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Abstract

This study provides a large-scale benchmark experiment for sur-

vival time prediction based on multi-omics data for 18 cancer types

from the Cancer Genome Atlas (TCGA). Several complex prediction

methods from the fields of statistics and machine learning, comprising

two boosting methods, three Lasso-based methods and two random

forest variants, are compared. At that, the methods vary in their use

of the multi-omics data by including the group structure in different

ways. As reference a simple Cox model only using clinical variables

and the Kaplan-Meier estimate are used, which are standard methods

in the context of survival prediction.

The findings show that none of the complex methods using the whole

multi-omics data clearly outperforms the standard Cox model only us-

ing the clinical variables on average over all data sets. Only likelihood-

based boosting favoring clinical variables performs comparable. This

indicates the importance of clinical variables. Nevertheless, for several

data sets there is at least one complex method outperforming the Cox

model. Thus, the findings show that using multi-omics data may lead

to better prediction performance. At that, it becomes evident that

learners using the group structure outperform in general the naive

methods treating all features equally. Moreover, the findings indicate

that the clinical variables should be favored, whether or not the molec-

ular variables are distinguished.

Among the naive methods, random forest shows a tendency to out-

perform the other methods. Furthermore, likelihood-based boosting

clearly outperforms priority-Lasso among the methods favoring clin-

ical variables. The Lasso variants using the multi-omics structure

outperform the standard Lasso.
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1 Introduction

In the last two decades high-throughput technologies made data stemming

from molecular processes available on a large scale and for many patients.

Starting from the analysis of whole genomes, other molecular subject mat-

ters such as RNA levels or peptide characteristics came into focus with the

advancing technologies (Hasin et al, 2017). Hasin et al (2017, p. 83) point

out that adding “ ‘omics’ [to such] a molecular term implies comprehensive,

or global, assessment of a set of molecules”. Thus, several omics objects are

under investigation in several disciplines today, comprising genomics, epige-

nomics, transcriptomics, proteomics, metabolomics, or microbiomics.

From a statistical and practical perspective it is of interest to include such

data in prediction models to predict outcomes like survival times or the oc-

currence of specific diseases. At the beginning, only data from a single omics

type was used to build such prediction models, together or without standard

clinical data (Boulesteix and Sauerbrei, 2011). Since more and more omics

types are easily available, in recent years the integration and combined use of

several omics groups for the outcome prediction came into focus. This led to

the term of multi-omics data, where data of different omics types is present

in one data set. Several important questions arise in this context: Whether

and how to include such multi-omics data? Does treating all multi-omics

types equally suffice or does the inclusion of the group structure information

into the prediction model lead to better prediction performances? Which

methods are best suited to fulfil the several requirements from practical and

statistical perspective?

An important aspect that comes along with multi-omics is the high-dimension

of the resulting data sets, which not infrequently have more than 100,000

variables. This makes special demands on the methods used to build the

prediction models. Above all, they must be able to handle data where the
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number of covariates exceeds the number of observations by far. Moreover,

often practitioners prefer sparse and interpretable models including only few

variables (Klau et al, 2018).

Several methods have been specifically proposed to handle multi-omics data.

Other already established methods from the fields of statistics and machine

learning seem reasonable to be used in such a context. Although studies have

shown that they lead to promising results, these findings have been obtained

based only on a small amount of data sets, leading to illustrative method

comparisons (Boulesteix et al, 2013). To our knowledge there is still the lack

of studies that neutrally compare the performance of prediction methods on

the basis of several multi-omics data sets.

The study at hand aims at providing such a large-scale benchmark study for

prediction methods using multi-omics data. It is based on 18 cancer data sets

from the Cancer Genome Atlas (TCGA) and focuses on survival time predic-

tion. We use several methods that are based on three widely used modelling

approaches from the fields of statistics and machine learning: the Lasso, sta-

tistical boosting, and random forest. The aim is to investigate how different

forms of multi-omics data inclusion influence the prediction performance and

to compare the performance of the methods in that setting, especially with

respect to prediction accuracy. In addition, the added predictive value of

multi-omics data is assessed.

The study is structured as follows: In the Background section we outline

the theory behind the benchmark study, comprising several aspects: The

Survival prediction and multi-omics data subsection provides the basis of

survival or time-to-event modelling and prediction and describes multi-omics

data in detail. In the Assessing prediction methods subsection the character-

istics of a sound comparison study, the concept of the added predictive value

of molecular data, and performance measures for survival prediction are de-
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scribed. In the subsequent Overview of methods subsection the methods used

in the study are described in general, in the following subsections Statistical

boosting, Lasso methods, and Random forest the methods of each modelling

approach are outlined in detail. It follows the description of the benchmark

experiment in the Benchmark experiment section, which includes the char-

acteristics of the data sets and the actual implementations/configurations of

the methods used. In the Results section the findings of the study are pre-

sented. Finally, the findings are discussed and a conclusion is drawn in the

Discussion and Conclusion section.
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2 Background

In this section we discuss the underlying theory of the conducted benchmark

experiment. We describe multi-omics as special kind of high-dimensional

data and the basis of sound comparison studies within this area and in gen-

eral. Furthermore, the three major prediction approaches used within the

benchmark study are outlined.

2.1 Survival prediction and multi-omics data

The focus of this study is to investigate and compare the performance of

several prediction methods in time-to-event/survival contexts, taking into

account a special kind of data denoted as multi-omics. In this section we

will give a short recap of the underlying formalisation of survival analysis

and describe multi-omics data and their potential benefit when predicting

survival.

In survival analysis one observes data of the form D = (t,d,X), with X the

N×p matrix of independent variables/prognostic factors, t = (t1, ..., tN)T the

vector of event times and d = (δ1, ..., δN)T the vector of censoring indicators,

where δi indicates whether the event of interest has occurred at time ti.

Moreover, i = 1, ..., N and N is the number of observations. Furthermore,

with xi = (xi1, ..., xip)
T we denote the ith row and with x·j = (x1j, ..., xNj)

T

the jth column of X. In the following the term features is used for the

independent variables x·1, ..., x·p.

An observation is said to be censored, if the occurrence of the event is not

observed. Although there are different types of censoring, we focus on right-

censoring, meaning, for example, a patient is observed until a certain time at

which either the event occurs or the subject leaves the study without having

had the event. Thus, in the later case, it is only known to the researcher that

the event occurred at some time after time point ti (Cox, 1972).
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One is then interested in the probability P (t > t∗) that an event (depending

on the context: death, relapse, failure etc.) has not occurred until time t∗.

For the survival function S(t∗) = P (t > t∗) it holds

S(t∗) = exp(−Λ(t∗)) = exp(−
∫ t∗

0

λ(u)du), (1)

where λ(u) is the hazard rate and Λ(t∗) the cumulative hazard rate. A very

common approach to model survival is the Cox proportional hazards model

(Cox, 1972), where

λ(t∗, xi) = λ0(t
∗)exp(xTi β), (2)

with baseline hazard λ0(t
∗). Plugging this in (1) one obtains

S(t∗) = exp(−
∫ t∗

0

λ0(u)exp(xTi β)du) = exp(−Λ0(t
∗)exp(xTi β)), (3)

where Λ0(t
∗) is the cumulative baseline hazard. Respectively, this can be

expressed as

S(t∗) = S0(t
∗)exp(x

T
i β), (4)

as model for survival until time t∗ with baseline survival S0(t
∗) = exp(−Λ0(t

∗)).

The model for the hazard given in (2) consists of a factor that only depends

on time (baseline hazard) and a factor only depending on the (individual)

prognostic features. When using this for prediction, the baseline hazard re-

spectively the baseline survival must be estimated. That is usually achieved

via the Breslow estimate

Λ̂0(t
∗) =

∑
ti≤t∗

1∑
l∈Ri exp(x

T
l β)

, (5)

with Ri the risk set at time ti.

In a medical context, the features used in the model usually comprise clinical

data. But in the last two decades, data stemming from molecular procedures,
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such as micro-array gene expression data, has been gaining great attention

and has been investigated extensively. Such data is now often routinely in-

cluded as prognostic factors when survival should be analysed and predicted.

Yet, it has been shown that their predictive benefit is limited compared to

the optimistic initial findings, especially when molecular data is used solely.

Instead, combining clinical and molecular data is promising (De Bin et al,

2014b). With the advancing technologies several different molecular data

types are often available within one study. These types might include for

example gene expression, copy number variation, proteomic, metabolomic,

or methylation data (Boulesteix et al, 2017a), often denoted as omics data.

For stringent notation, in this study the term molecular data is used for this

kind of data. Clinical data refers to features easily accessible within a clin-

ical context such as sex, age, performance scores, or features resulting from

medical investigations such as blood levels. Finally, the term multi-omics

data covers joined molecular and clinical data, regarding clinical data as one

multi-omics group.

While the use of a single form of molecular data to produce prediction models

with and without being combined with clinical data has been widely exam-

ined, the incorporation of multi-omics data (i.e. several molecular data types

and clinical data) has yet not gained as much attention. With these data

at hand it is the question whether and how to include the different types in

a prediction model. We will first concentrate on the “whether” and take a

closer look on the “how” later.

Although the naive approach to not distinguish the different data types,

i.e. not giving emphasis on the group structure, is easily achievable (taking

into account that the number of features most likely is much larger than the

number of observations), several aspects speak for the use of the information

lying in the group structure.
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First of all, physicians and researchers with domain knowledge often have

some kind of prior knowledge of which data type might be especially useful

in the given context. If so, it is desirable to include such information through

the incorporation of the group structure. This is strongly related to the fact

that there are often established prognostic features which are known to be

beneficial for building prediction models in a specific context. Most often this

holds true for clinical features and it is of great interest to include these kinds

of features by all means. But clinical data is usually low-dimensional, with

often not more than 4 to 20 features. As molecular data is, in contrast, high-

dimensional, usually with thousands or hundreds of thousands of features,

the clinical features might get lost within the huge amount of molecular data

when the group structure is not considered (De Bin, 2016). The same might

be true for different kinds of molecular data. If, for example, in some context

the copy number variation is more important than gene expression, it might

be useful to incorporate that into the prediction model or to use methods

which automatically include those data types that are of special interest.

These points indicate that taking the group structure of multi-omics data

into account in some way or the other is potentially beneficial to the de-

velopment of prediction models. Other important aspects are sparsity and

transportability. As Klau et al (2018) point out, clinicians often prefer easily

interpretable and applicable models including only few features that are of

data groups they favor. Methods using the group structure and resulting

in models which are sparse regarding the number of features as well as the

number of used multi-omics types might be preferable from a practical per-

spective.

All this indicates that the incorporation of different data types might be ben-

eficial when building survival prediction models. The scope of the study at

hand is to compare different methods of building survival prediction models

using this kind of data, i.e. multi-omics data. Special attention is given to the
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difference between naive methods, treating all features equally, and methods

taking the group structure into account. While several methods have been

proposed to build models by combining clinical data and one molecular data

type, far less methods have been proposed to include several data types.

When comparing the methods, there a several ways to assess them. Some

have been broached before, such as sparsity and transportability. Also, pre-

diction accuracy is, of course, very important. Since it is not a trivial task to

conduct a well-founded comparison of prediction methods, the next section

describes how this can be achieved.

2.2 Assessing prediction methods

When assessing prediction methods, there are several aspects to be consid-

ered. First of all, it should be clear which properties of the methods should

actually be assessed. In the context of prediction this might cover predic-

tion performance and generalisability, to name but a few. Furthermore, if

this has been clarified, the question arises of how to measure the considered

properties and how to draw conclusions on whether the method is useful or

not.

The later raises questions on a meta-level. How may a prediction method

be judged useful? Usually this means a new method performs better than

an already existing one, in some way or the other (Smith et al, 2013). At a

lower level, the question is how the performance of predictive methods can

be measured.

In this section, we will first describe the need of appropriate comparative

studies in general. As multi-omics data is used, the following section de-

scribes how to capture the additional predictive value of molecular data. Fi-

nally, the theory of metrics for measuring predictive performance in survival

time contexts is presented.
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2.2.1 Design of benchmark experiments

As Smith et al (2013) point out, proposing a new prediction method should

always be accompanied by the comparison of the new method with other, al-

ready established methods on several different data sets, which they register

as a less well-established process as it should be. Boulesteix (2013, p. 2666)

emphasises that the application of a new algorithm to at least two distinct

data sets should be a “minimum nonnegotiable requirement for publication”.

In addition, an issue is raised that points to the need for neutral comparison

studies.

It is pointed out that, when carrying out a study on the proposal for a new

method, there are several reasons speaking against the possibility that the

researchers additionally provide a profound comparison with other methods

themselves. Conducting a sound and ample comparison study is a difficult

and time consuming process which researchers developing a new method will

most likely not be able to additionally carry out. Besides that, it is not un-

likely that the new method would be privileged if the researchers challenged

their own method. Might be just for the sheer reason that they are experts

on the new method, but do not have as much expertise on the competing

methods.

Therefore, Boulesteix (2013) concludes that there is a need of neutral com-

parison studies. Such studies conduct a representative comparison opposed

to studies conducting an illustrative comparison, both of which are legit, but

within different scopes. The later are reported together with a new method,

to highlight the possibilities of the new method and give a notion of its per-

formance. To do so, they are carried out on few data sets and with few

competing methods. Such studies should not draw conclusions about the su-

periority of one method over the other. Nevertheless, Boulesteix et al (2013)

note a bias in favor of newly proposed classification methods. They claim

that this also applies to subjects other than classification.
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To answer the question of the superiority of one method over the other,

neutral comparison studies should be conducted by researchers not having

proposed one of the methods, using an adequate number of data sets and

state-of-the-art competitor methods. This is necessary, because the perfor-

mance is too variable across data sets to be adequately captured based on

only a few data sets (Boulesteix et al, 2017b).

The study at hand is meant to carry out such a neutral comparison study

or, to name another usual term, benchmark experiment, on several well es-

tablished prediction methods for survival, based on high-dimensional multi-

omics data.

As mentioned before, the number of data sets on which the comparison is

based plays a crucial role in making a comparison study an ample experi-

ment to draw conclusions about the superiority of one method over the other.

Boulesteix et al (2017b) compare such studies to clinical trials, where the as-

sessed new method equals, for example, a new treatment, and data sets play

the role of patients. As with such clinical trials a reasonable number of obser-

vations (number of patients versus number of data sets) is required to draw

conclusions that can be generalised.

While there have been a lot of studies proposing new methods (including

illustrative comparisons), by far fewer neutral comparison studies based on a

suitable amount of data sets have been published. As Boulesteix et al (2013)

highlight, in the context of high-dimensional molecular data over a hundred

articles have been published proposing new classification methods, most of

them yielding comparisons based on only a few data sets. Neutral compari-

son studies, in contrast, are scarce. The study of Bøvelstad et al (2009) on

combined clinical and molecular data may be treated as such, but again only

few data sets are used. The same holds true for the study by Zhao et al

(2014).
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A neutral comparison that fulfils the above mentioned requirements is pre-

sented by Couronné et al (2018), but focuses on low-dimensional data. They

conduct a large scale benchmark study to compare the very popular meth-

ods logistic regression and random forest for classification, based on 243

data sets. It is concluded that random forest yields significantly better per-

formance. Likewise, Probst et al (2018) conduct a benchmark experiment on

39 data sets, but focus on tuning.

Finally, Lang et al (2015) present a study of automatic model selection in

high-dimensional survival settings, using similar prediction methods as the

study at hand. But again, only four data sets are used. To our knowledge

there is no comparable benchmark experiment for survival prediction in the

context of high-dimensional multi-omics data that uses an adequat amount

of data sets.

The study at hand is meant to fill this gap. The goal is to provide a neutral

comparison for several well-established prediction methods, based on 18 data

sets. Compared to the aforementioned studies, the study at hand uses fewer

data sets. This is due to fact that there are not as many easily available data

sets yielding a reasonable multi-omics structure. Nevertheless, the number is

high enough to draw proper conclusions (Boulesteix et al, 2015). The data

sets will be further described in the Data sets section.

Based on that data, eleven prediction methods are compared in several di-

mensions. One of the most important dimensions is prediction accuracy or

prediction performance. It has been emphasised by many, and is now con-

sidered as crucial, that an evaluation of the prediction performance should

be based on an independent validation or test data set, which has not been

used in any way to derive the prediction model (Boulesteix and Sauerbrei,

2011; Bøvelstad et al, 2009; De Bin et al, 2014a). Otherwise, the estimated

prediction error, calculated based on the data used for model fitting (training

data), will be over-optimistically biased.
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Boulesteix and Sauerbrei (2011) point out that an external or temporal vali-

dation set should be used to make the conclusion generalizable to other than

the population present for model fitting. While external means that the vali-

dation set stems from a different population, temporal means another sample

of the same population gathered at a different point in time. Since such dif-

ferent data sets are often not available, splitting the data into a test and a

training set (before a model is fit) is also appropriate.

Yet, splitting the data implies that there is a reasonable amount of observa-

tions. Also, in general, splitting the data in one training set and one test set

is not fully sufficient to draw conclusions about the usefulness of a method.

The performance might depend on the specific split, thus on a completely

random aspect. Therefore, resampling strategies such as cross-validation

(CV) should be used, to assess the performance on average over several test

and training splits (Bischl et al, 2012).

In this section, it was outlined how to conduct a suitable comparison

study in general. This is not restricted to specific data types or methods.

An important aspect of building prediction models based on molecular and

clinical data is discussed in the next section.

2.2.2 Added predictive value

Since we face multi-omics data, not only the probable implementation of a

benchmark experiment plays an important role. In this setting, it is also

important to assess whether the molecular data contribute any value to the

predictive performance. As Boulesteix and Sauerbrei (2011) outline, there is

a need to investigate this added predictive value of molecular data. Along-

side to their and other findings, many of the proposed molecular features

claimed to be of value for predicting disease outcomes, could eventually not

be validated to outperform models using clinical data only (Boulesteix and
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Sauerbrei, 2011; Bøvelstad et al, 2009; De Bin et al, 2014a). This indicates

that the solitary use of molecular data does often not improve prediction

performance compared to models using clinical data only. This leads to

the question whether molecular data could be of any substantial use in the

presence of clinical data, which are often standardly available. As has been

mentioned before, several reasons speak for the inclusion of molecular data

and a couple of findings show that the integrative use of clinical data and

molecular data outperforms clinical models, revealing the potential of molec-

ular data to add predictive value (Binder and Schumacher, 2008; De Bin

et al, 2014b; Bøvelstad et al, 2009). But, as for example Bøvelstad et al

(2009) point out, this strongly depends on whether the molecular data pro-

vides additional information or holds the same information as the clinical

data. Similarly, De Bin et al (2014b) show, that, in the case of a breast

cancer example, the inclusion of molecular data does not increase the predic-

tion performance. This ambiguous findings make an evaluation of the added

predicted value in comparison studies based on both clinical and molecular

data necessary.

In the context of the study at hand this plays an important role, since the

combined usage of clinical and molecular data is of major interest. Moreover,

the molecular data may be further subdivided into different groups. There-

fore, it is also of interest whether the consideration of the multi-omics group

structure contributes to the predictive performance.

Boulesteix and Sauerbrei (2011) outline a framework to assess the predic-

tive value, which was applied in several illustrative comparison studies (De

Bin et al, 2014a; De Bin et al, 2014b). This framework comprises several

strategies to receive combined prediction methods and approaches to vali-

date the added predictive value. This includes a naive, a residual or clinical

offset (De Bin et al, 2014b), a favoring, a dimension reduction and a replace-
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ment strategy for combining models. We will only further discuss the first

three strategies, since they are relevant for the methods used in this study.

For the details of the other aspects, we refer the reader to the original study.

Within the naive strategy, all methods which do not distinguish between the

different groups, thus do not take any group structure into account, can be

subsumed. The major drawback is that the few clinical features might be

lost within the huge amount of molecular features, leading to models not

fully capable to use the information of the clinical features (an aspect, which

might also apply for different sized molecular groups in a multi-omics set-

ting).

On the contrary, the clinical offset strategy uses a fixed predefined clinical

score, for example derived via Cox regression, as offset in a second-stage

model including the molecular data. Therefore, the clinical features will not

be penalised if any feature selection method is used.

Finally, the favoring strategy is an intermediate form of the first two strate-

gies. Models are derived by favoring the clinical features in one way or the

other, for example by posing different penalties on the two groups.

So far, this only considers the case where two kinds of data (clinical and

molecular) can be distinguished. For the present study the molecular data is

additionally grouped, leading to multi-omics data. Nevertheless, the rational

behind the cited strategies also applies for multi-omics data. For example,

several different penalties might be included to distinguish between the dif-

ferent multi-omics groups.

The study at hand discusses several methods and variants of them. This

comprises methods of the naive strategy, methods taking the multi-omics

groups into account individually, and methods using the clinical features as

an offset. To differentiate the later two approaches, we use a slightly dif-

ferent terminology. If the clinical features are included as an offset and are
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not penalised, we speak of a method favoring clinical features (over molecu-

lar features), in contrast to the second strategy mentioned above. Methods

incorporating all multi-omics groups individually are denoted as methods us-

ing the (multi-omics) group structure. As De Bin et al (2014a) point out,

incorporating this additional group information is a relatively new field and

only a few methods have been proposed.

Finally, to assess the added predictive value of molecular data, models using

only clinical data and combined models using multi-omics data should be

compared. When doing so, it is important that the combined model is not

derived via the naive strategy (Boulesteix and Sauerbrei, 2011).

Summarising, in this section we first discussed the concept of added pre-

dictive value of molecular data. We then presented the framework to assess

the added predictive value of molecular data based on Boulesteix and Sauer-

brei (2011) and transferred it to the context of the study at hand.

As both, the concept of neutral benchmark experiments as well as the con-

cept of the added predictive value (within a neutral as well as within an

illustrative comparison), strongly rely on the comparison of the prediction

performance, we discuss measures to evaluate the prediction performance in

survival analysis in the following.

2.2.3 Performance measures

In general, there are two major prediction performance properties that may

be assessed: calibration and discrimination. Calibration measures the accor-

dance of the predicted and the true outcome value, whereas discrimination

measures the ability to tell observations apart according to the outcome

(Steyerberg et al, 2010). For survival time prediction, discrimination means

how well a method predicts the right order of survival times (De Bin et al,

2014b).
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Since the outcome of interest in the present study is survival time, we discuss

measures fit to assess the performance of survival time prediction methods.

Of major interest is the probability P (ti > t∗|xi) that an individual survives

until a certain time t∗, given the respective prognostic features. The aim

of using a specific prediction method M in the time-to-event context is to

estimate these probabilities (Graf et al, 1999). Let D, |D| = nT , be the set

of observations used for testing. Let further π̂M(t∗|xi) denote the estimate

for P (ti > t∗|xi) obtained by using method M on the training data D \ D,

|D \D| = n. To assess whether the predicted probability π̂M(t∗|xi) is a good

estimate, computing the squared error (I(ti > t∗) − π̂M(t∗|xi))2, where I

refers to the indicator function yielding 1 if ti > t∗ and 0 otherwise, is a

suitable approach. In general, to assess the method M, the empirical mean

squared error

B̂S(t∗) = n−1T

nT∑
i=1

(I(ti > t∗)− π̂M(t∗|xi))2 (6)

as a surrogate for the expected mean squared error is used and known as

Brier-score. Here nT refers to the observations used for testing. The Brier-

score is an overall assessment measure for one specific time point, taking into

account discrimination and calibration alike. In the case of censoring, the

Brier-score must be adjusted to account for the information loss by insert-

ing individual weights. The lower the Brier-score, the better the prediction

performance. A value of 0.25 corresponds to a prediction without taking any

information into account (Graf et al, 1999).

In comparison, the concordance statistic or c-index is a measure to assess

discrimination. Gerds et al (2013) define the simple c-index as

Ĉ(t) =

1
n2
T

∑nT
i=1

∑nT
k=1 I[π̂M(t∗|xi) > π̂M(t∗|xk)]I[ti < tk]Ni(t∗)

1
n2
T

∑nT
i=1

∑nT
k=1 I[ti < tk]Ni(t∗)

. (7)

Again I is the indicator function and Ni(t∗) = I[ti ≤ t∗, δi = 1]. It de-

scribes the ratio of concordant pairs among all concordant or discordant pairs.
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Through Ni(t∗) only those pairs are regarded, for which the observation with

the shorter survival time is not censored. Thus, only those pairs are consid-

ered for which the concordant/discordant status is definitely known. This

censoring bias can be avoided using inverse probability-of-censoring weighting

(IPCW) for the estimation of the c-index, although this comes at the price

of further modelling the conditional survival function (Gerds et al, 2013).

Another version of the c-index is based on Uno et al (2011) and is a special

case of IPCW-based concordance statistics. It does not depend on a correctly

specified survival model and is thus usually favored (Gerds et al, 2013). We

use this measure, assuming that the censoring does not depend on the fea-

tures.

One can think of several other measures to assess the prediction performance

of survival models (Steyerberg et al, 2010). Still the most common ones are

the Brier-score and the c-index (Gerds et al, 2013; Steyerberg et al, 2010).

Taking the Brier-score as a function of time, one can compute prediction

error curves. Plotting these curves makes it possible to visually inspect and

compare the prediction performance of different models. Usually, the perfor-

mance is followed until a specific point in time (Gerds et al, 2008). Also, the

integrated Brier-score

ˆIBS(t0) =

∫ t0

0

[n−1T

nT∑
i=1

(I(ti > t∗)− π̂Mi (t∗|xi))2]dW (t∗), (8)

where W (t) is a weighting function, is a measure not based on a single time

point (Graf et al, 1999). Instead, all time points until t0 will be taken into

account. Hence, the IBS yields a single overall performance value for every

model under investigation, similar to the c-index.

To assess the prediction performance in the benchmark study at hand we use

the IBS and the c-index based on Uno et al (2011). We describe the methods

used in this benchmark study in the next section.
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2.3 Overview of methods

Now, appropriate prediction methods for multi-omics data are described from

a theoretical point of view. Several approaches from the fields of machine

learning and statistics seem reasonable. Nevertheless, the focus lies on two

main classes of prediction methods from the field of statistics and one ap-

proach from the field of machine learning. As the methods used in this study

can be grouped into these three general approaches, this section gives a brief,

high-level overview. In the following sections the single methods will be de-

scribed in detail.

Since all of the methods to be considered must at least be able to perform

feature selection in a high-dimensional setting where the number of features p

exceeds the number of (training) observations n by huge extend, there is the

need of more sophisticated (statistical) methods. Techniques like generalised

multivariate or Cox regression fail to work in that setting.

For this problem two approaches have been emerging in the statistical com-

munity over the last two decades. One of these are regularisation methods

based on the Lasso (Tibshirani, 1996), the other is statistical boosting (Mayr

et al, 2014). Furthermore, random forest, a method from the field of machine

learning introduced by Breiman (2001), is a promising approach.

Of course other methods and approaches are conceivable. See for example

Zhao et al (2014), Sutton et al (2018), Wiel et al (2015) and Hong et al

(2018), the later two with a slightly different scope.

The Lasso, first described by Tibshirani (1996), is one of the most widely used

methods to conduct regression in a high-dimensional setting. The method

penalises large coefficient values and leads to sparse final models by setting

a substantial amount of coefficients to zero, if the penalty parameter is large

enough. Several specifications and variants have been proposed to meet spe-

cific problems, such as time-to-event regression (Tibshirani, 1997), some of
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them with focus on multi-omics data (e.g. Klau et al, 2018; Boulesteix et al,

2017a).

Instead, boosting is a technique introduced in the context of classification

in the machine learning community, which has then been transferred to sta-

tistical contexts and gained a lot of attention there (Mayr et al, 2014). As

Friedman et al (2000) showed, boosting fits additive models in a stage-wise

manner, yet yielding sparse models by early stopping. Not being prone to

overfitting, is one of several strengths (Hastie et al, 2009).

In contrast, random forest is a method from the field of machine learning

introduced by Breiman (2001). It is an ensemble method based on classifi-

cation and regression trees, using bootstrap aggregation (bagging) to obtain

a result based on the tree committee. It yields great prediction performance

on the one hand, but can be regarded as a black box method, which does

not yield easily interpretable models, on the other hand (Hastie et al, 2009).

We focus on the Lasso methods, statistical boosting methods, and random

forest since they are widely used and studied, have shown to offer good pre-

diction performance in many settings, and can more and more be regarded as

standard methods (Hastie et al, 2009). Also, based on their theoretical prop-

erties, they are promising candidates to deal with multi-omics data. Last

but not least, solid implementations exist for the statistical programming

language R.

2.4 Statistical boosting

Boosting was originally developed in the machine learning community for

the sake of the theoretical question, whether weak classification methods

can be revised to better ones. The main idea of boosting is to iteratively

fit a series of weak models, thereby forcing the algorithm to concentrate on

observations that are hard to predict and update the estimates accordingly
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in every step. Friedman et al (2000) transferred this to terms of a statistical

framework. They showed that the most powerful boosting algorithm at that

time, AdaBoost, fits an additive logistic regression model in a stage-wise

manner by means of the exponential loss function. Generalising the problem

as a gradient descent in function space, Friedman (2001) paved the way

for statistical boosting, a very powerful and widely used tool for statistical

modelling.

A comprehensive overview of the evolution of boosting is given by Mayr et

al (2014). For more recent developments in the field of statistical boosting

see Mayr et al (2017).

2.4.1 Introduction to statistical boosting

Statistical boosting can be seen as a form of iterative function estimation. In

its initial form it was derived as a gradient descent in function space (Fried-

man, 2001). On this basis two different frameworks were developed. The

approach copiously described by Bühlmann and Hothorn (2007) is strongly

based on the basic notion and therefore usually referred to as gradient boost-

ing. Tutz and Binder (2006) introduced a different approach, known as

likelihood-based boosting. Still, they may both be regarded in the notion of a

gradient descent in function space (De Bin, 2016). We first describe the basic

conception of statistical boosting as gradient descent and then highlight the

two specific manifestations used in this study.

In general, one is interested in a function f that minimises the expected loss

when used to model the data. Given a target variable Y and a matrix of

independent variables X , this can be expressed as

f ∗(.) = arg min
f(.)

E[ρ(Y, f(X ))], (9)

with ρ a loss function (Bühlmann and Hothorn, 2007). Having realisations

y of Y and X of X , estimating f ∗(.) based on boosting relies on three core
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concepts: (1) gradient descend with respect to the loss function ρ; (2) using

a base learner G to model the iterative updates; (3) steering the learning

by a learning rate ν. The following algorithm is based on De Bin (2016, p.

516) and Bühlmann and Hothorn (2007, p. 480) and describes boosting in

its general form. After initiating f̂ [0](X) by a constant

1. the negative gradient of the loss ρ is computed with respect to f

u[m] = − δ

δf
ρ(y, f)|f=f̂ [m−1](X) (10)

2. fitting the base learner G to u[m] leads to the update Ĝ [m](u[m],X)

3. penalising Ĝ [m] leads to the estimate f̂ [m](X) = f̂ [m−1](X)+νĜ [m](u[m],X)

As the gradient is pointing to the direction of the steepest ascent, in ev-

ery iteration computing the negative gradient in (10) leads to an approach

of the minimum of the loss function in the direction of the steepest descent.

To perform the algorithm it is necessary to predefine the number of boosting

steps mstop. Repeating mstop times steps 1. to 3. leads to the final estimate

f̂ ∗(X). Therefore, as Hastie et al (2009, p. 341) emphasise, “boosting fits an

additive model”

f̂ ∗(X) =

mstop∑
m=0

f̂ [m](X) = f̂ [0](X) + ν

mstop∑
m=1

Ĝ [m](u[m],X). (11)

The number of boosting steps mstop and also the learning rate ν, 0 < ν < 1,

are hyper-parameters, which have to be set in advance. The learning rate ν

steers how much every update contributes to the final boosting estimate. It

turned out that slow learning, when ν is set to a small value, leads to a better

prediction performance. Bühlmann and Hothorn (2007, p. 480) state that,

in contrast to the number of boosting iterations, it is of “minor importance”
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as long as it is set to a small value. They suggest ν = 0.1. We take a closer

look on mstop in the Early stopping section.

The described procedure is a general approach. Considering specific loss func-

tions and base learners leads to different boosting algorithms. The base learn-

ers may be chosen as desired. For example, Bühlmann and Hothorn (2007)

mention smoothing splines. Often gradient boosting is associated with tree

stumps as base learners (Hastie et al, 2009). We focus on a different version:

First of all, only one feature is updated per iteration, known as component-

wise boosting (Bühlmann and Hothorn, 2007; Hofner et al, 2014). This is

specifically useful in the context of multi-omics prediction. Furthermore,

using component-wise boosting along with univariate linear models as base

learners, leads to model-based boosting (Hofner et al, 2014).

2.4.2 Model-based boosting

This approach strongly adapts the general boosting algorithm (Hofner et al,

2014). As stated above, it uses univariate linear models as base learners.

For the resulting component-wise boosting algorithm, in every iteration all

of the features are individually regarded, but only that one gets updated,

that reduces the loss the most. Thus, in step 2 of the general algorithm, p

possible updates are computed and an additional step is introduced where

the loss minimising feature is chosen. It then gets its coefficient updated.

This satisfies two very important requirements: First of all, it leads to a in-

tegrated feature selection property that allows to use data where the number

of features exceeds the number of observations. Secondly, as it is a sum of

linear models, the resulting model is interpretable.

At that, the strength of the feature selection depends on the number of boost-

ing iterations. Also the learning rate ν acts like a shrinkage parameter as the

coefficients get updated only slightly and, concerning the feature selection

property, interacts with the number of boosting iterations.
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Having censored survival times as target variable, the loss is set to the neg-

ative partial log-likelihood. So in step 2 the gradient is computed as

û
[m]
i = δi −

∑
l∈Ri

δl
exp(xTl β̂

[m−1]))∑
k∈Rl exp(x

T
k β̂

[m−1])
, (12)

with Ri the risk set at time ti. Let x·j be the jth column of the feature matrix

X (in contrast to xi, the ith row). Setting the base learners as univariate

linear models leads to the possible updates β̂
[m]
j = (xT·jx·j)

−1xT·jû
[m], and the

feature minimising the squared error loss is chosen to be updated (De Bin,

2016).

2.4.3 Likelihood-based boosting

In contrast, likelihood-based boosting uses a penalised version of the partial

log-likelihood as a loss function,

plpen(β) = pl(β)− 0.5λβTPβ, (13)

where P is a p × p matrix, typically the identity matrix (De Bin, 2016).

In comparison to model-based boosting, there is no fixed learning rate ν.

Instead, the shrinkage is applied via the penalty parameter λ, offering more

flexibility. Also, the penalty λ is directly applied in the coefficient estimation

step, whereas ν is applied on the selected updates.

As it is still an iterative procedure, the updates of previous iterations have to

be included in expression (13), to make use of the information gained. This

is achieved by including an offset term. The term η̂
[m−1]
i = xTi β̂

[m−1] holds

the information gained in the previous iterations and is added as an offset,

leading to the expression

plpen(β|β̂[m−1]) =
n∑
i=1

δi[η̂
[m−1]
i +xTi β−log(

∑
l∈Ri

exp(η̂
[m−1]
l +xTl β))]−0.5λβTPβ.

(14)
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In likelihood-based boosting this function is maximised in every boosting

iteration to obtain the iterative updates (De Bin, 2016; Binder and Schu-

macher, 2008).

Since the information of previous iterations is included as an offset and a

penalty is applied on the coefficients, it is easily possible to define features

that must be included in the model mandatorily. This can be achieved by

setting the corresponding diagonal elements of the matrix P to zero, an

approach suited to include group structure information and to assess the ad-

ditional predictive value provided by the penalised optional features. Often

clinical features are set to be mandatory and the molecular data used as po-

tentially, but not necessarily, additive information (Binder and Schumacher,

2008).

2.4.4 Early stopping

As has been pointed out before, the number of boosting iterations is the

main tuning parameter for boosting. Although boosting is in general not

very prone to overfit, respectively its overfitting behaviour is slow, it still

eventually overfits if it is allowed to iterate until the convergence of the loss

function (Bühlmann and Hothorn, 2007). So early stopping, i.e. stopping be-

fore the convergence of the loss function, is necessary. This not only prevents

overfitting, but also serves as a feature selection mechanism. The choice of

the number of boosting iterations strongly effects the strength of the fea-

ture selection and the whole procedure. As Seibold et al (2018) emphasise,

choosing it too small may lead to models not including relevant features,

choosing it too large may lead to models with irrelevant features. So, usually

this parameter is chosen by means of cross-validation. An important aspect

in doing so is the fact that simple cross-validation does not lead to optimal

solutions. Hence, using repeated CV is recommended, which leads to better

results, i.e. more stable values, of mstop (Seibold et al, 2018).
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Boosting gains its feature selection property through early stopping and in

combination with a component-wise approach. As has been described earlier,

component-wise boosting fits several univariate linear models, each for every

feature in the data, and updates the coefficient of that feature, which min-

imises the loss. If p > mstop, this automatically means that not all features

can be included in the model. Only those leading to the best prediction re-

sults will be used. If p > n non-component-wise boosting is not applicable at

all (De Bin, 2016). Also, as usually slow learning is adapted, only a penalised

value of the estimated coefficient is added as an update. If a feature leads

to the best prediction in several steps, it gets its coefficient updated several

times. Thus ν interacts with mstop, and p does not necessarily need to be

greater than mstop to gain the feature selection property (De Bin, 2016).

2.4.5 Differences of the two approaches

In general, the two boosting approaches are very different. Not only do they

use two different ways of computing the iterative updates, but also the pe-

nalisation is applied differently. In model-based boosting the estimation is

based on a regression to the negative gradient, where the base learners are fit

to the negative gradient, resulting in a regression on the (pseudo-)residuals

of the previous step. In that way the algorithm concentrates on observations

that are hard to predict (Mayr et al, 2017; Hastie et al, 2009).

By contrast, in likelihood-based boosting likelihood maximisation is used.

The iterative updates are obtained based on the maximisation of the base

learners’ likelihood, thus by directly estimating the base learners. At that,

the information gained in previous steps is incorporated by an offset term.

Moreover, in likelihood-based boosting the penalty term is applied to the

likelihood directly and the parameter λ (in (13) and (14)) steers the penal-

isation. Instead, in model-based boosting the updates get penalised via the

learning rate ν (Mayr et al, 2017).
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It should be mentioned that for component-wise boosting the differences are

less striking and even coincide in the standard continuous linear regression

context, if the inner loss is set to be the L2-loss function for gradient boosting

and the normal likelihood is chosen for likelihood-based boosting (De Bin,

2016).

One advantage of likelihood-based boosting over model-based/gradient boost-

ing - important in the context of multi-omics prediction - is the possibility

to naturally include mandatory features by applying the penalty term only

to the coefficients of the features that should be penalised (Binder and Schu-

macher, 2008). Thus, it is possible to easily include some kind of group

structure. Normally the clinical features are set as mandatory and molecular

features get penalised (even if that means that different molecular features

are not differentiated). Indeed, the inclusion of mandatory features is also

possible in model-based boosting, but not as inherently as in likelihood-based

boosting (De Bin, 2016).

Comprising, statistical boosting can be seen as one major approach of

fitting prediction models with the ability to be used in high-dimensional

settings, to include some kind of group structure information, and yielding

sparse and interpretable models. Based on a general framework, two specific

boosting strategies have been introduced, namely model-based boosting and

likelihood-based boosting. In the next section, the Lasso is presented as a

second general approach and specific Lasso-based methods are described.

2.5 Lasso methods

The Lasso, first introduced by Tibshirani (1996), is a regression technique

combining the strengths of subset selection and Ridge regression, leading to

sparse and stable models. Due to the sparse nature of the resulting models,
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the Lasso has two required properties especially relevant in high-dimensional

multi-omics contexts. First of all, since many of the estimated regression

coefficients will be zero, the models are interpretable. As outlined, a property

often required in clinical contexts. Besides that, its inherent shrinkage and

selection properties make the Lasso a predestined technique to tackle high-

dimensional problems, where the number of features exceeds the number of

observations.

2.5.1 Standard Lasso

The standard Lasso, in the following also simply called Lasso, gains its shrink-

age properties through penalising the regression coefficients. In general, the

estimate in the Lagrangian form is given by

β̂lasso = arg min
β
{1

2

n∑
i=1

(yi − β0 −
p∑
j=1

xijβj)
2 + λ

p∑
j=1

|βj|} (15)

In contrast to Ridge regression, which uses a quadratic penalty, the coeffi-

cients get penalised by a L1-penalty leading to a non-differentiable problem.

As a consequence, many of the coefficients will be set to exactly zero, thus

leading to the sparsity property. Due to the non-differentiable nature there

is no closed form for the regression estimates (Hastie et al, 2009). Originally

proposed as an enhancement for standard linear regression, the method is

based on ordinary least squares. But the method has been made available

for other regression contexts such as Cox regression (Tibshirani, 1997). In

the later case, the estimation is based on maximising the log partial like-

lihood. As has been outlined above, the Cox model assumes λ(t∗|xi) =

λ0(t
∗)exp(xTi β) leading to the partial likelihood

L(β) =
∏
r∈E

exp(xTirβ)

{
∑

l∈Rr exp(x
T
l β)}

, (16)
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where E is the set of event indices, Rr the set of indices of individuals at risk

and ir indicates failure at time tr (Tibshirani, 1997). The Lasso estimate is

then given through (Simon et al, 2011)

β̂ = arg max
β
{log(L(β))− λ

p∑
j=1

|β|}. (17)

The parameter λ steers the amount of penalisation, leading to the standard

regression estimate if set to zero, and to increasingly spares models with

increasing values. The parameter λ is important and usually determined

through cross-validation (Simon et al, 2011).

Despite its excellent properties, the standard Lasso still suffers from some

drawbacks. For example, if several features are strongly correlated, Lasso

selects only one of them (Simon et al, 2011). Furthermore, it is not possible

to incorporate any additional group structure information. This means that

all features will be equally penalised regardless of their priorly assumed im-

portance. In multi-omics settings it is often assumed that some of the groups

are more important than others, especially regarding clinical features. Thus,

for example, the small amount of clinical features might get lost in the huge

amount of molecular features (Boulesteix and Sauerbrei, 2011).

Several adaptations of the Lasso method have been proposed to overcome

this drawbacks, some of them being described in the next sections. We focus

on Lasso variants that are suited to incorporate group structure information

in a multi-omics setting. Besides these methods, there are other extensions

tackling specific weak points of the standard Lasso. For example, the elastic

net method combines Ridge and Lasso regression to overcome the problem of

correlated features (Simon et al, 2011), and Zou (2006) proposed the adaptive

Lasso, a consistent version of Lasso, yielding oracle properties. Furthermore,

Yuan and Lin (2006) introduced the group Lasso, an enhancement for factor

selection.
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2.5.2 IPF-Lasso

IPF-Lasso is a method introduced by Boulesteix et al (2017a) specifically

designed to incorporate (multi-)omics group structure information. It is an

extension of the standard Lasso using different penalties for the specified

groups according to their relevance. As with standard Lasso, the method

can also be applied to other regression outcomes particularly survival time

data.

Let there be G groups, then x
(g)
·1 , ..., x

(g)
·pg denote the features of group g (g

= 1, ..., G), with pg the number of features within group g. Furthermore

β
(g)
j indicates the corresponding coefficient of feature x

(g)
·j (Boulesteix et al,

2017a). To estimate the coefficients one has to minimise the expression

n∑
i=1

(yi −
G∑
g=1

pg∑
j=1

x
(g)
ij β

(g)
j )2 +

G∑
g=1

λg‖β(g)‖1, (18)

with ‖.‖1 the L1-Norm, λg > 0 the penalty of group g and β(g) = (β
(g)
1 , ..., β

(g)
pg )T .

Boulesteix et al (2017a) set the first group as reference. This leads to a

penalty factor of 1 and the penalty λ1. The other penalty factors follow as

λg/λ1, leading to a vector of penalty factors (1, λ2/λ1, ... , λG/λ1). Applying

this on the penalty term, the groups get penalised individually and according

to the relevance of the included features. This leads to strong shrinkage and

sparsity within a group when it is of low importance or only few features of

that group are of relevance, while at the same time relevant features from

other groups are preserved.

Similar to the single penalty parameter λ in the standard Lasso context, this

vector must be set in advance, thus yielding hyper-parameter characteris-

tics. As such, it is recommended to specify this vector via cross-validation

(Boulesteix et al, 2017a).

Unfortunately, this also leads to the major drawback of the method. If there

are more than three to four feature groups, the cross-validation will get com-
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putational infeasible, reducing the relevance of the method for multi-omics

prediction problems. To overcome this problem, Schulze (2017) introduced

the two-step IPF-Lasso (TS IPF-Lasso). In the first step, a single candidate

vector for the penalty factors is determined. This is achieved by fitting a

regression model on the data and computing the mean of the coefficients of

each group. By inverting the means one obtains a single set of data-driven

penalty factors, which can than be used in the second step for the IPF-Lasso

method as described above. This reduces the extensive computation broadly,

making it possible to use IPF-Lasso in situations with more than a few fea-

ture groups. Several strategies for the first step (using different regression

techniques and means) may be used. We describe the strategy used for the

study at hand later in detail.

2.5.3 Priority-Lasso

Another method designed for the incorporation of different feature groups

is priority-Lasso (Klau et al, 2018). The principle idea is based on the

fact that often clinical researchers and physicians have some prior knowledge

concerning the importance of different feature groups. For example, they

might know that copy number variation is more important for predicting the

survival time of a specific cancer type than gene expression information. To

include such knowledge, a priority order for the groups of interest is defined by

the researchers. Priority-Lasso then successively fits regression models using

the features in the order of their group’s priority, until all groups have been

considered. The resulting linear predictor of every step is used as an offset

for the regression model fit to the features of the group with the next highest

priority. Thus, the features of a group with lower priority only explain that

part of variation that has not been explained by features of higher priority.

In a standard linear regression context this means fitting the residuals of the

preceding step (Klau et al, 2018).
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Formally speaking, let G again be the number of groups under investigation.

Let further π = (π1, ..., πG) be a permutation of (1, ..., G) indicating the

priority order. As for IPF-Lasso β
(πg)
j indicates the coefficient of feature j of

group πg and pπg the number of features from group πg. The coefficients of

the first step are then estimated by applying standard Lasso on the features

of the group with highest priority order. Thus, minimising

n∑
i=1

(yi −
pπ1∑
j=1

x
(π1)
ij β

(π1)
j )2 + λ(π1)

pπ1∑
j=1

|β(π1)
j | (19)

leads to the linear predictor η̂1,i(π) = β̂
(π1)
1 x

(π1)
i1 + ... + β̂

(π1)
pπ1

x
(π1)
ipπ1

. This is

used as an offset for the Lasso model fit to the next group in the following

step (Klau et al, 2018). This procedure is iterated until all groups have been

considered, using different offsets η̂πg ,i(π) in each step.

Klau et al (2018) emphasise that the information used to produce the model

of a subsequent step has already been used to compute the offsets of the pre-

vious steps. Therefore, they recommend to use cross-validation to estimate

the offsets. Otherwise, variability that could be explained by lower-priority

groups might be removed, although it is not explained by previous groups.

For the study at hand an issue arises concerning the prior group importance.

As we do not have any substantial knowledge concerning the regarded cancer

types, we cannot specify a priority order as described above. To circumvent

this problem, we altered the method to a two-step procedure similar to the

two-step IPF-Lasso. In the first step, we determine a vector of coefficient

means for every group exactly as in the first step of the two-step IPF-Lasso.

Inverting the means and ordering them increasingly results in a vector where

the first element corresponds to the most important group and so on. We

use this ordering as a surrogate for a knowledge based priority order. It has

to be emphasised that this is only used due to the lack of substantial prior
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information (which should be favored if available). Klau et al (2018), in con-

trast, describe a cross-validation-based method to specify the priority order

in the absence of prior knowledge. But as with IPF-Lasso, this has shown to

be computational infeasible with the data at hand.

2.5.4 Sparse Group Lasso

The group Lasso mentioned above could be another method using group in-

formation. Since it is mainly designed for factor selection, it either selects

all features of a group or none of them. This leads to a sparsity on group

level but not within groups. That is useful for factor features, but does

not equally apply to multi-omics settings, since often only few features of a

group are relevant (Boulesteix et al, 2017a). Therefore, it is of less use in

multi-omics settings. Simon et al (2013a) introduced the sparse group Lasso

(SGL). It builds on the group Lasso, but additionally offers sparsity within

groups, making it a very interesting candidate for the multi-omics benchmark

study. SGL has already shown to be competitive in such settings (Simon et

al, 2013a; Boulesteix et al, 2017a).

On the other hand, Schulze (2017) mentions that the method encounters

substantial problems in the presence of very high-dimensional data. The

method leads to a fatal error in the standard statistical software R, where it

is made available via an add-on package (Simon et al, 2013b). Having tried

many approaches to circumvent this problem, Schulze (2017) eventually drops

the method from the study as no attempt is successful. Unfortunately, we

encountered the same problem with data sets of around 100,000 features.

Therefore, it was decided not to regard SGL neither, although this means

dropping one very promising candidate method.
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Concluding, three methods are used within the benchmark experiment

which we subsume as Lasso-based methods. This comprises the standard

Lasso, the two-step IPF-Lasso (TS IPF-Lasso) and the two-step priority-

Lasso (TS priority-Lasso). The standard Lasso is not able to include group

specific information and treats all features within a data set equally. The

newer methods TS IPF-Lasso and TS priority-Lasso are based on the stan-

dard Lasso and additionally incorporate group structure in different ways.

So far, statistical boosting and Lasso-based methods have been described

as candidates for multi-omics prediction methods. In the next section, we

finally describe random forest as a third method.

2.6 Random forest

Random forest is a tree-based ensemble method introduced by Breiman

(2001). Instead of growing a single classification or regression tree, it uses

bootstrap aggregation (bagging) to grow several trees and average the results

as outcome. Bagging means that out of the data set many bootstrap samples

are drawn and on each of these sub-samples a tree is fit. This reduces the

variance of the single tree results.

To additionally reduce the variance, only a fraction of the features is ran-

domly drawn and used to build a single tree, resulting in decorrelated trees

(Hastie et al, 2009). The following algorithm is based on Hastie et al (2009,

p. 588).
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To compute a random forest

1. For b = 1 to B:

1.1 Draw a bootstrap sample of size n from the training data

1.2 Fit a single tree Tb to the bootstrap sample by recursively repeat-

ing the following steps for each terminal node, until the prede-

fined minimum node size

a) Draw mtry numbers of features randomly

b) Choose the best feature and split-point combination

c) Split the node into two daughter nodes

2. Output the tree ensemble

Predictions for new data can then be made for regression via f̂Brf (x) =
1
B

∑B
b=1 Tb(x). For a classification problem the class of a new observation

is chosen by majority vote over all B trees.

The main hyper-parameter of random forest is the number of features to

be randomly chosen, often denoted as mtry (Couronné et al, 2018). Al-

though specifically tuned values for a data set at hand may result in better

performance, some standard default values have been established: mtry is

standardly set to b√pc and bp
3
c for classification and regression respectively

(Hastie et al, 2009; Couronné et al, 2018). According to Couronné et al

(2018), the number of trees to be fit, ntree, should be chosen as large as pos-

sible and not be treated as a hyper-parameter. They state that a reasonable

number is about a few hundred trees.

Moreover, the tree depth is important. It is associated with the minimum
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number of observations a terminal node should include, often denoted as

nodesize. A larger value for nodesize leads to less deep trees, with just a

few terminal nodes (Couronné et al, 2018).

The random forest method was expanded to survival time data by Ishwaran

et al (2008). The feature maximising the difference in survival is chosen as

best feature. The terminal nodesize is defined by the minimum number of

deaths that should be included. Eventually, the cumulative hazard function

is computed via the Nelson-Aalen estimator for every tree and averaged over

all fitted trees to obtain the ensemble cumulative hazard function. Predicting

a new observation means dropping it down the trees. According to its fea-

ture values it is passed through the nodes. Finally, according to the terminal

nodes it reaches, the average of the Nelson-Aalen estimates (over all trees) is

used for the cumulative hazard.

The random forest method is very competitive regarding prediction perfor-

mance and does not need a lot of tuning (Hastie et al, 2009). In their large

benchmark study, Couronné et al (2018) even show that random forest with

default parameters outperforms logistic regression. So, it is not surprising

that random forest gained a lot attention in the last years. Besides the good

prediction performance, it offers further often desired properties. It naturally

handles high-dimensional data, data of different types and missing data. Par-

ticularly, the ability to deal with high-dimensional data, where p is greater

than n, is an important property for the study at hand.

Nevertheless, there is a major drawback. Random forest can be regarded as a

black-box method yielding models that are hard to interpret. Although there

are some approaches to gain insight into the resulting models, such as feature

importance measures and partial dependence plots, random forest models are

not as easily interpretable and transportable as models yielding coefficient

estimates of few relevant features (such as the boosting and Lasso variants
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described before) (Couronné et al, 2018). Furthermore, at the moment there

is no adaptation to make use of group structure information. Despite this

drawbacks, random forest is still an important candidate method for the pre-

diction of multi-omics data.

Summarising, its strong prediction performance and ease of use have made

random forest a widely used and competitive method that should not be

neglected in a comparison study of prediction methods for survival data.

Overall, there a three major prediction approaches regarded in the study at

hand: random forest, boosting and Lasso. For the later two, different variants

and adaptions exist. These lead to different possible Lasso-based methods

and versions of boosting. The precise implementations of these methods and

the data sets they are applied on are described in the next section.
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3 Benchmark experiment

In this section, we outline the benchmark experiment conducted for this

study in detail. This comprises the overall framework, the data sets, the

specific method configurations, the dimensions the methods are assessed in

and the software used. In the following, the specific model configurations

will also be called learners to separate the specific configurations form the

general methods described in the Background section.

3.1 Setup and mlr framework

The benchmark experiment is conducted using R 3.3.4 (R Core Team, 2018).

To reproduce the results, all the code and data can be found in the electronic

appendix. To further improve the reproducibility, the add-on package check-

point (Microsoft Corporation, 2018) is used. Because the computations are

extremely time demanding, but parallelisable, the package batchtools (Lang

et al, 2017) is used for parallelisation.

To implement the benchmark experiment the package mlr (Bischl et al, 2016)

is used. Since several learners have to be customized, we use a development

version of mlr, which can be found in the electronic appendix. mlr offers

a simple framework to conduct all necessary aspects in a unified way. The

methods under investigation can be accessed via wrappers, different perfor-

mance measures can be applied, and resampling for hyper-parameter tuning

and performance assessment may be defined. Moreover, parallelisation is

easily achieved.

In the benchmark study we apply 11 learners on 18 data sets. To assess

their performance, we use a repeated cross-validation strategy and perfor-

mance measures in three performance dimensions.

Several, but not all, of the methods under investigation can be accessed via
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mlr wrappers, which call the necessary functions from the packages the meth-

ods are implemented in. Other methods have not been implemented in mlr

yet by the developers, but can be customised by the users. This was done for

(TS) priority-Lasso, (TS) IPF-Lasso, the Kaplan-Meier estimate, the clinical

(only) reference model and parts of model-based boosting.

To assess the performance, a repeated k-fold cross-validation (CV) strategy

is used. In a k-fold CV the data set is split into k subsets (folds) randomly.

Each of these subsets is then used for testing once, the corresponding k − 1

other subsets are used for training. In the end, the performance is averaged

over all k testing folds (Couronné et al, 2018). In a repeated CV this is

iterated several times. We use 10 x 5-fold CV for the smaller data sets and 5

x 5-fold CV for the larger data sets to keep computation times feasible. Fur-

thermore, we stratify the subsets, so that in each fold a comparable amount

of events is included, since the ratio of events and censorings is unbalanced

for some data sets.

This resampling strategy is carried out on all data sets for all learners. As 7

larger and 11 smaller data sets and 11 learners are used, this leads to 7 x 25

x 11 + 11 x 50 x 11 = 7975 models to be fit.

Moreover, hyper-parameter tuning is performed. This could also be imple-

mented via mlr, but in this study the tuning procedures provided by the

underlying packages are used. We denote the resampling strategy used for

hyper-parameter tuning inner resampling and the repeated CV used for per-

formance assessment outer resampling. As specification of the inner resam-

pling strategies we use the default settings of the underlying functions. The

learners and the applied inner resampling are described in the Methods and

learners subsection. In the following, the data sets are presented.
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3.2 Data sets

Based on the cancer data that has been gathered by the TCGA Research Net-

work: http://cancergenome.nih.gov/, for 26 cancer types (those with more

than 100 samples and five different multi-omics groups) the according data

sets were available, of which 18 could be used. Table 13 in the appendix

lists all cancer types and the abbreviations used to reference them within the

study.

For each of the cancer types there are five different raw data sets, four con-

taining molecular data and one containing clinical data. The molecular data

comprises copy number variation (cnv), gene expression (rna), miRNA ex-

pression (mirna), and mutation. The number of features the groups include

is similar over data sets but strongly differs between groups. Figure 1 dis-

plays an overview. It is obvious that most features (about 60,000) belong

to the cnv group, only a couple of hundred features to mirna, the smallest

group. Overall, there are about 80,000 to 100,000 molecular features for ev-

ery cancer type.

For the analysis these data sets are merged by patient-ID. Since not for all

patients every molecular data type is observed, merging the molecular data

sets reduces the number of observations. For three cancer types the reduc-

tion is severe and leaves no observation behind that does not have a any

missing values. So the cancer types CESC, GBM and READ are excluded.

The number of patients per group and cancer type is presented in Figure

2. The group noNA represents the number of observations with no missing

values after merging the molecular data for that cancer type. One can see

that except for the mentioned groups the reduction in observations can be

neglected. Only for OV and KIRC the remaining number of observations is

about the half of the maximum number of observations within a single group.

For KIRC the reduction strongly depends on the fact that the mutation group

does not include as many observations as the other groups.
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Figure 1: Number of features per molecular group by cancer type.
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Figure 2: Number of observations per molecular group by cancer type. The

noNA group refers to the number of observations without NA after merging

the molecular data.
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Since the outcome of interest is survival time, not (only) the number of

observations is crucial, but particularly the number of events, i.e. deaths,

which we call the number of effective cases. A ratio of 0.2 of effective cases

is common (De Bin et al, 2014b). Unfortunately from a statistical point of

view, there are some cancer types for which even this ratio is not reached,

five of them having less then 5 % effective cases. Of these five cancer types,

PCPG and TCGT have a number of effective cases too low to conduct 5-fold

cross-validation. Therefore, these cancer types are excluded as well. Fur-

thermore, it turned out that data sets with few number of effective cases

lead to extremely long computation times (see Computation time section),

so only data sets with more than 5 % events where included. That leaves

behind data sets for 18 cancer types as basis of the benchmark experiment.

For those, the clinical data is merged to the joined molecular data.

The raw clinical data sets contain a lot of features, making further prepro-

cessing necessary. First of all, depending on the cancer type, many of them

contain only NAs. Secondly, there are features holding administrative in-

formation such as informed consent verified, which are assumed not to be

related to the outcome. Thirdly, there are many features that might be re-

lated to the outcome for one cancer type, but not for the other. As the

majority of the clinical features has missing values, the question arises which

to include for a specific data set while saving as much observations/effective

cases as possible. As we do not have any domain knowledge, we decided by

a two step strategy.

First, a literature search was conducted to find studies where the specific

cancer type was under investigation. Features mentioned to be useful in this

studies are defined as the ones to be necessary. But as either not all of them

are included in the clinical data sets at hand, or they contain a lot of NAs,

not all of them are available. Secondly, if for a cancer type none or only a

few of the necessary features are available, we only or additionally use the
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features that are available for most of the cancer types. That comprises sex,

age, histological type and tumor stage. They are standardly included, if avail-

able. Of course, sex was not included for the sex-specific cancer types OV,

TGCT, PRAD, BRCA1.

Furthermore, most of the clinical features are factors. To utilise them for the

methods they are converted to dummy features. Many of the factor features

have a lot of levels, for example histological type has mostly more than ten

levels. As some of the levels only hold few observations, they have to be

pooled to obtain computational stability. If, for example, tumor stage com-

prises the levels Stage IA, Stage IB, Stage IC, and IB and IC hold only few

observations whereas IA many, they are pooled to Stage I, given that there

are other levels such as Stage II and Stage III.

The clinical data set is merged with the joined molecular data by patient-ID,

leading to 18 final multi-omics data sets that are used for the benchmark ex-

periment. Since the selected clinical features also hold some NAs, the number

of observations gets further reduced in some cases. As the clinical features

are regarded as very important, this is accepted.

Table 1 summarises the most important cornerstones of the data sets used

in the benchmark study. The first column represents the cancer type, the

following five columns provide the number of features per multi-omics group.

Moreover, p is the total number of features, N the number of observations,

neff the number of effective cases (i.e. events) and reff the ratio neff/N .

1BRCA is actually not sex specific as it contains one male patient. Feature sex was

nevertheless not used for that cancer type.
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Cancer cnv mirna mutation rna clin. p N neff reff

BLCA 57964 825 18650 23081 5 100525 382 103 0.27

BRCA 57964 835 18847 22694 8 100348 735 72 0.10

COAD 57964 802 19786 22210 7 100769 191 17 0.09

ESCA 57964 763 15162 25494 6 99389 106 37 0.35

HNSC 57964 793 17840 21520 11 98128 443 152 0.34

KIRC 57964 725 12017 22972 9 93687 249 62 0.25

KIRP 57964 593 11610 32525 6 102698 167 20 0.12

LAML 57964 882 6575 29132 7 94560 35 14 0.40

LGG 57964 645 13389 22297 10 94305 149 77 0.18

LIHC 57964 776 15924 20994 11 95669 159 35 0.22

LUAD 57964 799 18966 23681 9 101419 426 101 0.24

LUSC 57964 895 18832 23524 9 101224 418 132 0.32

OV 57447 975 16837 24508 6 99773 219 109 0.50

PAAD 57964 612 12882 22348 10 93816 124 52 0.42

SARC 57964 778 12478 22842 11 94073 126 38 0.30

SKCM 57964 1002 19488 22248 9 100711 249 87 0.35

STAD 57967 787 19141 26027 7 103929 295 62 0.21

UCEC 57447 866 21226 23978 11 103528 405 38 0.09

Table 1: Summary of data sets used for the benchmark experiment

In Tables 14, 15, 16, 17, and 18 in the appendix the included clinical features

are listed. Also the reference, on which the information for useful clinical

features is based, is included. Finally, the number of originally included

effective cases is displayed.
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3.3 Methods and learners

In this section, the methods and their specific configurations (which we call

learners) used within this study are described. As the mlr methods are only

wrappers for the underlying functions of the packages where the methods are

implemented, we refer to this packages and functions in the following. The

package names can be found in the parentheses after the method heading. If

the method has been customised for this study, it is denoted with (c).

Lasso methods

standard Lasso (glmnet, Friedman et al (2010) and Simon et al (2011))

The penalty parameter λ is chosen via 10-fold CV (inner resampling). No

group structure information is used.

Two-step IPF-Lasso (ipflasso, Boulesteix and Fuchs (2015)) (c)

To implement the two-step procedure, additionally code from Schulze (2017)

is used. The penalty factors get specified in the first step by computing

separate Ridge regression models for every feature group and averaging the

coefficients within the groups by the arithmetic mean. These settings have

shown to yield reasonable results (Schulze, 2017). Moreover, for inner resam-

pling, 10-fold-CV is used in the first step, 5 x 5-fold CV in the second. Since

it is a learner using group structure information, additionally the indices of

the features according to group membership are used.

Two-step priority-Lasso (prioritylasso, Klau and Hornung (2017)) (c)

The first step is realised exactly as the first step of TS IPF-Lasso. The

priority order is then defined as described in the Priority-Lasso section by

ordering the groups according to their penalty factors. For the second step a

10-fold CV is used. Group structure information is also provided. Although
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recommended otherwise (Klau et al, 2018), the offsets are not estimated via

CV to not further increase the computation times.

Two-step priority-Lasso favoring clinical features (prioritylasso, Klau and

Hornung (2017)) (c)

Another variant of priority-Lasso is examined. The settings are the same as

before. Additionally, the clinical features are favored by assigning the high-

est priority always to the clinical group. Only the priority order among the

molecular groups is specified by the data in the first step. The clinical features

are used as an offset when fitting the model of the second block. Furthermore,

the clinical features are not penalised (setting parameter block1.penalization

= FALSE ). Again, the offsets are not computed via CV for the same reason

as mentioned above.

Boosting methods

Model-based boosting (mboost, Hothorn et al (2018))

Internally, mlr uses the function glmboost of package mboost and sets the

family argument to CoxPH(). Furthermore the maximum number of boost-

ing steps (mstop) is set to 100. The actual mstop is defined by a 25-boostrap

(BS) procedure via the function cvrisk, so the number of boosting steps might

be less. The procedure cvrisk for inner resampling is originally not imple-

mented in the glmboost-wrapper of mlr. This was manually added for this

study (c). For the learning rate ν the default value of 0.1 is used. Group

structure information is not supplied.

Likelihood-based boosting (CoxBoost, Binder (2013))

Again the maximum number of boosting steps is 100. Here the actual mstop

is determined by 10-fold CV. The penalty λ is set to default and thus com-
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puted according to number of events. No group structure information is used.

Likelihood-based boosting favoring clinical features (CoxBoost, Binder (2013))

Similar to priority-Lasso a second version is considered. The settings are the

same as before. Additionally, group structure information is used by speci-

fying the clinical features as mandatory. These features are favored similar

to priority-Lasso whilst setting them as an offset and not penalising them (s.

the Likelihood-based boosting section for details). Further group information

is not used, so the molecular data is not distinguished.

Random forest

Two versions of random forest are examined: randomForestSRC (rfsrc) (Ish-

waran and Kogalur, 2018) and ranger (Wright and Ziegler, 2017). They

share the same theoretical background, but differ in the implementation.

Thus, for random forest rather two different implementations are compared,

in contrast to the comparison of different (theoretical) frameworks like for

boosting. As in the study of Couronné et al (2018), no hyper-parameter

tuning is conducted and for both implementations their default settings are

used. It follows that the number of trees (ntrees) is 500 for ranger and 1000

for rfsrc. Furthermore, the parameter mtry is set to d
√

(p)e for rfsrc and

b
√

(p)c for ranger. The minimal node size is 3 for both.

Reference methods

To reference the complex methods, two base procedures are used, one of

which is the Kaplan-Meier estimate which does not use any feature informa-

tion to estimate the survival probability. Moreover, a clinical reference model

that uses only the clinical features to predict the survival probabilities is fit
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for every data set. This clinical reference is a Cox proportional hazard model

computed via the coxph function of the survival package (Therneau, 2015).

The Kaplan-Meier estimate is computed via survfit from the same package.

The two methods are customised in mlr for the study (c).

Table 2 summarises the specific learners described above. It displays the

used R packages and functions, and the inner resampling strategy for tuning

(if conducted). Furthermore, the use of group structure information is indi-

cated in column structure. Some of the learners need standardized features.

This is indicated in column standardized. If a method requires standardized

features, the learner handles that by means of the underlying function itself,

so the data is not standardized manually beforehand.
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3.4 Dimensions of assessment and comparability

The performance of the methods is evaluated in different dimensions. First

of all, as prediction methods are examined, the prediction performance is

assessed via the integrated Brier-score (ibrier) and the c-index based on Uno

et al (2011) (in the following simply cindex). Concerning the ibrier, in gen-

eral the methods under investigation may not be regarded as useful if they

perform worse than the Kaplan-Meier estimate, which does not use any in-

formation contained in the features and may thus be regarded as null model.

Concerning the cindex, the Kaplan-Meier estimate corresponds to a constant

prediction of 0.5, which represents the null model prediction.

The second dimension is the sparsity of the resulting models, which has two

aspects: sparsity on feature level and sparsity on group level. The later refers

to the aspect whether features of only some groups, and not of all groups,

are selected. The sparsity on feature level, in contrast, refers to an overall

sparsity, i.e. the total amount of selected features in the resulting models. As

random forest does not yield easily interpretable models, it is not assessed in

this dimension. As computation times are a crucial aspect of model fitting,

the computation times are used as third dimension.

Another important aspect is the different use of group structure informa-

tion. Some of the methods don’t use any information of such kind, some

favor clinical data over molecular data, and some incorporate every multi-

omics group individually. Thus, the differences in performance might not

only result from using different prediction methods. The differences may

also arise from the way in which the group structure information is included.

So, the comparability with regard to prediction performance is only given

within methods that use the same strategy to include group information.

Figure 3 illustrates the comparability with respect to the different ways of

using group structure.
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Figure 3: Comparability of learners with respect to the use of group structure

information by overall modelling approach, where the learners within a row

are comparable. CoxBoost favoring clinical features does not further distin-

guish the molecular data, thus making slightly different use of the structure

as the priority-Lasso learner in the same row.

Concluding, there are three dimensions of assessment: prediction perfor-

mance, computation time, and sparsity, whereby the later one is split into

two sub-dimensions: feature level and group level. When assessing the per-

formance, additionally the comparability of the methods based on the dimen-

sions of group structure inclusion (naive, favoring clinical features, including

multi-omics groups) has to be taken into account.
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4 Results

In this section the benchmark results are presented. We first describe the

assessment dimensions computation time and sparsity. Then an expansive

description of the last dimension prediction performance, taking into account

the comparability dimensions, is given.

For some CV iterations the model fitting was not successful, leading to NAs

for the assessment measures for these iterations. This is common in bench-

mark experiments of larger scale (Bischl et al, 2013). To cope with such

model failures we follow the strategies described by Probst et al (2018) and

Bischl et al (2013). If a learner fails in more than 20 % of the CV iterations

for a given data set, we assign (for the failing iterations) the data indepen-

dent values of the prediction performance measures (0.25 for ibrier and 0.5

for cindex) and the mean of the other iterations for the computation time

and the number of selected features. If a learner fails in less than 20 %, the

performance means of the successful iterations of this learner are assigned

for all measures.

4.1 Computation time

The learners’ computation times are measured based on the time needed for

fitting the model (training time). Table 3 shows the average computation

time of each learner. The value in the middle column is the mean computa-

tion time, averaged over the CV iteration and then over the data sets.

Clearly, rfsrc is the fastest procedure, followed by glmboost and standard

Lasso. The CoxBoost variants need about 3.5 times as much time as glm-

boost, and ranger about 2.6 times as much as rfsrc. The three Lasso variants

using group structure are very time intensive with ipflasso being by far the

most time consuming. Though, it has to be taken into account that the

random forest learners are not subject to inner resampling and the default
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inner resampling for ipflasso is 5 x 5-fold CV, whereas for most of the other

learners it is 10-fold CV.

Learner computation time computation time

in hours per CV-fold in minutes

rfsrc 1.89 4.30

glmboost 2.32 4.14

Lasso 4.93 8.91

ranger 6.61 13.96

CoxBoost favoring 8.36 14.92

CoxBoost 8.37 15.01

prioritylasso 19.2 27.46

prioritylasso favoring 19.4 27.67

ipflasso 26.0 39.70

Table 3: In the middle column the mean computation times for the whole

procedure including outer resampling is depicted. The right column shows

the mean computation times for a single CV iteration (mean time needed to

fit a single model).

Of course, the computation times depend on the size of the data sets, a reason

for the fact that ranger ranks fourth. Figure 4 displays the mean computa-

tion times in seconds for one CV iteration for the different learners and data

sets. The data sets are ordered from smallest (LAML) to largest (BRCA).

It has to be emphasised that the data set size is not increasing linearly. rfsrc

is the fastest algorithm for most of the data sets, followed by glmboost and

ranger. Interestingly, ranger is second fastest for smaller data sets, but is

increasingly slow compared to the other methods for data sets larger than

KRIP. Eventually, it is outperformed by all but one of the other methods for

the four greatest data sets (although no inner resampling is conducted).

53



Figure 4: Average computation time for one CV iteration of the different

learners on different data sets. The lower plot is depicted on logarithmic

scale. The data sets are ordered from smallest (LAML) to largest size.
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The Lasso methods taking group structure information into account are

among the slowest methods, where IPF-Lasso is slower than priority-Lasso.

Moreover, there is almost no difference when favoring clinical variables, re-

garding CoxBoost as well as prioritylasso.

Besides the data set size, the effective number of cases influences the com-

putation time. COAD and KIRP are among the smaller data sets with 17 (9

%) and 20 (12 %) events respectively. Especially the Lasso variants taking

group structure into account yield a grave increase in computation time for

these data sets. Also glmboost and rfsrc are affected in the case of COAD.

For the Lasso variants the computation times even exceed by far the times

needed for the largest data set, a reason why data sets with even less events

were excluded from the study.

4.2 Model sparsity

To assess sparsity, the number of non-zero coefficients of the resulting model

of each CV iteration is counted. These values are averaged over the CV

iterations and then averaged over all data sets (for every learner). As random

forest models do not yield such coefficients, the two random forest variants

are not considered within this dimension.

4.2.1 Sparsity on feature level

Considering overall sparsity, i.e. sparsity on feature level, is particularly inter-

esting for practical purposes, since sparse models are easier to interpret and

to communicate. On average, as Table 4 shows, ipflasso leads to the spars-

est models, followed by the boosting variants with glmboost being sparser

than the naive CoxBoost. Standard Lasso ranks in midfield and prioritylasso

models are least sparse.
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Learner ipflasso glmboost CoxBoost CoxBoost fav.

No. of features 5.56 6.45 9.93 13.39

Learner Lasso prioritylasso prioritylasso fav.

No. of features 15.74 25.74 30.14

Table 4: Average number of selected features.

Moreover, ipflasso shows the lowest variability across data sets, whereas pri-

oritylasso yields the greatest, see Figure 5. It also becomes obvious that

glmboost is sparser than ipflasso for about half of the data sets.

Favoring clinical variables leads to less sparse models for CoxBoost as well

as for prioritylasso, which also leads to lower variability across data sets.

Summarising, boosting leads to sparser models when compared to the Lasso

variants, except for IPF-Lasso which is the sparsest method.

Figure 5: Number of selected features.
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4.2.2 Sparsity on group level

Figure 6 displays the number of selected features by multi-omics group for

all but the random forest and reference learners.

Regarding feature selection on group level, three aspects stick out. First of

all, ipflasso yields strong sparsity on a group level. Except for some outliers,

only clinical and mirna features are selected for most data sets. Furthermore,

the boosting variants and the standard Lasso yield groups for which mostly

no features are selected: this comprises the groups mirna and clinical, and,

concerning CoxBoost favoring and glmboost, cnv.

This, secondly, exemplifies the problem of high- and low-dimensional fea-

ture groups treated equally. As has been pointed out before in the Back-

ground section, due to their low-dimensional character, clinical features get

lost within the huge amount of molecular features. It becomes obvious that

this does not only apply for clinical features. The mirna group is, in compar-

ison to the other molecular groups, low-dimensional with sizes ranging from

585 to 1002 features. Learners not taking any group structure into account,

CoxBoost, glmboost, and Lasso, fail to include clinical or mirna features.

CoxBoost favoring, which only differentiates clinical and molecular features,

does not select mirna features.

Thirdly, learners taking the multi-omics group structure into account in-

clude, in contrast, features of both low-dimensional groups. ipflasso even

only selects features of these groups. Thus, including the multi-omics group

structure saves low-dimensional groups from being discounted, which is very

important, since the naive learners show, overall, a worse prediction perfor-

mance than learners using group structure.

Interestingly, features of the largest group, cnv, are also often not included by

the boosting methods, and Lasso variants using group structure select from

this group the lowest amount. This indicates that this group is not very

useful. Finally, priority-Lasso in both variants is not able to select groups.
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Figure 6: Number of selected features by multi-omics group.

Concluding, IPF-Lasso is the sparsest method on feature as well as group

level. Instead, priority-Lasso is the less sparsest method, again on both levels.

The naive methods, particularly naive boosting methods, also lead to sparse

models on feature and group level, but to the disadvantage of low-dimensional

feature groups.
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4.3 Prediction performance

The main goal of the study at hand is to compare prediction methods using

multi-omics data. In this section we first give an overview of the prediction

performance. We then concentrate in the Using multi-omics data subsection

on the differences in performance with respect to the use of the multi-omics

data. First of all, we look upon the added predictive value of the molecular

data. Furthermore, we present in general the differences resulting from the

different forms of multi-omics data inclusion by comparing the naive strategy

learners on the one side with the learners using group structure information

(also called structured learners in the following, comprising learners favoring

clinical features as well as learners using multi-omics structure) on the other

side. In the subsequent Comparing prediction methods section, we compare

the results of the different prediction methods/learners with respect to the

comparability dimensions.

4.3.1 Overview of prediction performance

For every learner, Table 5 shows the average performance based on the cindex

and the ibrier as well as the ranks based on these measures. To obtain the

final values, the performance of each learner is averaged over all CV itera-

tions and then averaged over all data sets. The ranks are computed similarly

from 1 (best) to 11 (worst).

The main findings are, first of all, that there is no learner clearly outperform-

ing the clinical learner on average over all data sets. In fact, only CoxBoost

favoring performs slightly better based on the ibrier and according to the

ranks. Secondly, regarding the cindex, the structured learners perform better

than the naive learners, with the favoring learners ahead of the non-favoring

structured learners.
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means ranks

cindex ibrier cindex ibrier

Clinical only 0.617 0.176 2.83 4.22

CoxBoost fav. 0.614 0.175 2.78 4.17

prioritylasso fav. 0.604 0.183 3.72 6.89

prioritylasso 0.588 0.182 5.44 6.61

ipflasso 0.570 0.182 5.44 4.72

ranger 0.567 0.178 6.56 6

rfsrc 0.566 0.184 6.67 8

Lasso 0.542 0.196 6.67 7.61

Kaplan-Meier 0.5 0.180 8.89 6.89

glmboost 0.485 0.184 7.89 6.06

CoxBoost 0.405 0.176 9.11 4.83

Table 5: Mean performance results and ranks for all learners. The best

performances are indicated in bold.

Figure 7 shows the performance distributions. Obviously, all other learners

perform worse than the clinical learner (red line). Only CoxBoost favoring

yields a slightly better result for the ibrier and based on the ranks. An-

other important fact is that all learners (except CoxBoost for the cindex)

perform better than the Kaplan-Meier reference (dashed lines; corresponds

to 0.5 for the cindex). It also becomes obvious that the structured learners

(four learners on the right) yield better performances than the naive learners,

with ipflasso having highest variability, and that the learners favoring clinical

features perform slightly better than the other structured learners.
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Figure 7: Prediction performance based on the cindex and the ibrier. For

the cindex higher values are better, lower values are better for the ibrier.
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Considering the naive learners, according to the cindex the random forest

variants perform clearly better, but the results are not as clear regarding

the ibrier. Moreover, the standard Lasso and the naive boosting learners

(glmboost, CoxBoost) perform only marginally better or even worse than

the Kaplan-Meier estimate (see also Table 5). This indicates that they are,

on average, not very useful.

4.3.2 Using multi-omics data

Added predictive value To assess the added predictive value of the

molecular data, we follow approach A proposed by Boulesteix and Sauerbrei

(2011), thus comparing learners obtained by only using clinical features and

combined learners, i.e. learners using clinical and molecular features. Since it

is emphasised that for this validation approach the combined learners should

not be derived by the naive strategy, these learners are not considered here.

Despite that there is no learner outperforming the clinical learner on average

over all data sets, for several data sets there is at least one structured learner

outperforming the clinical learner. This indicates, according to the validation

approach, that using additional molecular data is useful and leads to better

prediction performance in these cases. However, as Table 6 and Figure 8

show, often the differences are small. Moreover, only for some data sets this

finding is supported by both measures (see Table 6). For several data sets

the structured learners perform better only based on one measure. Clearly

better performance based on the cindex can be found for HNSC, KIRP, and

LGG, based on the ibrier for LAML and SARC.

These findings, having data sets where molecular data adds predictive value

and data sets where it does not, is consistent with findings by others men-

tioned in the Added predictive value section, which also show that using

molecular data adds predictive value in some cases and doesn’t in others.
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In addition, the findings of the study at hand indicate that if there is ad-

ditional predictive value in the molecular data, this does not automatically

mean that this potential is used by every learner/method. See Figure 8 and,

for example, LAML where prioritylasso favoring clinical features performs

better than the reference model, whereas CoxBoost favoring does not.

learner cindex ibrier clin. cindex clin. ibrier

BLCA CoxBoost fav. 0.640 0.190 0.633 0.192

BRCA CoxBoost fav. 0.643 0.149 0.637 0.147

COAD CoxBoost fav. 0.553 0.107 0.541 0.101

HNSC CoxBoost fav. 0.574 0.203 0.554 0.210

KIRC ipflasso 0.755 0.144 0.761 0.146

KIRP priorityl. fav. 0.610 0.146 0.572 0.140

LAML CoxBoost fav. 0.607 0.215 0.596 0.231

LGG CoxBoost fav. 0.712 0.155 0.652 0.168

LIHC CoxBoost fav. 0.602 0.166 0.586 0.169

LUAD Priorityl. fav 0.665 0.174 0.663 0.172

LUSC Priorityl. fav. 0.537 0.216 0.531 0.216

OV ipflasso 0.580 0.168 0.598 0.173

PAAD Priorityl. fav 0.684 0.191 0.683 0.190

SARC ipflasso 0.676 0.189 0.673 0.202

SKCM CoxBoost fav. 0.590 0.192 0.581 0.191

UCEC ipflasso 0.690 0.091 0.686 0.092

Table 6: Data sets with at least one structured learner outperforming the

clinical learner. The performances of the best structured (second, third and

fourth columns) and the clinical learner (last two columns) are depicted. If

the structured learner outperforms the clinical learner on both measures, it

is indicated in bold.
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Figure 8: cindex for the structured learners and the clinical learner. Depicted

are only those data sets for which the best learner performs better than the

clinical learner on both measures (see Figure 10 in the appendix for the

ibrier.)
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Moreover, different configurations of a method with respect to the usage

of group information affect the potential of using molecular data. Also for

LAML, prioritylasso favoring clinical features performs better than the clin-

ical model, prioritylasso not favoring clinical features performs equally. Sim-

ilar findings are valid for BRCA (not depicted).

Figure 8 also shows that ipflasso could not be fit in several CV iterations for

LIHC, since many iterations yield a value of 0.5.

Summarising, for some data sets the molecular data hold additional pre-

dictive value, although mostly it leads to only a small increase in performance.

Furthermore, it does not only depend on the data/cancer type whether molec-

ular features add predictive value, but also the method and the specific con-

figuration used to build the model seem to be important.

Including group structure In general, the results affirm that using the

naive strategy of treating clinical and molecular features equally, i.e. not

taking the (two) different groups into account, leads to a worse performance

in comparison to methods where the clinical and the molecular data are

taken into account differently. The later comprises learners favoring clinical

features as well as learners taking the whole multi-omics group structure

into account. Table 7 shows the mean performance of the naive learners and

the structured learners based on the cindex and by data set. Each value

is computed as average over the naive respectively the structured learners’

mean cindex values.

Only for LGG the mean of the naive learners is higher. It also becomes

obvious that for eight data sets the naive learners perform equally or worse

than the Kaplan-Meier estimate, whereas the same is true only for one data

set for the structured learners. There are similar findings for the ibrier (see

Table 8), yet the naive learners perform, on average, better in five cases.
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BLCA BRCA COAD ESCA HNSC KIRC KIRP

naive 0.578 0.394 0.396 0.407 0.544 0.673 0.525

structured 0.626 0.591 0.496 0.511 0.554 0.735 0.545

LAML LGG LIHC LUAD LUSC OV PAAD

naive 0.535 0.686 0.534 0.511 0.406 0.382 0.574

structured 0.594 0.683 0.551 0.663 0.518 0.588 0.654

SARC SKCM STAD UCEC

naive 0.618 0.481 0.497 0.515

structured 0.659 0.575 0.562 0.651

Table 7: Mean performance of naive learners and learners using group struc-

ture based on the cindex. The means are computed over the mean perfor-

mance of each learner.

BLCA BRCA COAD ESCA HNSC KIRC KIRP

naive 0.205 0.160 0.103 0.2344 0.216 0.159 0.131

structured 0.197 0.154 0.119 0.2343 0.211 0.150 0.136

LAML LGG LIHC LUAD LUSC OV PAAD

naive 0.203 0.172 0.163 0.204 0.232 0.193 0.206

structured 0.227 0.163 0.184 0.174 0.220 0.171 0.196

SARC SKCM STAD UCEC

naive 0.181 0.218 0.214 0.122

structured 0.201 0.195 0.195 0.106

Table 8: Mean performance of naive learners and learners using group struc-

ture based on the ibrier. The means are computed over the mean perfor-

mance of each learner.
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Individually considering the naive learners and learners using group struc-

ture, it becomes clear that the performance strongly varies across learners and

across data sets. Figures 11 and 12 in the appendix show the performance

distribution measured per cancer type and learner. The better performance

of learners using group structure is obvious for cancer types LUAD, STAD

an OV. For the other data sets the picture is not as obvious.

Still, there are exceptions from the rule, where this finding is reverted. It

turns out that for a minority of the data sets the naive learners in general

and the random forest variants in particular perform better than the learners

using group structure. Taking a closer look, for several of these data sets the

clinical learner performs only slightly better or even worse than the Kaplan-

Meier estimate. This indicates that for these data sets the clinical data is

not very useful for prediction. Inspecting Figure 9 this becomes obvious. It

shows the cindex and the ibrier for data sets where at least some of the naive

learners perform well.

Regarding the cindex it turns out that the random forest variants are the well

performing naive learners and clearly outperform the clinical learner and the

structured learners. Similar results arise when looking at the ibrier. Again,

the random forest variants perform best (COAD, KRIP, LAML, LIHC), but

in this case also the other naive learners often perform better than the clinical

learner and some of the structured learners. Moreover, the clinical learner

does not yield clearly better results than the Kaplan-Meier estimate, again

indicating that the clinical features are not very useful in these cases.

Overall, for these data sets the random forest variants perform clearly best

regarding both measures. The other naive learners perform well based on the

ibrier. So, the naive learners, especially the random forest variants, may also

show (very) good prediction performance, in some cases even better than the

structured learners. Interestingly, this corresponds with data sets with less

informative clinical features.
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Figure 9: cindex and ibrier for the data sets where naive learners perform

well. For each data set, only the learners better than the clinical learner

are displayed, so the number of learners is not equal across data sets. The

Kaplan-Meier estimate corresponds to a value of 0.5 for the cindex.
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The LGG data set is a special case. First of all, the clinical features hold

some useful information, since the clinical learner performs clearly better

than the Kaplan-Meier estimate (cindex = 0.652, ibrier = 0.168 vs. ibrier

= 0.200 for the Kaplan-Meier estimate). Furthermore, regarding the cindex,

all other learners except glmboost perform markedly better than the clinical.

Thus, not only the clinical features have predictive value, but also the molec-

ular ones. Moreover, the naive learners perform better than the structured

learners, with overall best performing learners being Lasso and CoxBoost.

Regarding the ibrier, the situation is slightly different. Still the naive meth-

ods, with Lasso and glmboost in lead, perform best. But here all struc-

tured learners except ipflasso perform worse than the clinical learner and the

Kaplan-Meier estimate.

Overall, this is an interesting result, since clinical as well as molecular fea-

tures seem to hold different information, but the naive learners are able to

use it better.

4.3.3 Comparing prediction methods

As has been outlined in the Dimensions of assessment and comparability

section, to obtain comparability it is necessary to take into account how the

feature groups are treated. Thus, in this section we compare naive meth-

ods, methods favoring clinical features and methods using the multi-omics

group structure separately and present the results of comparable methods

individually.

Naive methods CoxBoost and glmboost, the two random forest learners

and the standard Lasso learner are fit with the naive strategy. Thus, for

every overall modelling approach (Lasso, boosting, random forest) there are

representatives. The average results and ranks for these learners over all data

sets can be found in Table 9.
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means ranks

cindex ibrier cindex ibrier

ranger 0.567 0.178 2.94 2.5

rfsrc 0.566 0.184 2.89 3.67

Lasso 0.542 0.196 2.22 3.61

glmboost 0.485 0.184 3.06 3.11

CoxBoost 0.405 0.176 3.89 2.11

Table 9: Mean performance results and ranks of the naive learners. The best

performance is indicated in bold.

In general, the results are not consistent over the two measures. According

to the cindex, random forest performs best, regardless which implementation

is used, whereas CoxBoost performs best according to the ibrier. When con-

sidering the ranks based on the cindex, the picture is different, with Lasso

ranking highest. The results based on the ibrier are consistent: here Cox-

Boost performs best and ranks highest.

Regarding the average performance based on the cindex, both random for-

est learners outperform the next best learner Lasso by about 0.025. These

three learners perform slightly better than the Kaplan-Meier estimate. In

contrast, the boosting variants perform worse than the the Kaplan-Meier es-

timate, with glmboost performing better than CoxBoost.

Regarding the ibrier, the situation is different. First of all, the difference

between ranger and rfsrc is more noticeable, with ranger performing better

by 0.006 in contrast to 0.001 for the cindex. Moreover, the boosting variants

perform well compared to the other learners and Lasso performs worst. Yet,

not every learner performs better than the Kaplan-Meier estimate (0.180).
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Summarising, regarding the overall prediction approaches and the result-

ing methods, there is no obviously best performing approach or even method.

Though by tendency, the random forest variants perform best: Regarding

the cindex they outperform the other methods, regarding the ibrier they

are among the best performing methods. In contrast, the boosting learners

perform badly based on the cindex, but competitively based on the ibrier.

Lasso performs worst based on the ibrier and worse than the random forest

approaches based on the cindex, though it ranks best accoring to the cindex.

Using structure - favoring: priority-Lasso vs. likelihood-based

boosting There are two methods for which models favoring clinical features

have been fit: likelihood-based boosting and priority-Lasso (with learners

CoxBoost favoring and prioritylasso favoring). Hence, only two of the overall

modelling approaches (Lasso and boosting) are represented. Table 10 shows

the average performance results and ranks.

means ranks

cindex ibrier cindex ibrier

CoxBoost fav. 0.614 0.175 1.39 1.11

prioritylasso fav. 0.604 0.183 1.61 1.89

Table 10: Mean performance and ranks of learners favoring clinical features.

Here, the results are unambiguous with CoxBoost performing better than the

prioritylasso, although the performance differences are small. Furthermore,

both learners perform better than the Kaplan-Meier estimate based on the

cindex, but only CoxBoost performs better than the Kaplan-Meier estimate

(0.180) based on the ibrier.

Thus, according to these findings, likelihood-based boosting yields better

results than priority-Lasso when clinical features are favored, even though

priority-Lasso further distinguishes the molecular data.
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Using structure - multi-omics: priority-Lasso vs. IPF-lasso We

now consider the methods which take the whole multi-omics group structure

into account without favoring the clinical features. This comprises IPF-Lasso

and, again, priority-Lasso. Thus, only Lasso-based methods are considered.

Boosting and random forest are not represented. Table 11 shows the average

performance results and ranks.

means ranks

cindex ibrier cindex ibrier

prioritylasso 0.588 0.182 1.5 1.83

ipflasso 0.570 0.182 1.5 1.17

Table 11: Mean performance results and ranks of the learners using multi-

omics group structure.

Compared to the favoring methods/learners, the situation is not as obvious

for this case. Overall, priority-Lasso shows by tendency better prediction

performance than IPF-Lasso. It outperforms IPF-Lasso based on the cindex

and yields equal results for the ibrier. But looking at the ranks, the findings

are contradictory. On the basis of the ibrier, IPF-Lasso is ranked higher than

priority-Lasso most of the times. On the basis of the cindex, they are equally

often in the first place.

Thus, there is no clearly best performing method like in the case of the

favoring methods. Moreover, both methods perform only slightly better than

the Kaplan-Meier estimate based on the cindex and worse based on the ibrier.

Since IPF-Lasso yields sparser models, it might be preferable when sparsity

is important. Yet, priority-Lasso is markedly better according to the cindex.
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To favor or not to favor clinical features As has been outlined in

the Background section favoring clinical features over molecular features is

preferable for several reasons, one of which is that they have often proved to

be of value and practitioners want them to be included by all means.

According to the findings of the benchmark experiment at hand, favoring

clinical features leads to clearly better prediction performance. For methods

where only clinical and molecular features are treated differently (likehihood-

based boosting), this is in line with the findings of others (see De Bin (2016)

and the reference therein). Table 12 displays the results for prioritylasso

and prioritylasso favoring as well as for CoxBoost and CoxBoost favoring.

Differentiating the clinical features from the molecular features strongly in-

creases the prediction performance of likelihood-based boosting (represen-

tend by learners CoxBoost and CoxBoost favoring) according to the average

cindex and the ranks, though there is only slight improvement based on

the average ibrier. Overall, favoring clinical features raises likelihood-based

boosting from the worst to the best performing prediction method.

means ranks

cindex ibrier cindex ibrier

prioritylasso 0.588 0.182 1.78 1.5

prioritylasso fav. 0.604 0.183 1.22 1.5

CoxBoost 0.405 0.176 1.94 1.61

CoxBoost fav. 0.614 0.175 1.06 1.39

Table 12: Mean performance results and ranks of methods with configura-

tions favoring and not favoring clinical features. The ranks are computed

only among the learners of one method, so 1 is best and 2 is worst.
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According to our findings, this also holds true for methods using the multi-

omics group structure. For priority-Lasso the increase is not as strong, but

still notably when regarding the cindex. Therefore, favoring clinical features

might also be an advantage when using multi-omics group structure. But

since this finding is based on only one example (priority-Lasso), more re-

search has to be conducted to confirm this.

Summarising, all this indicates that, whether or not the molecular data types

are distinguished, favoring clinical features leads to better prediction perfor-

mance. In the study at hand the two learners favoring clinical features are,

overall, the best performing of all complex methods under investigation (see

Overview of prediction performance section). In the next section, this and

the other outlined results are discussed and conclusions are drawn.
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5 Discussion and Conclusion

The study at hand provides a large-scale benchmark experiment for predic-

tion methods using multi-omics data. Eleven prediction methods and vari-

ants of them are compared based on their prediction performance, sparsity,

and computation time on 18 cancer data sets. Among the methods compared

are three Lasso-based methods (standard Lasso, two-step IPF-Lasso, two-

step priority-Lasso), two boosting methods (likelihood-based boosting and

model-based boosting with the implementations CoxBoost and Coxboost fa-

voring, and glmboost), and two random forest variants (rfsrc and ranger).

These methods make use of the multi-omics group structure differently.

Taking into account all of the different assessment dimensions and perfor-

mance measures, there is no clearly best performing method. But likelihood-

based boosting with the configuration favoring clinical features performs best

according to prediction accuracy. It also leads to reasonable sparse models on

group as well as on feature level and ranks in midfield based on computation

time.

Moreover, on average and based on the cindex, the structured learners (learn-

ers favoring clinical features or learners using the whole multi-omics group

structure) show better prediction performance than the naive learners (not

using group structure at all). But the picture is ambiguous when regarding

the ibrier. Furthermore, there is no method/learner that, averaged over all

data sets, clearly outperforms the clinical learner. Again, likelihood-based

boosting favoring clinical features differs from that, being ahead of the clin-

ical learner based on the ibrier and comparable based on the cindex. Yet,

for several data sets there are learners which outperform the clinical learner.

This indicates that whether the molecular data add predictive value depends

on the data set/cancer type. Also the used method and its configuration

seem to be important.
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Regarding sparsity, IPF-Lasso yields the sparsed results, both on feature as

well as on group level, whereas priority-Lasso leads to the less sparsest models

on feature level and does not select groups at all. The methods model-based

boosting, likelihood-based boosting, and standard Lasso also lead to sparse

models on feature level and group level but at the expense of smaller feature

groups. Since random forest does not yield easily interpretable models, it

was not assessed in this dimension.

Moreover, since comparability is only given when regarding methods that

include the group structure the same way, the methods were additionally

compared within the three dimensions of comparability: naive, favoring clin-

ical features, and using multi-omics group structure.

Among the naive learners and according to the cindex, the random forest vari-

ants perform notably better than the other methods (standard Lasso, model-

based boosting and likelihood-based boosting). Again, the picture is different

when regarding the ibrier, but still only one other method (likelihood-based

boosting) performs better than the random forest variants. Moreover, rfsrc

needs the least amount of computation time (though it has to be taken into

account that no tuning is conducted for the random forest variants). Focus-

ing on the other naive methods, standard Lasso performs better than the

boosting methods based on the cindex and worse based on the ibrier.

There are two learners favoring clinical features based on two different pre-

diction methods. The learner CoxBoost favoring refers to the likelihood-

based boosting method and the learner prioritylasso favoring to the method

priority-Lasso, which represent two different modelling approaches (boost-

ing and Lasso). prioritylasso favoring additionally uses the remaining group

structure by further distinguishing the molecular features. Here, likelihood-

based boosting (i.e. CoxBoost favoring) shows notably better prediction

performance than priority-Lasso, performing better based on both measures.

Moreover, it leads to sparser models with around 10 features, whereas priorty-
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Lasso selects around 30 features on average. Finally, likelihood-based boost-

ing favoring clinical features needs far less computation time. Overall, the

two favoring methods are the best performing complex methods based on the

cindex, and likelihood-based boosting also based on the ibrier.

The methods using the whole multi-omics group structure and not favoring

clinical features are priority-Lasso and IPF-Lasso. Thus, only methods from

the Lasso approach are investigated. In contrast to the methods/learners

favoring clinical features, the findings are ambiguous. Admittedly, priority-

Lasso outperforms IPF-Lasso based on the cindex, but they perform equally

based on the ibrier. Moreover, IPF-Lasso is ranked higher than priority-

Lasso based on the ibrier. Also, IPF-Lasso leads to clearly sparser models

on feature as well as on group level. However, priority-Lasso needs less com-

putation time.

Finally, the results suggest that, whether or not the molecular data are dis-

tinguished, the clinical features should be favored, since for likelihood-based

boosting as well as for prioirty-Lasso the learners favoring clinical features

outperform the corresponding non-favoring learners.

Concluding, the findings indicate that using multi-omics data for prediction

may lead to better prediction performance, but that depends on the used

method and its configuration, the data set and the way the multi-omics data

is used. Naive methods, not using the group structure, yield overall poor

prediction performance (with exception for some data sets where especially

the random forest variants yield some very good results).

One limitation of the study is that only few methods have been investi-

gated that include the multi-omics group structure (due to only few of such

methods have yet been proposed). For example, likelihood-based boosting

shows good performance when distinguishing clinical and molecular features.

This is promising that further group information might additionally raise the
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performance. The same can be said for the random forest variants. Since

they show by tendency the best performance among the naive learners and

for some data sets even better performance than the structured learners, it

would be very interesting to investigate whether implementations of these

methods, which are able to use multi-omics group structure, lead to better

performances. Not including sparse group Lasso, due to the fact that it was

not possible to use it in such a high-dimensional setting, further limits the

study.

Moreover, of the 26 data sets available only 23 data sets were suited for our

purpose. Of these 23 data sets, 5 had to be excluded due to stability and

computation time issues, so that the study is based on 18 data sets. Expand-

ing the study to more multi-omics data sets might result in more clear-cut

findings, where the study at hand draws an ambiguous picture.

Finally, the proportional hazards assumption underlies all of the methods

used. Although an implementation of the cindex was chosen which is not

prone to the model assumption, other underlying model assumptions are

conceivable and it would be interesting to investigate their influence.

In addition to that, a collection with the described and other multi-omics

data sets could be gathered to further improve comparability and increase

the scope this benchmark study covers. This would make it possible to use

hypothesis testing to compare the performance of the methods, which for

example Boulesteix et al (2015) describe and is conducted by Couronné et al

(2018).

Thus, future research could focus on new methods that are able to include

multi-omics data or to adjust established methods such as random forest to

be able to include multi-omics group structure information. Furthermore,

methods which have been proposed to include multi-omics data, but which

were not published in time to be included in the study, for example the

method proposed by Velten and Huber (2018), could be assessed. The same
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holds true for sparse group Lasso, if the problems get fixed. The benchmark

experiment presented here is designed in that way that an expansion can

easily be achieved with the provided code.
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Sutton, M, Thiébaut, R., and Liquet, B. (2018). “Sparse partial least squares

with group and subgroup structure”. In: Statistics in Medicine 37.23,

pp. 3338–3356.
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A Figures

Figure 10: ibrier for the structured learners and the clinical learner as a

reference. Depicted are only those data sets where the best learner performs

better on both measures.
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Figure 11: Prediction performance based on the cindex by data set.
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Figure 12: Prediction performance based on the ibrier by data set.
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B Tables

BLCA Bladder Urothelial

BRCA Breast Invasive Carcinoma

CESC Cervical Squamous Cell Carcinoma and Endocervical Adenocarcinoma

COAD Colon Adenocarcinoma

ESCA Esophageal Carcinoma

GBM Glioblastoma Multiforme

HNSC Head-Neck Squamous Cell Carcinoma

KIRC Kidney Renal Clear Cell Carcinoma

KIRP Cervical Kidney Renal Papillary Cell Carcinoma

LAML Acute Myeloid Leukemia

LGG Low Grade Glioma

LIHC Liver Hepatocellular Carcinoma

LUAD Lung Adenocarcinoma

LUSC Lung Squamous Cell Carcinoma

OV Ovarian Cancer

PAAD Pancreatic Adenocarcinoma

PCPG Pheochromocytoma and Paragangliom

PRAD Prostate Adenocarcinoma

READ Rectum Adenocarcinoma

SARC Sarcoma

SKCM Skin Cutaneous Melanoma

STAD Stomach Adenocarcinoma

TGCT Testicular Cell Tumor

THCA Thyroid Cancer

THYM Thymoma

UCEC Uterine Corpus Endometrial Carcinoma

Table 13: Overview of cancer types and the reference abbreviations
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The following tables provide details of the clinical features of each cancer

type/data set. In the first column of the tables the cancer type and the cor-

responding reference used to identify relevant clinical features can be found.

Furthermore, the first column shows the original number of effective cases

before any preprocessing is conducted. The eventually resulting amount of

effective cases after preprocessing and merging clinical and molecular data

(in percentage of the original amount) is displayed in parentheses. The sec-

ond and third column show the included and preprocessed features and the

feature type (bin = binary, num = numerical, int = integer, fac = factor).
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Cancer Features Type

BLCA age num

108 (95%) sex bin

Binder et al (2009) diagnosis subtype Papillary num

pathologic stage fac (3 levels)

BRCA age num

104 (69%) no. of lymphnodes positive by he int

Boulesteix et al (2017a) histological type bin

estrogen receptor status bin

progesterone receptor status bin

surgical procedure fac (4 levels)

COAD age num

56 (30%) sex bin

Brulé et al (2015) no. of lymphnodes positive by he int

pathologic stage fac (3 levels)

venous invasion bin

lymphatic invasion bin

ESCA age num

57 (65%) sex bin

Yokota et al (2015) pathologic stage fac (3 levels)

Shapiro et al (2016) pathology histological type bin

pathology residual tumor bin

HNSC age num

170 (89%) sex bin

Fakhry et al (2017) clinical stage fac (4 levels)

Blaszczak et al (2017) histologic grade fac (4 levels)

alcohol history bin

lymphnode neck dissection bin

Table 14: Clinical features: BLCA, BRCA, COAD, ESCA, HNSC
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Cancer Features Type

KIRC age num

162 (38%) sex bin

Escudier et al (2016) laterality bin

hemoglbin result bin

white cell count result bin

histologic grade fac (4 levels)

pathologic stage bin

KIRP age num

32 (63%) sex bin

Schulze (2017) laterality bin

white cell count result bin

hemoglobin result bin

pathologic stage bin

LAML age num

120 (12%) sex bin

Boulesteix et al (2017a) leukocyte result fac (levels 3)

morphology code fac (levels 4)

LGG age num

92 (84%) sex bin

Pignatti et al (2002) histological type fac (levels 3)

Claus et al (2015) laterality bin

visual changes bin

sensory changes bin

motor movement changes bin

tumor location fac (levels 3)

Table 15: Clinical features: KIRC, KIRP, LAML, LGG
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Cancer Features Type

LIHC age num

91 (38%) sex bin

Bruix et al (2016) albumin value num

creatinine value num

fetoprotein value int

pathologic stage fac (levels 3)

vascular tumor cell type fac (levels 3)

fibrosis ishak score fac (levels 3)

LUAD age num

123 (82%) sex bin

Coroller et al (2015) tobacco smoking history int

pathologic stage fac (4 levels)

anatomic neoplasm subdivision fac (4 levels)

LUSC age num

157 (84%) sex bin

Yang et al (2017) tobacco smoking history int

pathologic stage fac (4 levels)

anatomic neoplasm subdivision fac (4 levels)

OV age num

301 (36%) clinical stage fac (3 levels)

Schnack et al (2016) tumor residual disease fac (3 levels)

anatomic neoplasm subdivision bin

Table 16: Clinical features: LIHC, LUAD, LUSC, OV
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Cancer Features Type

PAAD age num

66 (78%) sex bin

maximum tumor dimension num

no. of lymphnodes positive by he int

tobacco smoking history int

anatomic neoplasm subdivision bin

histological type bin

histological grade bin

pathologic stage bin

surgery performed bin

PRAD age num

8 (88%) gleason grading int

Joniau et al (2015) psa num

Fraser et al (2015) residual tumor bin

SARC age num

76 (50%) sex bin

Cash et al (2016) histological type fac (4 levels)

metastatic diagnosis bin

radiation therapy bin

tumor tissue sites fac (3 levels)

tumor total necrosis percent fac (3 levels)

SKCM age num

154 (56%) sex bin

Teramoto et al (2018) breslow depth value num

Azzola et al (2003) melanoma ulceration bin

pathologic stage fac (4 levels)

tumor tissue site fac (3 levels)

Table 17: Clinical features: PAAD, PRAD, SARC, SKCM
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Cancer Features Type

STAD age num

85 (73%) sex bin

Szász et al (2016) no. of lymphnodes positive by he int

histologic grade bin

pathologic stage fac (4 levels)

THCA age num

14 (86%) sex bin

Kim et al (2015) extrathyroid carcinoma present extension bin

histological type bin

thyroid gland neoplasm location fac (3 levels)

pathologic stage bin

THYM age num

6 (100%) sex bin

Safieddine et al (2014) histological type fac (5 levels)

Weis et al (2015) masaoka stage fac (4 levels)

history myasthenia gravis bin

UCEC age num

45 (84%) weight int

Panici et al (2014) pct tumor invasion num

Morice et al (2016) weight int

total aor lnr int

total pelv lnr int

histological type bin

histological grade fac (3 levels)

clinical stage fac (3 levels)

surgical approach bin

Table 18: Clinical features: STAD, THCA, THYM, UCEC
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C Electronic appendix

The electronic appendix comprises three folders, which contain all the code

and data to reproduce the results. First of all, the most important folder is

Results containing the file ergebnis.RData, which holds the benchmark re-

sults. All figures, tables and findings presented in the study are based on

this file.

Run reproduce results Tables and Figure preprocessing.R to reproduce the re-

sults. Make sure that all packages listed in packages.R are installed and

loaded. Furthermore, it is necessary to set the wd variable to the directory

where the electronic appendix folder is located. The script computes all nec-

essary tables. Based on the tables, reproduce results Figures.R reproduces

the figures. The file reproduce results ancillary code.R holds additional code

needed for the computations and gets sourced automatically.

Since the first two figures are based on the raw data, these are treated in an

extra script: produce figures 1 and 2.R. Set the wd variable as before. Since

all molecular data sets must be in RAM simultaneously to produce the fig-

ures, computers with small RAM might not be able to do the computations.

If the ergebnis.RData file itself should be reproduced, i.e the benchmark

experiment shall be repeated, the folder Benchmark experiment holds the

code and preprocessed data to do so. Though, it must be emphasised that

the computations are very time consuming. On 12 kernels and 32 GB RAM

the computation lasted around two weeks.

Make sure all packages in packages.R in the sources sub-folder of the bench code

folder are installed and loaded. sources also holds the script ancillary code.R,

where the methods especially implemented for this study are defined. It is

crucial that the right version of the mlr package is installed (which can either

be downloaded from GitHub (s. code) or is contained in the mlr folder). To
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reproduce the experiment run the bench experiment.R file in the bench code

folder. It is necessary to set the cluster function for parallelisation according

to the system (default is Linux). Moreover, the dir variable must be set to

the path leading to the bench code folder.

The folder data in bench code contains the data sets and the folder resam-

ple instances the indices of each cancer type’s repeated CV instances. With

this it is possible to reproduce single method results or to expand the exper-

iment to not used methods. For that to happen, mlr can be used by supply-

ing the resample instance objects to a new benchmark experiment (via the

benchmark function). It is also possible to use methods not covered by mlr

by splitting the data sets according to the resample instance objects by hand.

Finally, the Raw data and preprocessing folder contains the raw data and

the R scripts which can be used to produce the final data sets and to com-

prehend the preprocessing of the clinical data. The most important file is

the create final data sets.R script. By running this script (after adjusting

the directory) it reproduces the final data sets, which will be stored in the

empty folder final data. The other scripts necessary to preprocess the clinical

data and merge clinical and molecular data get sourced in the right order.

The function scripts hold help functions, which carry out specific tasks in

this process. If there is special interest to comprehend a specific step, run

create final data sets.R until that step and execute the rest manually:

The select clinical features.R script selects the defined clinical features, pre-

process clinical data pre merge.R and preprocess clinical data post merge.R ex-

ecute the preprocessing of the clinical data before and after merging the clin-

ical and the molecular data (e.g. merging factor levels). The clinical and the

joined molecular data sets get merged with merge clinicals and moleculars.R.

TCGA Datasets contains all raw data, TCGA Datasets joined the joined

molecular data and TCGA Datasets clinical the raw clinical data.
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