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Abstract

We analyse Kreisel’s notion of human-effective computability. Like Kreisel, we relate this

notion to a concept of informal provability, but we disagree with Kreisel about the

precise way in which this is best done. The resulting two different ways of analysing

human-effective computability give rise to two different variants of Church’s thesis.

These are both investigated by relating them to transfinite progressions of formal the-

ories in the sense of Feferman.

Introduction

In [Kreisel 1972], the notion of human-effective computability is outlined and distinguished
from the familiar notion of algorithmic computability. Roughly, a total function f on the nat-
ural numbers is said to be human-effectively computable if for any natural number m given
in canonical notation, a number n in canonical notation can be found such that it can be
proved that f (m) = n. The notion of provability involved in this explication is an informal
or absolute notion of provability by an idealised human agent which should not without a
good argument be identified with provability in some antecedently given formal system.
It is thus crucial in this context that the numbers are given in canonical notation, where
for definiteness we say that a number is given in canonical notation if it is given by a
Peano-numeral, and that it is kept in mind that since functions are infinite abstract ob-
jects, human agents—even in the idealised sense—do not have epistemic access to them
independently of the interpreted linguistic expressions that denote them (call these ex-
pressions function presentations). This implies that given two different presentations f and
g of the same function, it cannot be assumed that the existence of an informal proof of a
statement of the form f (m) = n indicates the existence of a proof of g(m) = n.1

1This issue will be discussed in more detail in §3.
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In this paper we follow Kreisel’s suggestion that human-effective computability should
be explicated in terms of a notion of provability. More precisely, we suggest that human-
effective computability can be explicated in terms of the notion of a priori knowability, and
that the latter notion can be fruitfully investigated in the formal framework of Epistemic
Arithmetic.

However, there are several ways of explicating a notion of human-effective computabil-
ity in terms of a notion of a priori knowability. We will investigate two such explications.
The first was suggested by Kreisel himself, and later articulated in the context of Inten-
sional Set Theory by Myhill. The second explication was proposed by Shapiro (in the con-
text of the framework of Epistemic Arithmetic). We will argue that Shapiro’s explication
yields a more robust notion of computability than the Kreisel-Myhill notion. In particular,
we will see that if we model a priori knowability in terms of transfinite progressions of for-
mal theories, the properties of the Kreisel-Myhill notion of human-effective computability
are less stable than the ones of Shapiro’s notion of human-effective computability. More
specifically, one can formulate versions of Church’s thesis for the two notions of human-
effective computability. We then see that for Shapiro’s notion of human-effective com-
putability, the relevant version of Church’s thesis is true in transfinite progression mod-
els. For the Kreisel-Myhill notion of human-effective computability, in contrast, Kreisel
already observed that the truth value of the relevant version of Church’s thesis is sensi-
tive to the details of the model.

The structure of this article is straightforward. In the next two sections we introduce
Kreisel’s notion of human-effective computability, and elaborate on the role of the ide-
alisations involved in the notion of informal provability in terms of which the notion
of human-effective computability is analysed. Subsequently, we contrast Kreisel’s way
of analysing human-effective computability in terms of informal provability with that of
Shapiro. We then follow Kreisel by ‘testing’ these two notions by articulating models for
them in terms of transfinite progressions of formal theories, and by investigating whether
versions of Church’s thesis hold in these models.

In this paper, we will restrict ourselves to notions of computability of total functions
on the natural numbers. Also, in our formal investigation of Kreisel’s notion of human-
effective computability, we will restrict ourselves to first-order modal languages.
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1 Machine-effective computability versus human-effective

computability

1.1 The distinction

A function f is said to be effectively or algorithmically computable if there is a routine step-by-
step procedure which, for each natural number n (given in some canonical notation), in
a finite number of steps, yields the function value f (n) (in canonical notation). Church’s
thesis for algorithmic computability then asserts the following:

Thesis 1 (Church’s thesis) A function f is algorithmically computable if and only if, for every
natural number m given in canonical notation, a canonically given number n exists such that the
statement f (m) = n is formally provable (by finite steps in a logic).2

In more contemporary terms, the thesis states that every effectively or algorithmically com-
putable function on the natural numbers is λ-computable, or, equivalently, that every function
that is algorithmically computable is Turing computable.3

[Turing 1936] gave a conceptual analysis of the notion of algorithmic computability
for an idealised human agent which proceeds in a stepwise, routine way without techno-
logical aid nor insight or ingenuity. Many have argued that Turing’s analytical argument
does not and can not amount to a mathematical proof of the Church-Turing thesis (hence-
forth, CT) because mathematical theorems seem to only connect mathematical notions,
while the antecedent of CT contains the informal notion of effective or algorithmic com-
putability (see e.g. [Folina 1998], [Horsten 2006]).4 However, it is now widely accepted
that Turing’s analysis of the notion of algorithmic computability establishes that CT is
indeed true.5 In fact, CT is often invoked in informal proofs in computability theory to

2This formulation of the thesis is intensionally closer to Church’s original formulation in §7 of
[Church 1936] than the version which defines the notion of an effectively computable function in terms of a
λ-definable function of positive integers. See the discussion and footnote below.

3The latter is called Turing’s thesis. Some (see e.g. [Soare 1996]) distinguish Church’s thesis from Turing’s
thesis on the grounds that they are intensionally distinct. Despite the fact that this article focuses on some
intensional aspects of different notions of computability, we will not distinguish Church’s thesis from Tur-
ing’s thesis as nothing that is being argued hinges on this distinction. Thus we will just speak of Church’s
thesis. For discussions of the conceptual analysis of algorithmic computability on the natural numbers, see
e.g. [Sieg 1994], [Soare 1996].

4This is, however, a controversial matter. Some have argued that we should instead introduce new prim-
itives into the language that allow us to talk directly about algorithms, axiomatise their fundamental proper-
ties, and then prove the Church-Turing thesis from these axioms. See e.g. [Shapiro 1981], [Mendelson 1990],
[Sieg 1994], [Sieg 1997], [Sieg 2013].

5Kreisel acknowledges Turing’s analysis as a particularly successful exercise in informal rigour
[Kreisel 1987, p. 505].
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infer from the informal description of how a function can be effectively computed, the
conclusion that that function is recursive.

A function f is said to be mechanically computable if there exists a machine that for each
natural number n (given in some canonical notation) yields the function value f (n) (in
canonical notation) in a finite amount of time. An obvious analogue for Church’s thesis
can be formulated for the notion of machine computability by a Discrete Deterministic
Mechanical Device (DDMD). Gandy has shown that given certain reasonable conditions
on what it means to be DDMD computable, Church’s thesis for computability by discrete
deterministic mechanical machines also holds [Gandy 1980].

In [Kreisel 1972], Kreisel draws a distinction between machine-effective computability and
human-effective computability. With “machine-effective computability” he does not mean
mechanical computability in the sense of Gandy, but rather algorithmic computability
in the sense of Turing [Kreisel 1972, p. 314 and p. 318]. Furthermore, Kreisel holds that
Turing’s analysis establishes something stronger than what he calls Church’s thesis (the
statement that each informal description of an algorithm corresponds to a function com-
puting the output of that algorithm), namely that an “intensional equality” holds between
machine-effective computability on the one hand, and Turing machine computability on
the other hand [Kreisel 1972, p. 316]. More precisely, Kreisel holds that Turing’s analysis
establishes what he calls Church’s Superthesis: the statement that “each m-effective defini-
tion [i.e. algorithm] is intensionally equal to some program for an ‘idealized’ computer”.6

Kreisel does not explain in much detail what is meant by the notion of human-effective
computability, and it is not easy to paraphrase in clear terms what he does say about this
notion. He claims that “in [‘human-effective computability’], ‘effective’ means humanly
performable and not only mechanical” [Kreisel 1972, p. 314]. He holds that there is an inti-
mate connection between human-effective computations and proofs [Kreisel 1972, p. 315].
Indeed, he regards “[human] effectively definable functions as the analogue of provable
theorems” [Kreisel 1972, p. 316]. This suggestion can be cashed out as follows: whereas
algorithmic computability (algorithmic enumerability) is naturally seen as reducible to
formal provability, human-effective computability can be naturally seen as reducible to
informal or absolute provability, which is a notion of provability that is not relativised to
any given formal system.7

Informal provability differs from formal provability—and thus human-effective com-

6See also [Kreisel 1971, p. 177], where Kreisel identifies Church’s Superthesis with the statement that each
informal description of an algorithm corresponds to “a more or less specific programme, modulo trivial
conversions, which can be seen to define the same computation process as the rule”.

7The connection between calculability (see §3) and proofs seems to have first been drawn by [Gödel 193?];
see particularly pp. 166–168. For an analysis of Gödel’s views see [Sieg 2006]. However, a discussion of the
points of contact and divergence with Gödel’s view are beyond the scope of this paper.
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putability from machine computability—in that it contains what Kreisel takes to be a non-
deterministic element (such as the introduction of new axioms). Kreisel warns in this con-
text against the uncritical presupposition that only a deterministic concept of provabil-
ity (and thus machine computability) can be fruitfully investigated in a precise manner
[Kreisel 1972, p. 319].8

At the moment, we do not seem to have resources available that allow us to argue
conclusively that the extension of the notion of informal provability is captured by some
formal notion.9 This does not imply that a rigorous account of the notion of informal
provability cannot be given. In the spirit of [Myhill 1960], we may try to treat the notion
of informal provability as primitive and capture its logical properties axiomatically, or we
may try to construct an informative class of models that reflects how the extension of the
notion of informal provability is generated.10

At a first approximation, one might say that a function f is human-effectively com-
putable if and only if for every natural number m given in canonical notation, a canon-
ically given number n exists such that the statement f (m) = n is informally provable.11

The question then presents itself whether Church’s thesis for human-effective computabil-
ity also holds. Kreisel takes Church’s thesis for human-effective computability to amount
to the thesis that every total function which has a human-effective definition is recursive,
so the question is whether for every function that is humanly computable, there is a Tur-
ing machine that computes it. Kreisel attributes to Turing the claim that Church’s thesis
for human-effective computability holds for the same reasons that underlie the support
for Church’s thesis for machine-effective computability. He believes that this is mistaken,
because machine-effective computability and human-effective computability are distinct
notions [Kreisel 1972, p. 319]. Moreover, he thinks it of cardinal theoretical importance
that these two notions are not run together [Kreisel 1972, p. 314–315].

In sum, Kreisel held that Turing provided an intensional analysis of the notion of al-
gorithmic computability which established that CT holds for this notion of computability,
and that by doing so, Turing precisely characterised the limitations of the notion of algo-
rithmic computability (i.e. the extension of what can be computed in a stepwise, routine
fashion by an idealised computer). Similarly, we might hope that a rigorous analysis of
the notion of human-effective computability might establish or refute Church’s thesis for
human-effective computability, thus giving us information about the scope and limita-

8This point will be discussed in more detail in the following subsection.
9Kreisel noted that already for certain more restricted notions of provability, such as finitist provability

or predicative provability, we are in this position [Kreisel 1967, p. 157].
10A brief discussion of Kreisel’s distinction between genetic and axiomatic theories for an informal notion—

such as informal provability—in relation to informal rigour follows in §1.2.
11In §4 we will slightly revise this thesis.
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tions of mathematical reasoning [Kreisel 1972, p. 316].

1.2 Informal rigour

The notion of informal rigour was first put forward in [Kreisel 1967] and subsequently ex-
panded in later works such as [Kreisel 1972] and [Kreisel 1987], which particularly focuses
on Church’s thesis as a paradigmatic example of informal rigour.

Kreisel strongly opposes the idea that it is impossible to give a rigorous analysis of
intuitive notions, such as the notions of humanly performable instruction or the notion of in-
formal or absolute provability. For many such epistemological notions that are omnipresent
in mathematics it is difficult to find the right level of idealisation, thus making many re-
luctant to the idea that a precise relation can be established between mathematical and
non-mathematical (informal) notions. The difficulties do not concern the concepts them-
selves, but rather appear when explicit hypotheses are made concerning those notions
[Kreisel 1972, p. 318]. This, however, does not exclude the possibility of a theory that
rigorously characterises these notions intensionally, or possibly, extensionally; on the con-
trary, it should constitute an incentive to look into formal frameworks that could be used
to “organise” the subject [Kreisel 1972, p. 331]. There is of course no guarantee that such
theory will be found. But on Kreisel’s view, we should resist the claim that such infor-
mal notions as human-effective computability cannot have a well-determined idealisa-
tion: informal rigour can be used to make an informally characterised notion rigorous. In
Kreisel’s words,

Informal rigour wants (i) to make this analysis as precise as possible (with the
means available), in particular to eliminate doubtful properties of the intuitive
notions when drawing conclusions about them; and (ii) to extend this analysis,
in particular not to leave undecided questions which can be decided by full use
of evident properties of these intuitive notions. [Kreisel 1967, p. 138–139]

When an informal or intuitive notion is made precise without appeal to arbitrary con-
ventions, knowledge of informal notions can be combined with formal tools and used to
establish new mathematical properties of those notions. This can produce the understand-
ing needed to recognise whether and in what way the precise definitions of the informal
notions in question contribute to solving problems that present themselves in the area to
which the notions belong, and can establish the precise extent of that area [Kreisel 1987,
p. 500].

Famously, [Kreisel 1967] presents what is now known in the literature as a squeezing
argument. Suppose that we have an informally characterised concept. Then we have

6



a strategy for making it rigorous if we can show that there are two precisely defined
concepts which provide respectively necessary and sufficient conditions for falling un-
der the informally characterised concept, and the two precisely defined concepts have the
same extensions. As a paradigmatic example, informal rigour can be used to argue that
the pre-theoretic concept of validity for first-order languages is captured by the model-
theoretic concept of logical consequence, which can then be shown (by the completeness
theorem) extensionally to coincide with the notion of classical first-order derivability. In
other words, the extension of the informal concept of validity is precisely identified by
being “squeezed” between the extension of the concept of soundness and the extension of
the concept of completeness.

The squeezing argument is not the only strategy for achieving informal rigour. Ac-
cording to Kreisel, another chief example of a successful application of informal rigour is
Turing’s intensional analysis of the informal notion of algorithmic computability which is
extensionally captured by the precisely defined class of Turing computable functions. The
precise extension of the informal concept in question is not, in this case, determined by
a squeezing argument, but it is established by the analysis of the idealisations involved
in the informal notion. In this paper, we will not apply informal rigour to the notion of
informal provability in the sense of the squeezing argument, but we will pursue a strategy
closer to one that Kreisel describes with respect to CT.

A crucial factor in the success of Turing’s analysis of algorithmic computability consists
in identifying the right idealisations that are involved in the notion of stepwise computa-
tions on the natural numbers. The informal notion of computability and the mathematical
one differ significantly from each other with respect to the idealisations of the agent or sys-
tem for which the computation rules are to be effective [Kreisel 1987, p. 501]. The problem
with applying informal rigour to the notion of human-effective computability lies in the
fact that it is much more difficult to identify the right idealisations [Kreisel 1972, p. 317]:

Any [. . . ] theory [of human-effective computability] would seem to need an
idealisation far removed from our ordinary experience (of human performances in
mathematics). Consequently, we have not one, but two difficulties. If experi-
ence presents itself in such a way that the proper idealisation is difficult to find
then, for the same reason, the idealisation may be difficult to apply even if it is
found. In particular, there will now be a genuine problem of formulating prin-
ciples of evidence or adequacy conditions for the validity of idealisations. Besides
when idealisations are difficult to find there will, in general, be competing the-
ories and hence the problem of discovering (observational) consequences which
can be used to decide between different theories. (emphasis in the original)
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In this article, we will apply informal rigour to the notion of human-effective com-
putability by following Kreisel’s suggestion that human-effectively definable functions
constitute the analogue of provable theorems, and will attempt to explicate the notion of
human-effective computability in terms of a notion of provability. The picture is roughly
as follows. At every moment in time, the extent of our a priori knowledge is generated
by a finite set of basic principles.12 As time progresses, more basic principles may come
to be a priori known. There may be systematic aspects about this process. For instance,
at a given point in time t′ one may come to find a formal provability predicate for the
extension of informal provability as it was a moment earlier at t, and come to realise in
an a priori way that the extent of a priori knowability at time t is consistent (as expressed
using this provability predicate). But there may also be unsystematic aspects about this
process. This happens when a completely new axiom is adopted on a priori grounds, as
was perhaps the case with the Axiom of Choice in set theory in the third decade of the
twentieth century. It is especially the unsystematic aspect of this process that makes it dif-
ficult to draw general conclusions about the extension of the notion of a priori knowability
in general.

Since the aim is that of providing a rigorous characterisation of Kreisel’s notion of
what an idealised but human mathematician can compute along the lines of the picture
described above, what is needed is a notion of provability that captures the notion of what
an idealised but human mathematician can prove in principle. Settling in advance for a
notion of provability in some particular formal system would prejudge matters: there are
some truths—e.g., the truth of a Gödel sentence—that we cannot prove in a specific formal
system, but that we can nonetheless prove in the informal sense of the word ‘prove’.13

What is needed, therefore, is a rigorous way of characterising an informal or absolute notion
of provability.14

The best possible outcome would be if we were able to formulate a genetic theory of
mathematical provability, where the notion of a genetic theory is described by Kreisel as fol-
lows:

The old aim [of the theory of genetic provability] was not merely to find an
F such that every theorem (in the language of F) which can be proved at all

12Some such principles may be schematic, for example the induction scheme for first-order arithmetic.
Since the idealised agent can only entertain a finite number of principles in her mind, she cannot know (at
any given moment in time) infinitely many instances of a scheme. In such cases, knowledge of the schematic
principle allows her to come to know individual instances of the scheme, by recognising them as such.

13For more extensive discussions of this topic, see [Myhill 1960], [Leitgeb 2009] and
[Antonutti Marfori 2010].

14For a more extended discussion of difficulties surrounding the modelling of the notion of informal
provability see [Horsten 2005, §2].
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should also possess some derivation in F, but we should be able to see how
to get from an intuitive proof to its formalization (in F). [. . . ] A paradigm of a
genetic theory in the sense described (for machine-effective definitions in place
of proofs) is provided by Turing’s analysis: each machine-effective definition is
intensionally equal to some program for an ‘idealized’ computer. [Kreisel 1972,
p. 316]

The distinction is also clarified by saying that genetic theories of human-effective def-
initions “tell us what objects we are talking about”, while axiomatic theories “state prop-
erties of the objects considered without providing an explicit list of them” [Kreisel 1972,
p. 315].

Kreisel then goes on to point out that we lack a genetic theory even for the concept of
formal provability [Kreisel 1972, p. 316]. Part of the problem is that mathematicians are
always inventing new languages to express new concepts: so we cannot stick to a fixed
vocabulary (as Turing machines and other formal algorithms do).15 For the concept of
informal or absolute provability, the situation is even more problematic: not only we lack
a genetic theory, but we do not have a mathematical characterization of its extension even
if we restrict ourselves to the language of arithmetic. Of course, it is not difficult to find a
lower bound for it (Peano Arithmetic, for instance). The problem is that we have at present
no convincing arguments that allow us to impose a sharp upper bound on the extension of
informal provability. However, this does not mean that informal rigour cannot be applied
to the notion of informal provability. When the prospects for a genetic theory of a specific
notion are unpromising, we could still have an axiomatic theory providing axioms for the
intended interpretation of the notion in question [Kreisel 1972, p. 317]. Naturally, the
problem of what idealisations are embedded in the interpretation of that notion would
still arise, together with the question of whether Church’s thesis holds for that notion.16

Hence, the possibility of finding a convincing theory of informal provability depends on
convincingly identifying the idealisations embedded in the notion of what an idealised
mathematician could prove in principle. This will be the object of the next section.

2 Idealisations

Informal provability is not itself a mathematical notion, because the notion of what an
idealised but human mathematician can prove in principle concerns the concept of ide-

15Thank you to anonymous referee for pointing this out.
16As Kreisel puts it, “while it is obvious that all genetic formal theories of effective definitions [. . . ] satisfy

Church’s thesis, axiomatic theories need not” [Kreisel 1972, p. 315].
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alised human knowledge, which is a philosophical notion (whereas formal provability—
or derivability in a formal system—is of course a precisely definable mathematical notion).

We will need an iterable notion of informal provability, i.e. one where statements
involving the notion of informal provability can themselves be informally provable (or
refutable). For this reason, it should not be thought of as a notion of informal mathemati-
cal provability, but can best be understood as a notion of a priori knowability over a given
base language, which we will take to be the language of first-order arithmetic. It is not
ill-formed to claim of a mathematical statement φ that it is a priori knowable that φ is a
priori knowable. However, since informal mathematical provability or a priori knowabil-
ity in mathematics is not itself a mathematical notion, but an epistemic one, it cannot be
mathematically provable that φ is a priori knowable.17 Accordingly, in the rest of the paper
we will use the terms “informal provability” and “a priori knowability” interchangeably
in the sense outlined above.

The formal framework of Epistemic Arithmetic ([Shapiro 1985a]) provides a suitable for-
mal framework for the rigorous treatment of the notion of a priori mathematical knowa-
bility (see §3 below). Since there presently exists no suitable formal framework for directly
axiomatising the informal notion of human-effective computation, and since the notion
of human-effective computation seems to presuppose the notion of informal provability,
Epistemic Arithmetic may be seen as a promising framework for mediately analysing an
iterable notion of human-effective calculability.

Even though there are difficult problems with the formalisation of informal provabil-
ity are related to difficulties of identifying the right idealisations involved in the notion,
there nonetheless are some idealisations for a priori knowability that seem prima facie rea-
sonable:

1. The subject of our notion of a priori knowability is the idealised human mathe-
matical community as a whole. It is intuitive to think about mathematical knowl-
edge as knowledge by a mathematical community, as opposed to knowledge by a
single individual. However, this assumption is unnecessary for the sake of the ar-
guments contained in the paper. It suffices to stress that the idealised subject whose
knowledge is in question does not have superhuman cognitive abilities nor com-
putational powers, so provable or computable by God or by an oracle are not ad-
missible interpretations of what an idealised subject of knowledge can do in this
context.18

17This is compatible with the fact that (a coded version of) the statement expressing provability of a
sentence in a formal system S can itself be formally provable in S.

18See [Horsten 2005].
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2. A priori knowability has a discretely ordered temporal structure. Statements come
to be known a priori in time. Time should be taken to be discretely ordered in the
sense that for every moment, there should be a least successor moment at which
new statements are proved. We may want to build a modal dimension into the time
dimension, since knowability contains a modal component. This would lead us to a
branching or tree-like rather than a linear temporal structure. Moreover, there may
be reasons for imposing further constraints on the temporal relation. For instance,
we may want to require that time is open-ended in the sense that it contains no last
moment (while leaving it open whether or not time extends in the future direction
into the transfinite). We may (or may not) want the earlier-than relation on the mo-
ments of time at which new statements are proved to form a well-ordered relation.
This would allow us to assign ordinal stages to moments in time.

In the literature on infinite time Turing machines [Hamkins & Lewis 2000], the time
dimension along which computation is performed is a transfinite ordinal. The effect
of such transfinite time computations can be simulated in certain models of General
Relativity Theory, known as Malament-Hogarth spacetimes. This is so, even though
there are observers in such spacetimes, who in a finite time interval of her own con-
tains the infinite world line of some calculating machine.19 Despite this, transfinite
time is admittedly not easy to motivate. Moreover, if—and this is a very big ‘if’—
time extends into the transfinite future, then as far as we can tell, it might well con-
tain non-well-ordered parts. Since a detailed discussion of this issue is beyond the
scope of the paper, we will assume for the sake of the argument that the idealisation
into transfinite time is legitimate in this context.

3. The subject is finite but does not have any fixed limitations of time and memory
space. Computation over a finite domain is sufficient to guarantee that the comput-
ing procedure can be carried out by an idealised but human mathematician. How-
ever, some functions grow very fast, and while the question of what is the threshold
at which a computation over an arbitrarily large but finite domain exceeds the ac-
tual capacities of the embodied mind is surely not easy to answer, the answer to this
question does not seem to be to be essential to the meaning of what we regard as
effective computations. In saying that a function φ is effectively computable, we do not
refer to the actual ability of this or that specific mathematician to compute φ; rather,
we refer to the computation abilities as such—we mean that φ is in principle effec-
tively computable by a mathematician. So when we talk about what is computable

19For a discussion of these matters, see [Welch 2008].
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in principle, we are in fact abstracting away from the time that the computing proce-
dure will run and the way in which it is established that, if at all, the computing pro-
cedure is going to terminate. Nonetheless, at no moment in time will the knowing
subject have carried out transfinitely many computation steps. If we were to admit
this, then the idealised counterparts would differ from their human counterparts
not only in degree, but qualitatively. Analogously, for the purpose of modelling the
informal notion of a priori knowability we abstract away from the limitations con-
cerning specific finite boundaries of the subject of knowledge. It suffices for informal
provability of a sentence φ that the mathematical community will eventually have at
their disposal all of the axioms and rules of inference by means of which φ can be
finitely derived, no matter what cognitive resources need to be employed and how
long the derivation process takes.20 But whilst we impose no specific finite bound-
ary on the number of mathematical axioms that the subject can come to know and
we are imposing no finite upper bound on the discrete time structure, we do require
that at each point in time the knowing subject remains finite. Thus at each moment
in time the subject only knows a finite number of axiom schemes. Or, given the
correspondence between axiom systems and Turing machines, we impose no fixed
bound on the complexity of the Turing machine that the knowing subject can be,
but we do insist that the knowing subject essentially remains equivalent to a Turing
machine at every moment in time (and therefore at every given point in time, the
extension of what is a priori known is recursively axiomatisable). To relax this re-
quirement would amount to a qualitative difference between actual human provers
and their idealised counterparts [Shapiro 1985b, p. 20].

4. A priori knowability is cumulative, and at every given point in time it is reason-
able to take what is a priori known to be closed under logical consequence. The
mathematical community is taken to be idealised in the sense that it is assumed not
to make mistakes, and not to ‘forget’ known facts as time goes on. Moreover, if at
some moment in time t, φ is a priori known and φ → ψ is a priori known, then
at a subsequent moment t′ the mathematical community apply modus ponens and
come to know a priori that ψ.21 We will assume that the mathematical community
will indeed infer all the logical consequences of what is known at any given point
in time as time goes on.22 Moreover, we might as well assume that at every given

20For a detailed discussion of these constraints, see [Parsons 1997].
21For a discussion of questions of closure in a modal-epistemic setting, see [Heylen 2015].
22The principle of deductive closure for the extension of the notion of a priori knowability is also assumed

in [Shapiro 1985b, p. 12].
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moment t, the mathematical community has inferred all the logical consequences of
what is known at t, i.e. that t is closed under logical implication. This is an additional
idealisation, but structurally this does not really make a difference, and it simplifies
the models that we are considering.

3 Formalising human-effective computability

Following suggestions in [Myhill 1960], the notion of a priori knowability can be investi-
gated in an axiomatic way. In particular, the investigation is carried out within the frame-
work of Epistemic Arithmetic developed in [Shapiro 1985b].

The formal framework of Epistemic Arithmetic can be described as follows. The for-
mal language LEA consists of the first-order language of arithmetic plus an intensional
propositional operator�; the arithmetical vocabulary receives its intended interpretation,
and the operator � is intended to be interpreted as a priori knowability. The axiomatic
theory EA that is proposed by Shapiro as describing the laws of a priori knowability, con-
sists of the axioms of Peano Arithmetic plus the laws of S4 modal logic. Note that the
modal logic S4 contains the Necessitation rule and the axiom �φ → ��φ,23 so that � is
indeed an iterable notion: for instance, ��(0 = 0), should be taken to be true.

The aim of the paper is to provide a rigorous characterisation of Kreisel’s notion of
effective computability by an idealised human agent, and to do this in terms of informal
provability by an idealised but human mathematician. As it is well known, notions like
Turing computability and formal provability can be expressed formally in LPA. In this
context such notions are captured extensionally and do not involve any reference to a
computing or proving subject. According to Shapiro, LEA is a suitable language for the
formalisation of epistemic notions like effective computability and informal provability
in a way that is faithful to our intuitions concerning what an idealised but human math-
ematician could compute or informally prove in principle. Hence EA appears to be an
adequate formal framework for formulating principles that establish extensional equiva-
lences between informal, intensional notions on the one hand, and formal notions on the
other hand. When this is done, and provided that the right idealisations are embedded in
the principles governing the intensional notions, specific claims concerning computability
and provability by an idealised subject become provable, and real progress can be made.

23Suppose that φ is a priori known at some moment in time t. Then at a subsequent moment t′ the
statement that φ is knowable can become a priori known. Idealising away from the length of time required
for the idealised mathematical community to know a priori that φ is a priori knowable (see idealisation (3)
in §1.2 above), it seems reasonable to assume that the mathematical community will eventually have a priori
epistemic access to their own knowledge of φ (cfr. [Shapiro 1985b, p. 15]).

13



For example, the following property of a functional predicate φ(x, y) can be expressed
in LEA:

�∀x∃y�φ(x, y),

meaning that it is a priori knowable that for all x there exists a y such that y can be in-
formally known to stand in the relation φ to x. Let us, using the terminology of Shapiro,
call this condition the calculability of φ, where calculability refers to computability by an
idealised but human mathematician. According to the thesis proposed in [Shapiro 1985b,
p. 43], a function presentation F is calculable if and only if there is an algorithm A such
that it is a priori knowable that A represents F. Recall that since functions are infinite ab-
stract objects, human subjects—even in the idealised sense—do not have epistemic access
to functions independently of the interpreted linguistic expressions that denote them (the
function presentations). In fact, in the epistemic context it cannot be assumed that if F and
G are different presentations of the same function, then F is calculable if and only if G is
calculable. The condition �∀x∃y�φ(x, y) appears to respect this constraint: it seems at
least prima facie likely that there are co-extensive functional relations φ(x, y) and ψ(x, y)
expressible in LEA, such that �∀x∃y�φ(x, y) is true whereas �∀x∃y�ψ(x, y) is false.

All this leads us to provisionally characterise human-effective computability as follows:

Thesis 2 (Human-Effective Computability) A function f is human-effectively computable if
and only if, recognisably, for every natural number m given in canonical notation, a canonically
given number n exists such that the statement f (m) = n is informally provable.

In other words, it is a priori knowable (i.e., recognisable by an idealised agent) that
for each x we can find a y ∈ N which provably (in the informal sense) stands in the
relation φ to x. Thesis 2 will be considered in detail in the following section, but first we
will compare it with another property of a functional predicate that was considered in
[Myhill 1985], namely:

∀x∃y�φ(x, y).

This expresses that for each x we can find a y ∈N which provably (in the informal sense)
stands in the relation φ to x. This notion differs from Shapiro’s notion of calculability only
in the absence of the initial occurrence of �. We then have a rivalling, stronger thesis
concerning the notion of human-effective computability:

Thesis 3 (Kreisel-Myhill) A function f is human-effectively computable if and only if for every
natural number m given in canonical notation, a canonically given number n exists such that the
statement f (m) = n is informally provable.
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Both Shapiro’s and Myhill’s notions were originally proposed as an expression of the no-
tion of calculability or effective computability in order to formalise the antecedent of a
version of Church’s thesis in an intensional context.24 We will see shortly that there are
reasons to think that Myhill’s notion is probably the more faithful expression in LEA of
Kreisel’s notion of human-effective computability. However, we will also see that there
are good reasons for holding that neither the principle proposed by Shapiro nor the one
proposed by Myhill are good approximations of the content of CT. Nonetheless, we will
argue that Shapiro’s notion of calculability is better motivated than Myhill’s notion; it
captures a notion of human computability that gives rise to an interesting variant of
Church’s thesis. In other words, Kreisel should have explicated the informal notion of
human-effective computability in terms of Shapiro’s notion rather than in terms of My-
hill’s notion. For this reason we will in the sequel be concerned with a variant of the
Church-Turing thesis based on Shapiro’s notion of calculability rather than on Myhill’s
notion of effective computability.

4 Epistemic Church’s Thesis

Using Shapiro’s notion of calculability, we can express Church’s thesis for human-effective
computability in LEA as follows [Shapiro 1985b, p. 31]:

Thesis 4 (ECT)

�∀x∃y�φ(x, y)→ ∃e [e is a Turing machine ∧ ∀x : φ(x, e(x))], 25

for φ ranging over formulae of the language of Epistemic Arithmetic.26 This principle is
called Epistemic Church’s Thesis in the literature because it was originally proposed as an
approximation of the content of Church’s thesis in LEA. It should be noted that in order
for the antecedent to ensure that φ(x, y) expresses a function, a choice principle is implicit
in ECT. However, the choice principle could be eliminated by prefixing the functionality

24The context was Epistemic Arithmetic in the case of Shapiro, and Intensional Set Theory in the case of
Myhill.

25The notion of being a Turing machine can be formalised in the underlying language of arithmetic in
the standard way in terms of Kleene’s T-predicate and the U function symbol. The versions of ECT that
we consider in what follows are schematic, and each instance involves a particular function presentation
(given by a formula φ(x, y)). Hence, the intensional aspect of functions that is relevant here (i.e. that they
are always presented through a particular interpreted linguistic expression) is taken into account at every
juncture.

26This is not necessary, though; it suffices for the purposes of this paper that functional predicates range
over formulae in the language of PA, or even over a fragment of this language.
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of φ(x, y) as a condition on ECT, so that it assumes the form

φ(x, y) is functional → ECT.

Shapiro takes ECT to be “a weaker version of CT [in the standard formalisation] which is
closer to Church’s thesis [than the intuitionistic version of CT]” [Shapiro 1985b, p. 31].27

This is because—like in CT—the existential quantifier in the consequent of ECT is classical,
so it does not require that any particular Turing machine can be shown to compute the
effectively computable function described in the antecedent.

Nonetheless, there are reasons to be sceptical about the extent to which ECT approx-
imates the content of CT in EA. Note that the antecedent of ECT does not involve the
informal notion of algorithm, so it is implausible that the antecedent of ECT expresses
that φ(x, y) is effectively or algorithmically computable. Indeed, there is no way to directly
express or quantify over algorithms in the language of EA [Shapiro 1985b, p. 41–43], and
as of yet, no satisfactory axiomatic treatment of the informal notion of algorithm is avail-
able. Another reason why ECT does not capture the content of CT is that the converse of
CT is obviously true, whereas the converse of ECT is not obviously true [Black 2000, §2].
We suggest, instead, that the antecedent of ECT comes close to capturing Kreisel’s notion
of human-effective computability.

Furthermore, unlike algorithmic computability, which is an extensional concept, Kreisel
has characterised the notion of human-effective computability as an intensional notion.
Calculability also appears to be an intensional notion because in it function presentations
occur in the scope of an epistemic operator. In addition, the notion of effective calculability
as expressed in the antecedent of ECT does not have built in the “routineness” restriction
that is built into the notion of algorithm. Whereas this is another reason for thinking that
ECT is close to Kreisel’s notion of human-effective computability, it does bring with it the
difficulty that, as with Kreisel’s notion, it is difficult to see what the right idealisations are
that we should adopt for the notion of human-effective calculability.

But before discussing what idealisations it is plausible to adopt with respect to the no-
tion of calculability or human-effective computability, let us turn to the question whether
Myhill’s version of ECT might be a better formalisation of effective calculability than
Shapiro’s version considered above. Myhill proposed a thesis that is stronger than ECT,
which we may call ECT+ [Myhill 1985, p. 48]:

27For a discussion of the intuitionistic version of Church’s thesis, see [Troelstra & van Dalen 1988].
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Thesis 5 (ECT+)

∀x∃y�φ(x, y)→ ∃e[e is a Turing machine ∧ ∀x : φ(x, e(x))]

Informally, ECT+ says that if for every x there is a y which can be a priori known to stand
in the relation φ to x, then φ determines a recursive function. ECT+ is just like ECT, except
that it is based on Myhill’s notion of effective computability (thesis 3) instead of Shapiro’s
notion of effective computability (thesis 2).

5 Evaluation

We will argue that ECT+ is significantly less plausible than ECT. We will do this by eval-
uating these versions of Church’s thesis in particular models. Following Kreisel, special
attention is given to models in which the extension of informal provability is given by a
path in a transfinite progression of formal theories (in the sense of [Feferman 1962]). A
detailed discussion of Feferman’s result and its philosophical significance for an account
of the scope and limits of mathematical reasoning are beyond the scope of this paper.28

5.1 Unsystematic infinite progressions

Consider a non-recursive (total) function ψ(x, y) (e.g., the self-halting problem). Suppose
that for every m, there is an n such that ψ(m, n) can be informally proved. In such a case,
such infinite collection of proofs cannot be “captured” by one single algorithm. Given the
idealisations involved in a priori knowability that were discussed earlier, such a scenario
is not wholly implausible. To be a little more concrete, suppose that the mathematical
community lives on for an ω-sequence of years, and that after every moment in time, a
new axiom (independent from all the axioms that were previously known) is discovered.
(Note that this scenario does not violate any of the reasonable restrictions on idealisations
involved in the notion of informal provability that were discussed in §2.) Then there seems
to be no reason to think that the infinite sequence of axioms that are from some time
onwards a priori known forms a recursive set. If these axioms do form a non-recursive
set, then they may suffice to decide every instance of the halting problem. If that is the
case, then the antecedent of ECT+ holds, whereas its consequent fails. Since we seem to

28For a detailed exposition of Feferman’s completeness theorem see [Franzén 2004] and
[Antonutti Marfori 2013]. For a discussion of different types of models for ECT see
[Antonutti Marfori and Horsten 2016] and [Carlson 2016].
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have no way of ruling out scenarios such as this, it seems that ECT+ is at present doubtful
at best.29

Note, on the other hand, that while the situation just sketched would suffice to falsify
ECT+, it would not suffice to falsify ECT, for the latter is compatible with there never
being an informal proof that every instance of the self-halting problem will be solved.

In sum, for “unsystematic” progressions such as these, there are simple ways of gener-
ating models in which ECT+ is false, whereas finding such models in which ECT is false
is not straightforward. More on this will be said in the following subsection.

5.2 Systematic transfinite progressions

One of Kreisel’s main questions in [Kreisel 1972] was how versions of Church’s thesis
for human-effective computability relate to systematic transfinite progressions of formal
theories.

The background of Kreisel’s discussion of a further possible reason for doubting ECT+

is given by Feferman’s famous completeness theorem in [Feferman 1962]. In this article,
Feferman shows that there are paths P in O that prove all first-order arithmetical truths,
in the following sense.30 At stage 0, all theorems of the initial theory T0 are proved. At
a successor stage Tα+1, the first-order consequences of the theory Tα plus the uniform
reflection principle for Tα are proved.31 In a uniform effective manner, at limit stages,
unions are taken. Then there is a particular hyperarithmetical maximal path32 P in O of
length ωωω+1 such that:

K ≡ {φ ∈ LPA | ∃e ∈ P with e ` φ} = {φ ∈ LPA | φ is true},

where e ` φ means that φ is proved at stage e [Feferman 1962, theorem 5.15]. In other
words, Feferman’s completeness result shows that there exists a path P such that for every
arithmetical sentence φ, if φ is true, then φ is proved in some theory indexed along P.

This set K can be the basis for a model wherein a function f exists that is Myhill-
effective but not Turing computable. Take any non-recursive total first-order definable
function f —by φ(x, y), say—on N. Then we have that for any m, n ∈ N, f (m) = n ⇔

29For a more detailed explanation of this issue, see [Horsten 1998].
30Here and in what follows we presuppose familiarity with Kleene’s system O of notations for ordinals

and the ordering relation <O on it. For a definition of these notions, see [Sacks 1990, chapter 1, section 4].
31A uniform reflection principle for a formal theory T is a schematic principle of the form
∀x(ProvT(pφ(ẋ)q)→ φ(x)), where ProvT is the standard provability predicate for T.

32‘Maximal’ means that there is no w ∈ O such that for all u ∈ P : u <O w. For a definition of the concept
‘hyperarithmetical’ see [Sacks 1990, chapter 1, section 1].
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φ(m, n) ∈ K. This means that f is Myhill-effective, but not Turing computable. Hence, if
K is the extension of a priori knowability of arithmetical sentences, then ECT+ is false.

Whilst Feferman showed that there are paths in O that “prove” all first-order arith-
metical truths, Feferman and Spector showed that there are many paths through O—
meaning that the length of those paths is ωCK

1 , the first non-constructive ordinal—that
yield an extension of provability that is far from being first-order complete [Feferman & Spector 1962,
theorem 2.5 and theorem 4.4]. Kreisel showed that if φ(x) is an open formula (with one
free variable) such that along some Π1

1 path33 throughO each of its instances is decided at
some stage, then the extension of φ is recursive [Kreisel 1972, p. 313]. This means that even
the stronger variant ECT+ of Epistemic Church’s Thesis is true in models with extensions
for informal provability that are generated along Π1

1 paths through O.
Such considerations take us back to Kreisel’s worries about the idealisations involved

in the notion of a priori knowability. Since we have no firm grasp on what the right ide-
alisations are, it is extremely difficult to adjudicate whether ECT+ is true or false. On the
one hand, the fact that many paths through O make ECT+ true might give one reason to
think that ECT+ might be true if transfinite progressions provide good models for infor-
mal provability. On the other hand, Kreisel does not see convincing reasons to dismiss
the kinds of Fefermanian models in which ECT+ comes out false. He summarises the
situation as follows:

Unless it can be shown that the progression is not included in any (legiti-
mate) model of mathematical reasoning, we cannot establish Church’s thesis
(for human-effective definitions). And unless it can be shown that each re-
cursive progression on a Π1

1 path is inadequate (as a model for mathematical
reasoning), we cannot refute Church’s thesis [Kreisel 1972, p. 325].

For these reasons, the discussion about the truth of ECT+ is left by Kreisel in an unsettled
state.

However, there is hope that the truth or falsehood of ECT is not as sensitive to the level
of idealisation involved in the notion of a priori knowability as the truth or falsehood of
ECT+ is. Indeed, we will now show, using a realisability argument, that ECT is true in
every model that is based on a path in a Fefermanian transfinite progression of formal
theories.34

Unlike Myhill-computability, human-effective computability as explicated by Shapiro
(thesis 2) involves iterated provability. This means that our base theory should not be a

33For a definition of the concept of being Π1
1, see again [Sacks 1990, chapter 1, section 1].

34The connection between realisability and uniform reflection in the context of EA was first explored in
[Halbach & Horsten 2000].
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theory formulated purely in the language of arithmetic (such as PA) but a theory formu-
lated in the language of Epistemic Arithmetic. It seems then reasonable to take EA as our
base theory.

We start by defining a transfinite recursive progression based on iteration of uniform reflec-
tion defined (roughly) according to the following clauses:

(C1) T0 = EA;

(C2) Tα+1 = Tα + RFN(Tα);

(C3) Tλ =
⋃

β<λ Tβ for λ a limit ordinal.

(Here RFN(U) is the uniform reflection principle for U.)
Instead of working with constructive ordinals, as Feferman does, we will work with

primitive recursive orderings. The difference is largely technical, but working with prim-
itive recursive orderings is more convenient [Beklemichev 1995, p. 29]. Also, we will not
work with Feferman’s transfinite progressions but with Beklemichev’s smooth transfinite
progressions, allowing us to formulate our arguments in a more perspicuous manner.35

More importantly, smooth progressions have a monotonicity property which is of crucial
significance in the context of informal provability, but which is not known to hold for the
more traditional way of defining transfinite progressions.

A primitive recursive well-ordering (P,<) is a relative interpretation of the theory of lin-
ear orderings in the theory of Primitive Recursive Arithmetic (PRA) with domain D and
where the relation < well-orders the set D in the standard model of arithmetic. We assume
that each theory T comes together with a primitive recursive formula AxT(x) numerating
the set of Gödel numbers of mathematical axioms of T, from which a primitive recursive
formula expressing the proof-in-T relation can be constructed, from which in turn prov-
ability in T is defined in the standard manner and denoted as ProvT(x).

A primitive recursive formula AxEA(z; x) is called a smooth numeration36 based on itera-
tion of uniform reflection along (D,<) applied to EA if and only if PRA proves

∀z, x : AxEA(z; x)↔ [AxEA(x)∨∃u ∈ D(u < z∧∃v ∈ LEA(x = p∀y : ProvTu̇(v̇(ẏ))→̇v(ẏ)q))].

This means that we are now explicitly adding at each successor stage not just the uniform
reflection principle for the previous theory, but uniform reflection for each earlier theory
[Franzén 2004, p. 380], which makes the definition uniform between successor and limit

35We thank an anonymous referee for suggesting that we formulate this argument in terms of smooth
progressions.

36See [Beklemichev 1995, section 2.2]. In what follows we rely heavily on [Beklemichev 1995].
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stages. This has the form of a fixed point equation. Since the existential quantifiers on
the right-hand side can be bounded by x, the solution of this equation must be equivalent
to a primitive recursive formula. Then by metatheoretical transfinite induction one can
show that (Tu)u∈D is a strictly increasing sequence of theories satisfying (C1)–(C3), and
PRA-provably satisfies the formalised versions of (C1)–(C3) [Beklemichev 1995, p. 30].
Let TD ≡

⋃
u∈D Tu.

Let greek variables α, β, ... from now on be assumed to range over ordinals, that is, over
the domain D. Smooth numerations enjoy a desirable robustness property [Beklemichev 1995,
lemma 2.2]:

Proposition 1 Take any two smooth enumerations AxT(z; x) and Ax′T(z; x) along one and the
same primitive recursive well-ordering and satisfying the same initial conditions. Then PRA `
∀α∀x : x ∈ Tα ↔ x ∈ T′α.

Moreover, smooth enumerations are monotone:

Lemma 1 ∀α, β : α < β→ ∀x : ProvT(α, x)→ ProvT(β, x).
Proof. [Beklemichev 1995, p. 30].

Recall that we have explicitly committed ourselves to monotonicity as a desirable ideali-
sation (idealisation 1 in §2). Remarkably, this idealisation is not known to hold for Fefer-
man’s way of defining transfinite progressions.37

Let MD be the model generated by D in the sense that

MD |= �φ ≡ ∃e ∈ D : Te ` φ.

So MD is simply the model in which TD is taken to be the interpretation of�. Our question
then is whether ECT holds in MD.

It is known that EA has what is called the numerical existence property, which means
that if EA ` ∀x∃y�φ(x, y), then for every natural number m there is a natural number n
such that EA ` φ(m, n). This follows from a realisability argument [Shapiro 1985b, p. 19].
We will show that the numerical existence property in fact holds for all Td such that d ∈ D
[Shapiro 1985b, p. 19]:38

Definition 1 (Kleene’s slash) For any theory T and for any sentence φ ∈ LEA, we define T | φ

(“T realises φ”) as follows:
37For a discussion of this aspect of the difference between ‘traditional’ progressions and smooth progres-

sions, see [Franzén 2004, p. 380–381]. Thanks to an anonymous referee for drawing our attention to the
significance of this monotonicity property and its connection with smoothness.

38In a similar way, it can be shown that the disjunction property holds for all such Td, i.e., that if Td ` φ∨ ψ,
then Td ` φ or Td ` ψ.

21



1. T | φ iff φ is atomic and true;

2. T | φ ∧ ψ iff T | φ and T | ψ;

3. T | ¬φ iff not: T | φ;

4. T | ∀xφ(x) iff for all n ∈N: T | φ(n);

5. T | �φ if and only if (T ` φ) and (T | φ)

We start by proving the following slight strengthening of theorem TB in [Shapiro 1985b,
p. 18]:

Theorem 1 For any theory T: T ⊇ EA⇒ T | EA.
Proof. The proof is a routine induction on the length of proofs in EA. The key case is the inductive
case for the necessitation rule.

Suppose that φ is derived on line n, and�φ appears on the next line. The inductive hypothesis
entitles us to assume that T | φ. Since φ is derived in T, we have T | �φ.

Lemma 2 For any theory T, if T | T, then T has the numerical existence property.
Proof. Straightforward.

We now seek to establish that ∀e ∈ D : Te | Te. In order to do this, we need two simple
lemmas:

Lemma 3 For all e ∈ D: (∀ f < e : Te | Tf )⇒ Te | Te.
Proof. By induction along D.

1. e = 0, and T0 = EA. This holds by theorem 1.
2. Let us assume, for a reductio, that there is an e 6= 0 for which the property does not hold.

Since D is a well-ordering, there is then a <-least such e, for which ∀ f < e : Te | Tf but not
Te | Te. Te = EA + {RFN(Td) : d < e}.

Take any d < e. Te | RFN(Td)⇔ for all ϕ(y) ∈ LEA : Te | RFN(Td, ϕ(y)). However,

Te | ∀y : ProvTdpϕ(ẏ)q→ ϕ(y)

⇔ for all n ∈N : Te | ProvTdpϕ(n)q→ ϕ(n)

⇔ for all n ∈N : Te | ProvTdpϕ(n)q

⇒ Te | ϕ(n).

We know that Te | ProvTdpϕ(n)q ⇔ ϕ(n) ∈ Td, since ProvTdpϕ(n)q is arithmetical. So it
suffices to prove that for all n ∈ N : ϕ(n) ∈ Td ⇒ Te | ϕ(n), i.e. Te | Td, which we have since
∀ f < e : Te | Tf . By theorem 1, T | EA, so we conclude that Te | Te after all.

22



Lemma 4 For all e ∈ P: ∀ f < e : Te | Tf .
Proof. Fixing e, we establish the lemma by an induction along <.

1. f = 0. This is the case of EA, which we know to be covered by theorem 1.
2. Let us assume, for a reductio, that there is an f 6= 0 for which the property does not

hold. Since D is a well-ordering, there is then a <-least such e, for which it is not the case that
Te | Tf . Since EA is covered by theorem 1, there must be a d < f such that it is not the case that
Te | RFN(Td). But this cannot happen. As in the proof of the previous lemma, we see that

Te | ∀y : ProvTdpϕ(ẏ)q→ ϕ(y)

⇔ for all n ∈N : ϕ(n) ∈ Td

⇒ Te | ϕ(n),

i.e., Te | Td. But this cannot be true, for d < f , and f was assumed to be the least for which it is
not the case that Te | Tf .

Lemma 5 For all e ∈ P : Te | Te.
Proof. Follows directly from lemma 3 and lemma 4.

Given lemma 2, for all e ∈ P, the theory Te has the numerical existence property.

Theorem 2 MD |= ECT.
Proof. Take any φ(x, y) ∈ LEA, and assume that MD |= �∀x∃y�φ(x, y) and that MD thinks
that φ(x, y) is functional. Then

∃e ∈ D : Te ` ∀x∃y�φ(x, y).

However, we know that Te has the numerical existence property, so for all m there is an n such that
Te ` φ(m, n). So Te can be regarded as a Turing machine that computes φ.

In sum, whereas the truth value of ECT+ is sensitive to the details of the transfinite
progressions model in which it is investigated, the truth value of ECT is not. We have
seen that Kreisel takes the truth value of Church’s thesis for human-effective computabil-
ity to be sensitive to the details of the transfinite progressions model in which it is eval-
uated [Kreisel 1972, p. 325]. This can be taken to be evidence for the thesis that he leans
towards Myhill’s explication of human-effective computability rather than to Shapiro’s
explication of it. However, since Myhill’s notion of effective computability is less robust
than Shapiro’s notion, we prefer the latter notion.

Moreover, we can show that MD does in fact satisfy a minimal condition for being a
reasonable model:
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Theorem 3 MD |= EA.
Proof. Induction on the length of proofs in EA.

The only non-trivial case is the inductive case where φ is an instance of the scheme �ψ → ψ.
All these instances can be shown to hold by an induction on the complexity of ψ, as can be seen as
follows. The atomic case is unproblematic. For the inductive cases, we consider:
(1) ψ = ∃xθ(x). Suppose MD |= ∃xθ(x). Then, ∃xθ(x) ∈ Td for some d ∈ D. However, by the
numerical existence property, this means that θ(n) ∈ Td for some n ∈ N. Then, by the induction
hypothesis, θ(n), and therefore also ∃xθ(x), is true in MD.
(2) ψ = θ ∨ µ. Like (1), except that we now use the disjunction property.
(3) Suppose that ψ is a negated formula. Since we can “push the negation signs inwards” (and
cancel double negations), we may assume that each negation sign either prefaces an atomic formula,
or prefaces a formula of the form �θ. The former is unproblematic, so we concentrate on the latter.
Suppose MD |= �¬�θ. Then ¬�θ ∈ Td for some d ∈ D. Now assume also that MD |= �θ.
Then θ, and therefore also (by Necessitation) �θ ∈ Te for some e ∈ D. So both ¬�θ and �θ are
in max(Td, Te). But we know that max(Td, Te) is consistent, so this cannot be the case.

Note that MD does not make the necessitations of all instances of ECT true. Construct-
ing transfinite progression models that not only make the theorems of EA and ECT true,
but that in addition take all instances of EA and ECT to be a priori knowable, would
require a more complex construction that lies beyond the scope of this paper. However,
we conjecture that the techniques developed by Carlson in [Carlson 2000] do indeed yield
such models.

The importance of the numerical existence property in the evaluation of variants of
Church’s thesis was anticipated by Kreisel. When discussing the intuitionistic version of
Church’s thesis, he writes:

[. . . ] present knowledge does not exclude that some ∀x∃yR(x, y) is intuition-
istically valid (where R is logically complex), but no recursive function f satis-
fies ∀xR(x, f x). . . Evidently, under such conditions, ∀x∃yR(x, y) could not be
proved in any (sound) formal system F which satisfies the principle of demon-
strable numerical instantiation of existential theorems. [Kreisel 1972, p. 327]

The arguments above show that Kreisel’s point generalises to the classical variants of
Church’s thesis that we are concerned with in this article.

5.3 Diagonalising out?

In addition to the formal notion of a recursive function, there is also the notion of a provably
recursive function of a system T, where provable recursiveness is relative to an axiomatic
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theory and is therefore a formal notion.
The logical structure of the definition of human-effective computability closely resem-

bles the structure of a provable recursiveness claim. Indeed, the T-provable recursiveness
of φ can be expressed as

ProvT(p∀x∃!yφ(x, y)q),

which under fairly general circumstances (and assuming that T is sound) is equivalent to
ProvT(p∀x∃!yProvTpφ(ẋ, ẏ)qq).

There is a standard way of diagonalising out of the class of provably recursive func-
tions for every recursively enumerable theory T. We can effectively list all T-provably re-
cursive functions, and then, by diagonalisation, produce a function that is (total) recursive
but not T-provably recursive. So the question arises, can we in a similar way diagonalise
out of the class HEC of human-effective computable functions on the natural numbers?

Suppose that A(x) defines HEC(LEA), which is the class of human-effective com-
putable functions that are expressible in the language of Epistemic Arithmetic. Then we
can define:

φ(x, y) ≡ A(x) ∧ T(x(ẋ, ẏ− 1)),

where T is a truth predicate forLEA. Then clearly φ differs from every function in HEC(LEA)

by design.
Moreover, given that every pψq ∈ A defines an element of HEC and that A(pψq) ↔

�A(pψq), we have that ∀x∃y�φ(x, y). Thus, we have diagonalised out of the class of the
Myhill computable functions (thesis 3): by going to a language extension, we can produce
new Myhill computable functions.

There is, however, no guarantee that for the property φ that we have constructed
above, we have that �∀x∃y�φ(x, y), so our attempt to diagonalise out of HEC fails. We
conclude, again, that human-effective computability appears to be a more robust notion
than the class of Myhill-computable functions.

6 Conclusion

When Kreisel investigated the concept of human-effective computability, it seemed to him
a notion that is hard to get a firm grip on. Not only its extension is hard to determine, but
also its logical properties seemed to Kreisel somewehat non-robust.

We have reached a different conclusion; when properly analysed, the notion of human-
effective computability is more robust than Kreisel took it to be. Even though the notion of
informal provability in terms of which human-effective computability is explicated is ad-
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mittedly somewhat unclear, some of the key properties of human-effective computability
cannot be easily influenced by the details of the model in which it is considered. In par-
ticular, a form of Church’s thesis holds for human-effective computability in a wide class
of models, namely, in those models that are based on transfinite progressions of formal
theories.
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