi#j, (53)

if the conditional distribution is Gaussian. If the true distribution is the multivariate
Student-t distribution, then, the covariance of the residuals of the different assets

should follow:

. 202
Cov(ej,, €5,) = (v —4)(v —2)?

Vi # J. (54)

The term 2v2/(v — 4)(v — 2)? is different from zero if 1/v # 0, which would be
the case for a Gaussian distribution. However, testing for a multivariate Student-t
distribution is a quite unexplored field in academic research yet. Bai and Chen
(2008) have made an attempt to test distributional assumptions based on empirical

residual distributions. Therefore, they transform the multivariate time series to a
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univariate format and apply K-transformations to it to purge the distribution and
make distribution free tests possible. Their method is only applicable for autore-
gressive and vector GARCH models so far.
If there are no remaining multivariate ARCH effects in the standardized residuals,
then, ¢; should obey:

Cov(el,, €5 ) =0, ¥m > 0. (55)
To test whether this is true, the multivariate Ljung-Box test described in equation
(39) can be applied. Here, the Normal distribution of innovations is assumed.
Again, the robust version of the test with upper tail trimming by Tsay (2013) can
be applied here to overcome the non-normality of the data.
However, the state of research on model diagnostics for multivariate GARCH models
is quite scarce yet, especially when it comes to the implementation in statistical

software.
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7 Multivariate Empirical Results

This section deals with the multivariate empirical results of interdependencies in
the volatility of the five crypto coins. First, the sample correlation of the multi-
variate returns is analysed and a test for multivariate GARCH effects performed.
After multivariate conditional heteroscedasticity has been detected, the Dynamic
Conditional Correlation model by Engle (2002) is estimated based on the results for
the univariate GARCH models. There are several orders for the DCC fitted and the
two different multivariate distribution assumptions applied. After the DCC-(1,1)
process with a multivariate Student-t distribution showed the most appropriate fit
according to information criteria, the Value at Risk forecast for the weighted port-
folio returns series is prsented, aligned with the approach by Bauwens and Laurent
(2005). Also here, the forecasting performance of parameter refits every 300 vs.
every 10 days is compared. It shows that, even though significant interdependen-
cies in the multivariate volatility matrix exist, the employment of the multivariate
approach does not improve the Value at Risk forecasting performance compared to

the univariate results.

BitCoin LiteCoin DogeCoin FeatherCoin Ripple

Bitcoin 1.00

Litecoin 0.59 1.00

Dogecoin 0.47 0.40 1.00

Feathercoin 0.39 0.29 0.28 1.00

Ripple 0.24 0.29 0.31 0.21 1.00

Table 5: Lag ¢ = 0 sample correlation matrix go (Pearson) of the
five crypto currency log return series. T = 1554.

Combining the five cryptocurrency log return series into a multidimensional data
frame of equal length results in 7" x k = 1544 x 5 = 7720 observations. Table
(5) shows the sample correlation at lag ¢ = 0 and reveals a high connectedness
of the multivariate log returns. In general, Bitcoin shows the highest correlations
with the other currencies, the lowest correlation can be found between Feathercoin

and Ripple. Ripple in general shows the lowest correlation with the other currencies.

The Henze and Zirkler test (1990) rejects the assumption of multivariate normality

for the log returns of the cryptocurrencies. The Henze and Zirkler test is based
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on a non-negative functional distance that measures the distance between two dis-
tribution functions. If the data is multivariate normal, the test statistic HZ is
approximately log-normally distributed (Korkmaz et al., 2014).

The multivariate Ljung-Box Test from equation (39) is applied to the mean adjusted
multivariate log return series. The highly significant test results imply multivariate
GARCH effects in the data - this means that the conditional covariance matrix X3,
is time-variant. Results are also highly significant for the robust version of the test
which has been modified for heavy-tailed financial data.

The test result justifies the application of a multivariate GARCH model like the

Dynamic Conditional Correlation model.

Dynamic Conditional Correlation Model. The estimation of the DCC model
is done in two steps. First, the univariate GARCH models for the individual series
are fitted. In chapter (5), we obtained the models for the conditional univariate vari-
ance from table (4), where we selected the apARCH for Bitcoin, Ripple, Dogecoin
and Feathercoin and the eGARCH for Litecoin. To provide a mutual distribution
for the multivariate standardized errors in the Dynamic conditional Correlation
model, all univariate innovations in the GARCH models are assumed to follow a
skewed Student-t distribution, even though the skewed Generalized Error distribu-
tion seemed to deliver better forecasting results for Bitcoin - see univariate VaR
results in table (3).

The conditional variance then evolves according to:

opes = 0.129 4 0.307 - (lahe, 4] +0.035 - apcy—1)"1* 4+ 0.832 - oy,
€BC,t ~ 10.954,2.480-

o7pcy = €xp(0.0636 — 0.0428 - arse i1 + 0.6221 - [laprc—1|
—E(larrc -1l +0.9864 - log(oF ¢y _1)),
€rLTc,t ~ 11.050,2.909-

0% 8By = 0.2957 + 0.4430 - (|a% gpy 1| — 0.0665 - axrpi—1)"°%% + 0.6651 - 0% %3, 1,
EXRPt ~ 10.990,2.281-

oB6éEs = 0.176 +0.278 - (|} oqp—1| — 0.0584 - apogr,—1)""2 + 0.821 - 05585 11
€DOGE,t ~ 11.121,2.798-

o0 = 1.394 4 0.338 - (lafpcy 4| 4+ 0.267 - apres—1)" 0" +0.639 - 0058, ),
€rTot ~ 11.117,2.669-

Here, t¢ 4 denotes the skew Student-t distribution with skewness parameter £ and d
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degrees of freedom.

As the second step, the Dynamic Conditional Correlation model is now to estimate
the correlation matrix of the standardized innovations which were obtained with
the volatility series of the univariate GARCH models.

€& = (€BCts €Ltets EXRPL, €DOGE L EFTCL) s €t = Qit)\/Tiit- (56)

The DCC model by Engle (2002) is applied to €. The model is implemented
both with the multivariate Gaussian and the multivariate Student-t distribution
assumption for €. For both distribution models, a DCC-(1,1), -(1,2), -(2,1), and

-(2,2) process is estimated.

MYV Normal MYV Student-t
DCC-(1,1) DCC-(1,2) DCC-(2,1) DCC-(2,2) DCC-(1,1) DCC-(1,2) DCC-(2,1) DCC-(2,2)

ai 0.0474%%* 0.0474 0.0198 0.0186 0.0627*** 0.0559 0.0473* 0.0473*
asg 0.0344 0.0668 0.0197 0.0197

B1 0.9358%** 0.9358 0.9269*** 0.3231 0.9051%** 0.8973 0.8984*** 0.8984*
B2 0.0000 0.5619 0.0000 0.0000
shape 4.0000%** 4.0000%** 4.0000%** 4.0000%**
AIC 32.202 32.204 32.196 32.200 29.754 30.267 29.934 29.755
BIC 32.413 32.418 32.410 32.418 29.969 30.485 29.754 29.976

Table 6: Model parameters for the estimated DCC models.
T=1544, k=5, *** p-value < 0.001; ** p-value < 0.01; * p-value <
0.05.

Model parameters for univariate volatility series are listed in table

(4).

Table (6) shows the estimated parameters for the implemented DCC models. It
shows that adding additional lags to the model is unnecessary and produces in-
significant parameters. The DCC-(1,1) model performs best. The multivariate
Student-t distribution with 4 degrees of freedom provides a better fit for the heavy-
tailed data according to AIC and BIC. Thus, the resulting model equation for the

estimated conditional correlation matrix is:

Q; = (1 —0.0627 — 0.9051)5’ +0.0627Q;_1 + 0.9051(@,16271),
pt = J:Q.J, (57)

with J; = [qﬁlt/ S q,;kl’éz], where g;;; denotes the (i, )-th element of Q and S is de-

fined in equation (41). All parameters of the DCC-(1,1) with multivariate Student-t

distribution are highly significant, which shows that the conditional variance of the
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five cryptocurrencies is significantly affected by the preceding conditional correla-
tion.

The Ljung-Box test at lag ¢ = 10 for the univariate standardized residual series
shows that there are no remaining ARCH effects in the squared residual terms.
The Henze and Zirkler test shows that the multivariate residuals of the DCC do
not follow a multivariate Normal distribution, which justifies the application of the
heavy-tailed Student-t distribution. The multivariate Ljung-Box test from equation
(39) is also applied to the squared multivariate standardized residual series. The
test statistic Qx(m) = 323.472 is highly significant and rejects the null hypothesis
of no conditional heteroscedasticity. However, the standard version of the test is
inappropriate if the innovations aren not assumed to follow a Gaussian distribu-
tion. Therefore, the robust version of Qy(m) with 5% upper tail trimming by Tsay
(2013) is applied. @} (m) = 323.3069 also rejects the null hypothesis of no remain-
ing ARCH effects with a p-value of 0.001. The DCC has often been shown to be
rejected by model diagnostics (Tsay, 2013). However, some correlation between the
volatility of the different currencies has been detected on a statistically significant

level, which is now going to be further examined.

Figure (9) shows the dynamic correlations between the log returns series of the five
crypto coins that were estimated by the DCC model in equation (57). Table (7)
gives an additional summary of the mean and variance of the estimated dynamic
correlation.

The correlation between Bitcoin and Litecoin as two of the most popular currencies
is clearly the highest and also the most stable in comparison to the others since
it shows the lowest standard deviation. Figure (9) also shows that it is the only
correlation for Bitcoin with no peaks below zero. The correlation of Bitcoin with
Dogecoin and Feathercoin is generally more unsteady but still shows a quite high
mean correlation. Figure (9) reveals that the dynamic correlation of Dogecoin and
Feathercoin with the other currencies evolves quite equally. A similar picture can
be found for Ripple, where the correlation with the other currencies is evolving in a
similar manner and relatively low. The relationship between Feathercoin and Rip-

ple also appears to be unstable and shows swings in positive and negative directions.
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Figure 9: The estimated dynamic correlation between the currencies

modelled by a DCC-(1,1) with multivariate Student-t distribution.

T=1544.

BitCoin LiteCoin DogeCoin FeatherCoin Ripple

BitCoin 1.00
LiteCoin 0.6309 (0.1470) 1.00
DogeCoin 0.4893 (0.1789) 0.4675 (0.1545) 1.00

( )
( )
FeatherCoin  0.3661 (0.1899) 0.3027 (0.1847) 0.3190 (0.1795) 1.00
Ripple 0.2396 (0.1815) 0.2612 (0.1668) 0.3453 (0.1607) 0.2227 (0.1693) 1.00

Table 7: Mean and (standard deviation) of the lag £ = 0 correlations
in the multivariate volatility of the currencies estimated by the DCC
model in equation (57). T=1544.
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7. MULTIVARIATE EMPIRICAL RESULTS

Table (7) shows that the estimated dynamic conditional correlation of innovations
between the currencies is positive on average. Bitcoin has the overall highest cor-
relation with all other currencies, while Ripple shows the lowest correlation with
other currencies. Dogecoins correlation with the other coins is quite high. The
correlation between Bitcoin and Litecoin is the highest with the lowest standard
deviation. Feathercoin has on average the highest standard deviation in the cor-
relation with the other currencies. Figure (9) however, shows that the dynamic
correlation is varying over time, thus the interdependency between the currencies

behaves differently for several time periods.

Value at Risk Forecasting. To calculate the one-day-ahead Value at Risk fore-
cast for the multivariate model, the time series has to be transformed into a univari-
ate format. Equivalently to section (5) a rolling forecast with recursive window is
performed, with re-estimated parameters for the DCC every 300 days and every 10
days separately. Subsequently, the forecasted mean portfolio return and volatility
of all five currencies is calculated and the 1% and 5% quantile loss function gener-
ated. VaR forecasts are compared to the realized returns of the 1/k portfolio. To
calculate the loss function for the multivariate portfolio, a weight vector is applied
to the fitted mean and conditional covariance matrix of the DCC model, according

to the approach by Bauwens and Laurent (2005):

| =

k
,aPF,t—i-l = Zﬂi,t—‘rh 1= 17 cey k) k=5. (58)
i=1

In the 2-stage estimation of the DCC, fi;; for the individual series is obtained by
the univariate GARCH models. fipp; is then the average for the five fitted series.
Opri+1 is obtained from the 2t—matrix fitted at the second stage by applying a

weight vector to it:

1/k
w=| : : (59)
1/k kx1
. . 1/2
OPFt+1 = [wzt+1w:| (60)
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7. MULTIVARIATE EMPIRICAL RESULTS

Value at Risk is then the negative 1%- or 5%-quantile of the the conditional return

distribution:

VaRlajF,t-i-l = —Qa(TPF,tH | F}). (61)

which is determined by rpr; = ppr: + opri€pry, With €pp, again being a random
iid variable following the Student-t distribution with mean zero, standard deviation
one and shape parameter obtained by the fitted DCC. The implementation of the
VaR forecast via a DCC in R is aligned with the work by Ghalanos (2016), the
author of the rugarch and rmgarch package.

The Value at Risk forecast is performed for parameter re-estimates every 300 days

as well as every 10 days.

Figure (10a) and (10b) show the 1% and 5%-VaR forecasts of the DCC together with
the daily returns of the 1/k portfolio with parameter re-estimates every 300 days.
Compared to Figure (5), which shows the VaR results of the portfolio modelled via
a univariate eGARCH, one can also identify a volatile period in mid 2016, followed
by a stable period until early 2017 and a highly volatile period during the hype
from early 2017 until end of the observation span. For the 1%-VaR limit, there are
3 data points where the realized portfolio loss exceeds the forecasted Value at Risk
(0.4% violations). The LR test for unconditional coverage cannot reject the null
hypothesis of correct exceedances for both a-levels. Also the test for conditional
coverage does not reject the Hy of independent exceedances. At the 5%-VaR level,
there are 9 out of 37 violations found (1.2%). Even though this is a very low
violation rate, both tests for unconditional and conditional coverage are rejected.
Therefore, the violations in the forecast that was performed with the DCC are not
correct and independent from each other.

Like in chapter (5), a second VaR forecast for the portfolio is performed, with
parameters re-estimated every 10 days instead of every 300 days. The univariate
analysis showed that a more frequent refit does not provide more accurate Value at

Risk forecasts.
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Daily Returns and Value-at-Risk Exceedances
(Series: Cryptos, alpha=0.01)
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(a) 1%-Value at Risk. Parameters re-estimated every 300 days. % Viol: 0.4, p-Values:
LR, :0.062, LR : 0.175.
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(b) 5%-Value at Risk. Parameters re-estimated every 300 days. % Viol: 1.2, p-Values:
LRy :0.000, LR, : 0.000.

Figure 10: Value at Risk forecasts for the 1-day-ahead rolling forecast
of the 1/k portfolio estimated with a multivariate DCC according to
equation (57).

The model is built on a training data set of 800 observations, which
leaves 744 out-of-sample forecasts.

Parameters are re-estimated every 300 days with a recursive win-
dow, which leads to a total number of 3 refits.
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Daily Returns and Value-at-Risk Exceedances
(Series: Cryptos, alpha=0.01)
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(a) 1%-Value at Risk. Parameters re-estimated every 10 days. % Viol: 0.6, p-Values:
LRy :0.168, LR, : 0.379.
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(b) 5%-Value at Risk. Parameters re-estimated every 10 days. % Viol: 1.9, p-Values:
LRy :0.000, LR : 0.000.

Figure 11: Value at Risk forecasts for the 1-day-ahead rolling forecast
of the 1/k portfolio estimated with a multivariate DCC according to
equation (57).

The model is built on a training data set of 800 observations, which

leaves 744 out-of-sample forecasts.
Parameters are re-estimated every 10 days with a recursive window,

which leads to a total number of 75 refits.
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It shows that updating the Dynamic Conditional Correlation model parameters
more often does not improve the multivariate forecasting results either.

Figure (11a) shows the 1% Value at Risk exceedances for the Dynamic Correlation
model with parameters refitted every 10 days. In fact, the number of violations
increases from 3 to 4 out of 7 expected violations, which implies a violation rate of
0.6%. The test for unconditional coverage shows a p-value of 0.168 and the test for
conditional coverage can not be rejected with a p-value of 0.379 either. The VaR
results at the a = 5%-level show a different picture in Figure (11b). Even though
there is only a violation rate of 1.9%, with 14 out of 37 expected violations, the tests
by Christoffersen (1998) show that the unconditional and conditional coverage is
violated. Therefore, VaR violations in the forecast are not correct and independent
from each other. In comparison to Figure (6) and (5) where the aggregated portfolio
was forecasted with an eGARCH, the forecasted portfolio loss is also slightly higher,
the DCC model thus draws a more pessimistic picture.

It can be concluded that the DCC does not outperform the results by the simple
univariate eEGARCH with skewed Student-t distribution for the aggregated portfolio
which showed a good violation rate and did not fail the VaR backtesting. The most
accurate VaR results are still found with a univariate forecast for each individual
return series. Here, percentage violations between 0.4 and 0.7% can be found at the
a = 1%-level, while both the tests for conditional and unconditional coverage are
not rejected. Higher levels of portfolio aggregation might have led to information
losses for the individual return processes. Since there was a weight vector applied
to X for the calculated VaR quantile function in the multivariate approach - see
equation (60) - the model might not be able to identify dependencies in the volatility
of the individual currencies anymore. In the univariate analysis, the parameters for
the negative quantile function can also be obtained more specifically, i.e. by the
estimated skewness parameter.

Specifying the right distribution model is crucial when it comes to Value at Risk
forecasting and the results of the DCC could be improved by introducing a skewness
to negative quantile function of the aggregated portfolio. Dynamic conditional
correlation models in combination with multivariate skew densities have shown to

provide more accurate VaR results for financial data (Bauwens and Laurent, 2005).

The multivariate analysis has shown the following key findings: The multivari-
ate distribution of innovations is more appropriately modelled with a multivari-
ate Student-t distribution rather than the Gaussian. This is another finding that
proves the need for a heavy-tailed distribution when modelling the volatility of

cryptocurrencies and is already supported in the analysis of multivariate volatility
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interdependies by Katsiampa (2018). The conditional covariance of the five cryp-
tocurrencies is significantly affected by the covariance of past error terms, which
justifies the application of a multivariate approach to understand co-movements of
the cryptocurrencies volatility. However, the Ljung-Box test rejects the assumption
of no remaining multivariate ARCH effects in the squared residuals. The estimated
conditional correlation between the currencies is time-varying but positive on aver-
age. Those results are supported by the findings of Katsiampa (2018) and Corbet
et al. (2018), who also found that price and volatility developments of the currencies
are highly connected to each other. Bitcoin shows the strongest correlation to the
other currencies, while Ripples correlation to the other currencies appears to be
more weak and unsteady.

The forecasting of Value at Risk has shown that consulting a multivariate approach
does not make the results more accurate. Concering the forecasting of a portfolio
downside risk for an aggregated portfolio, it is more efficient to apply a univari-
ate GARCH model to the aggregated univariate portfolio return series rather than
choosing the more complex Dynamic Conditional Correlation model. Furthermore,
an aggregated portfolio shows less accurate forecasting performance than the fore-
casting of the individual return series. The most accurate results were produced
with the apARCH, eGARCH and csGARCH in combination with a skewed Student-
t or skewed Generalized error dsitribution for the individual volatility forecasts.
This is a result that has already been found for the forecasting of traditional assets.
Kole et al. (2017) have shown that higher levels of portfolio aggregation and the
multivariate approach via a Dynamic Conditional Correlation model does not out-

perform the Value at Risk forecasting of univariate GARCH models in many cases.
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8 Conclusion

The immense popularity of the altcoin market and the increasing interest in me-
dia and economics has lead to a lot of scientific attempts to explain what drives
cryptocurrency price developments and their highly volatile behaviour. Still a lot is
unknown about this emerging market. In this thesis, one of the first analyses of the
interconnectedness between five different cryptocurrency volatilities and its impact
on forecasting accuracy has been made. Its main attempt was to find out whether
the forecasting accuracy of the conditional heteroscedasticity can be improved by
taking the conditional covariance into account. It showed that there is a strong
interconnectedness between the volatility of the five currencies, however, compared
to a univariate forecast of the individual series, the implementation of a Dynamic
Conditional Correlation model does not improve the Value at Risk forecasting ac-
curacy.

A descriptive analysis of the stylized facts for Bitcoin, Litecoin, Dogecoin, Ripple
and Feathercoin has been made. It showed that, except for Bitcoin, all currencies
are positively skewed and all show heavy-tail behaviour, next to conditional het-
eroscedasticity in the evolution of their volatility. They also exhibit a high standard
variation of returns, with Bitcoin being the least risky currency. Those results are
supported by previous findings in academic research on the cryptocurrency market
(Chu et al. 2017, Catania and Grassi 2017, Gkillas and Katsiampa 2018).

Several univariate GARCH models were fitted for the individual return series of the
five coins. Results showed that the innovations of the log return series are most
appropriately modelled with a skewed distribution like the skewed Student-t or the
skewed Generalized Error distribution. It has been shown that the conditional het-
eroscedasticity is modelled best with an asymmetric power ARCH, a component-
standard GARCH or an exponential GARCH. Predominately, the apARCH per-
formed best, providing the best fit according to information criteria and residual
plots. The high performance of the apARCH also remains during the rolling fore-
cast of portfolio downside risk. It has already been identified in the literature as
a powerful forecasting tool for conditional heteroscedasticity (Kuester et al., 2006).
It also shows the need for a GARCH-model that takes the leverage effect into ac-
count since it has already been found that the volatility process of cryptocurrencies
shows an asymmetry to the sign of past innovations (Catania et al. 2018, Phillip
et al. 2018). The skewed Generalized Error distribution provides the overall lowest
number of VaR violations but usually goes along with some violations of model as-

sumptions and worse backtesting results. Furthermore, variations in the frequency
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of parameter refits for the rolling 1-day ahead forecast show that the model pa-
rameters are stable over time and a more frequent update does not improve the
performance of the forecast significantly.

After the apARCH and eGARCH with skewed Student-t distribution have been
chosen to model the volatility of the univariate innovations, the Dynamic Condi-
tional Correlation model with a multivariate Student-t distribution has been imple-
mented to estimate the conditional correlation of the multivariate innovations. The
parameters of the DCC-(1,1) process are highly significant, which shows that the
conditional variance of the five cryptocurrency returns series is significantly affected
by the preceding conditional correlation in the multivariate volatility. A graphical
and descriptive analysis of the estimated dynamic correlation showed that the rela-
tion between the volatility of the currencies is positive on average but time-varying.
In general, Bitcoin shows the highest connectedness with other currencies, while
the conditional variance of Ripple is least correlated to the others. Even though a
strong positive relationship between the currencies has been found, the multivariate
approach does still not improve the Value at Risk forecasts. A more frequent update
of the model parameters still does not outperform the portfolio forecast with a uni-
variate GARCH model. The best forecasting results are found with the univariate
GARCH-type models for the individual return series. The results are supported by
the findings by Katsiampa (2018), who found a strong but time-varying relation-
ship between the conditional heteroscedasticity of the main currency prices via a
multivariate BEKK approach, and the results by Kole et al. (2017), who found that
Dynamic Conditional Correlation models and aggregated portfolios usually can not
outperform the Value at Risk accuracy of univariate GARCH models with lower

portfolio aggregation.

The univariate results have shown that there is a need for skewed heavy-tailed
distributions to model the innovations of the crypto returns. For the Dynamic
Conditional Correlation model, forecasting results could have been improved by in-
troducing a skewness into the multivariate Student-t distribution (Bauwens et al.,
2006). Furthermore, the evaluation of a portfolio via Value at Risk has been found
to be subject to a few limitations. Even though it is a popular tool that is also eas-
ily comprehensible to laymen, it does not differentiate between ”good” and ”bad”
risk and reflects only the pessimistic view on the risk of a portfolio. The possi-
bility of highly positive portfolio returns is not taken into account (Dembo and
Freeman, 2001). Artzner et al. (1999) have also shown that VaR does not oper-
ate sub-additive, i.e. VaR can report a higher total portfolio risk than the sum of

the individual positions. Further analysis of the performance of DCC models in the
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crypto market could investigate alternative risk measures like the Conditional Value
at Risk (CVaR) (Artzner et al., 1999)) or the Expected Shortfall (ES) (Acerbi and
Tasche, 2002). Scientific research of the cryptocurrency volatility is an emerging
topic of interest and there is going to be better understanding of dependencies in
the altcoin market as soon as longer observation spans are available for statistical
analysis. Right now, researchers need to choose coins that existed for a long time
but might have lost their importance - like Feathercoin - to obtain a large sample
size. Future analysis will hopefully benefit from a more stable market.

Regarding conditional heteroscedasticity, we have seen that the dynamics between
the volatilities of the return series are not constant over time. The conditional corre-
lation between the multivariate return series could be modelled more appropriately
with a Regime Switching DCC (Pelletier, 2006). In this model, the correlation ma-
trix of the volatilities is constant within a regime but varies across different regimes.
This might be a tool to capture the different trends that the altcoin market expe-

rienced since it emerged in 2009.

The results have improved the understanding about how volatilities of cryptocur-
rencies are connected to each other. However, there is still much we don’t know
about this emerging market. A lot of academic work has already been spent on
the effect of policy and social media activities on crypto prices, but there might
be way more influencing variables that we are not aware of yet. An interesting
upcoming event is the full utilisation of the Bitcoins that are left to mine. In fall
2018, only 18 percent are left until the limitation of 21 million Bitcoins available to
mine is reached (Blockchainhalf.com). We have found that the development of all
other cryptocurrencies is strongly correlated to Bitcoin. Therefore, the limit of the
Bitcoin supply could have a huge impact on the altcoin market and the financial

industry in general.
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Figure 12: Plot for the autocorrelation and partial autocorrelation
of the squared logarithmic returns of the individual cryptocurrency
return series. Blue dashed line indicates the 5% significance level.
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Figure 13: Quantile-to-quantile plots for the distribution of stan-
dardized errors for the selected univariate GARCH models
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Figure 14: Autocorrelation of squared standardized errors for the

selected univariate GARCH models. Red dashed line indicates the
5% significance level.
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B. ELECTRONIC ATTACHMENTS

B Electronic Attachments

The electronic attachment contains a PDF document ” Guideline for R-Codes” and
two folders ”Code” and ”Data”:

e "Guideline for R-Codes” contains a listing of the different R-Codes and ex-

plains the content and data in more detail.

e "Code” contains 11 R-Codes that are to be executed in the consecutive order

in which they are numbered.

e "Data” contains the original data sets of the five cryptocurrency daily closing
price time series obtained from Coingecko.com, and the datasets built in the

R-Codes.
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