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Abstract

Cryptocurrencies as an investment have received increasing attention by media and

international governments over the last years. However, little is known yet about

the dynamics that drive these highly volatile alternative assets. This thesis studies

the dynamic interdependencies between the volatility of Bitcoin, Litecoin, Ripple,

Dogecoin and Feathercoin via the Dynamic Conditional Correlation model by Engle

(2002) with the multivariate Student-t distribution. The main question is whether

a multivariate approach improves the Value at Risk forecasting accuracy for the

conditional heteroscedasticity in comparison to univariate GARCH-type models.

Results show that there is a high interconnectedness between the volatility of the

currencies. However, the Dynamic Conditional Correlation model can not deliver

better forecasting results than the univariate GARCH-type models for the individ-

ual cryptocurrency return series.
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1. INTRODUCTION

1 Introduction

Over the last years, the public interest in cryptocurrencies has increased dramati-

cally. The decentralized peer-to-peer system makes cryptocurrencies an attractive

phenomenon on the internet and many enthusiasts see it as an independent alterna-

tive towards the traditional financial market which has experienced bad reputation

ever since the market turmoil of 2008. Since mid 2017, many cryptocurrencies have

experienced an extreme price increase which provided the early adopters with an

immense return for their former low priced investments. The cryptocurrency market

has been extremely volatile since then, which has lead to a lot of economic and sci-

entific attempts to understand and predict the risk of investment. Previous analyses

have focused on the determinants of cryptocurrency prices or their interconnected-

ness with traditional markets. Other authors studied the sociodemographic profile

of cryptocurrency buyers and tried to find relations with social media and browsing

activities. Yelowitz and Wilson (2015) analysed Google trends data and found that

a high interest in Bitcoin is positively correlated with computer programming and

illegal activity search terms online.

Many academic analyses focus on understanding the highly volatile behaviour of the

price developments. Using GARCH-type models to determine the risk of Bitcoin

and other cryptocurrencies has become a popular topic in academic research over

the last two years. However, less is known yet about the interdependencies between

the volatility behaviour of different coins.

The main attempt of this thesis is to explore whether a multivariate approach can

improve the modelling and forecasting of volatility for the selected cryptocurrencies.

It is to find out if there are any correlations and mutual dynamics in the altcoin

market that help to determine the volatility of the single currencies or if the trends

are very particular for every currency and they are modelled more appropriately

via a univariate approach. Therefore, there are GARCH-type models applied to

the univariate log return series first. Several variance models from the GARCH

family are utilized to model the evolution of the conditional variance of the return

series. For the distribution of the innovations, heavy-tailed and skewed alternatives

are applied next to the Gaussian distribution since previous research has brought

up findings in favour of heavy-tailed distributions for the returns of financial as-

sets. The different models with different distribution assumptions are going to be

evaluated via model diagnostics and information criteria, as well as their ability to

forecast the downside portfolio risk (VaR). Next to the single return series of the

1



1. INTRODUCTION

five analysed currencies, an aggregated portfolio is also modelled via a univariate

approach.

The results of the univariate empirical analysis are going to be used to proceed to

a multivariate volatility modelling approach. The residuals of the selected GARCH

models are implemented to model the time-varying covariance of the volatility of

the five currencies. The multivariate Dynamic Conditional Correlation model by

Engle (2002) thus is applied to the multivariate log return series. The fit of the

multivariate Normal distribution for the innovations is outperformed by the multi-

variate Student-t distribution. After fitting the DCC model, its ability to forecast

Value at Risk for an aggregated portfolio is evaluated and eventually compared to

the results for the univariate GARCH models.

The thesis is organized as follows: First, there is an introduction on the cryptocur-

rencies used in this paper. The currencies Bitcoin (BTC), Litecoin (LTC), Ripple

(XRP), Dogecoin (DOGE) and Feathercoin (FTC) are selected because they have

been operational for some time already, which is in favour of statistical time series

analysis. There is a short description of the single currencies, pointing out the main

technical differences between them. This is followed by a review of previous litera-

ture on volatility modelling for cryptocurrencies. The majority of authors focus on

GARCH-type models for Bitcoin - the most popular currency on the altcoin market.

The choice for a certain GARCH model differs, but most authors have found the

Gaussian distribution to be inappropriate to model the innovations of the log re-

turn series and proceed to skewed alternatives. Other authors analyse the dynamics

between cryptocurrencies and the traditional asset market. Fewer have focussed on

the multivariate dynamics between the volatility of different crypto coins so far.

It follows a theoretical section with an explanation of the model equations of the

different applied GARCH type models. Also there is an overview of the different dis-

tributions that the innovations are assumed to follow. Besides the Normal distribu-

tion, the heavy-tailed Student-t distribution, as well as its skewed modification and

the skewed Generalized Error distribution are described. The Maximum-Likelihood

estimation for the simple GARCH model by Bollerslev (1986) is outlined. Then,

there is an explanation of the different model diagnostics that are appropriate for

financial volatility analysis. Since the models are also evaluated by their ability to

forecast the realized portfolio loss, the riskmetric Value at Risk and its application

to GARCH processes is introduced.

Next, the results for the univariate empirical analysis of the five crypto return se-

ries are presented. First, the stylized facts are shown, which highlight the skewed
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1. INTRODUCTION

and heavy-tailed distribution of the log returns that is typical for financial time

series. Also, an analysis of the autocorrelation of the returns reveals conditional

heteroscedasticity in the data, which justifies the application of GARCH models.

The different GARCH models, namely the simple GARCH, eGARCH, iGARCH,

apARCH, cs-GARCH and gjr-GARCH with the different distribution assumptions

for the innovations are applied to the series and compared via diagnostic checking,

information criteria and Value at Risk forecasts. The results show that the Gaussian

distribution is clearly outperformed by the heavy-tailed distributions when it comes

to model fit and forecasting performance. The apARCH, eGARCH and csGARCH,

combined with the skewed Student-t or skewed Generalized error distribution for

the innovations, seem to be most appropriate to model and forecast the dynamics of

the univariate volatility. Then, the out-of-sample rolling forecast is executed with

a higher number of model refits for the aggregated portfolio. It shows that a more

frequent update of model parameters does not improve the forecasting results.

The next section outlines the theoretical framework for the multivariate analysis.

Since the estimation of Dynamic Conditional Correlation models requires higher

computational effort, the presence of multivariate conditional heteroscedasticity in

the data should be detected ex ante. Therefore, it is useful to apply the multivariate

Ljung-Box test to find time-variant dependencies in the cross correlation matrix.

Then, the Dynamic Conditional Correlation model by Engle (2002) is defined. The

model estimates the dynamic correlation matrix of the standardized innovations

from the univariate series and thus models dynamics between the data. The condi-

tional distribution of the multivariate volatility can be modelled by a multivariate

Gaussian distribution or the multivariate Student-t distribution. Next, the 2-stage

estimation of the DCC via Quasi-Maximum-Likelihood is described. At the first

stage, the volatility of the univariate return series is obtained and the standard-

ized residuals are used to estimate the mutual conditional correlation matrix at

the second stage. The last chapter for the theoretical framework gives an overview

of additional model diagnostic techniques that can be applied to the multivariate

residuals.

After that, the results for the multivariate part of the empirical analysis are pre-

sented. Multivariate conditional heteroscedasticity in the sample correlation ma-

trix is detected, which justifies the application of the DCC. Several DCC orders

are applied with the conditional multivariate Normal and multivariate Student-t

distribution, using the results from the univariate GARCH analysis to estimate the

correlation of volatilities. It shows that a simple DCC order of lags (1,1) with the

multivariate Student-t distribution provides the most appropriate fit according to
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2. BACKGROUND ON CRYPTOCURRENCIES

information criteria. After fitting the model, a rolling out-of-sample forecast for the

Value at Risk is performed. Therefore, an aggregated portfolio is created. Its dis-

tribution is determined by the forecasted mean and covariance matrix of the DCC,

according to the approach by Bauwens and Laurent (2005). However, the Value at

Risk forecast with the multivariate approach does not show more accurate results

than the univariate approach for the aggregated portfolio. Moreover, Value at Risk

forecasting of the univariate individual return series can not be outperformed by

the aggregated univariate or multivariate approach.

As a final conclusion, the results and their limitations are discussed and implications

for further research are given.

2 Background on Cryptocurrencies

A cryptocurrency can be defined as ”a digital asset designed to work as a medium of

exchange using cryptography to secure the transactions and to control the creation

of additional units of the currency” (Chu et al., 2017, pg. 1).

In the following section, there is a brief overview on the five cryptocurrencies that are

used in this study. Cryptocurrencies are digital currencies and mainly characterized

by their decentralization and trading on an online peer-to-peer network. The digital

coins are generated via cryptographic techniques and recorded and verified by the

community. Bitcoin was the first decentralized currency emerging in 2008 and

has entailed many successors. The website Coinmarketcap.com lists 1969 different

operating cryptocurrencies in September 2018. The five currencies used in this

thesis were chosen since they are operational for a long time and provide a high

observation span, which is of benefit to statistical analysis.

Bitcoin (BTC) is the first cryptocurrency and has been operational since 2009.

In 2008, a person with the pseudonym ”Natoshi Sakomoto” created a document on

the alternative currency, which has become the most traded coin on the market to-

day. It was the first decentralized currency that runs on a peer-to-peer network with

transactions between users happening without mediation by a third party (e.g. a

financial institution). The transactions are recorded via a Blockchain, an extendible

list of datasets that are connected by cryptographic procedures and verified by a

network of individuals using the Bitcoin software. The individuals who offer their

computer power to keep track of the transactions are called miners. Miners solve

a cryptographic puzzle that uses the transaction data. This is how Bitcoins are
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2. BACKGROUND ON CRYPTOCURRENCIES

created, which gives further incentive to miners on top of transaction fees (Chuen

et al., 2017). When Sakomoto first published his document on the new cryptocur-

rency, there were still 50 BTC generated during the mining process of one block.

The supply of Bitcoin is limited to 21 million and the reward drops by 50% after

every 210.000 transaction blocks (Nakamoto, 2008). In September 2018, the reward

for every mined block is 12.5 coins and only 18 percent of the Bitcoins are left to

be mined (Blockchainhalf.com).

Due to the immense consumption of computation power - a regular PC would need

several years to solve a puzzle - mining has become non profitable for individuals

and mainly been commercialized over the last years (Chuen et al., 2017).

The usage of cryptographic techniques ensures that transactions of Bitcoins can

only be executed by the Bitcoin owners and the currency can not be spent twice.

The system is safe against transaction hackers since changing the transaction his-

tory would require redoing all puzzles of all blocks linked together in the chain.

That again would take enormous computational power for the hacker (Nakamoto,

2008).

The source code for Bitcoin is publicly available online on Github.com, which has

motivated many successors to create alternative cryptocurrencies with improved

qualities.

Litecoin (LTC) released in October 2011, is one of the most important successors

of Bitcoin and its operation is nearly identical to Bitcoin. It is a peer-to-peer decen-

tralized currency based on an open source security protocol, published in October

2011 by Charles Lee (Chuen et al., 2017). The only difference to Bitcoin is that

blocks are generated faster (2,5 minutes instead of 10), which is why transactions

by users can be made faster. Therefore, higher trading volumes can be handled and

the network is scheduled to produce 84 million coins eventually (Litecoin.org).

Ripple (XRP) was developed completely independent from Bitcoin. It is built

on an open source decentralized consensus protocol, even though the deployment

is provided by Ripple Labs who hold 25% of the currency, next to 20% held by

the founders. It is operating since 2012. In general, Ripple is based on a public

data bank where different account balances are registered. Additionally, the register

contains options on goods and traditional currencies (Dollar, Yen, etc.) which can

be bought in the system using the intern currency ”XRP”. XRP can either be

traded itself or used to make payments for other goods and currencies.

In the Ripple system there are users who make payments, market makers who enable
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2. BACKGROUND ON CRYPTOCURRENCIES

the trading in the system, and validating servers that run the protocol in the system

to check and validate transactions. All historic transactions and account balances

are publicly available.

Just like Bitcoin, the transactions in the Ripple system are ensured by an Elliptic

Curve Digital Signature Algorithm. But instead of using miners, Ripple relies on

the consensus of the validating servers to vote for the correct transaction in the

system. While Bitcoin transactions can only be confirmed after mining the blocks,

which takes an hour on average, the consensus in Ripple system is reached within

a few seconds. Therefore, faster payments are supported (Armknecht et al., 2015).

Dogecoin (DOGE) was usually intended as a parody of Bitcoin and is named

after the Shiba Inu dog ”Doge” which became a popular internet phenomenon in

2013. Dogecoin is based on the same operating system as Bitcoin and Litecoin,

but the block generating algorithms work even faster than for Litecoin with one

block being produced every minute. The ultimate number of Dogecoins is not

limited (Dogecoin.com). The currency, which was originally intended as a joke, has

experienced immense popularity after its creation in 2013. The trading of DOGE

is processed in social networks like Reddit and Twitter (Chuen et al., 2017).

Feathercoin (FTC) is another cryptocurrency which is based on the Bitcoin op-

erating system and was released in April 2013. Just like other Bitcoin successors it

works with a faster average block time of one minute. The total number of Feather-

coins is limited to 336 millions, with a block reward halving every 2.1 million blocks.

A special feature of Feathercoin is the Neoscript Algorithm that is used for mining

and requires less computer power than the Bitcoin algorithms (Feathercoin.com).

Therefore, Feathercoin experienced a hype in late 2013/early 2014 - see figure (1)

in section (5) - but was eventually outperformed by other emerging currencies.
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3. PREVIOUS RESEARCH ON VOLATILITY OF CRYPTOCURRENCIES

3 Previous Research on Volatility of Cryptocur-

rencies

The interest in the analysis of the variation in cryptocurrency prices mainly arises

since they are highly volatile compared to traditional currencies. When invested at

the right time, they provided their owners with immense profits. In the past two

years, researchers have made effort to study the variations of cryptocurrency returns

via Generalized Autoregressive Conditional Heteroscedasticity (GARCH) models.

However, fewer studies have made effort to study the multivariate dynamics of the

crypto market.

Most studies so far focus on the modelling of Bitcoin only, which is the first and

most popular cryptocurrency. Its high market volume and long observation span

makes it most attractive for statistical analysis. Since Bitcoin and other cryptocur-

rencies have experienced immense popularity over the last years, a lot of academic

effort has been made to determine the development of prices. A lot of studies have

focused on the interconnectedness between Bitcoin and Twitter or Google activities.

Georgoula et al. (2015) have shown that the Twitter sentiment ratio is positively

related with Bitcoin prices. Other authors like Ciaian et al. (2016) have focused

on the impact of investors and macro-economics and found that market forces and

Bitcoin attractiveness for investors have a big influence on the short run but does

not seem to influence the overall long-term price development.

Concerning stylized facts, cryptocurrency time series are characterized similarly to

other financial time series. They exhibit time-varying volatility, extreme observa-

tions and an asymmetry of the volatility process to the sign of past innovation

(Catania et al., 2018). Just like other econometric time series, the log returns of

the cryptocurrencies have been found to show major deviations from normality.

Chu et al. (2017) find that seven of the most important currencies are positively

skewed. They also show extreme volatility compared to traditional assets, espe-

cially with regard to inter-daily prices. Gkillas and Katsiampa (2018) study the

heavy-tail behaviour of Bitcoin, Bitcoin Cash, Etherum, Ripple and Litecoin. They

find that cryptocurrencies are more risky and volatile than traditional currencies

and also show heavier tail behaviour. Bitcoin and Litecoin showed to be the least

risky currencies of the five analysed coins. Phillip et al. (2018) study the stylized

facts of 224 different cryptocurrencies and find that they show leverage effects and

a negative correlation between one-day ahead volatility and returns. They also find

that the returns follow a Student-t distribution rather than a Normal distribution.

Besides stylized facts, many authors have studied the conditional variance of the
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3. PREVIOUS RESEARCH ON VOLATILITY OF CRYPTOCURRENCIES

individual cryptocurrency return series via Generalized Autoregressive Conditional

Heteroscedasticity (GARCH) models. Chen et al. (2016) give one of the first anal-

ysis of the dynamics in the CRIXindex family. The CRIX (CRypto currency In-

deX) provides market information based on the 30 most important currencies and is

modelled by a ARIMA(2,0,2)-t-GARCH(1,1) process to capture the volatility of the

index return series. Chu et al. (2017) apply different univariate GARCH-type mod-

els to seven of the most popular currencies (Bitcoin, Dash, Litecoin, MaidSafeCoin,

Monero, Dogecoin and Ripple) and mainly claim the iGARCH and gjrGARCH

to be the best models to explain univariate volatility for those currencies. They

also show that cryptocurrencies exhibit extremely high volatility when they look at

inter-daily prices.

Katsiampa (2017) explores several conditional heteroscedasticity models to Bitcoin

and finds the autoregressive compenent GARCH model to fit the data best, which

has both a long-run and a short-run component of conditional variance. Katsampias

study has been replicated by Charles and Darné (2018) who use robust QML es-

timators to fit the GARCH-type models instead of standard Maximum-Likelihood

estimators to take the conditional non-normality of the returns into account. Im-

provements in the estimation method again result in the choice of an AR-csGARCH

process to describe the conditional heteroscedasticity in the Bitcoin return series.

However, both papers miss out to investigate whether an alternative distribution

like the Student-t or skewed Student-t distribution might fit the log returns better.

Several studies have found that fat-tailed, possibly skewed distributions are more

adequate to describe financial data (Kuester et al., 2006).

Angelini and Emili (2018) attempt to forecast the volatility for six cryptocurrencies

with GARCH-type models. They compare the forecasting performance of the simple

GARCH, eGARCH, tGARCH, GARCH-M and apARCH with a training dataset

of 700 daily prices, combined with a Student-t distribution for the innovations.

Then, they perform h = 1, ..., 7 steps-ahead forecasts with a recursive window. The

eGARCH seems to perform best for the higher forecast horizons overall, however,

results differ between the different currencies and forecasting horizons.

Catania and Grassi (2017) claim that standard volatility models like the GARCH

are outperformed by alternatives like the Score Driven model with conditional Gen-

eralized Hyperbolic Skew Student-t innovations (GHSKT). With the chosen model

they legitimately react to the skewness of the distribution of the log returns, how-

ever, they miss out on comparing the models via Value at Risk - performance is

evaluated by AIC and BIC.

Other studies also explore the dynamics between Bitcoin price volatility and the

8
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US stock market. Conrad et al. (2018) use the GARCH-MIDAS model to extract

long-term and short-term volatility components of the Bitcoin price series. They

find that the S&P realized volatility has a negative and highly significant effect on

long-term Bitcoin volatility. According to their results, Bitcoin volatility is nega-

tively correlated to the US stock market volatility.

However, fewer literature has focussed on the dynamic correlation of volatility be-

tween the different cryptocurrencies yet, with the most papers on this issues being

published in 2018. Corbet et al. (2018) study the relationship between Bitcoin,

Ripple and Litecoin and other traditional financial indices by generalized variance

decomposition methods and find that the price developments of cryptocurrencies

are highly connected to each other while they are disconnected to mainstream assets

on the long run. Spillovers between Bitcoin and traditional indices (e.g. SP500 and

VIX) can only be observed on the short run.

Katsiampa (2018) employs an Asymmetric Diagonal BEKK multivariate GARCH

model with a multivariate Student-t distribution for the error terms to the log re-

turns of Bitcoin, Etherum, Ripple, Litecoin and Stellar to estimate the dynamic

volatility of those currencies. He found that the conditional covariances were sig-

nificantly affected by the past covariances of the innovations. The conditional cor-

relation between the five currencies has shown to be mainly positive but changing

over time.

The analysis of the evolution of different cryptocurrency volatilities has been a

popular field of econometric research for the last two years. Many authors have

already compared several univariate GARCH-type models to predict Value at Risk

forecasts for the most popular cryptocurrencies and few focused on the dynamic in-

terdependencies of conditional covariances. This thesis attempts to combine those

two approaches and find out whether the performance of Value at Risk forecasting

can be improved by employing a multivariate approach.
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4 Univariate Volatility Modelling

This section deals with the theoretical framework for univariate volatility modelling

and Value at Risk forecasting.

Volatility models are also referred to conditional heteroscedasticity models. Here,

volatility means ”the conditional standard deviation of the underlying asset return”

(Tsay, 2005, pg. 109). Volatility modelling provides a simple approach to calculat-

ing Value at Risk of a financial position in risk management. It can improve the

efficiency in parameter estimation and the accuracy in interval forecasting. Volatil-

ity is not directly observable, however, it has some characteristics that are common

for asset return series. First, there are volatility clusters - volatility may be high

for certain periods and low for others. Second, volatility evolves over time in a

continuous manner. Third, volatility does not diverge to infinity, but varies within

some fixed range. Fourth, volatility seems to react differently to a big price increase

or a big price drop, which is referred to as ”leverage effect”. (Tsay, 2005).

4.1 Structure of Univariate Volatility Models

Let rt be the log return of an asset at time index t. In volatility modelling the series

rt is serially uncorrelated but dependent. The conditional mean and variance of rt

given Ft−1 can be described as

µt = E(rt|Ft−1), σ2
t = V ar(rt|Ft−1) = E[(rt − µt)2|Ft−1], (1)

where Ft−1 denotes the information available at time t−1. If the serial dependence of

rt is weak, a simple time series model for µt can be entertained, such as a stationary

Autoregressive Moving Average (ARMA-p, q)-process:

rt = µt + at, (2)

µt =

p∑
i=1

φiγt−1 −
q∑
i=1

θiat−i, γt = rt − φ0 −
k∑
i=1

βixit, (3)

where k, p and q are nonnegative integers, and xit are explanatory variables. γt rep-

resents the adjusted return series after removing the effect of explanatory variables.

at is referred to as the shock or innovation of a time series. Combining equation

10
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(1) and (3) gives:

σ2
t = V ar(rt|Ft−1) = V ar(at|Ft−1). (4)

Conditional heteroscedasticity models are concerned with the evolution of σ2
t . The

patterns under which σ2
t evolves over time distinguishes one volatility model from

another. Equation (4) is referred to as the volatility equation of rt (Tsay, 2005).

In volatility modelling, the first step is to test for conditional heteroscedasticity, also

known as Autoregressive Conditional Heteroscedasticity (ARCH) effects. These can

be detected by applying the univariate Ljung-Box Test (McLeod and Li, 1983). Let

at = rt−µt be the residuals to the mean equation, then the test statistic Q(m) can

be applied to the [a2t ] series. The null hypothesis is that the first m lags of the Auto

Correlation Function of a2t are zero. The test statistic is defined as:

Q(m) = T (T + 2)
m∑
`=1

ρ2`
T − `

, (5)

where T is the length of the return series, ρ` is the estimated autocorrelation at lag `

and m is the maximum number of tested lags. The test is rejected if Q(m) > χ2
1−α,d

for d degrees of freedom.

Variance Model. The most common approach to model conditional heteroscedas-

ticity for univariate time series is a simple GARCH model (Generalized Au-

toregressive Conditional Heteroscedasticity) (Bollerslev, 1986)). Here, at follows a

GARCH-(m, s) model if

at = σtεt, (6)

and the volatility of the innovations evolves according to:

σ2
t = α0 +

m∑
i=1

αia
2
t−i +

s∑
j=1

βjσ
2
t−j, (7)

where [εt] is a sequence of iid random variables with mean zero and variance one.

For m = 0 the process reduces to the ARCH(s)-process, while for m = s = 0 the

innovations at are assumed to be white noise (Bollerslev, 1986). For the simplest

version of a GARCH-(1, 1) model, the equation can be reduced to

σ2
t = α0 + α1a

2
t−1 + β1σ

2
t−1, 0 < α0, 0 ≤ α1, β1 ≤ 1, (α1 + β1) < 1. (8)

11
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The latter constraint on (αi+βj) implies that the conditional variance of at is finite,

whereas its conditional variance of σ2
t evolves over time. A large shock at−1 or a

large σt−1 will give rise to a larger σt. The tail distribution of a GARCH process is

heavier than that of the Normal distribution. The model provides a simple para-

metric function that can be used to describe the evolution of volatility (Tsay, 2005).

This version of the GARCH model can be denoted as the standard GARCH-(1, 1)

model.

Furthermore, there is the strictly stationary integrated GARCH model (iGARCH)

(Engle and Bollerslev, 1986) for the particular case of the standard GARCH(1, 1)

model where α1 + β1 = 1. This change of the constraint on the α and β parame-

ters makes the model stationary, therefore, structural breaks in the data should be

investigated ex ante (Ghalanos, 2018).

Some models take the asymmetry of positive and negative shocks into account. The

market might react differently to a large negative shock in terms of the evolution

of volatility than to a large positive shock. This is modelled by the exponential

GARCH (eGARCH) model (Nelson, 1991), where the volatility equation can be

written as

log(σ2
t ) = α0 + α1at−1 + γ1[|at−1| − E(|at−1|)] + β1log(σ2

t−1), (9)

for 0 < α0, 0 < α1, 0 < β1, 0 < γ1. α1 captures the sign effect and γ1 captures the

size effect of the past innovation.

Another asymmetric GARCH is denoted by the GJR-GARCH model due to

Glosten et al. (1993):

σ2
t = α0 + α1a

2
t−1 + γ1It−1α

2
t−1 + β1σ

2
t−1, (10)

for 0 < α0, 0 < α1, 0 < β1, 0 < γ1, where It−1 = 1 if at−1 ≤ 0 and It−1 = 0 if

at−1 > 0. Here, γ1 represents the asymmetric parameter since a positive shock will

affect σ2
t by α1 and a negative shock by α1 + γ1.

The asymmetric Power ARCH (Ding et al., 1993) denoted by

σδt = α0 + α1(|a2t−1| − γ1at−1)δ + β1σ
δ
t−1, (11)

for 0 < α0, 0 ≤ α1, 0 ≤ β1, 1 < γ1, 0 < δ models for both the leverage and the effect

that the sample autocorrelation of absolute returns are usually larger than that of

squared returns. The δ parameter of the apARCH is a parameter for the Box-Cox

transformation and γ1 is a leverage parameter (Chu et al., 2017). It is equivalent to

12
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the standard GARCH if δ = 2 and γ1 = 0 and to the gjrGARCH if δ = 2 (Ghalanos,

2018).

The component standard GARCH model (csGARCH) (Engle and Lee, 1999)

contains a time-varying intercept and decomposes the conditional variance into

permanent and transitory components to investigate long- and short-run moments

of volatility. The model is deployed as follows:

σ2
t = qt + α1(a

2
t−1 − qt−1) + β1(σ

2
t−1 − qt−1), (12)

qt = α0 + pqt−1 + φ(a2t−1 − σ2
t−1), (13)

for 0 < α0, 0 ≤ α1, 0 ≤ β1, 0 < δ, 0 ≤ φ. If α1 + β1 < 1 and p < 1 weak stationarity

holds. qt represents the permanent component of the conditional variance. It can

be seen as a time-varying intercept for the conditional heteroscedasticity.

The simple GARCH, iGARCH, eGARCH, apARCH, gjrGARCH and csGARCH

are going to be applied to the five cryptocurrency time series.

Distribution model In the standard version of the GARCH-model, εt follows

an independent identically Gaussian distribution. The simple GARCH-(1,1) model

with Normal distribution assumption is then denoted by:

rt = µt + σtεt,

σ2
t = α0 + α1a

2
t−1 + β1σ

2
t−1,

εt ∼ N(0, 1).

However, for financial time series analysis it has shown to be more appropriate to

assume that εt follows a heavy-tailed distribution, such as a standardized Student-

t distribution (see Kuester et al. 2006). Cryptocurrency log returns have already

been found to follow a Student-t distribution by Phillip et al. (2018). Let xν be a

Student-t distribution with ν degrees of freedom. Then, V ar(xν) = ν/(ν − 2) for

ν > 2, and we use εT = xν/
√
ν/(ν − 2). The probability function of εt is

f(εt|ν) =
Γ[(ν + 1)/2]

Γ(ν/2)
√

(ν − 2)π

(
1 +

ε2t
ν − 2

)−(ν+1)/2

, ν > 2, (14)

where Γ(x) is the usual Gamma function (Tsay, 2005). Besides fat tails, empirical

distributions of fiancial asset returns may also be skewed. Skewed and heavy-tailed

distributions have shown to provide better forecasting results than the Normal

distribution (Kuester et al. 2006, Lee et al. 2008). For this purpose, the standard-

13
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ized Student-t distribution can been modified to be become a skew distribution.

Fernández and Steel (1998) proposed introducing skewness into any unimodal and

symmetric distribution. Applying their method to the Student-t distribution gives

the resulting probability density function for the skewed Student-t distribution:

g(εt|ξν) =

 2
ξ+1/ξ

%f [ξ(%εt +$)|ν] if εt < −$/%
2

ξ+1/ξ
%f [(%εt +$)/ξ|ν] if εt ≥ −$/%

, (15)

where f(·) is the probability density function of the standardized Student-t distri-

bution in equation 14 and ξ ∈ R+ is the skew parameter, implying symmetry for

ξ = 1.

Another useful distribution for financial assets is the Skewed Generalized Error

distribution which belongs to the exponential family and is a transformation of the

Generalized Error distribution (Theodossiou, 2000). Its density function can be

described as:

f(εt) =
k1−1/k

2ψ
Γ(

1

k
)−1exp(−1

k

|εt −m|k

(1 + sng(εt −m)λ)kψk
, (16)

where m is the mode of εt, ψ is a scaling constant derived from the standard

deviation of εt, λ is a skewness parameter, k is a kurtosis parameter, Γ(·) is the

gamma function and sgn is the sign function:

sng(εt −m) =

−1 if εt −m < 0

1 if εt −m > 0
(17)

k controls the heavy tails and peakness of the distribution, while λ controls the

skewness (Theodossiou, 2000). As k increases, the density becomes flatter. For the

original version of the Generalized Error distribution, it tends towards the Normal

distribution for the case when k = 2 (Ghalanos, 2018). The skewed Generalized

Error distribution has already shown to provide better Value at Risk forecasts in

GARCH modelling for the traditional financial market than the more common dis-

tribution assumptions (Lee et al., 2008). Since it has been found that GARCH type

models paired with Student-t and skewed distributions deliver better forecasting re-

sults for financial data, they are going to be utilized next to the Normal distribution.

14
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4.2 Estimation

GARCH models are usually estimated via Maximum-Likelihood. According to

Bollerslev (1986) the GARCH-(m, s) process can be written as a regression model

with at being the innovations in a linear regression:

at = yt − x′tb, (18)

where yt is the dependent variable, xt a vector of explanatory variables and b a

vector of unknown parameters.

Then, if z′t = (1, a2t−1, ..., a
2
t−m, σ

2
t−1, ..., σ

2
t−s), ω

′ = (α0, α1, ..., αs, β1, ..., βs) and θ ∈
Θ with θ = (b′, ω′) and Θ being a subspace of the Euclidian space such that the

second moments of at are finite. The true parameters are denoted θ0 ∈ Θ. Bollerslev

(1986) then rewrites the model as:

at|Ft1 ∼ N(0, σt), (19)

σt = z′tω, (20)

under normality assumption of the distribution for the innovations. The Log Like-

lihood can then be written as:

LT (θ) = T−1
T∑
t=1

lt(θ), (21)

lt(θ) = −1

2
log(σt)−

1

2
a2tσ

−1
t . (22)

After differentiating with respect to ω, we receive:

∂lt
∂ω

=
1

2
σ−1t

∂σt
∂ω

(
a2t
σt
− 1

)
, (23)

∂2lt
∂ω∂ω′

=

(
a2t
σt
− 1

)
∂

∂ω′

[
1

2
σ−1t

∂σt
∂ω

]
− 1

2
σ−2t

∂σt
∂ω′

a2t
σt
, (24)

with

∂σt
∂ω

= zt +
s∑
j=1

βi
∂σt−i
∂ω

. (25)

The Fisher’s information matrix for ω can be estimated only by the sample analogue

of the last term in equation (24) since the conditional expectation of the first term

is zero.
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Differentiating with respect to b parameters yields:

∂lt
∂b

= atxtσ
−1
t +

1

2
σt
∂σt
∂b

(
a2t
σt
− 1

)
,

(26)

∂2lt
∂b∂b′

= −σ−1t xtx
′
t −

1

2
σ−2t

∂σt
∂b

∂σt
∂b′

(
a2t
σt

)
− 2σ−2t atxt

∂σt
∂b

+

(
a2t
σt
− 1

)
∂

∂b′

[
1

2
σ−1t

∂σt
δb

]
,

(27)

with

∂σt
∂b

= −2
m∑
j=1

αixt−iat−i +
s∑
j=1

βj
∂σt−j
∂b

. (28)

Since there is no closed-form solution for the Maximum-Likelihood estimates, there

is a need for an iterative procedure. Bollerslev (1986) names the algorithm by

Berndt, Hall, Hall, and Hausman (1974). To find the true parameter θ0, let θ(i)

denote the estimates after the ith iteration. Then θ(i+1) for the i+ 1th iteration is

calculated by:

θ(i+1) = θ(i) + λi

(
t∑
t=1

∂lt
∂θ

∂lt
∂θ′

)−1 T∑
t=1

∂lt
∂θ
, (29)

with λ being a pre-defined variable to maximize the likelihood function in the given

direction. The Maximum-Likelihood estimator θ̂ is consistent for θ0 and asymptot-

ically normal with mean θ0 and covariance matrix F−1 = E(∂2lt/∂θ∂θ
′)−1.

For this thesis the package rugarch (Ghalanos, 2018) in R is used to estimate the

different univariate GARCH models.
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4.3 Diagnostic Checking

For a correctly specified GARCH model the standardized residuals

εt =
at
σt
, (30)

are randomly independent identically distributed with mean zero and variance one.

To check whether the volatility of a return series has been modelled correctly, the

Ljung Box-Test can be applied to the standardized squared residuals to detect

remaining ARCH effects. The distribution assumption can be validated by quantile-

to-quantile plots and parameters for skewness and kurtosis (Tsay, 2005).

Another method to detect for remaining serial dependence in the residuals is the

ARCH LM test by Engle (1982). The alternative hypothesis assumes remaining

autocorrelation for the standardized residuals:

H1 : ε2t = α0 + α1ε
2
t−1 + ...+ αmε

2
t−m + ut, (31)

with ut as an error term for the autoregressive model of ε2t . Under the H0 there are

no remaining ARCH effects in the residuals, thus

H0 : α0 = α1 = ... = αm = 0, (32)

applies. The F test statistic is asymptotically distributed as χ2 with m degrees of

freedom under the null hypothesis.

4.4 Value at Risk

Regular model diagnostics are useful to detect for violations in the model assump-

tions and error terms. But the fit of GARCH models should also be evaluated by its

forecasting performance. An important aspect is how well the model can determine

potential portfolio losses.

Value at Risk is a popular concept of market downside risk. It was first introduced

in 1994 by JP Morgan in a technical document which revealed their methodologies

on financial risk measurement (Xu and Chen, 2012). Generally, the VaR covers the

losses of a portfolio return distribution by stating that the portfolio loss will exceed

a certain threshold with the small probability α. Technically, the Value at Risk for

a certain period t+ h at the α-level can be described as the negative α-quantile of
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the conditional return distribution:

V aRα
t+h := −Qα(rt+h|Ft) = − inf

x
{x ∈ R : P (rt+h ≤ x|Ft) ≥ α}, 0 < α < 1,

(33)

with Qα(·) denoting the quantile function and Ft being the past information avail-

able up to time t. There are several approaches to determine the distribution of rt in

equation (33). In the case of GARCH models, it is calculated by using rt = µt+σtεt,

with σt being modelled by a GARCH process (Kuester et al., 2006).

To evaluate the predictive performance of volatility models, Christoffersen (1998)

has set up a framework to evaluate out-of-sample interval forecasts. Therefore, he

defines the sequence of violations Ht = I(rt < −V aRt) which has to be independent

from any variable in the information set Ft−1. The VaR forecast is efficient with

respect to Ft−1 if E(Ht|Ft−1) = λ. Assuming efficiency, Ht follows the Bernoulli

distribution: Ht|Ft−1
iid∼ B(λ), for t = 1, ..., T (Kuester et al., 2006).

This leads to the first test of unconditional coverage:

H0 : E(Ht) = λ vs. H0 : E(Ht) 6= λ. (34)

The likelihood ratio test statistic

LRuc = 2
[
L(λ̂, H1, ..., HT )− L(λ,H1, ..., HT )

]
H0∼ χ2

1, (35)

tests for the correct number of unconditional violations, with L(·) denoting the log

likelihood. The ML-estimator λ̂ is the ratio of the number of violations to the total

number of observations.

The test of independent violations checks for violation clusters in the VaR inter-

val forecasts. Under the null hypothesis, a violation at t has no influence on the

violation at t+ 1. The test statistic

LRcc = 2
[
L(Π̂, H2, ..., HT |H1)− L(Π, H2, ..., HT |H1)

]
H0∼ χ2

2, (36)

tests for the conditional coverage of violations as well as the correct number of

unconditional violations, with Π denoting a first-order Markov-Chain model corre-

sponding to the independence of violations (Christoffersen, 1998). Both of the tests

provide an evaluation on the performance of the Value at Risk forecasts.

Previous research has shown that one-day-ahead Value at Risk forecasts provide
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better results of coverage than, for example, weekly forecasts (Kole et al., 2017).

Therefore, the following analysis will focus on VaR forecasts for the next day.

The GARCH models described in section (4.1) are going to be utilized to forecast the

return distribution function of the five cryptocurrency series. Also the aggregated

portfolio of all five currencies is going to be modelled. Kole et al. (2017) show that

lower levels of aggregation lead to better forecasting results. This might be the

case, because an extreme development of one asset can lead to biased forecasting

results for the whole portfolio. However, this method is going to be applied to make

the univariate GARCH models comparable to a multivariate Dynamic Correlation

model which forecasts the aggregated return series also by means of the dynamic

conditional correlation between the innovations of the different return series.
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5 Univariate Empirical Results

In this chapter, the historical price developments of the used cryptocurrencies will

be described, next to the stylized facts of the logarithmic returns. It will be shown

that the return series show typical characteristics of financial time series and, fur-

thermore, are appropriate for GARCH-type modelling. Next, the model fit of the

different conditional heteroscedasticity models will be compared due to their model

fit and VaR forecasting performance.

Figure 1: The evolution of daily closing prices in $US for Bitcoin,
Litecoin, Dogecoin, Ripple and Feathercoin from 17th of December
2013 until 14th of March 2018.
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The most appropriate models are chosen to implement them for the first stage es-

timation of the Dynamic Conditional Correlation model in the next section.

The data used are daily closing prices for the five cryptocurrency series Bitcoin,

Litecoin, Dogecoin, Feathercoin and Ripple. It is publicly available online at

Coingecko.com. The evolution of prices since December 2013 until March 2018

is shown in figure (1). Dogecoin and Feathercoin have just emerged in 2013 and

experience a price increase in late 2013 that fades out in 2014. The most noticeable

development is the enormous growth in prices during the hype in mid 2017 which is

followed by a short stagnation and another price increase in 2018. All crypto series

experienced an extreme multiplication of their value, just before an immense price

drop by the end of 2017. Figure (1) thus implicates that the price developments of

the five different coins are driven by mutual determinants.

Bitcoin Litecoin Dogecoin Feathercoin Ripple Portfolio

Market Cap in USD 155,921,695,042 9,761,938,418 447,366,961 44,076,840 30,826,633,076 -
n. obs 1544 1544 1544 1544 1544 1544

Minimum -25.18 -54.72 -94.04 -94.00 -91.34 -52.40
Maximum 28.71 51.44 84.33 72.76 88.13 36.83
Mean 0.15 0.11 0.13 -0.02 0.21 0.14
Median 0.19 -0.08 -0.36 -0.69 -0.17 -0.04
Variance 17.51 38.03 76.22 126.05 59.05 39.05
Stdev 4.18 6.17 8.73 11.23 7.68 6.24
Skewness -0.42 0.34 0.72 0.51 0.84 -0.57
Kurtosis 6.91 14.66 29.88 9.09 34.08 9.09

Jarque-Bera 3128.9 13901 57742 5399.4 75116 5420.7

Table 1: Summary Statistics for daily log returns × 100 of cryp-
tocurrencies.
Log returns are calculated using: rt = 100× ln(Pt/Pt−1).
Returns are observed until 14th of March 2018.
Market cap is captured at 14th of March 2018.
Jarque-Bera-Test checks for deviation from normality (skewness S
different from zero and kurtosis K different from 3): JB = T (S/6 +
(k − 3)2/24), is distributed as X 2(2) with 2 degrees of freedom. Its
critical value at the five-percent level is 5.99 and at the one-percent
it is 9.21.

Stylized Facts. Table (1) shows the summary statistics for the cryptocurrency

log return series. The log returns are calculated by taking the natural logarithm of

the ratio of two consecutive daily closing prices: rt = ln Pt
Pt−1
× 100. For numerical

stability in the statistical software R the returns are multiplied by 100. Next to the

21



5. UNIVARIATE EMPIRICAL RESULTS

individual series, there is also a return series for an aggregated portfolio calculated.

The portfolio return is simply the sum of the individual returns, divided by the

number of currencies: rPF,t = 1
5

∑5
i=1 ri,t.

The data was downloaded on 14th of March 2018. Since the main attempt is to anal-

yse the dynamic correlation and multivariate volatility, the datasets are trimmed

to the same length with Dogecoin being the youngest currency. This leads to an

overall observation span of T = 1544 for the log returns. The market capitalization

in US Dollar reflects the market value and trading volume of the coins. Bitcoin

is the most popular currency with the highest market capitalization, followed by

Ripple, Litecoin and Dogecoin. Feathercoins market capitalization is the lowest.

All currencies except Feathercoin show a positive mean log return. The median of

all currencies except for Bitcoin is smaller than zero, which leads to a positive skew-

ness in combination with a positive mean. The standard deviation of the returns

is in all cases larger than the mean, which is a typical property of highly volatile

financial data (Theodossiou, 1998).

It can be noted that Feathercoin has the lowest median return and minimum out

of all currencies with the third highest maximum after Dogecoin and Ripple. Also

it shows the highest variance. Bitcoin shows the lowest variance and is the only

currency that is negatively skewed, which is congruent with the results by Cata-

nia and Grassi (2017) and Catania et al. (2018). Also negative skewness implies

that more values bigger than the mean of a distribution were observed, specifically

more positive returns. Gkillas and Katsiampa (2018) found Bitcoin to be the least

risky coin among the five most popular cryptocurrencies. The other currencies are

positively skewed, which has also been shown by Chu et al. (2017). That means

that there is more mass on the left side of the density function, i.e. on the negative

returns.

The kurtosis k is higher for all currencies than it should be expected for a Normal

distribution (k = 3). This is a typical characteristic of financial asset returns since

a lot of extreme values are observed and the distribution is highly peaked. The

Jarque-Bera-Test for normality (Jarque and Bera, 1987) is rejected for all curren-

cies, so the log returns deviate from the Gaussian distribution. For financial data

the Central Limit Theorem - stating that the distribution of the sum of a random

variable is going to converge to normality for big samples - does not apply in many

cases. This is because daily log returns often show higher order moment depen-

dencies like asymmetric volatility or conditional heteroscedasticity (Theodossiou,

1998). The Augmented-Dickey-Fuller test (Said and Dickey, 1984), testing the null

hypothesis that the time series x has a unit root, is applied to all currencies and

22



5. UNIVARIATE EMPIRICAL RESULTS

shows that all log return series are stationary.

Figure (2) shows the histograms for the density of the log returns. To visualize the

deviation from normality, the black line illustrates the theoretical Normal distri-

bution, given the same mean and variance. It is visible that Feathercoin has the

highest variance and many extreme observations, while Bitcoin has many observa-

tions around the return of zero. Dogecoin also shows more heavy-tail behaviour.

Figure (3) shows the evolution of the calculated log returns over the available ob-

servation span. It shows that Bitcoin has the least risky and volatile behaviour,

while Feathercoin and Ripple have a bigger span of variation.

Since the returns for the aggregated portfolio are averaged over the five currencies,

the span of the data is smaller, and standard deviation and kurtosis take values on

an average level, see table (1). The histogram also shows that there are less extreme

observations and more data is located around a return of zero.

Another typical characteristic of financial time series is the autocorrelation of re-

turns. If the evolution of the price experiences an upward or downward dynamic,

then the returns are positively correlated for a period of time. Figure (3) shows that

for all currencies the returns exhibit periods of higher and lower volatility (volatility

clusters). Volatility is extremely high in the period of the cryptocurrency hype dur-

ing 2017. Figure (12) in the Appendix shows the Auto Correlation Function of the

squared returns. For all currencies there is a significant correlation of returns with

the preceeding days that fades out after a couple of days, with some peaks around

lag ` = 20 or ` = 30. This structure is typical for ARCH-effects and justifies the

application of GARCH-models (Tsay, 2005). Furthermore, the Ljung-Box-Test for

serial correlation identifies a dependency within the first ln(T ) = ln(1544) = 7.34

lags of the squared innovations ât from equation (2), that were calculated by sub-

tracting the mean return from the daily return: ât = rt − rt (Tsay, 2005).
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Figure 2: Histograms of the log returns of the five cryptocurrencies
and the aggregated portfolio in blue.
Log returns are calculated using: rt = 100× ln(Pt/Pt−1).
Black line shows the density of the Normal distribution that would
occur for the empirical mean and standard deviation:
x ∼ N(ri,

√
V ar(ri)).

T=1544.
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Figure 3: The evolution of log returns in $US of Bitcoin, Litecoin,
Dogecoin, Ripple, Feathercoin and the aggregated portfolio until 14th

of March 2018.

25



5. UNIVARIATE EMPIRICAL RESULTS

Univariate GARCH Models. After conditional heteroscedasticity has been de-

tected for all five cryptocurrencies, the GARCH models discussed in chapter (4.1)

are applied to the univariate log return series. Since the descriptive analysis of

the returns has shown fat tails, not only the Gaussian distribution is going to be

used for the residual terms but also the Student-t, skewed Student-t and skewed

Generalized Error distribution.

All GARCH-type models with different distribution assumptions for the error terms

are applied to the univariate time series. The fit is evaluated by diagnostic check-

ing and information criteria. More interesting, however, is which model is able to

provide the best Value at Risk forecasts. The results are going to be used in chap-

ter (7) to model the DCC model. Additionally, the GARCH models are going to

be applied to the combined portfolio time series consisting of the five currencies.

The goal is to find out whether a multivariate approach incorporating the dynamic

correlation improves the Value at Risk forecasts for an aggregated portfolio.

To model the mean of the time series, a simple ARMA-(1,1) process is defined for µt

equivalent to equation (3). When defining the volatility equation (4), the first step

is determine to the order of the ARCH effects. This can be done by looking at the

PACF of the squared innovations at which can be estimated by the squared series

of mean adjusted returns: ât = rt− rt. For all five currencies the partial autocorre-

lation function reveals significances at higher order lags (around 10 to 100 days). In

this case, it is more appropriate to choose the more parsimonious GARCH-model,

instead of applying higher order ARCH-models. For the GARCH process usually a

lower order model like the GARCH-(1,1) or GARCH-(2,1) is appropriate in most

applications (Tsay, 2014).

A GARCH-(1,1) process is defined for the standard GARCH, iGARCH, iGARCH,

gjr-GARCH, apARCH and csGARCH models with the Normal, Student-t, skewed

Student-t, and skewed Generalized Error distribution for each logarithmic return

series of the five currencies. The models are estimated via Maximum-Likelihood.
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Bitcoin norm t skewed t sged
AIC BIC AIC BIC AIC BIC AIC BIC

sGarch 5.3652 5.3860 5.1142 5.1384 5.1142 5.1418 5.0974 5.1251
iGarch 5.3639 5.3812 5.1127 5.1334 5.1127 5.1369 5.0960 5.1202
eGarch 5.3492 5.3734 5.0981 5.1257 5.0979 5.1290 not converged
apArch 5.3664 5.3941 5.1012 5.1323 5.1008 5.1354 5.0960 5.1306
csGARCH 5.3388 5.36651 5.1055 5.1366 5.1058 5.1404 5.0895 5.1241
gjrGarch 5.3657 5.3899 5.1151 5.1428 5.1151 5.1462 5.0986 5.1297

Litecoin norm t skewed t sged
AIC BIC AIC BIC AIC BIC AIC BIC

sGarch 6.1702 6.1910 5.5229 5.5472 5.5227 5.5504 5.5456 5.5732
iGarch 6.1736 6.1909 5.5213 5.5420 5.5210 5.5453 5.5440 5.5683
eGarch 6.1293 6.1535 5.4984 5.5261 5.4973 5.5285 not converged
apArch 6.1650 6.1927 5.5003 5.5315 5.4985 5.5331 5.5399 5.5745
csGARCH 6.1635 6.1911 5.5075 5.5386 5.5058 5.5404 5.5376 5.5722
gjrGarch 6.1709 6.1951 5.5217 5.5494 5.5215 5.5526 5.5457 5.5768

Ripple norm t skewed t sged
AIC BIC AIC BIC AIC BIC AIC BIC

sGarch 6.4823 6.5031 5.8276 5.8519 5.8289 5.8566 5.8442 5.8719
iGarch 6.4811 6.4984 5.8262 5.8470 5.8275 5.8517 5.8427 5.8669
eGarch 6.4740 6.4982 5.8259 5.8536 5.8266 5.8578 not converged
apArch 6.4674 6.4951 5.7947 5.8258 5.7951 5.8297 5.8354 5.8700
csGARCH 6.3950 6.4227 5.7937 5.8248 5.7944 5.8290 5.8139 5.8485
gjrGarch 6.4622 6.4864 5.8286 5.8563 5.8298 5.8610 5.8446 5.8757

Dogecoin norm t skewed t sged
AIC BIC AIC BIC AIC BIC AIC BIC

sGarch 6.3902 6.4109 6.0487 6.0729 6.0414 6.0691 6.0592 6.0869
iGarch 6.3885 6.4058 6.0472 6.0680 6.0399 6.0641 6.0577 6.0820
eGarch 6.3536 6.3779 6.0333 6.0610 6.0247 6.0559 not converged
apArch 6.3907 6.4149 6.0484 6.0761 6.0413 6.0724 6.0588 6.0899
csGARCH 6.3029 6.3306 6.0276 6.0588 6.0209 6.0555 6.0360 6.0706
gjrGarch 6.3907 6.4149 6.0484 6.0761 6.0413 6.0724 6.0588 6.0899

Feathercoin norm t skewed t sged
AIC BIC AIC BIC AIC BIC AIC BIC

sGarch 7.4188 7.4396 7.1496 7.1738 7.1426 7.1703 7.1356 7.1633
iGarch 7.4183 7.4356 7.1483 7.1690 7.1413 7.1655 7.1368 7.1610
eGarch 7.3963 7.4205 7.1387 7.1664 7.1314 7.1625 not converged
apArch 7.3838 7.4115 7.1381 7.1692 7.1309 7.1655 7.1268 7.1614
csGARCH 7.4205 7.4481 7.1572 7.1884 7.1491 7.1837 7.1350 7.1696
gjrGarch 7.4122 7.4364 7.1486 7.1763 7.1414 7.1725 7.1340 7.1652

Portfolio norm t skewed t sged
AIC BIC AIC BIC AIC BIC AIC BIC

sGarch 6.2541 6.2749 6.0194 6.0436 6.0208 6.0485 6.0222 6.0499
iGarch 6.2529 6.2702 6.0186 6.0394 6.0194 6.0437 6.0209 6.0451
eGarch 6.2332 6.2574 6.0051 6.0327 6.0053 6.0364 not converged
apArch 6.2544 6.2821 6.0098 6.0409 6.0103 6.0449 6.0194 6.0540
csGARCH 6.1949 6.2226 6.0058 6.0369 6.0065 6.0411 6.0061 6.0407
gjrGarch 6.2563 6.2805 6.0181 6.0458 6.0189 6.0500 6.0211 6.0523

Table 2: AIC and BIC for the estimated GARCH-type models.
µt is modelled via an ARMA-(1,1) process. σt is modelled via a
GARCH-type process of order (1,1). T=1544.
Lowest AICs and BICs per group are written in bold letters.

Table (2) shows the AIC and BIC for the fitted GARCH-type models with differ-

ent distribution assumptions for the innovations. The models that performed best

for every currency or the portfolio according to the Akaike or Bayes Information

Criterion are written in bold letters. As a first result, it shows that the Gaussian

distribution for the error terms is outperformed by its heavy-tailed alternatives.

AIC and BIC indicate a lower fit here over all different currencies. The eGARCH

in combination with the skewed Generalized Error distribution showed convergence

problems for all currencies that remained even after several adjustments of solver

options.

For Bitcoin and Feathercoin, the skewed Generalized Error distribution delivers the

best fit for almost all models. AIC is lowest for the csGARCH, nearly followed by

the iGARCH for Bitcoin and the apARCH for Feathercoin. This is supported by
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the findings by Katsiampa (2017), who also showed that the component-standard

GARCH provides the best fit to model Bitcoins volatility according to information

criteria. The quantile-to-quantile plot and the ACF of the squared residuals indi-

cate a good fit. For Litecoin, the skewed Student-t distribution seems to be most

appropriate and works best along with the eGARCH model. For Dogecoin, the

eGARCH, csGARCH and apARCH deliver the best information criteria with the

apARCH showing most reasonable plots in model diagnostics on the error terms.

The apARCH with Student-t distribution works best for Ripple according to resid-

ual plots. However, the skew parameter for the equivalent model with the skewed

Student-t distribution is significant. For the aggregated portfolio, the information

criteria show that the return series is best modelled via the Student-t distribution

with an eGARCH, however, the shape parameter for the corresponding model with

a skewed Student-t distribution is also significant and reports good information

criteria and residual plots.

In general, the univariate GARCH models show that there is a need for skewed

distributions to model the volatility process of the currencies. The apARCH, cs-

GARCH and eGARCH models seem to work best according to AIC and BIC,

however, there is usually only a slight difference between the models if the right

distribution for error terms is chosen. Bitcoin is most accurately modelled via a

csGARCH, which is supported by the findings of Katsiampa (2017). Bitcoin and

Feathercoin show a good model fit if the innovations are modelled via the skewed

Generalized error distribution. It should be noted that the apARCH and eGARCH

are more parsimonious than the csGARCH which contains a time-varying intercept

for the conditional variance. However, the models should also be evaluated via

their performance on Value at Risk forecasting. The choice of the right distribution

assumption for the error terms is of great importance here.
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Value at Risk. Now it is interesting to find out which of the models produce the

best Value at Risk forecasts.

Figure 4: Outline for the 1-day-ahead forecast.
The time line shows the training data set of length T=800 in black
and the rolling out-of-sample forecast of length T=744 in green.
Red arrows indicate the observations included in the three parameter
re-estimations (recursive window).

Since the altcoin market is quite young, the length of the return series is short in

comparison to other traditional currencies or indices. Therefore, it is more appro-

priate to estimate the rolling forecast based on a recursive window. That means all

past observations are included in the estimation of the current parameters in con-

trast to a moving window where all the previous data is used for the first estimation

and then moved by a pre-defined length for every forecast.

Figure (4) shows the outline for the forecast. The rolling forecast starts at t = 800,

which leaves 744 one-day-ahead forecasts. The parameters are refitted every 300

days, thus the model parameters are refitted three times. The red arrows show

the past observations that are included for the estimation of the model parameters.

Within the refitting period, the parameters are fixed but data is updated for every

trading day.

Table (3) reports the backtesting results for the Value at Risk forecast. VaR is

calculated for every GARCH model and distribution at the 1%-, and 5%-level and

evaluated via VaR backtesting described in section (4.4). The percent violations

show how many times the returns dropped below the VaR for α = 0.01 and α = 0.05

predicted by the model in relation to the total number of forecasts. Additionally,

the p-values for the tests of conditional and unconditional coverage are reported.

The models where the tests for conditional or unconditional coverage were rejected

at the 95% confidence level are written in bold.
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VaR 1%

Bitcoin norm t skewed t sged

Model %Viol Luc Lcc %Viol Luc Lcc %Viol Luc Lcc %Viol Luc Lcc

sGarch 2.3 0.006 0.017 1.3 0.37 0.584 0.9 0.87 0.923 0.8 0.583 0.819

iGarch 2.3 0.003 0.007 1.2 0.578 0.767 0.9 0.87 0.923 0.8 0.583 0.819

eGarch 2.3 0.003 0.007 0.7 0.339 0.612 0.5 0.165 0.373 not converged

apArch 2.4 0.001 0.003 0.4 0.063 0.175 0.4 0.063 0.175 0.5 0.165 0.373

csGarch 2 0.014 0.037 1.3 0.37 0.585 1.5 0.221 0.41 0.8 0.853 0.819

gjrGarch 2.2 0.006 0.017 1.2 0.578 0.767 0.9 0.87 0.923 0.7 0.339 0.612

Litecoin norm t skewed t sged

Model %Viol Luc Lcc %Viol Luc Lcc %Viol Luc Lcc %Viol Luc Lcc

sGarch 0.7 0.339 0.612 0.9 0.87 0.923 1.1 0.838 0.898 0.5 0.165 0.373

iGarch 0.8 0.535 0.819 0.9 0.87 0.923 1.1 0.838 0.898 0.5 0.165 0.373

eGarch 0.5 0.165 0.273 0.8 0.583 0.819 0.8 0.583 0.819 not converged

apArch 0.7 0.339 0.612 0.5 0.165 0.373 0.7 0.339 0.612 0.5 0.165 0.373

csGarch 0.9 0.87 0.923 1.2 0.878 0.787 1.6 0.123 0.125 0.5 0.165 0.373

gjrGarch 0.7 0.339 0.612 1.1 0.838 0.898 1.1 0.383 0.895 0.5 0.165 0.373

Ripple norm t skewed t sged

Model %Viol Luc Lcc %Viol Luc Lcc %Viol Luc Lcc %Viol Luc Lcc

sGarch 0.7 0.339 0.612 0.8 0.583 0.819 0.8 0.583 0.819 0.4 0.063 0.175

iGarch 0.7 0.339 0.612 0.9 0.87 0.923 0.8 0.583 0.819 0.5 0.165 0.373

eGarch 1.3 0.37 0.584 0.5 0.165 0.373 0.5 0.165 0.373 not converged

apArch 3.6 0.000 0.000 0.7 0.339 0.612 0.7 0.339 0.612 0.5 0.165 0.373

csGarch 2.4 0.001 0.003 0.7 0.339 0.612 0.7 0.339 0.612 0.8 0.583 0.819

gjrGarch 1.2 0.578 0.767 0.8 0.583 0.819 0.8 0.583 0.819 0.5 0.165 0.373

Dogecoin norm t skewed t sged

Model %Viol Luc Lcc %Viol Luc Lcc %Viol Luc Lcc %Viol Luc Lcc

sGarch 0.9 0.87 0.923 0.8 0.583 0.819 0.8 0.538 0.819 0.8 0.538 0.819

iGarch 0.9 0.87 0.923 0.8 0.583 0.819 0.8 0.538 0.819 0.8 0.538 0.819

eGarch 1.1 0.838 0.898 0.7 0.339 0.612 0.8 0.538 0.819 not converged

apArch 0.8 0.583 0.819 0.5 0.165 0.273 0.8 0.538 0.819 0.8 0.538 0.819

csGarch 0.9 0.87 0.923 1.1 0.838 0.898 1.3 0.538 0.819 0.9 0.87 0.923

gjrGarch 1.1 0.838 0.898 0.8 0.583 0.819 0.8 0.538 0.819 0.8 0.538 0.819

Feathercoin norm t skewed t sged

Model %Viol Luc Lcc %Viol Luc Lcc %Viol Luc Lcc %Viol Luc Lcc

sGarch 1.3 0.37 0.584 0.8 0.538 0.819 1.1 0.838 0.898 1.1 0.838 0.898

iGarch 1.2 0.578 0.767 0.8 0.538 0.819 1.1 0.838 0.898 0.9 0.87 0.932

eGarch 1.2 0.578 0.767 0.5 0.165 0.373 0.9 0.87 0.932 not converged

apArch 1.3 0.37 0.584 0.7 0.339 0.612 0.8 0.538 0.819 1.1 0.838 0.898

csGarch 1.3 0.37 0.584 0.8 0.583 0.819 1.1 0.838 0.898 1.1 0.838 0.898

gjrGarch 1.5 0.221 0.400 0.8 0.583 0.819 1.1 0.838 0.898 1.1 0.838 0.898

Portfolio norm t skewed t sged

Model %Viol Luc Lcc %Viol Luc Lcc %Viol Luc Lcc %Viol Luc Lcc

sGarch 1.7 0.064 0.143 0.7 0.339 0.612 1.1 0.838 0.898 0.8 0.583 0.819

iGarch 1.6 0.123 0.25 0.7 0.339 0.612 1.1 0.383 0.898 0.7 0.339 0.612

eGarch 1.5 0.221 0.4 0.5 0.165 0.373 0.9 0.87 0.923 not converged

apArch 1.9 0.031 0.075 0.5 0.165 0.373 0.7 0.339 0.612 0.5 0.165 0.373

csGarch 1.7 0.064 0.143 1.5 0.221 0.400 1.9 0.031 0.075 1.5 0.221 0.400

gjrGarch 1.7 0.064 0.143 0.8 0.583 0.819 1.2 0.578 0.767 0.8 0.583 0.819

VaR 5%

Bitcoin norm t skewed t sged

Model %Viol Luc Lcc %Viol Luc Lcc %Viol Luc Lcc %Viol Luc Lcc

sGarch 5.1 0.893 0.142 6.2 0.153 0.028 6 0.203 0.027 5 0.973 0.118

iGarch 4.8 0.839 0.289 6.2 0.153 0.028 6 0.203 0.027 4.8 0.839 0.095

eGarch 5.1 0.893 0.142 6.2 0.203 0.027 5.8 0.341 0.078 not converged

apArch 4.8 0.839 0.289 5.6 0.428 0.074 5.6 0.428 0.074 4.7 0.709 0.073

csGarch 5.1 0.893 0.382 6.6 0.058 0.023 6.6 0.058 0.023 4.8 0.839 0.289

gjrGarch 5 0.973 0.339 6.3 0.113 0.009 6 0.203 0.027 4.8 0.839 0.095

Litecoin norm t skewed t sged

Model %Viol Luc Lcc %Viol Luc Lcc %Viol Luc Lcc %Viol Luc Lcc

sGarch 2.3 0.000 0.001 4.4 0.472 0.142 4.6 0.585 0.187 3.2 0.03 0.015

iGarch 1.9 0.000 0.000 4.4 0.472 0.142 4.4 0.472 0.142 3.4 0.165 0.373
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eGarch 1.6 0.000 0.000 4 0.211 0.047 4.3 0.371 0.103 not converged

apArch 2.6 0.001 0.003 4 0.211 0.16 4.3 0.371 0.103 3.2 0.018 0.029

csGarch 2.7 0.002 0.006 5.6 0.428 0.074 6.6 0.058 0.023 3.2 0.018 0.029

gjrGarch 0.7 0.339 0.612 4.6 0.585 0.053 1.1 0.383 0.895 3.2 0.018 0.029

Ripple norm t skewed t sged

Model %Viol Luc Lcc %Viol Luc Lcc %Viol Luc Lcc %Viol Luc Lcc

sGarch 2.6 0.001 0.002 4.3 0.371 0.585 4 0.211 0.361 2.8 0.003 0.007

iGarch 2.6 0.002 0.007 4.3 0.283 0.469 4 0.211 0.361 2.7 0.002 0.004

eGarch 2.8 0.003 0.011 4.7 0.709 0.897 4.3 0.371 0.629 not converged

apArch 5.8 0.341 0.203 4.4 0.472 0.701 4.2 0.283 0.469 3 0.006 0.02

csGarch 4.4 0.472 0.166 5.1 0.893 0.99 4.8 0.839 0.96 3.9 0.152 0.11

gjrGarch 3.1 0.01 0.018 4.7 0.709 0.565 4.2 0.283 0.469 3.9 0.152 0.11

Dogecoin norm t skewed t sged

Model %Viol Luc Lcc %Viol Luc Lcc %Viol Luc Lcc %Viol Luc Lcc

sGarch 2.7 0.002 0.006 3.9 0.152 0.109 4.7 0.709 0.073 3.5 0.047 0.138

iGarch 2.7 0.002 0.006 3.8 0.106 0.071 4.6 0.585 0.187 3.5 0.047 0.138

eGarch 2.3 0.000 0.001 3.2 0.018 0.059 4.6 0.585 0.808 not converged

apArch 2.7 0.002 0.006 3.1 0.01 0.035 4 0.211 0.447 3.5 0.047 0.138

csGarch 3 0.003 0.02 4.3 0.371 0.301 5.4 0.642 0.059 4.3 0.371 0.301

gjrGarch 2.6 0.001 0.003 3.9 0.152 0.266 4.4 0.472 0.142 3.5 0.047 0.138

Feathercoin norm t skewed t sged

Model %Viol Luc Lcc %Viol Luc Lcc %Viol Luc Lcc %Viol Luc Lcc

sGarch 2 0.000 0.000 3.4 0.003 0.002 4 0.211 0.16 3.1 0.01 0.035

iGarch 1.9 0.000 0.000 3.4 0.03 0.092 4 0.211 0.16 2.6 0.001 0.002

eGarch 2.2 0.000 0.000 2.7 0.000 0.000 3.4 0.03 0.092 not converged

apArch 2 0.000 0.000 3 0.006 0.02 3.8 0.106 0.188 3.2 0.018 0.059

csGarch 2.3 0.000 0.000 3.5 0.047 0.138 4.6 0.585 0.187 3.2 0.018 0.059

gjrGarch 2.2 0.000 0.000 3.2 0.018 0.059 4.4 0.472 0.142 3.5 0.047 0.081

Portfolio norm t skewed t sged

Model %Viol Luc Lcc %Viol Luc Lcc %Viol Luc Lcc %Viol Luc Lcc

sGarch 2.8 0.003 0.007 4.2 0.283 0.541 4.6 0.585 0.761 3.4 0.030 0.092

iGarch 2.7 0.002 0.004 4.2 0.283 0.146 4.6 0.585 0.761 3.4 0.030 0.039

eGarch 3.2 0.018 0.027 4.4 0.1472 0.705 4.6 0.585 0.761 not converged

apArch 3.6 0.072 0.071 4.2 0.283 0.541 4.7 0.706 0.793 3.6 0.072 0.198

csGarch 3.8 0.106 0.271 5.4 0.642 0.892 6 0.203 0.439 4.6 0.585 0.761

gjrGarch 2.8 0.003 0.007 4.3 0.371 0.629 4.6 0.585 0.761 3.2 0.018 0.027

Table 3: 1%- and 5%-Value at Risk results for the univariate
GARCH-type models.
1-day-ahead rolling forecast with recursive window, model parame-
ters refitted every 300 observations. Model is built on a training data
set of 800 observations, which leaves 744 out-of-sample forecasts.
% Viol: Percentage of VaR violations at α = 1% and α = 5%.
Luc: p-value for test of unconditional coverage; Lcc: p-value for test
of conditional coverage. Values printed bold if p < 0.05.

The VaR forecasts prove some of the findings of the previous section right. The

results for the Gaussian distribution of innovations are mainly outperformed by

the heavy-tailed alternatives. At the 5%-VaR level, the tests for unconditional and

conditional coverage are rejected for most models and currencies if the Normal dis-

tribution is applied. For all currencies, except for Bitcoin, also the Student-t and

skewed Generalized Error distribution is outperformed by the skewed Student-t

distribution according to the backtesting results. At the 5%-level, there are more

incorrect violations found than at the 1%-level. The skewed Generalized Error dis-

tribution combined with an exponential GARCH has convergence problems that

remain even after several adjustments of solver options.
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The results for Bitcoin draw a different picture than for the other currencies. The

Gaussian and the Student-t distribution for the error terms are outperformed by

the skewed alternatives. The percentage of violations are highest for the Normal

distribution of error terms at the 1% VaR level, and also both the tests for condi-

tional and unconditional coverage are rejected for all six GARCH models at the 1%

VaR level. For the Student-t distribution, Luc and Lcc are non-significant, but the

percentage of violations are still outperformed by the skew alternatives in general.

At the 5-% VaR level, the test results indicate inaccurate VaR violations for both

versions of the Student-t distribution in some cases. The skewed Generalized Error

distribution produces the smallest number of violations in combination with a good

model fit.

For Litecoin, the skewed Generalized Error distribution clearly produces the best

VaR forecasts for all models with violations lower than 1%, but QQ-plots show

that the SGED-distribution assumption for the error terms is not inconsiderably

violated. At the 1%-VaR level, the backtests by Christoffersen (1998) are rejected

in many cases. The skewed Student-t distribution produces the best results with

the apARCH or eGARCH, wich both show reasonable residual plots next to a low

AIC or BIC. Therefore, the more parsimonious eGARCH is chosen.

A similar picture can be seen for Ripple that seems to have a better overall fore-

casting performance at the 1%-VaR level for the SGED distribution, but models

fail diagnostic checkings here and backtesting at the 5%-VaR. The csGARCH along

with Student-t distribution reported the best AIC, however, the skewed Student-t

distribution performs equally well during forecasting. The apARCH is chosen over

the csGARCH since it shows fewer model violations in the residual plots and has

an equal forecasting performance. It also models for a leverage effect but is more

parsimonious.

For Dogecoin, the best backtesting results can be found for the skewed Student-t

distribution. Again, the apARCH performs well during the forecast and shows low

model violations in the residual plots, next to good values for the AIC and BIC.

While table (2) indicates a good fit of the skewed Generalized Error distribution for

Feathercoin, the 5%-VaR backtesting results draw a different picture. The tests for

conditional and unconditional coverage is rejected in many cases with the SGED

distribution. The apARCH in combination with the skewed Student-t distribution

provides a better fit. For the combined portfolio return, the Student-t and skewed

Student-t distribution have the best forecasting performance, with the eGARCH

combined with Student-t distribution giving the best model fit. However, the shape
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parameter of the skewed Student-t is significant for the eGARCH.

It can also be noted that the percentage of violations for the aggregated portfolio

tends to be somewhat higher than for the individual return series on average. This

finding is supported by previous research, where lower levels of portfolio aggregation

provided better VaR forecasting results. This might be the case since more extreme

developments in the volatility of one asset can lead to biased volatility forecasts for

the whole portfolio (Kole et al., 2017).

It shows that also for the Value at risk forecasts, the Gaussian distribution model

is outperformed by its skewed alternatives. This result is already very well docu-

mented in the literature, where the Normal distribution has shown to be inappro-

priate to model the forecasts for innovations of financial time series (Kuester et al.,

2006). The analysis has shown that these findings are also valid for cryptocurrency

return series. The skewed Generalized Error distribution does indeed in many cases

produce a low number of VaR violations, which has already been shown by Lee

et al. (2008). However, it produces worse backtesting results at the same time and

shows convergence problems in combination with the eGARCH.

Since the Dynamic Conditional Correlation model requires a mutual distribution

for the multivariate standardized error terms - see DCC estimation in section (6.3)

- all univariate time series are going to be modelled with a skewed Student-t distri-

bution model at the first stage estimation of the DCC.

Table (4) shows the model parameters for the selected GARCH models for the DCC.

The model equations have been described in section (4.1). Analysis of the Value at

Risk performance and model diagnostics have shown that the Asymmetric Power

ARCH and the Exponential GARCH fit the data best. Especially the apARCH that

allows for leverage effects seems to perform best for the cypto currency return series.

Both models take the asymmetry of positive and negative shocks into account. The

market thus reacts differently to a positive shock in terms of volatility than to a

negative shock. Both models are also more parsimonious than the csGARCH, while

their forecasting performance is just as good. Almost all the model parameters are

significant. Especially the significance of the skewness and shape parameters for

the skew Student-t distribution show the need for a skew, heavy-tailed distribution

model. The Ljung-Box test on the squared residuals at lag 10 and the Arch LM

test at lag 5 are all non significant, therefore, the null hypothesis for no remaining

ARCH effects and no autocorrelation in the residuals cannot be rejected. Figure

(13) in the Appendix shows the quantile-to-quantile plots for the models in table

(4). The auto correlation of the squared residuals can be seen in figure (14).
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Bitcoin Litecoin Ripple Dogecoin Feathercoin Portfolio

Variance Model apARCH eGARCH apARCH apARCH apARCH eGARCH
Distribution Model skew Student-t skew Student-t skew Student-t skew Student-t skew Student-t Skew student-t

µ 0.0867 0.0415*** -0.2719*** -0.0945 -0.3379* 0.0136
AR(1) 0.3727*** 0.4444*** 0.4336*** -0.0628 0.3170*** 0.3574***
MA(1) -0.4236*** -0.5372*** -0.4784*** -0.0869 -0.4437*** -0.4060***
const α0 0.1294* 0.0636*** 0.2947*** 0.1768* 1.3941 0.2528*
ARCH α1 0.3067*** 0.0428 0.4430*** 0.2780*** 0.3385*** 0.0697*
GARCH β1 0.8325*** 0.9864*** 0.6651*** 0.8219*** 0.6395*** 0.9270***
E-GARCH γ 0.6221*** 0.5134***
AP-ARCH γ -0.0350 -0.0665*** 0.0584 -0.2678**
AP-ARCH δ 1.1477*** 0.5621*** 1.1527*** 0.8607***
skew 0.9543*** 1.0505*** 0.9902*** 1.1212*** 1.1174*** 1.0410***
shape 2.4802*** 2.0948*** 2.2813*** 2.7988*** 2.6690*** 3.0782***

Q(10) 0.4719 0.9984 1.000 1.000 0.5917 0.9993
ARCH(5) 0.5091 0.8707 0.9979 0.5093 0.4730 0.9952

Table 4: Model parameters of the selected GARCH models.
µt is modelled via an ARMA-(1,1) process. T=1544.
*** p-value < 0.001; ** p-value < 0.01; * p-value < 0.05.
Q(10): p-value of Ljung-Box test on squared standardized residuals
for lag ` = 10; ARCH(5): p-value for weighted ARCH LM test for
lag ` = 5.

The GARCH models selected in this chapter are going to be utilized to built a mul-

tivariate Dynamic Conditional Correlation model that takes account of volatility

interdependencies and forecasts the downside risk of an aggregated cryptocurrency

portfolio. The results are compared to the performance of the univariate approach

for VaR estimation with the simple eGARCH for the aggregated portfolio.

Figure (5) shows the forecasted 1%- and 5%-Value at Risk for the combined port-

folio return series of the selected eGARCH with skewed Student-t distribution with

parameter re-estimation every 300 days. The red dots mark the seven days where

the portfolio loss exceeds the forecasted 1%- and 5%-VaR limit. From 2017, after

the general cryptocurrency hype, the expected portfolio loss becomes higher. In

late 2016, the predicted volatility is more stable. The most violations are found

during the cryptocurrency hype in late 2017 and early 2018. At the 5%-VaR level

in figure (5b), there are more violations allowed than at the 1%-level. There are 34

violations found, especially during the hype in late 2017 and early 2018 the portfolio

loss exceeds the forecasted Value at Risk.

34



5. UNIVARIATE EMPIRICAL RESULTS

(a) 1%-Value at Risk. Parameters re-estimated every 300 days. % Viol: 0.9, p-Values:
LRuc : 0.87, LRcc : 0.923.

(b) 5%-Value at Risk. Parameters re-estimated every 300 days. % Viol: 4.6, p-Values:
LRuc : 0.585, LRcc : 0.761.

Figure 5: Value at Risk forecasts for the 1-day-ahead rolling fore-
cast of the 1/k portfolio estimated with a univariate eGARCH with
skewed Student-t distribution.
The model is built on a training data set of 800 observations, which
leaves 744 out-of-sample forecasts.
Parameters are re-estimated every 300 days with a recursive win-
dow, which leads to a total number of 3 refits.
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Since the crypto market shows different patterns of volatility over time, it is worth

considering to re-estimate the model parameters on a more frequent basis. For the

combined portfolio, a VaR forecast with a re-estimated eGARCH every ten days is

utilized. The 744 out-of-sample one-day-ahead rolling forecast with recursive win-

dow has now 75 parameter refits.

The results for Value at Risk forecasting do not improve with a more frequent refit.

Figure (6a) shows the forecasted 1%-Value at Risk for the combined portfolio return

series of the selected eGARCH with skewed Student-t distribution and parameter

re-estimation every 10 days. There are six VaR exceedances observed at the 1%-

VaR level instead of seven, which makes a violation rate of 0.8%. The tests for

conditional and unconditional coverage are not rejected. A more frequent update,

thus, improves the violation rate by 0.1% for the α = 1% VaR level. At the 5%-VaR

level, there are 38 violations found, which results in a violation rate of 5.1%. Com-

pared to the forecast based on the refit every 300 days, this is not an improvement,

see figure (5b). Both the tests for unconditional and conditional coverage are not

rejected (pLRuc : 0.839, pLRcc : 0.799). On average, the more frequent update of

model parameters has not delivered better Value at Risk forecasting results.
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(a) 1%-Value at Risk. Parameters re-estimated every 10 days. % Viol: 0.8, p-Values:
LRuc : 0.583, LRcc : 0.819.

(b) 5%-Value at Risk. Parameters re-estimated every 10 days. % Viol: 5.1, p-Values:
LRuc : 0.893, LRcc : 0.731.

Figure 6: Value at Risk forecasts for the 1-day-ahead rolling fore-
cast of the 1/k portfolio estimated with a univariate eGARCH with
skewed Student-t distribution.
The model is built on a training data set of 800 observations, which
leaves 744 out-of-sample forecasts.
Parameters are re-estimated every 10 days with a recursive window,
which leads to a total number of 75 refits.
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Figure 7: Model parameters for the rolling forecast of the aggregated
portfolio.
eGARCH fit coefficients with robust standard error bands across 75
refits.
Parameters are re-estimated every 10 days with a recursive window
on a 744 day out-of-sample rolling 1-day-ahead forecast.

Figure (7) shows the estimated eGARCH parameters across 75 refits for the out-of-

sample forecasting period. Updating the model parameters more frequently during

the rolling forecast has made no improvements to the VaR performance at the

α = 1%-level. In fact, the model parameters show only slight variations over the

forecasting horizon. The intercept (omega) for the conditional variance decreases

over the rolling forecast, while β1, the autoregressive coefficient for σt, increases

over time. The shape parameter tends to increase as well, but an overlay of the

robust standard error bands indicates statistical insignificance. Overall, the VaR

forecasting performance does not improve by more frequent parameter updates.

One of the key findings of the univariate analysis is that (skewed) heavy-tailed

distributions seem to provide a better model fit and VaR forecasts than the Normal

distribution for innovations. This stands in contrast with the results by Chu et al.

(2017) who found that the iGARCH with Normal innovations provides a good fit to

model the volatility of seven of the top cryptocurrencies. The paper by Katsiampa
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(2017) names the component standard GARCH as the most appropriate GARCH-

type model for Bitcoin. This is supported by the findings of this chapter. The high

performance of the apARCH and eGARCH, which allow for the leverage effect, is

congruent with the results by Catania et al. (2018). They found that the volatility

process of cryptocurrencies show an asymmetry to the sign of past innovations. As

in the survey by Angelini and Emili (2018), it has been shown that the eGARCH

also provides good forecasting results, especially for Litecoin and the aggregated

portfolio. A more frequent update for the parameters does not lead to improvements

regarding the accuracy of forecasting results and parameter plots show only a few

changes over the whole forecasting horizon.
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6 Multivariate Volatility Modelling

In the following section, the theoretical framework for multivariate volatility mod-

elling is described. After discussing multivariate conditional heteroscedasticity in

general, the Dynamic Conditional Correlation model is introduced. Finally, there

is a discussion of diagnostic checkings for the DCC.

6.1 Multivariate Conditional Heteroscedasticity

Since multivariate GARCH models are time consuming to implement and estimate,

it should be checked ex ante whether the data shows multivariate ARCH effects

(Bauwens et al., 2006).

The previous results have shown that there is some source of conditional het-

eroscedasticity in the univariate time series of the cryptocurrency returns. However,

the main goal here is to detect some kind of multivariate time-dependent variation

and model it. The multivariate equivalent to the time-dependent σt of the univari-

ate time series is the volatility matrix Σt of the k-dimensional time series zt. If at

are the innovations of the multivariate time series zt, then, Σt = Cov(at|Ft−1) is

the covariance matrix of the innovations, with Ft−1 being the Σ-field generated by

the past data (Tsay, 2013).

Similarly to the univariate case, the multivariate time series zt can be decomposed

as

zt = µt + at, (37)

where µt = E(zt|Ft−1) is the conditional expectation of zt given Ft−1. The inno-

vation at is unpredictable because it is serially uncorrelated. The shock at can be

written as

at = Σ
1/2
t εt, (38)

where [εt] is a sequence of independent and identically distributed random vectors,

such that E(εt) = 0 and Cov(εt) = Ik and Σ
1/2
t denotes the positive definite square-

root matrix of Σt.

Like in the univariate case, the conditional heteroscedasticity of a multidimensional

time series can be tested. If at has no conditional heteroscedasticity then its condi-

tional covariance matrix Σt is time-invariant. This implies that any shock at time

t does not depend on the shock at t− i for i > 0.
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Dependencies could either way exist through autocorrelation within the individual

return series, which has already been shown in chapter (5), or lagged correlation

between the series. To test the null hypothesis H0 : ρ1,= ... = ρm = 0 for lag

` = 1, ...,m the multivariate Ljung-Box Test can be applied to the conditional

correlation matrix ρ. The test statistic is defined as

Qk(m) = T 2

m∑
`=1

1

T − `
tr
(
ρ̂′`ρ̂

−1
0 ρ̂

′
`ρ̂
−1
0

)
. (39)

Under the null hypothesis, Qk is asymptotically distributed as X 2
mk2 (Tsay, 2013).

The test assumes the innovations at to be Gaussian. Therefore, Tsay proposes

some robustness modifications for heavy tails in financial data to avoid misleading

results. One simple procedure to reduce the effect of heavy tails is trimming away

data in the upper 5% tail. Another approach is a rank based test of autocorrelation

for the standardized series et = a′tΣ
−1
t at − k. Tsay (2013) combines all of those

tests in his R-package MTS.

6.2 Dynamic Conditional Correlation Models

A simple class of models for multivariate volatility is the Dynamic Conditional

Correlation model (DCC). It uses the covariance matrix Σt = [σij,t] as the volatility

matrix of the k-dimensional innovation at to the asset return series zt. The DCC

model takes advantage of the fact that correlation matrices are easier to handle

than covariance matrices. Therefore, the conditional correlation matrix ρt is used:

ρt = DtΣtDt, (40)

where D = diag[σ
1/2
11,t, ..., σ

1/2
kk,t] is the k × k diagonal matrix of the time-varying

standard variations at time t. The first step is to obtain the volatility series {σii,t}
for i = 1, ..., k assets. The second step is to model the dynamic dependence of the

correlation matrix ρt.

Engle (2002) introduces the first approach for DCC models. Let εt = D−1t at be the

vector of the standardized innovations and ρt the volatility matrix of εt. Then, the

DCC by Engle is defined as:

Qt = S(1− α− β) + αQt−1 + β(εt−1ε
′
t−1), α + β < 1, (41)

ρt = JtQtJt, (42)
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with S being the unconditional correlation matrix of εt, Qt being positive semi-

definite and Jt = [q
−1/2
11,t , ..., q

−1/2
kk,t ], where qii,t denotes the (i, i)-th diagonal element

of Qt:

Jt =


√
q11,t 0 0 · · · 0

0
√
q22,t 0 · · · 0

...
...

...
...

...

0 0 0 · · · √qkk,t

 . (43)

The dynamic conditional correlation is modelled by the two parameters α and β.

It is possible to implement additional lags ` = 1, ..,m for Qt−m and εt−m and re-

ceive α1, ..., αm or β1, ..., βm (Ghalanos, 2012). However, in most applications only

a DCC-(1,1)-process is estimated (Tsay 2013, Laurent et al. 2012).

An advantage of the DCC is that it can be estimated sequentially. The first step

is to estimate the conditional variance of k assets and then model the conditional

time-varying correlation between them, see section (6.3). This procedure is less

efficient, but reduces the computational effort for the likelihood (Laurent et al.,

2012).

The conditional distribution of εt can be Multivariate Standard Normal with the

probability density function

f(ε|µ,Σ) =
1

(2π)k/2|Σ|1/2
exp

[
−1

2
(ε− µ)′Σ−1(ε− µ)

]
, (44)

with mean µ = (µ1, ..., µk) and positive-definite covariance matrix Σ = [σij] (Tsay,

2013).

The standardized innovations εt can also follow a multivariate Student-t distribution

(Harvey et al., 1994) which is more appropriate for heavy-tailed financial data

(Katsiampa, 2018). Then, the probability density function of ε is

f(ε|ν,µ,Σ) =
Γ((ν + k)/2)

Γ(ν/2)(νπ)k/2|Σ|1/2

[
1− 1

ν
(ε− µ)′Σ−1(ε− µ)

]−(ν+k)/2
, (45)

where Γ(ν) denotes the usual Gamma function. Then, ε follows a multivariate

Student-t distribution with ν degrees of freedom and with location and scale pa-

rameters µ and Σ (Tsay, 2013). When ν tends to infinity, the Student-t distribution

tends to the Gaussian distribution. When it tends to zero, the tails of the distribu-

tion become thicker (Bauwens et al., 2006).
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6.3 Estimation

The Dynamic Conditional Correlation Model is estimated with a two-step approach.

First, the univariate conditional variance is estimated for every series, described in

section (4.2). In the second step, the conditional correlation matrix is estimated

which is denoted by ρt = DtΣtDt. Engle and Sheppard (2001) propose a 2-stage

Quasi-Likelihood estimation method to obtain the model parameters for the DCC.

To obtain the univariate residual series for the first stage, Σt is replaced by Ik, a

k × k identity matrix. The resulting first-stage Quasi-Likelihood function for the

parameter θ∗1 of the volatility then is:

QL1(θ
∗
1) = −1

2

T∑
t=1

(
k · log(2π) + log(|Ik|) + 2 · log(|Dt|) + r′tD

−1
t IkD

−1
t rt

)
(46)

= −1

2

T∑
t=1

(
k · log(2π) + 2 · log(|Dt|) + r′tD

−2
t rt

)
(47)

= −1

2

T∑
t=1

(
k · log(2π) +

k∑
n=1

(
log(σit +

r2it
σit

))
(48)

= −1

2

k∑
n=1

(
T · log(2π) +

T∑
t=1

(
log(σit +

r2it
σit

))
, (49)

which can be seen as the sum of the log-likelihoods for the univariate GARCH

processes. After the first stage is estimated, the parameters for the dynamic cor-

relations can be found by using the standardized residuals of the first stage. The

Quasi-Likelihood for the second stage, based on the estimates of θ∗1, can be written

as:

QL2(θ
∗
2|θ̂∗1) = −1

2

T∑
t=1

(
k · log(2π) + 2 · log(|Dt|) + log(|Σt|) + r′tD

−1
t Σ−1t D−1t rt

)
(50)

= −1

2

T∑
t=1

(
k · log(2π) + 2 · log(|Dt|) + log(|Σt|) + ε′tΣ

−1
t εt

)
,

(51)

with εt ∼ N(0,Σt) denoting the standardized residuals according to equation (30).

Since the second stage Quasi-Likelihood is conditioned on θ̂∗1, one can exclude the
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constant terms and simply maximize:

QL2(θ
∗
2|θ̂∗1) = −1

2

T∑
t=1

(log(|Σt|) + ε′tΣ
−1
t εt). (52)

The Quasi-ML estimators for θ∗1 and θ∗2 are assumed to be consistent and asymptot-

ically normally distributed (Engle and Sheppard, 2001). For this thesis, the package

rmgarch (Ghalanos, 2012) in R is used to estimate the dynamic conditional corre-

lation model.

6.4 Diagnostic Checking

While there is a lot of literature on the diagnostics for univariate volatility mod-

els, fewer tests are devoted specifically to multivariate models. It is possible to

distinguish between diagnostics that are applied to each univariate series and mul-

tivariate tests that are applied to the k × T - dimensional time series. For the first

mentioned tests, the diagnostics can be done analogously to section (4.3). Since the

second stage of the DCC estimation is built on the residuals of the univariate series

- see chapter (6.3) - violations on the first stage are important to detect. Although

univariate tests can provide guidance, contemporaneous correlation of disturbances

entails that statistics from individual equations are not independent. Therefore,

there is a need for joint testing (Bauwens et al., 2006).

According to Ding and Engle (2001), one important moment of the model is that

the standardized error terms should follow the condition:

Cov(ε2it, ε
2
jt) = 0, ∀i 6= j, (53)

if the conditional distribution is Gaussian. If the true distribution is the multivariate

Student-t distribution, then, the covariance of the residuals of the different assets

should follow:

Cov(ε2it, ε
2
jt) =

2ν2

(ν − 4)(ν − 2)2
, ∀i 6= j. (54)

The term 2ν2/(ν − 4)(ν − 2)2 is different from zero if 1/ν 6= 0, which would be

the case for a Gaussian distribution. However, testing for a multivariate Student-t

distribution is a quite unexplored field in academic research yet. Bai and Chen

(2008) have made an attempt to test distributional assumptions based on empirical

residual distributions. Therefore, they transform the multivariate time series to a
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univariate format and apply K-transformations to it to purge the distribution and

make distribution free tests possible. Their method is only applicable for autore-

gressive and vector GARCH models so far.

If there are no remaining multivariate ARCH effects in the standardized residuals,

then, εt should obey:

Cov(ε2it, ε
2
j,t−m) = 0, ∀m > 0. (55)

To test whether this is true, the multivariate Ljung-Box test described in equation

(39) can be applied. Here, the Normal distribution of innovations is assumed.

Again, the robust version of the test with upper tail trimming by Tsay (2013) can

be applied here to overcome the non-normality of the data.

However, the state of research on model diagnostics for multivariate GARCH models

is quite scarce yet, especially when it comes to the implementation in statistical

software.
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7 Multivariate Empirical Results

This section deals with the multivariate empirical results of interdependencies in

the volatility of the five crypto coins. First, the sample correlation of the multi-

variate returns is analysed and a test for multivariate GARCH effects performed.

After multivariate conditional heteroscedasticity has been detected, the Dynamic

Conditional Correlation model by Engle (2002) is estimated based on the results for

the univariate GARCH models. There are several orders for the DCC fitted and the

two different multivariate distribution assumptions applied. After the DCC-(1,1)

process with a multivariate Student-t distribution showed the most appropriate fit

according to information criteria, the Value at Risk forecast for the weighted port-

folio returns series is prsented, aligned with the approach by Bauwens and Laurent

(2005). Also here, the forecasting performance of parameter refits every 300 vs.

every 10 days is compared. It shows that, even though significant interdependen-

cies in the multivariate volatility matrix exist, the employment of the multivariate

approach does not improve the Value at Risk forecasting performance compared to

the univariate results.

BitCoin LiteCoin DogeCoin FeatherCoin Ripple

Bitcoin 1.00
Litecoin 0.59 1.00
Dogecoin 0.47 0.40 1.00
Feathercoin 0.39 0.29 0.28 1.00
Ripple 0.24 0.29 0.31 0.21 1.00

Table 5: Lag ` = 0 sample correlation matrix ρ̂0 (Pearson) of the
five crypto currency log return series. T = 1554.

Combining the five cryptocurrency log return series into a multidimensional data

frame of equal length results in T × k = 1544 × 5 = 7720 observations. Table

(5) shows the sample correlation at lag ` = 0 and reveals a high connectedness

of the multivariate log returns. In general, Bitcoin shows the highest correlations

with the other currencies, the lowest correlation can be found between Feathercoin

and Ripple. Ripple in general shows the lowest correlation with the other currencies.

The Henze and Zirkler test (1990) rejects the assumption of multivariate normality

for the log returns of the cryptocurrencies. The Henze and Zirkler test is based
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on a non-negative functional distance that measures the distance between two dis-

tribution functions. If the data is multivariate normal, the test statistic HZ is

approximately log-normally distributed (Korkmaz et al., 2014).

The multivariate Ljung-Box Test from equation (39) is applied to the mean adjusted

multivariate log return series. The highly significant test results imply multivariate

GARCH effects in the data - this means that the conditional covariance matrix Σt

is time-variant. Results are also highly significant for the robust version of the test

which has been modified for heavy-tailed financial data.

The test result justifies the application of a multivariate GARCH model like the

Dynamic Conditional Correlation model.

Dynamic Conditional Correlation Model. The estimation of the DCC model

is done in two steps. First, the univariate GARCH models for the individual series

are fitted. In chapter (5), we obtained the models for the conditional univariate vari-

ance from table (4), where we selected the apARCH for Bitcoin, Ripple, Dogecoin

and Feathercoin and the eGARCH for Litecoin. To provide a mutual distribution

for the multivariate standardized errors in the Dynamic conditional Correlation

model, all univariate innovations in the GARCH models are assumed to follow a

skewed Student-t distribution, even though the skewed Generalized Error distribu-

tion seemed to deliver better forecasting results for Bitcoin - see univariate VaR

results in table (3).

The conditional variance then evolves according to:

σ1.148BC,t = 0.129 + 0.307 · (|a2BC,t−1|+ 0.035 · aBC,t−1)1.148 + 0.832 · σ1.148BC,t−1,

εBC,t ∼ t0.954,2.480.

σ2LTC,t = exp(0.0636− 0.0428 · aLtc,t−1 + 0.6221 · [|aLTC,t−1|
−E(|aLTC,t−1|] + 0.9864 · log(σ2LTC,t−1)),

εLTC,t ∼ t1.050,2.909.

σ0.562XRP,t = 0.2957 + 0.4430 · (|a2XRP,t−1| − 0.0665 · aXRP,t−1)0.562 + 0.6651 · σ0.562XRP,t−1,

εXRP,t ∼ t0.990,2.281.

σ1.152DOGE,t = 0.176 + 0.278 · (|a2DOGE,t−1| − 0.0584 · aDOGE,t−1)1.152 + 0.821 · σ1.152DOGE,t−1,

εDOGE,t ∼ t1.121,2.798.

σ0.861FTC,t = 1.394 + 0.338 · (|a2FTC,t−1|+ 0.267 · aFTC,t−1)0.861 + 0.639 · σ0.821FTC,t−1,

εFTC,t ∼ t1.117,2.669.

Here, tξ,d denotes the skew Student-t distribution with skewness parameter ξ and d
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degrees of freedom.

As the second step, the Dynamic Conditional Correlation model is now to estimate

the correlation matrix of the standardized innovations which were obtained with

the volatility series of the univariate GARCH models.

ε̂t = (ε̂BC,t, ε̂Ltc,t, ε̂XRP,t, ε̂DOGE,t, ε̂FTC,t)
′, ε̂it = âit/

√
σii,t. (56)

The DCC model by Engle (2002) is applied to ε̂t. The model is implemented

both with the multivariate Gaussian and the multivariate Student-t distribution

assumption for εt. For both distribution models, a DCC-(1,1), -(1,2), -(2,1), and

-(2,2) process is estimated.

MV Normal MV Student-t
DCC-(1,1) DCC-(1,2) DCC-(2,1) DCC-(2,2) DCC-(1,1) DCC-(1,2) DCC-(2,1) DCC-(2,2)

α1 0.0474*** 0.0474 0.0198 0.0186 0.0627*** 0.0559 0.0473* 0.0473*
α2 0.0344 0.0668 0.0197 0.0197
β1 0.9358*** 0.9358 0.9269*** 0.3231 0.9051*** 0.8973 0.8984*** 0.8984*
β2 0.0000 0.5619 0.0000 0.0000
shape 4.0000*** 4.0000*** 4.0000*** 4.0000***

AIC 32.202 32.204 32.196 32.200 29.754 30.267 29.934 29.755
BIC 32.413 32.418 32.410 32.418 29.969 30.485 29.754 29.976

Table 6: Model parameters for the estimated DCC models.
T=1544, k=5, *** p-value < 0.001; ** p-value < 0.01; * p-value <
0.05.
Model parameters for univariate volatility series are listed in table
(4).

Table (6) shows the estimated parameters for the implemented DCC models. It

shows that adding additional lags to the model is unnecessary and produces in-

significant parameters. The DCC-(1,1) model performs best. The multivariate

Student-t distribution with 4 degrees of freedom provides a better fit for the heavy-

tailed data according to AIC and BIC. Thus, the resulting model equation for the

estimated conditional correlation matrix is:

Qt = (1− 0.0627− 0.9051)S + 0.0627Qt−1 + 0.9051(εt−1ε
′
t−1),

ρt = JtQtJt, (57)

with Jt = [q
−1/2
11,t , ..., q

−1/2
kk,t ], where qii,t denotes the (i, i)-th element of Q and S is de-

fined in equation (41). All parameters of the DCC-(1,1) with multivariate Student-t

distribution are highly significant, which shows that the conditional variance of the
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five cryptocurrencies is significantly affected by the preceding conditional correla-

tion.

The Ljung-Box test at lag ` = 10 for the univariate standardized residual series

shows that there are no remaining ARCH effects in the squared residual terms.

The Henze and Zirkler test shows that the multivariate residuals of the DCC do

not follow a multivariate Normal distribution, which justifies the application of the

heavy-tailed Student-t distribution. The multivariate Ljung-Box test from equation

(39) is also applied to the squared multivariate standardized residual series. The

test statistic Qk(m) = 323.472 is highly significant and rejects the null hypothesis

of no conditional heteroscedasticity. However, the standard version of the test is

inappropriate if the innovations aren not assumed to follow a Gaussian distribu-

tion. Therefore, the robust version of Qk(m) with 5% upper tail trimming by Tsay

(2013) is applied. Qr
k(m) = 323.3069 also rejects the null hypothesis of no remain-

ing ARCH effects with a p-value of 0.001. The DCC has often been shown to be

rejected by model diagnostics (Tsay, 2013). However, some correlation between the

volatility of the different currencies has been detected on a statistically significant

level, which is now going to be further examined.

Figure (9) shows the dynamic correlations between the log returns series of the five

crypto coins that were estimated by the DCC model in equation (57). Table (7)

gives an additional summary of the mean and variance of the estimated dynamic

correlation.

The correlation between Bitcoin and Litecoin as two of the most popular currencies

is clearly the highest and also the most stable in comparison to the others since

it shows the lowest standard deviation. Figure (9) also shows that it is the only

correlation for Bitcoin with no peaks below zero. The correlation of Bitcoin with

Dogecoin and Feathercoin is generally more unsteady but still shows a quite high

mean correlation. Figure (9) reveals that the dynamic correlation of Dogecoin and

Feathercoin with the other currencies evolves quite equally. A similar picture can

be found for Ripple, where the correlation with the other currencies is evolving in a

similar manner and relatively low. The relationship between Feathercoin and Rip-

ple also appears to be unstable and shows swings in positive and negative directions.
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Figure 9: The estimated dynamic correlation between the currencies
modelled by a DCC-(1,1) with multivariate Student-t distribution.
T=1544.

BitCoin LiteCoin DogeCoin FeatherCoin Ripple

BitCoin 1.00
LiteCoin 0.6309 (0.1470) 1.00
DogeCoin 0.4893 (0.1789) 0.4675 (0.1545) 1.00
FeatherCoin 0.3661 (0.1899) 0.3027 (0.1847) 0.3190 (0.1795) 1.00
Ripple 0.2396 (0.1815) 0.2612 (0.1668) 0.3453 (0.1607) 0.2227 (0.1693) 1.00

Table 7: Mean and (standard deviation) of the lag ` = 0 correlations
in the multivariate volatility of the currencies estimated by the DCC
model in equation (57). T=1544.
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Table (7) shows that the estimated dynamic conditional correlation of innovations

between the currencies is positive on average. Bitcoin has the overall highest cor-

relation with all other currencies, while Ripple shows the lowest correlation with

other currencies. Dogecoins correlation with the other coins is quite high. The

correlation between Bitcoin and Litecoin is the highest with the lowest standard

deviation. Feathercoin has on average the highest standard deviation in the cor-

relation with the other currencies. Figure (9) however, shows that the dynamic

correlation is varying over time, thus the interdependency between the currencies

behaves differently for several time periods.

Value at Risk Forecasting. To calculate the one-day-ahead Value at Risk fore-

cast for the multivariate model, the time series has to be transformed into a univari-

ate format. Equivalently to section (5) a rolling forecast with recursive window is

performed, with re-estimated parameters for the DCC every 300 days and every 10

days separately. Subsequently, the forecasted mean portfolio return and volatility

of all five currencies is calculated and the 1% and 5% quantile loss function gener-

ated. VaR forecasts are compared to the realized returns of the 1/k portfolio. To

calculate the loss function for the multivariate portfolio, a weight vector is applied

to the fitted mean and conditional covariance matrix of the DCC model, according

to the approach by Bauwens and Laurent (2005):

µ̂PF,t+1 =
1

k

k∑
i=1

µ̂i,t+1, i = 1, .., k, k = 5. (58)

In the 2-stage estimation of the DCC, µ̂i,t for the individual series is obtained by

the univariate GARCH models. µ̂PF,t is then the average for the five fitted series.

σ̂PF,t+1 is obtained from the Σ̂t-matrix fitted at the second stage by applying a

weight vector to it:

w =


1/k
...

1/k


k×1

, (59)

σ̂PF,t+1 =
[
wΣ̂t+1w

′
]1/2

. (60)
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Value at Risk is then the negative 1%- or 5%-quantile of the the conditional return

distribution:

V aRα
PF,t+1 := −Qα(rPF,t+1|Ft). (61)

which is determined by rPF,t = µPF,t + σPF,tεPF,t, with εPF,t again being a random

iid variable following the Student-t distribution with mean zero, standard deviation

one and shape parameter obtained by the fitted DCC. The implementation of the

VaR forecast via a DCC in R is aligned with the work by Ghalanos (2016), the

author of the rugarch and rmgarch package.

The Value at Risk forecast is performed for parameter re-estimates every 300 days

as well as every 10 days.

Figure (10a) and (10b) show the 1% and 5%-VaR forecasts of the DCC together with

the daily returns of the 1/k portfolio with parameter re-estimates every 300 days.

Compared to Figure (5), which shows the VaR results of the portfolio modelled via

a univariate eGARCH, one can also identify a volatile period in mid 2016, followed

by a stable period until early 2017 and a highly volatile period during the hype

from early 2017 until end of the observation span. For the 1%-VaR limit, there are

3 data points where the realized portfolio loss exceeds the forecasted Value at Risk

(0.4% violations). The LR test for unconditional coverage cannot reject the null

hypothesis of correct exceedances for both α-levels. Also the test for conditional

coverage does not reject the H0 of independent exceedances. At the 5%-VaR level,

there are 9 out of 37 violations found (1.2%). Even though this is a very low

violation rate, both tests for unconditional and conditional coverage are rejected.

Therefore, the violations in the forecast that was performed with the DCC are not

correct and independent from each other.

Like in chapter (5), a second VaR forecast for the portfolio is performed, with

parameters re-estimated every 10 days instead of every 300 days. The univariate

analysis showed that a more frequent refit does not provide more accurate Value at

Risk forecasts.
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(a) 1%-Value at Risk. Parameters re-estimated every 300 days. % Viol: 0.4, p-Values:
LRuc : 0.062, LRcc : 0.175.

(b) 5%-Value at Risk. Parameters re-estimated every 300 days. % Viol: 1.2, p-Values:
LRuc : 0.000, LRcc : 0.000.

Figure 10: Value at Risk forecasts for the 1-day-ahead rolling forecast
of the 1/k portfolio estimated with a multivariate DCC according to
equation (57).
The model is built on a training data set of 800 observations, which
leaves 744 out-of-sample forecasts.
Parameters are re-estimated every 300 days with a recursive win-
dow, which leads to a total number of 3 refits.
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(a) 1%-Value at Risk. Parameters re-estimated every 10 days. % Viol: 0.6, p-Values:
LRuc : 0.168, LRcc : 0.379.

(b) 5%-Value at Risk. Parameters re-estimated every 10 days. % Viol: 1.9, p-Values:
LRuc : 0.000, LRcc : 0.000.

Figure 11: Value at Risk forecasts for the 1-day-ahead rolling forecast
of the 1/k portfolio estimated with a multivariate DCC according to
equation (57).
The model is built on a training data set of 800 observations, which
leaves 744 out-of-sample forecasts.
Parameters are re-estimated every 10 days with a recursive window,
which leads to a total number of 75 refits.
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It shows that updating the Dynamic Conditional Correlation model parameters

more often does not improve the multivariate forecasting results either.

Figure (11a) shows the 1% Value at Risk exceedances for the Dynamic Correlation

model with parameters refitted every 10 days. In fact, the number of violations

increases from 3 to 4 out of 7 expected violations, which implies a violation rate of

0.6%. The test for unconditional coverage shows a p-value of 0.168 and the test for

conditional coverage can not be rejected with a p-value of 0.379 either. The VaR

results at the α = 5%-level show a different picture in Figure (11b). Even though

there is only a violation rate of 1.9%, with 14 out of 37 expected violations, the tests

by Christoffersen (1998) show that the unconditional and conditional coverage is

violated. Therefore, VaR violations in the forecast are not correct and independent

from each other. In comparison to Figure (6) and (5) where the aggregated portfolio

was forecasted with an eGARCH, the forecasted portfolio loss is also slightly higher,

the DCC model thus draws a more pessimistic picture.

It can be concluded that the DCC does not outperform the results by the simple

univariate eGARCH with skewed Student-t distribution for the aggregated portfolio

which showed a good violation rate and did not fail the VaR backtesting. The most

accurate VaR results are still found with a univariate forecast for each individual

return series. Here, percentage violations between 0.4 and 0.7% can be found at the

α = 1%-level, while both the tests for conditional and unconditional coverage are

not rejected. Higher levels of portfolio aggregation might have led to information

losses for the individual return processes. Since there was a weight vector applied

to Σ for the calculated VaR quantile function in the multivariate approach - see

equation (60) - the model might not be able to identify dependencies in the volatility

of the individual currencies anymore. In the univariate analysis, the parameters for

the negative quantile function can also be obtained more specifically, i.e. by the

estimated skewness parameter.

Specifying the right distribution model is crucial when it comes to Value at Risk

forecasting and the results of the DCC could be improved by introducing a skewness

to negative quantile function of the aggregated portfolio. Dynamic conditional

correlation models in combination with multivariate skew densities have shown to

provide more accurate VaR results for financial data (Bauwens and Laurent, 2005).

The multivariate analysis has shown the following key findings: The multivari-

ate distribution of innovations is more appropriately modelled with a multivari-

ate Student-t distribution rather than the Gaussian. This is another finding that

proves the need for a heavy-tailed distribution when modelling the volatility of

cryptocurrencies and is already supported in the analysis of multivariate volatility
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interdependies by Katsiampa (2018). The conditional covariance of the five cryp-

tocurrencies is significantly affected by the covariance of past error terms, which

justifies the application of a multivariate approach to understand co-movements of

the cryptocurrencies volatility. However, the Ljung-Box test rejects the assumption

of no remaining multivariate ARCH effects in the squared residuals. The estimated

conditional correlation between the currencies is time-varying but positive on aver-

age. Those results are supported by the findings of Katsiampa (2018) and Corbet

et al. (2018), who also found that price and volatility developments of the currencies

are highly connected to each other. Bitcoin shows the strongest correlation to the

other currencies, while Ripples correlation to the other currencies appears to be

more weak and unsteady.

The forecasting of Value at Risk has shown that consulting a multivariate approach

does not make the results more accurate. Concering the forecasting of a portfolio

downside risk for an aggregated portfolio, it is more efficient to apply a univari-

ate GARCH model to the aggregated univariate portfolio return series rather than

choosing the more complex Dynamic Conditional Correlation model. Furthermore,

an aggregated portfolio shows less accurate forecasting performance than the fore-

casting of the individual return series. The most accurate results were produced

with the apARCH, eGARCH and csGARCH in combination with a skewed Student-

t or skewed Generalized error dsitribution for the individual volatility forecasts.

This is a result that has already been found for the forecasting of traditional assets.

Kole et al. (2017) have shown that higher levels of portfolio aggregation and the

multivariate approach via a Dynamic Conditional Correlation model does not out-

perform the Value at Risk forecasting of univariate GARCH models in many cases.
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8 Conclusion

The immense popularity of the altcoin market and the increasing interest in me-

dia and economics has lead to a lot of scientific attempts to explain what drives

cryptocurrency price developments and their highly volatile behaviour. Still a lot is

unknown about this emerging market. In this thesis, one of the first analyses of the

interconnectedness between five different cryptocurrency volatilities and its impact

on forecasting accuracy has been made. Its main attempt was to find out whether

the forecasting accuracy of the conditional heteroscedasticity can be improved by

taking the conditional covariance into account. It showed that there is a strong

interconnectedness between the volatility of the five currencies, however, compared

to a univariate forecast of the individual series, the implementation of a Dynamic

Conditional Correlation model does not improve the Value at Risk forecasting ac-

curacy.

A descriptive analysis of the stylized facts for Bitcoin, Litecoin, Dogecoin, Ripple

and Feathercoin has been made. It showed that, except for Bitcoin, all currencies

are positively skewed and all show heavy-tail behaviour, next to conditional het-

eroscedasticity in the evolution of their volatility. They also exhibit a high standard

variation of returns, with Bitcoin being the least risky currency. Those results are

supported by previous findings in academic research on the cryptocurrency market

(Chu et al. 2017, Catania and Grassi 2017, Gkillas and Katsiampa 2018).

Several univariate GARCH models were fitted for the individual return series of the

five coins. Results showed that the innovations of the log return series are most

appropriately modelled with a skewed distribution like the skewed Student-t or the

skewed Generalized Error distribution. It has been shown that the conditional het-

eroscedasticity is modelled best with an asymmetric power ARCH, a component-

standard GARCH or an exponential GARCH. Predominately, the apARCH per-

formed best, providing the best fit according to information criteria and residual

plots. The high performance of the apARCH also remains during the rolling fore-

cast of portfolio downside risk. It has already been identified in the literature as

a powerful forecasting tool for conditional heteroscedasticity (Kuester et al., 2006).

It also shows the need for a GARCH-model that takes the leverage effect into ac-

count since it has already been found that the volatility process of cryptocurrencies

shows an asymmetry to the sign of past innovations (Catania et al. 2018, Phillip

et al. 2018). The skewed Generalized Error distribution provides the overall lowest

number of VaR violations but usually goes along with some violations of model as-

sumptions and worse backtesting results. Furthermore, variations in the frequency
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of parameter refits for the rolling 1-day ahead forecast show that the model pa-

rameters are stable over time and a more frequent update does not improve the

performance of the forecast significantly.

After the apARCH and eGARCH with skewed Student-t distribution have been

chosen to model the volatility of the univariate innovations, the Dynamic Condi-

tional Correlation model with a multivariate Student-t distribution has been imple-

mented to estimate the conditional correlation of the multivariate innovations. The

parameters of the DCC-(1,1) process are highly significant, which shows that the

conditional variance of the five cryptocurrency returns series is significantly affected

by the preceding conditional correlation in the multivariate volatility. A graphical

and descriptive analysis of the estimated dynamic correlation showed that the rela-

tion between the volatility of the currencies is positive on average but time-varying.

In general, Bitcoin shows the highest connectedness with other currencies, while

the conditional variance of Ripple is least correlated to the others. Even though a

strong positive relationship between the currencies has been found, the multivariate

approach does still not improve the Value at Risk forecasts. A more frequent update

of the model parameters still does not outperform the portfolio forecast with a uni-

variate GARCH model. The best forecasting results are found with the univariate

GARCH-type models for the individual return series. The results are supported by

the findings by Katsiampa (2018), who found a strong but time-varying relation-

ship between the conditional heteroscedasticity of the main currency prices via a

multivariate BEKK approach, and the results by Kole et al. (2017), who found that

Dynamic Conditional Correlation models and aggregated portfolios usually can not

outperform the Value at Risk accuracy of univariate GARCH models with lower

portfolio aggregation.

The univariate results have shown that there is a need for skewed heavy-tailed

distributions to model the innovations of the crypto returns. For the Dynamic

Conditional Correlation model, forecasting results could have been improved by in-

troducing a skewness into the multivariate Student-t distribution (Bauwens et al.,

2006). Furthermore, the evaluation of a portfolio via Value at Risk has been found

to be subject to a few limitations. Even though it is a popular tool that is also eas-

ily comprehensible to laymen, it does not differentiate between ”good” and ”bad”

risk and reflects only the pessimistic view on the risk of a portfolio. The possi-

bility of highly positive portfolio returns is not taken into account (Dembo and

Freeman, 2001). Artzner et al. (1999) have also shown that VaR does not oper-

ate sub-additive, i.e. VaR can report a higher total portfolio risk than the sum of

the individual positions. Further analysis of the performance of DCC models in the
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crypto market could investigate alternative risk measures like the Conditional Value

at Risk (CVaR) (Artzner et al., 1999)) or the Expected Shortfall (ES) (Acerbi and

Tasche, 2002). Scientific research of the cryptocurrency volatility is an emerging

topic of interest and there is going to be better understanding of dependencies in

the altcoin market as soon as longer observation spans are available for statistical

analysis. Right now, researchers need to choose coins that existed for a long time

but might have lost their importance - like Feathercoin - to obtain a large sample

size. Future analysis will hopefully benefit from a more stable market.

Regarding conditional heteroscedasticity, we have seen that the dynamics between

the volatilities of the return series are not constant over time. The conditional corre-

lation between the multivariate return series could be modelled more appropriately

with a Regime Switching DCC (Pelletier, 2006). In this model, the correlation ma-

trix of the volatilities is constant within a regime but varies across different regimes.

This might be a tool to capture the different trends that the altcoin market expe-

rienced since it emerged in 2009.

The results have improved the understanding about how volatilities of cryptocur-

rencies are connected to each other. However, there is still much we don’t know

about this emerging market. A lot of academic work has already been spent on

the effect of policy and social media activities on crypto prices, but there might

be way more influencing variables that we are not aware of yet. An interesting

upcoming event is the full utilisation of the Bitcoins that are left to mine. In fall

2018, only 18 percent are left until the limitation of 21 million Bitcoins available to

mine is reached (Blockchainhalf.com). We have found that the development of all

other cryptocurrencies is strongly correlated to Bitcoin. Therefore, the limit of the

Bitcoin supply could have a huge impact on the altcoin market and the financial

industry in general.
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A. APPENDIX

A Appendix

(a) Bitcoin (b) Litecoin

(c) Dogecoin (d) Ripple

(e) Feathercoin (f) Portfolio

Figure 12: Plot for the autocorrelation and partial autocorrelation
of the squared logarithmic returns of the individual cryptocurrency
return series. Blue dashed line indicates the 5% significance level.
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A. APPENDIX

(a) Bitcoin: apARCH, skew Student-t distri-
bution

(b) Litecoin: eGARCH, skew Student-t dis-
tribution

(c) Ripple: apARCH, skew Student-t distri-
bution

(d) Dogecoin: apARCH, skew Student-t dis-
tribution

(e) FeatherCoin: apARCH, skew Student-t
distribution

(f) Portfolio: eGARCH, skew Student-t dis-
tribution

Figure 13: Quantile-to-quantile plots for the distribution of stan-
dardized errors for the selected univariate GARCH models
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A. APPENDIX

(a) Bitcoin: apARCH, skew Student-t distri-
bution

(b) Litecoin: eGARCH, skew Student-t dis-
tribution

(c) Ripple: apARCH, skew Student-t distri-
bution

(d) Dogecoin: apARCH, skew Student-t dis-
tribution

(e) FeatherCoin: apARCH, skew Student-t
distribution

(f) Portfolio: eGARCH, skew Student-t dis-
tribution

Figure 14: Autocorrelation of squared standardized errors for the
selected univariate GARCH models. Red dashed line indicates the
5% significance level.
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B. ELECTRONIC ATTACHMENTS

B Electronic Attachments

The electronic attachment contains a PDF document ”Guideline for R-Codes” and

two folders ”Code” and ”Data”:

• ”Guideline for R-Codes” contains a listing of the different R-Codes and ex-

plains the content and data in more detail.

• ”Code” contains 11 R-Codes that are to be executed in the consecutive order

in which they are numbered.

• ”Data” contains the original data sets of the five cryptocurrency daily closing

price time series obtained from Coingecko.com, and the datasets built in the

R-Codes.
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