
Studienabschlussarbeiten
Fakultät für Mathematik, Informatik

und Statistik

Mößbauer, Felix:

High Performance Dynamic Threading Analysis for

Hybrid Applications

Masterarbeit, Wintersemester 2019

Gutachter: Kranzlmüller, Dieter

Fakultät für Mathematik, Informatik und Statistik
Institut für Informatik
Master Informatik

Ludwig-Maximilians-Universität München

https://doi.org/10.5282/ubm/epub.60621

Studienabschlussarbeiten
Fakultät für Mathematik, Informatik

und Statistik

Felix Mößbauer:

High Performance Dynamic Threading Analysis for

Hybrid Applications

Masterarbeit, Wintersemester 2019

Gutachter: Dieter Kranzlmüller

Fakultät für Mathematik, Informatik und Statistik
Institut für Informatik
Studiengang: Master Informatik

Ludwig-Maximilians-Universität München

http://nbn-resolving.de/urn:nbn:de:bvb:19-epub-60621-8

INSTITUT FÜR INFORMATIK
DER LUDWIG–MAXIMILIANS–UNIVERSITÄT MÜNCHEN

Master Thesis

High Performance

Dynamic Threading Analysis

for
Hybrid Applications

Felix Mößbauer

INSTITUT FÜR INFORMATIK
DER LUDWIG–MAXIMILIANS–UNIVERSITÄT MÜNCHEN

Master Thesis

High Performance

Dynamic Threading Analysis

for
Hybrid Applications

Felix Mößbauer

Aufgabensteller: Prof. Dr. Dieter Kranzlmüller

Betreuer: Tobias Fuchs (LMU)

Dr. Christian Kern (Siemens AG)

Abgabe: 10. Januar 2019

Felix Mößbauer:

High Performance Dynamic Threading Analysis for Hybrid Applications

January 10, 2019

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International

License. To view a copy of this license, visit http://creativecommons.org/licenses/

by-sa/4.0/ or send a letter to Creative Commons, PO Box 1866, Mountain View, CA

94042, USA.

SUPERVISORS:

Tobias Fuchs (LMU)

Dr. Christian Kern (Siemens AG)

LOCATION:

Munich, Germany

TIME FRAME:

June 2018 - January 2019

ii

Dedicated to my tortoise Maxi.

Slow and steady wins the race.

Declaration of originality

I hereby declare that I have produced this paper without the prohibited assistance of third

parties and without making use of aids other than those specified; notions taken over directly

or indirectly from other sources have been identified as such.

Felix Mößbauer City, Date

v

Abstract

Verifying the correctness of multithreaded programs is a challenging task due to errors that

occur sporadically. Testing, the most important verification method for decades, has proven

to be ineffective in this context. On the other hand, data race detectors are very successful

in finding concurrency bugs that occur due to missing synchronization. However, those tools

introduce a huge runtime overhead and therefore are not applicable to the analysis of real-

time applications. Additionally, hybrid binaries consisting of Dotnet and native components

are beyond the scope of many data race detectors.

In this thesis, we present a novel approach for a dynamic low-overhead data race detector.

We contribute a set of fine-grained tuning techniques based on sampling and scoping. These

are evaluated on real-world applications, demonstrating that the runtime overhead is reduced

while still maintaining a good detection accuracy. Further, we present a proof of concept

for hybrid applications and show that data races in managed Dotnet code are detectable by

analyzing the application on the binary layer. The approaches presented in this thesis are

implemented in the open-source tool DRace.

Keywords: Concurrency Bugs, Race Condition, Program Analysis, Binary Instrumenta-

tion, Sampling, Managed Applications

vii

Acknowledgements

I would first like to thank my thesis advisor Tobias Fuchs at Ludwig-Maximilians-Universität

München for his outstanding support and caring attitude throughout the course of this thesis.

I sincerely thank all the wonderful people in our lab at Siemens AG Corporate Technology for

their inspiration and fruitful discussions. This work would never have been possible without

the passionate participation and continuous support of my advisor Dr. Christian Kern, Dr.

Matous Sedlacek and Dr. Tobias Schüle.

My deepest gratitude goes to my parents and to Melanie for providing me with unfailing

support and continuous encouragement throughout the process of researching and writing

this thesis. This accomplishment would not have been possible without them. Thank you.

ix

Contents

1 Introduction 1

1.1 Problem Statement . 2

1.2 DRace . 3

1.3 Contributions . 3

1.4 Definitions . 4

2 Background 5

2.1 Software Verification and Validation . 5

2.2 Target Applications . 6

2.3 Technical Implementation . 7

2.4 Employment in Software Lifecycle . 7

3 Related Work 9

3.1 Algorithms . 9

3.2 Related Tools . 13

3.3 Correctness . 14

4 Architecture and Implementation 17

4.1 Event Types . 17

4.2 Generic Interface . 17

4.3 Instrumentation . 23

4.4 Efficient Callstack Tracking . 28

4.5 Symbol Lookup . 29

4.6 Extensible Logic . 30

5 Managed Code 33

5.1 Intermediate Language . 33

5.2 Managed Functions . 34

5.3 Synchronization Primitives . 37

5.4 Separation of Native and Managed Code . 39

5.5 Evaluation . 39

xi

Contents

6 Performance Optimization 43

6.1 Sampling . 44

6.2 Scoping . 49

6.3 Evaluation . 53

7 Case Studies 59

7.1 Industrial Application . 59

7.2 Managed Application . 61

7.3 Open Source Applications . 64

8 Conclusion and Future Work 73

8.1 Revisiting the Objective . 73

8.2 Future Work . 74

8.3 Summary . 74

Glossary 77

List of Figures 79

Bibliography 81

Appendix 85

1 Spinlock Implementation . 85

2 Dotnet Concurrent Increment . 85

3 7-zip Data Race Locations . 86

xii

1 Introduction

The processing capabilities of a single core have increased only slightly over the past years, as

a physical barrier has been reached. This drives chip manufactures to increase the number

of cores per Central Processing Unit (CPU) to meet the demand for more powerful sys-

tems[Sut05]. At the same time, practice has shown that software applications have an ever

growing need for computational resources while evolving. To follow this trend, developers

are forced to write highly concurrent software, which is complex and error-prone. For legacy

applications that were intentionally designed for a sequential system, concurrency cannot be

easily introduced due to the tightly coupled components of the program.

A common starting point in this setting is to focus on the parallelization of computational

intensive parts. However, often the internal dependencies are not well understood, e.g. in-

terfaces between components have been bypassed in previous development cycles to improve

the performance. This leads to concurrency related bugs in the parallelized version, which

are notoriously hard to find as their occurrence depends on the runtime scheduling of the

application. Neither unit nor integration tests are capable to reliable detect these bugs.

To narrow this gap, tools are required which assist the developer in finding and fixing

these issues. Ideally this analysis could be done at compile time, but this is either to com-

putationally complex, or not possible as the applications are first assembled at runtime.

Furthermore, complex build environments and code that is written in many different pro-

gramming languages inhibit this approach.

Other categories of software are programs written in managed programming languages

which are executed under the management of a Common Language Runtime (CLR) virtual

machine (e.g. Dotnet). These programs contain a Just-in-Time Compiler (JIT) compiler,

which generates program code on the fly. While the analysis of the source or intermediate

code of these programs is possible, this only holds for purely managed programs. Hybrid

applications consisting of managed and native (processor-specific) code are beyond the reach

of tools that analyze a binary while it resides on the disk.

Given that, a natural approach to inspect this kind of software is to analyze the application

during execution. This makes it possible to analyze hybrid applications that consist of

managed (JITed) and native code in a uniform manner. Transitions between both types

of code are seamless and cross-module dependencies can be captured. Additionally, no

adjustments like re-compiling or re-linking have to be made to the target application.

1

1 Introduction

1.1 Problem Statement

A major drawback of state-of-the-art data race detectors is the large runtime overhead. This

makes it impossible to analyze applications which are bound by external time constraints,

e.g. real-time applications. Additionally, annotation of custom synchronization logic is not

possible in many tools, which leads to false positive reports. Due to these reasons, a data

race analysis is unfeasible in many use-cases.

For managed code applications, as well as for the Windows Operating System (OS), there

is currently only a single dynamic data race detector available. However, the tool is propri-

etary and neither tuning is possible nor custom detection logic can be added. During tests

on large applications the tool regularly crashes due to unknown reasons. Additionally, the

runtime overhead is too high and annotations are not possible. Support for hybrid applica-

tions (native and Dotnet code) is available but based on approximations of synchronization

techniques, which add additional false positives.

The goal of this thesis is to create a framework for runtime data race detection that meets

the following requirements:

• Customizable Instrumentation

The user should be able to specify which sections of the application under test will be

instrumented. Custom synchronization logic can be implemented easily, both internally

and externally by annotating the source code.

• Adjustable Detection Accuracy

The tool should be adjustable to meet external time constraints while maintaining a

reasonable race detection accuracy. Thereto, sampling and scoping techniques should

be provided, both on a static configuration and on auto-tuning.

• Hybrid Application Support

The tool should support hybrid applications consisting of native and Dotnet code

(proof of concept). Data races between native and managed parts should be detected.

• Exchangeable Race-Detection Algorithms

The framework should provide an interface to connect various race detector implemen-

tations to the instrumentation tool. The interface should be generic and closely map

to the OS threading and memory management libraries.

Race detection algorithms itself are not part of this work. Here, we rely on an imple-

mentation of the commonly used LLVM ThreadSanitizer, which is attached through the

detector interface. To add our instrumentation to the target application at runtime, we use

the DynamoRIO runtime instrumentation framework.

The scope of this thesis lies on the instrumentation part and the development of novel

techniques for both dynamic and static scoping.

2

1.2 DRace

Hardware Platform

DynamoRIO DRace

Binary (C++ & .Net)

.Net CIL

.Net JIT Compiler + RT

Detector

Native Code

Figure 1.1: Layered architecture showing a hybrid application running under DRace.

1.2 DRace

In this thesis we present DRace, a modular runtime data race detection framework for

Windows, implemented as a DynamoRIO tool (client). The framework targets native and

managed (Dotnet) applications and provides a set of tuning techniques to minimize the

runtime overhead. This includes sampling, scoping and auto-tuning techniques.

Custom synchronization logic can be easily encoded either directly into the detector, or

by using the provided code-annotation mechanisms. Race detection algorithms are attached

by implementing a generic interface. The live-reports of the detector are passed back to

DRace, where they are symbolized and refined uniformly. The race summaries are presented

in human readable format and can be exported to a Valkyrie compatible XML format.

DRace is available to the public in source code and binary form. It has been successfully

tested on common open-source applications and a large industrial C++ application at the

Siemens AG. A proof of concept for hybrid applications, containing Dotnet managed code

based on the Dotnet Core runtime, is implemented as well.

1.3 Contributions

Correctness analysis of concurrent programs is a mature field of research. There are various

approaches targeting different operating systems, programming languages and goals. Many

modern approaches are developed for very specific use cases, as compared in Chapter 3.

However, most of these systems are not applicable on Windows and only support native

source code.

We contribute to this in multiple ways: by providing a framework for data race detection

we enable developers to perform this analysis on programs which are beyond the scope of

off-the-shelf tools due to the limitations listed above. Customizable detection logic and

3

1 Introduction

annotations expand the field of application (Chapter 4). To achieve the previous goals, we

introduce a technique to efficiently collect callstacks on Windows without using system calls,

which is discussed in Section 4.4.

By analyzing the application on the binary layer, we show that native and managed

code can be analyzed uniformly. Moreover, we show that data races in managed code are

detectable by just analyzing the generated machine-level code. Based on this prerequisite,

data races between managed and native code become visible. We further demonstrate a proof

of concept on how to instrument Dotnet synchronization functions which behave purely in

the managed domain. An example for this is the System.Monitor object, which uses a

Spinlock and falls back to a native lock only if spinning takes too long (Chapter 5).

We show that various sampling techniques can be applied to race detection to limit the

overhead, while recurring data races are likely to be identified even for long sampling periods.

This brings us a race detector where the tradeoff between overhead and accuracy can be

controlled. Finally, this enables us to meet external time constraints. We discuss this in

more detail in Chapter 6.

In Chapter 7 we evaluate the framework on real world applications and demonstrate that

our tool can be tuned to significantly reduce the runtime overhead during the analysis.

Finally, we revisit the objective of this thesis and conclude our findings in Chapter 8.

1.4 Definitions

Definition 1.4.1 (Race Condition). A race condition denotes a situation where the output

of an operation depends on the chronological order of other uncontrollable events[Huf54].

Definition 1.4.2 (Data Race). A data race is a situation where two threads concurrently

access a shared memory location and at least one of the accesses is a write.

Definition 1.4.3 (Segment). A sequence of events of one thread that contains only memory

access events (e.g. no synchronization events)[SI09].

Definition 1.4.4 (Sampling). From a sequence of elements, approximately each T ’s element

is drawn. T denotes the sampling period.

Definition 1.4.5 (Module). A library or executable that contains machine-code instructions

(e.g. a Dynamic Link Library (DLL)).

4

2 Background

This chapter defines the scope of this thesis and locates it in the surrounding field of ap-

plication. We categorize our work under four major domains, classify our contribution in

the context of existing tools and provide information on further research. A conceptual

visualization of the domains is provided in Figure 2.1.

2.1 Software Verification and Validation

Ensuring the correctness of software has always been a major area of research in computer

science. In this context various strategies evolved, mainly differing in a tradeoff between the

effort to perform the analysis and the universal validity of its results.

In its simplest form, the input/output behavior of a program is tested. This means,

a function or the whole program is called with a predefined input and the result is then

compared to the known (e.g. manually computed) output. When this analysis is performed

on single functions or small parts of a code base, it is called Unit Testing. To support

the user in writing these tests, various frameworks like GoogleTest and Catch2[Nas17] have

been developed. As it is in general not possible to test all input-output pairs, the results

can only falsify the correctness of the component. This is the case if an output differs from

the expected one.

Issues related to the concurrent execution of a program are often not found using unit

tests, as they depend on the schedule of the execution. Finding these non-deterministic bugs

is the scope of Dynamic Threading Analysis. Here, two common problems are deadlocks and

data races. While deadlocks prevent the further execution of a program, data races often

lead to incorrect results and application crashes. Common tools to find these issues during

the execution of the program are the ThreadSanitizer (TSan)[SI09], Intel R© Inspector XE

and Helgrind. A general issue of data race detection tools is the considerable slowdown of

the target application during the analysis.

Dynamic Threading Analysis tools are only capable of locating these bugs to a certain

extent, which is substantiated in Section 3.3. This also applies to our Dynamic Threading

Analysis tool, presented in this thesis. If stronger guarantees on the correctness are required,

Static Model Checking approaches can be used. These analyze all possible execution paths

of the source code and validate them against a model. Due to the nature of this problem,

a complete analysis of all paths implies extreme computational cost. Some tools like the

5

2 Background

Software

Veri✁cation

Target

Applications

Technical

Implementation

Software

Lifecycle

Model

Checking

Race

Detection

Lock

Analysis

Unit

Tests

Hybrid

Managed

Native

Simulation

Runtime

On-Disk

Compile

Time

Production

Analysis

Impl.

Dev.

Figure 2.1: Scope (blue) of this thesis located in the surrounding field of applications.

Java Pathfinder[HP00] (for Java applications) perform this exhaustive search and prove the

correctness of the code according to the model. This requires all states to be analyzed at

the cost of a long analysis time. Other tools like the HSR-Parallel-Checker[Blä18] (for C#

applications) use heuristics to provide a good tradeoff between the analysis time and the

quality of the results.

Finally these tools only verify that the source code behaves according to its specification,

but do not verify the compiler and the system the software is running on. To verify the

machine language program of a verified source program, the whole tool chain in between has

to be verified. This is accomplished by the Verified Software Toolchain[App11] project for

C-language programs.

2.2 Target Applications

Runtime instrumentation tools are always developed for a specific target and system ar-

chitecture. In this context, we differentiate native and managed applications whereas the

transition between both classes is smooth. With native applications we refer to machine

code that is static, i.e. it does not change during the execution. In contrast managed codes

are stored in an intermediate format and generated at runtime by a JIT.

For purely managed applications, the runtime instrumentation can be performed directly

in the managed language. Well-known representatives of this approach are the RoadRunner

dynamic analysis framework[FF10] for java applications and Mono.Cecil[Xam08] for Dotnet

based applications. To the extent of our knowledge, the only tool that is able to analyze

hybrid applications consisting of native and Dotnet parts is the Intel R© Inspector XE.

Our tool DRace introduces a novel concept to analyze hybrid applications uniformly by

considering the just-in-time compiled machine-language code along with the native parts. At

this, with managed code we refer to code that is based on the Dotnet framework. Analysis

of other managed programming languages like Python and Java are not part of this thesis.

6

2.3 Technical Implementation

2.3 Technical Implementation

The implementation of a system for Dynamic Threading Analysis specifies how to obtain

the data that is required to perform the analysis. Most analysis tools consist of a frontend

and a backend (runtime): the frontend specifies the component that obtains the analysis

related data. This code (instrumentation) then communicates with the backend to perform

the analysis.

One option is to add instrumentation code directly to the target application during com-

pilation. A tool that follows this approach is the TSan, which uses the LLVM compiler

infrastructure to add the instrumentation.

For situations where either no suitable compiler is available or the target application is al-

ready compiled to a binary, runtime instrumentation tools like Pin[Luk+05], Valgrind[NS07]

and DynamoRIO[Bru04] have been developed. Our tool DRace is also based on this ap-

proach. While these tools are not analysis tools itself, they modify the machine code during

execution and provide an interface to add the instrumentation. If a modification of the target

application is not possible at all, simulators can be used. For a complete system simulation,

frameworks like MARSS[Pat+11] (x86 only) and SIMICS[Mag+02] (generic) are available.

A different approach is to use the CPU hardware counters and the performance measure-

ment unit in combination with modified threading libraries. These counters can be accessed

using tools like PAPI[Muc+99] and likwid[THW10]. The applicability of this technique has

been shown by the data race detector RACEZ[She+11].

2.4 Employment in Software Lifecycle

Correctness analysis tools are involved in various steps during the development cycle of an

application. Which tool is applied in a step is mainly affected by the added runtime overhead

and the degree of automation. With the choice of the tool, aspects like the reliability of the

analysis results are determined. Here it is necessary to make a tradeoff between the overhead,

degree of automation and the generality of the results.

During the development of algorithms and protocols, theorem prover like Isabelle[Pau94]

and Simplify[DNS05] are used to prove the correctness of the design. This step requires

in-depth knowledge and is difficult or impossible to automate.

To verify the implementation of an algorithm against a model, software model checkers like

SPIN[Hol97] and BLAST[Bey+07] are applicable. These tools are computationally expensive

and require some manual assistance, hence they have to be applied during development or in

dedicated analysis steps. After some initial tuning, Dynamic Threading Analysis tools like

TSan[SI09], Helgrind and Intel R© Inspector XE can be applied in automated tests. Likewise,

our tool DRace is intended to be used in this setting.

7

2 Background

Finally, tools have been developed specifically for being used during production. A data

race detector in this setting is RACES[She+11] which uses a probabilistic approach for

detection and is intended to be used on long running server processes. Additionally, extensive

hardware support is required which limits the scope of this tool to a specific environment.

8

3 Related Work

With the availability of the first multi core systems in the early 1990, a new area of research

evolved: finding correctness issues in parallel programs. A variety of algorithms and software

regarding this topic has been developed.

This Chapter first describes state-of-the-art algorithms used to find concurrency issues.

After that, we examine a variety of existing tools for data race detection.

3.1 Algorithms

Mainly two types of algorithms are used for data race detection: on the one hand, algorithms

based on a lockset and on the other hand algorithms based on Lamport’s Happened Before

relation.

3.1.1 Lockset

Lockset algorithms analyze the locking discipline of all threads. A common lockset based

algorithm is Eraser [Sav97], developed in 1997. The key idea is to monitor active locks (e.g.

mutexes) that are held during an access to a memory location by the current thread. Loca-

tions accessed by at least two different threads where at least one access is a write are data

race candidates. For these candidates all locks which the accessing thread currently holds

are put into the lockset. After that, for every other access to this location, the intersection

of both locksets is computed. If the intersection is empty, a potential concurrency error is

found.

Algorithm 1 Basic version of the lockset algorithm used in Eraser [Sav97][p.396]

Let locks held(t) be the set of locks held by thread t.

For each v, initialize C(v) to the set of all locks.

On each access to v by thread t

set C(v) := C(v) ∩ locks held(t)

if C(v) = ∅, then issue a warning

The authors show that this algorithm is easy to implement and provides good detection

results. However, it is only suited for pure lock-based programs, as this is the only synchro-

nization mechanism which is tracked.

9

3 Related Work

Figure 3.1: Example of the Happened Before relation. S1 ≺ S4 (same thread); S1 ≺ S5

(happens-before arc SignalT1
(H1) − WaitT2

(H1)); S1 ≺ S7 (happens-before is
transitive); S4 ⊀ S2 (no relation).[SI09, p.63]

Future implementations of the algorithm focus on both reducing the number of memory

accesses that are tracked, as well as accelerating the computation of the locksets. One

optimization is to drop local only accesses. This can be done by grouping accesses into cache

lines and only tracking the lockset for each line. When the first shared access to this line

is detected, the entries are separated and tracked individually. While this approach slightly

reduces the accuracy, it increases the performance by up to factor two [SI09][4.4.2].

3.1.2 Happened Before

Happened Before (HB) based algorithms analyze the causal order of events in an asyn-

chronous system. Lamport formalized the concept of one event happening before another in

“Time, Clocks, and the Ordering of Events in a Distributed System” (1978)[Lam78]. This

causal order is defined by the Happened Before relation:

Definition 3.1.1. Two events a, b are in the happened before relation iff the following

conditions are met. Here, T (x) denotes the (logical) local time of event x.

1. On the same process, a ≺ b if T (a) < T (b)

2. If a sends a message to b then a ≺ b

Concurrency errors are defined as pairs of unordered events, with respect to this relation.

The Happened Before relation can be constructed while the application executes (on-the-fly).

As the relation is transitive, irreflexive and antisymmetric, it defines a strict partial order.

Algorithms which check if two elements are in this relation utilize the transitivity property

of the relation to reduce the computational complexity.

As message we consider Signal → Wait sequences between two threads. In the case of

mutexes, this directly maps to a Release call followed by an Acquire call.

10

3.1 Algorithms

T1 T2

T
im

e

T1 T2 T1 T2

(a) (b) (c)

spurious sync.

detected race

shared access

Figure 3.2: In pure Happened Before based detectors, the timing of spurious synchronization
events determines if a data race is found.

The relation can be represented as a Directed Acyclic Graph (DAG). In the event graph,

a message is pictured by an edge between a Signal event and a Wait event on two threads.

An example of this graph is provided in Figure 3.1.

A key aspect of Lamport’s work is the differentiation between global and local time stamps.

Herewith, only a minimal overhead is required to determine a partial order of events. This

is later extended to the more advanced concept of vector clocks which enables a tracking of

causal events. We refer the interested reader to [Tv07][p.248] for more details on this topic.

Naming While the original work [Lam78] names the relation described in Def. 3.1.1 ”Hap-

pened Before”, several later works like [SI09], [Atz+16] and [PS03] use the term ”happens-

before”. In this thesis, we prefer the former naming. Nevertheless, when we refer to a specific

related work, we use the corresponding denotation.

Limitations In practice, it is too expensive to maintain a vector clock per shared memory

location. Hence, implementations have to group accesses or drop far back events to limit

the memory consumption. The Happened Before algorithm is prone to unintended synchro-

nization events due to spurious inter-thread messages. By that, actual concurrency bugs

are missed as the related HB-edges feign calls to synchronization procedures [OC03][p.171].

Figure 3.2 visualizes this issue for three different schedules.

3.1.3 Hybrid Algorithms

Pure lockset based detectors are not that common anymore, as synchronization methods

beside locks are not supported. This leads to false positives on programs that use other

mechanisms, e.g. lock-free data structures.

O’Callahan et al. showed in [OC03] that the lockset approach is not suited to modern

programs which use a variety of synchronization mechanisms. They present a new algorithm

which uses both locksets and happended-before based detection. The idea of combining both

approaches has already been discussed earlier in [DS91], but has not been implemented prior

11

3 Related Work

to [OC03]. This reduces the shortcomings of both algorithms which leads to a faster and

more accurate data race detection system.

This reduces the large overhead of pure happend-before algorithms while also reducing the

number of false positive detections obtained by a lockset algorithm. As only a limited form

of Happened Before detection is used, fewer concurrency bugs are hidden due to spurious

synchronization.

3.1.4 Approximative Algorithms

Most data race detectors are based on locksets and Lamports Happened Before relation.

The main improvements in recently developed algorithms are strategies to compute good

and fast approximations of these methods.

In 2015 a new algorithm called “FastTrack” was presented by Cormac Flanagan et. al

which provides better scaling in the number of threads which are analyzed [FF09]. Their

main achievement was a formalized approximation of the Happened Before relation which

can be computed in O(1) instead of O(n) in the number of threads. We refer the interested

reader to [FF09, p.3] for details on this optimization. The FastTrack algorithm and its

successor FastTrack2 [FF17] are implemented as part of the RoadRunner data race detector

for Java applications. The main improvements in FastTrack2 are refined analysis rules which

result in a more straight forward implementation of the algorithm.

Vector clock based algorithms are known for its precise detection at the cost of a high

runtime overhead. For object oriented programming languages this is not an issue as the

detection takes place at object granularity. As this is not sufficient for C/C++ programs,

Song et al. present a novel approach to track accesses with a dynamic granularity. They

implemented a data race detector on top of the FastTrack algorithm which has 43% less

overhead in average compared to the unmodified version of FastTrack with a similar race

detection quality[SL14].

In [MMN09] a sampling based approach was presented to further limit the overhead. The

authors show that approximately 70% of all data races in common Windows applications can

be found when sampling just 2% of all memory referencing instructions. While the presented

algorithms are specialized to find data races during the development process, Sheng et. al

implemented a tool which can be applied during production [She+11]. Their algorithm

“Racez” uses a hardware based sampling technique to limit the runtime overhead to ≈10%.

The main field of application are long running server processes, where message processing

loops are executed millions of times. In addition the authors provide a stochastic estimation

on the probability of finding a (present) data race. This approximation is parameterized on

the number of executions and the sampling rate.

12

3.2 Related Tools

3.2 Related Tools

While the previous section focused on the algorithmic foundations of data race detection,

this section covers tools implementing the tracking of synchronization and memory accesses.

A prominent system is the TSan [SI09] which was developed at GoogleTM and is now an

integral part of Clang and the GNU Compiler Collection (GCC). It uses a hybrid detection

algorithm combining locksets and Happened Before, similar to [OC03]. The instrumentation

is added during compile time and is only available for Linux applications. While the primary

focus of the TSan are C++ applications, it has been adapted for the programming language

Go as well. We use the backend of the TSan implementation for Go, as it provides an interface

to the native backend through a library. Verification tools from the scientific domain adapt

this library to validate arbitrary concurrency semantics which can be described as Happened

Before relation. This includes a correctness checker for the OpenMP model [Atz+16] as well

as one for finding bugs in Message Passing Interface (MPI) applications [Hil+13].

The main limitation of the TSan is that it cannot be applied to already compiled binaries

and is limited to 64bit applications. At that time, this makes it impossible to use it in

scenarios requiring a complex build process and vendor-specific compilers. As we just rely

on the race-detection backend of TSan and not the instrumentation part, these limitations

do not apply to our tool DRace.

To our knowledge, there exist three dynamic instrumentation tools suited for data race

detection at this time: Intel R© PIN is a commercial framework to dynamically add instru-

mentation to a binary at runtime, also supporting Windows. The Intel R© Inspector XE uses

PIN and is shipped with a data race detector for C++11 and C# (Dotnet CLR). However,

comprehensive tests have shown that the C# synchronization methods are not correctly

processed. We assume that the tool internally uses a hybrid algorithm but regarding that

there is only limited information publicly available.

A common binary instrumentation framework for Linux is Valgrind[NS07]. While the

framework is mostly known for the memory-leak detection, it also contains a race-detector

called Helgrind[MW07]. Internally it uses a hybrid algorithm and provides very extensive

information on each race that is detected[JT08].

DynamoRIO is a tool similar to Valgrind, providing methods for binary instrumentation

at runtime. The tool was developed by Derek Bruening as part of his PhD Thesis[Bru04]. It

supports Windows as well as Linux on x86, x64 and arm architectures. While DynamoRIO

itself does not provide a data race detector, we use the framework to add the instrumentation

for our race detector DRace. In contrast to Intel R© PIN, the implementation is completely

open source which significantly simplifies debugging.

For the sake of completeness, there exist static correctness checking tools. These tools

analyze the source code of a program. A recent tool for the C# programming language is the

HSR Parallel Checker [Blä18]. However, it is unlikely that static analyzers will achieve good

13

3 Related Work

results on large applications, possibly consisting of parts written in multiple programming

languages. Dotnet applications often consist of managed-code parts for the application logic

and native parts for computational intensive modules. The HSR Parallel Checker abstracts

the native parts, resulting in an additional black-box state that is not analyzed.

3.3 Correctness

In theoretical computer science the terms sound and complete are used to describe correctness

aspects of an algorithm.

Soundness describes that if the algorithm does return anything (in our case a data race),

this result is correct. Thus, it does not detect a data race if the application is race-free

according to the specification of the algorithm.

The completeness aspect defines that the set of results always contains all correct results,

but possibly also incorrect ones. In our case this means all known-to-be existing data races

are reported but possibly also additional (false positive) ones.

Both lockset and Happend Before algorithms are sound and complete. Hence all existing

data races are detected, but no additional ones. However, this only holds for the algorithm

and not the race detection tool, due to the following reasons:

• Execution Paths: a program-run might not traverse all execution paths. For in-

stance, there are likely program sections which are never executed (e.g. Exceptions,

Error-Handling,. . .)

• Heap Accesses: even if all code-lines are executed (measurable using code-coverage),

not all possible access patterns on the heap might be traversed.

• Custom Synchronization: custom synchronization logic is unknown to the detection

tool and hence false positives are detected.

In contrast to formal model checking techniques - which actually prove correctness - we

can only falsify a given program. This means, if no races showed up, either our detector did

not find any, or there are no races. These limitations of a dynamic race detection tool are

discussed by Kahlon et al. in [KW10] in more detail.

In practice additional issues arise: only synchronization primitives which are implemented

in the detector are correctly processed. This automatically leads to false positives if hand-

crafted synchronization methods are used. Furthermore, both time and memory resources

are limited, so the internal state of the detector used for race detection is limited. If the

internal state exceeds some threshold, parts of the state have to be dropped or merged.

Summarizing, we specify the detection algorithm in a way that it detects data races with

small false positive and small false negative errors. Various other research has shown that

this is sufficient and leads to good results.

14

3.3 Correctness

3.3.1 Benign Data Race

Data races which are not concurrency related bugs are called “benign” races. These type

of races often occur in updates to statistic counters and implementations of synchronization

procedures itself [KZC12, p.186]. Often these races are intentional to avoid the overhead

of synchronization or atomic accesses when approximations of a value are sufficient (e.g.

statistics counters).

While these races are not harmful and mostly intentional, they are reported by a data

race detector. Kasikci et al. present a heuristic to distinguish between harmful and harmless

(benign) data races [KZC12]. We decided to not implement this technique in DRace due

to both complexity and possible miss classification. In our opinion benign races should be

manually inspected by the user of the tool and either annotated or suppressed.

15

4 Architecture and Implementation

In this chapter we cover the architecture and the implementation of a tool that is capable

to reliably detect all memory accesses and synchronization events to finally perform the

race analysis. In this context, we aim to implement this tool with the lowest possible

runtime overhead. Additionally, we have to keep the interference of the instrumentation and

the race detector with the target application as small as possible (viewed from the targets

perspective). Inconsiderate changes are likely to result in application crashes or deadlocks.

This interference problem will be discussed in more detail in Section 4.3.

All modifications of the application under test are performed at runtime using the Dy-

namoRIO framework, whereat DRace is registered as a “client”. In this connection, DRace

registers a set of functions (callbacks) which are called by DynamoRIO on certain events.

This enables the client e.g. to act on module loads and to inspect or modify the instructions

that are going to be executed. The internal architecture of DRace is visualized in Figure 4.3.

The respective modules of DRace are described in the next sections. For further details on

the interaction of DynamoRIO and its client, we refer the interested reader to [Bru18].

4.1 Event Types

All information that is fed into the detector is called an event. We hereby differentiate

between mandatory and optional events. They are classified by the impact on the correctness

of the race detection, when the event is missed.

Definition 4.1.1 (mandatory event). If a mandatory event is missed, non-existing data

races might be detected (false-positive).

Note: All synchronization procedures are covered by this class.

Definition 4.1.2 (optional event). If an optional event is missed, data races might be missed

(false-negatives).

Note: All memory accesses are covered by this class.

4.2 Generic Interface

Instead of directly passing the events to the detector, we use an intermediate interface. This

enables a clear separation between the event producer and consumer. While the instru-

17

4 Architecture and Implementation

mentation part remains static (i.e. it does not change for other detectors), we can plug in

different race detection algorithms.

The interface is specified in a header file and is attached using dynamic linking at starting

time. Using static linking is not possible due to the limitations of the private loader in

DynamoRIO.

When a race is found, the detector backend has to notify DRace about it. This is done

utilizing a callback method which is registered in the detector::init() method. To get

information on the race, a pointer is passed as argument to the callback. By this, the race

is further processed in DRace.

To get a clean separation between DRace and the detector backend, no non-race detection

related information is passed to the detector. This means, the symbol lookup of instruction

pointers is done in DRace and not in the detector.

We do not make any assumptions on when the callback is called. They might also be

called concurrently.

Data Types

We specified common data types for a unified communication with the detector backend.

This is necessary for the Application Binary Interface (ABI) of the detector.

A data race is characterized by a tuple of two accesses. Each access contains information

on the memory location, write-mode, callstack, thread and memory block (if any) and is

stored in the AccessEntry struct. To avoid dynamic allocation, we use a fixed size buffer

in the struct for storing the callstack. The AccessEntry is constructed internally in the

detector and passed back to DRace in the callback when a data race is detected. To push

events into the detector, the corresponding function of the interface are used.

While all addresses (memory location, callstack entries) are void pointers, we store them

as 64-bit integers to make clear that these values are just arbitrary addresses.

Listing 4.1: data race information

struct AccessEntry {

unsigned thread_id ;

bool write ;

uint64_t accessed_memory ;

size_t access_size ;

int access_type ;

uint64_t heap_block_begin ;

size_t heap_block_size ;

bool onheap ;

size_t stack_size ;

uint64_t stack_trace [max_stack_size];

};

/* A Data -Race is a tuple of two Accesses */

using Race = std :: pair < AccessEntry , AccessEntry >;

18

4.2 Generic Interface

Functions

Before passing in any events, the detector has to be initialized using init(...). After

finalize() is called, no further function calls are allowed (except init(...)). This is

required as the detector must not be stateless. The events are then passed to the detector

using functions.

Listing 4.2: startup and teardown of the detector

/* Takes command line arguments and a callback to process a data race.

* Type of callback is (const detector :: Race *) -> void

*/

bool init(int argc , const char ** argv , Callback rc_clb);

/* Finalizes the detector .

* After a finalize , a later init must be possible .

*/

void finalize ();

Each data race record contains two callstacks. Instead of passing a complete callstack on

each operation, we track the call and return statements. This enables a much more efficient

implementation of the callstack tracking in the detector. Additionally, this also reduces the

amount of data that is moved between DRace and the detector backend.

Listing 4.3: callstack tracing

/** Enter a function (push program counter to stack) */

void func_enter (tls_t tls , void* pc);

/** Leave a function (pop stack entry) */

void func_exit (tls_t tls);

Most race detectors keep internal thread IDs / states for the mapping of physical threads

to logic accesses. This means, the thread ids obtained by the OS have to be mapped to the

internal ones for each call. While this could be done using a small hashmap, we specify the

interface directly in a way which avoids this: Each thread provides a tiny memory buffer of

64 bit in its Thread Local Storage (TLS) space which can be modified by the detector. This

buffer is initialized in the fork(...) event and passed in each further call to the detector.

Listing 4.4: thread events

/** Log a thread - creation event */

void fork(

tid_t parent , /// id of parent thread

tid_t child , /// id of child thread

tls_t * tls /// out parameter for tls data

);

/* Log a thread join event */

void join(

tid_t parent ,

19

4 Architecture and Implementation

tid_t child ,

tls_t tls

);

/* Log a thread detach event */

void detach (

tls_t tls ,

tid_t thread_id

);

/* Log a thread exit event (detached thread) */

void finish (

tls_t tls ,

tid_t thread_id

);

Synchronization events can either be lock-based or pure Happened Before (HB) based.

For pure HB detectors, lock-based events directly map to the HB logic. However, with this

separation additional errors like double locking can be detected.

We support both techniques and recommend the user to use the lock-based logic when

instrumenting locking mechanisms. Additionally, we support exclusive locks, reader-

writer locks and recursive locks. If a lock is tested (try-locked), the corresponding

detector::aqcuire must only be called if the lock has successfully been acquired.

Both for locks and happened before, the identifier can be either a memory address or a

handle. However, the identifier must be unique for this lock. This might not be the case for

handles.

Listing 4.5: synchronization sematics

/* Acquire a mutex */

void acquire (

tls_t tls , /// ptr to thread - local storage of calling thread

void* mutex , /// ptr to mutex location

int recursive , /// number of recursive locks (1 for non - recursive mutex)

bool write /// true , for RW - mutexes in read -mode false

);

/* Release a mutex */

void release (

tls_t tls , /// ptr to thread - local storage of calling thread

void* mutex , /// ptr to mutex location

bool write /// true , for RW - mutexes in read -mode false

);

/* Draw a happens - before edge between thread and identifier (optional) */

void happens_before (tid_t thread_id , void* identifier);

/* Draw a happens - after edge between thread and identifier (optional) */

void happens_after (tid_t thread_id , void* identifier);

20

4.2 Generic Interface

For each memory access, a callstack is recorded as well. If a race occurs on this memory

address, the callstack is passed in the AccessEntry of the race information. To limit the

overhead of the detector, callstacks should be as small as possible. The size of the access is

specified in log2(bytes). So an access of 2 bytes results in size = 1.

Listing 4.6: memory access events

/* Log a read access */

void read(

tls_t tls , /// ptr to thread - local storage of calling thread

void* pc , /// current program counter

void* addr , /// memory location

size_t size /// access size log2 (bytes)

);

/* Log a write access */

void write (

tls_t tls , /// ptr to thread - local storage of calling thread

void* pc , /// current program counter

void* addr , /// memory location

size_t size /// access size log2 (bytes)

);

Memory blocks are tracked to reset the memory range on a subsequent deallocation. The

interface is modeled according to the semantics of HeapAlloc() and HeapFree(), so that

the deallocation call does not know the size of the block.

Listing 4.7: memory allocation and deallocation

/* Log a memory allocation */

void allocate (

tls_t tls , /// ptr to thread - local storage of calling thread

void* addr , /// begin of allocated memory block

size_t size /// size of memory block

);

/* Log a memory deallocation */

void deallocate (

tls_t tls , /// ptr to thread - local storage of calling thread

void* addr /// begin of memory block

);

4.2.1 Custom Annotations

Dynamic race detectors have to know the synchronization mechanisms used by the program

under test. Otherwise the detector will not work. For programs that only use POSIX

synchronization, the underlying logic can be hard-coded into the detector. However, if the

program uses additional synchronization techniques, false positives will occur.

For example, many modern programs use a combination of POSIX mutexes and fast user-

level Spinlocks to avoid the overhead of system calls. For this purpose we provide a set of

21

4 Architecture and Implementation

annotation macros. These have to be inserted by the developer of the target application into

the source code. The annotation macros are expanded into empty functions (marked as “do

not optimize away”) which are then intercepted by the instrumentation tool.

The macros are named according to the ones used in TSan [SI09]. The most important

ones are:

• ANNOTATE_HAPPENS_BEFORE(ptr)

• ANNOTATE_HAPPENS_AFTER(ptr)

These annotations can also be used to annotate lock-free synchronization.

Other annotations include:

• ANNOTATE_ENTER_EXCLUDE

• ANNOTATE_LEAVE_EXCLUDE

These are used to exclude known-to-be race free regions and code that has benign races.

Example One-to-one message based synchronization (two participants) is annotated as

demonstrated in Listing 4.8. Here, the receive invocation blocks until the corresponding

send has been fully received. This creates a Happened Before relation between all memory-

accesses prior to send and after recv. Hence, we place the “happens-before” annotation

prior to the signal (send) to ensure that the detector is informed before the corresponding

recv finishes. The “happens-after” annotation is placed after the recv statement, as this

call has to return prior to the event. Otherwise, memory accesses of the recv function itself

would be mapped to the wrong segment.

The Happened Before relation always belongs to an unique identifier. If a mutex is used

for the synchronization, its memory location is suited. In the situation described in Lst. 4.8

no natural identifier is available. Hence, we use an arbitrary id (0x42).

Listing 4.8: Annotation of a message based synchronization using the Happened Before logic.

define DRACE_ANNOTATION // Enable Annotations

include <drace_annotation .h>

// [...]

if(myid == 0){

ANNOTATE_HAPPENS_BEFORE (0 x42) // event id

send(msg , 1); // send to rank 1

}

if(myid == 1){

recv(msg , 0); // recieve from rank 0

ANNOTATE_HAPPENS_AFTER (0 x42) // event id

}

22

4.3 Instrumentation

4.2.2 Interface Implementation

We implement this interface around the backend of the TSan which has been separated for

the programming language “Go”. As there is currently only a version of the detector which

uses the Linux/Unix Application Programming Interface (API), we compile it using MinGW

and link into the DLL. To get the symbol mangling right, a slim C wrapper is used around

the C++ interface of the TSan.

As TSan’s interface does not fully match our generic interface, we have to track some

state. This includes the size of allocations, as the corresponding deallocation function does

not provide this information. To clearly separate the instrumentation from the detector

logic, this is done in the implementation of the interface.

4.3 Instrumentation

With instrumentation we refer to our modifications of the target application to intercept race

detection related events. As all modifications of the application under test are performed in

memory, the executable residing on the disk is not changed.

To fully understand the following section, basic knowledge about computer architecture

and the Assembly programming language is required. For those who are not familiar with

this, we refer to [TA13, p.701].

4.3.1 Technical Foundations

A computer program (binary) consists of data and a list of instructions. These are mapped

to an address in the virtual logical address space of the executing system. The Instruction

Pointer (IP) (also called program counter) points to the next instruction that is going to

be executed. After the execution of an instruction, the IP is incremented by one and hence

points to the next instruction. If the instruction is a Control Transfer Instruction (CTI)

(e.g. JMP, CALL, RET, . . .), the IP is set to an address specified by the operand of this

instruction[TA13, p.54].

Addressing Modes After a CTI has been executed, the program continues at an arbitrary

location. This address is either specified by an offset from the CTI (relative addressing) or

by using an absolute address (absolute addressing). One special case of absolute addressing

is Load-Time Locatable (LTL) code that is modified by the linker / loader to be run from a

particular memory location.

Code Cache To be able to add instrumentation to the target, instead of direct execution,

the application is executed from a code cache. This is necessary as all instructions behind a

modification in the instruction list that changes its length have to be shifted. This includes re

23

4 Architecture and Implementation

je

cmp

ip + 3

insert

instr

native

add instrumentation

re-encode

ip + 4

jmp

Figure 4.1: Process of inserting additional instructions into the instruction list. Orange
blocks represent CTIs, the mov instruction is going to be instrumented.

calculations of the addresses of jumps as well. Figure 4.1 visualizes this scenario for a single

instruction that is inserted in front of the mov instruction. After adding the instruction, the

re-encoded block is stored in the code cache.

At this juncture, the code cache is a memory block allocated on the heap which is marked as

executable and contains a translated copy of the application’s instructions. The translation

step then modifies the addresses of CTIs to point to the corresponding ones in the code

cache. Translation also applies to code that uses relative addressing as the distance between

both instructions changes if code is inserted or removed in between. The translation is done

at the granularity of fragments, where a fragment is defined as a sequence of instructions

that terminates with a control transfer operation.

4.3.2 Instruction Injection

When a code fragment of the target is going to be executed, it is first translated into the

code cache and then executed from there. At this time the client (DRace) is notified via the

“basic block” event and analyzes and modifies the fragment that is put into the cache.

DynamoRIO provides mechanisms to disassemble the fragment and to add additional

assembly code (or change existing). This is called “inline instrumentation”, as the additional

assembly is directly inserted into the fragments. While this is the most efficient way to

add instrumentation, this becomes uncontrollably complex for sophisticated logic. To solve

this issue, DynamoRIO provides a mechanism to add calls into client functions (DRace is

registered as DynamoRIO client). This is called a clean-call, as DynamoRIO takes care of

preserving the current application state and restoring it after the call.

Stateful Instrumentation For certain requirements, the instrumentation has to behave

according to some internal state of DRace. This is accomplished through a Thread Local

Storage (TLS) buffer, which can be accessed from inline instrumentation, the code cache

and the client. The TLS is registered and initialized in the “thread-start” event and remains

valid until the “thread-end” event.

24

4.3 Instrumentation

We use this TLS to preserve parts of the application state during the inline instrumenta-

tion, as well as for controlling DRace.

Transparency As the instrumentation is executed along with the target application, they

also share a common state. For some values like CPU registers and floating point calculations,

DynamoRIO provides mechanisms to preserve and restore them. However, there are also

limitations on what the client must not use: this includes exceptions, system mutexes, and

some syscalls. Here, it is to be noted that this also holds for all libraries which the client

loads. Additionally, caution has to be paid when using locks. As both client and target

application locks interfere, deadlocks might happen.

A non-trivial transparency issue we discovered during our tests with various applications

was when we tried to share the stack with the target application. Here the idea was to reduce

the number of registers required for the memory reference instrumentation by temporary

pushing data to the application stack and removing it before the application continues to

execute. However, some applications place data above the top of stack pointer value. Hence,

we overwrote this data with our push instruction and later on the target application crashed.

4.3.3 Memory Reference Instrumentation

Instead of directly passing the memory accesses to the detector, we buffer them in a thread-

local buffer and pass them in the next clean-call. To ensure the correctness of the detection,

each synchronization event has to trigger a clean-call. In Theorem 4.3.1 we show that this

procedure is correct regarding the Happened Before logic. For lockset-based detectors this

holds as well, as all accesses of the local buffer belong to the same segment and hence share

the same lockset.

Theorem 4.3.1 (local buffer). Let sA, sB, S be a sequence of events and A, B distinct

Threads (A 6= B).

• sA = [a1, HB, a2]: ai memory access, HB Happened Before event on A,

• sB = [b1, HA, b2]: bi memory access, HA Happened After event on B

S = [sA ∪ sB] : local order is preserved, HB ≺ HA

Claim: The result of the Happened Before relation is equal for all S, i.e. if one pair is

(not) in relation in one sequence it is also (not) in relation in the other sequences. Note: In

practice we only consider pairs with a shared memory location but this is no constraint of

the theorem.

Proof. The Happend Before arc HB → HA leads to the following global sequences:

1. [a1 ∪ b1, HB, HA, a2 ∪ b2]

2. [a1 ∪ b1, HB, a2, HA, b2]

25

4 Architecture and Implementation

3. [a1, HB, b1, HA, a2 ∪ b2]

4. [a1, HB, a2 ∪ b1, HA, b2]

Let i, j ∈ {1, 2}. According to the definition of ai and bi: a1 ≺ a2, b1 ≺ b2 and a2 ⊀ a1,

b2 ⊀ b1. Additionally, bi ⊀ aj always holds as there is no direct (non-transitive) relation

between thread A and B except for HB ≺ HA (Note: consider scenario S4 ⊀ S2 in Fig. 3.1).

Remaining cases:

• (a1, b1): then in all of the four cases a1 ⊀ b1 since a1 ≺ HB ≺ HA but b1 ≺ HA.

• (a1, b2): then a1 ≺ HB ≺ HA ≺ b2 (transitive).

• (a2, b1): then a2 ⊀ b1 since a2 ⊀ HB. Analogously for a2 = b2.

To trace the memory that is accessed by the target application, we instrument each mem-

ory referencing instruction. Here, we determine the following properties:

• source / target address

• size of access

• instruction pointer

• read / write mode

The tracing is done using highly-tuned inline instrumentation, as shown in Listing 4.9.

The access-entry is stored in a buffer in the TLS which is processed either when its full, or

on local synchronization events. This limits the number of clean-calls which significantly

reduces the overhead.

To further avoid the overhead of the instrumentation itself in phases where the detector

is disabled, we add a short-circuit for this case. This checks a flag in the TLS and skips

the access entry related instrumentation. Hence, less instrumentation code is executed per

memory referencing instruction.

Additionally, we try to limit the state modifications as much as possible, as everything

that is going to be changed by the instrumentation has to be preserved before and restored

afterwards. Hence, we use the Load Effective Address (LEA) instruction for calculations as

this does not alter the condition codes such as CF and ZF. The instrumentation presented in

Listing 4.9 only requires three registers and does not modify any CFLAGS. We let DynamoRIO

dynamically select two registers on each instrumented section, so that dead (unused) registers

can be used. This further reduces the cost of preserving the application state. However, we

still have to load the TLS field and read the detector state, which adds two additional

26

4.3 Instrumentation

memory accesses. These cannot be avoided and limit the minimal slowdown we can achieve

on instrumented code. For even less performance impact, scoping has to be used. We further

discuss this in Chapter 6.

Listing 4.9: Inline instrumentation which is added to every memory referencing instruction

of the application.

% get_mem_addr (reg1)

% get_tls_field (reg3)

% detect_or_not # logic depends on mode

mov reg2 , [reg3 + offs(bufptr)] # load buffer pointer

mov [reg2 + offs(write)], (write) # 1 if write , 0 otherwise

mov [reg2 + offs(addr)], reg1 # target mem addr

mov [reg2 + offs(size)], (size) # size of access

mov [reg2 + offs(pc)], (pc) # instruction pointer

lea reg2 , [reg2 + sizeof (mem_ref_t)] # increment buffer ptr

mov [reg3 + offs(bufptr)], reg2 # update buffer ptr

mov reg1 , [reg3 + offs(bufend)] # load buffer end

lea reg2 , [reg1 + offs(bufptr)] # 0 if buffer is full

jecxz pre_flush

jmp restore

.pre_flush # jmp into CC and clean -call

mov reg2 , restore # load return addr into RCX

jmp .cc_flush # jump into cc and flush

.restore # restore app state

%dr restore

4.3.4 Synchronization Interception

In addition to the memory references, we have to detect functions involved in synchroniza-

tion. This is necessary as invocations of these functions define the synchronization pattern

of the application under test, which is used to identify data races (see Chapter 3.1 and Fig-

ure 3.1). These functions are wrapped with a function that determines the parameters (e.g.

address of a mutex) and the return value. This is done using DynamoRIO’s function wrap-

ping extension by registering a pre- and a post- callback for a function at a given address in

the “module load” event. When a fragment containing this address is loaded into the code

cache, the callbacks are added.

Before any synchronization event is fed into the detector, the memory access buffer of the

calling thread is processed. We call that “local-synchronization”, as only the buffer of the

calling thread is affected. Serializing the accesses is then in the competence of the detector.

For testing purposes we also provide a mode where “global-synchronization” is used. This

means, before writing a memory reference into the buffer, each thread checks if a (global)

synchronization event is pending. If that is the case, all buffers are processed prior to the

27

4 Architecture and Implementation

local synchronization event. With Happened Before or lockset based detectors this strict

synchronization is not necessary (see reasoning in Section 4.3.3).

4.4 Efficient Callstack Tracking

When a race is detected we are interested in callstacks for both involved memory accesses.

This is essential for the user of the tool to understand the program flow and finally fix the

race. With that information a manual inspection of the traversed code locations is possible

to finally annotate or add the missing synchronization.

Ideally we could reconstruct the callstack of the second access just by using the current

instruction pointer and CPU context. However, this brings us two problems: first, this only

works for the second access, as the CPU context of the first access is not available anymore.

Second, reconstructing callstacks on a x64 Windows is a tricky task. Normally debug helper

dlls are used, but as the target application code is executed from the code cache, the observed

CPU context does not fully correspond to the application context. This especially applies

to the RIP register[Bru04, p.69]. We refer the interested reader to [Ots+18] for in-depth

details on callstack walking and post-mortem analysis on x86/64 based Windows systems.

Finally, the goal is to either store a callstack per memory access or to be able to reconstruct

it based on the IP after a race occurred.

Shadow Callstack As described previously, a fast and precise determination of callstacks

is complicated in this setting. Due to these limitations we decided to use a shadow callstack.

This means, we instrument every call and ret (return) instruction. Technically this is

implemented by inserting a clean-call prior to the control transfer instruction which obtains

the target location from the corresponding CPU registers. For calls, we track the address of

the call instruction and append it to a thread-local buffer (shadow-stack). When a return

happens, we pop addresses from the shadow-stack until we find one that matches the address

of the call. This “climbing” is necessary as optimized programs generally directly return to

a higher callee if multiple return instructions arrange successively.

Internally the instrumentation is implemented as a clean-call, which gives us the possibility

to add additional logic. We use that, e.g. to change the detector state and to update the

code cache as described more precisely in Section 6.1.3.

Relation to Memory References As stated above, we need a callstack for each memory ref-

erence to precisely locate a race. With the shadow-stack we are able to get this information,

but it remains only valid for the function which is currently executing. This is visualized in

Figure 4.2.

We call this sequence of memory references between two calls a f-segment, similar to

the segment defined in Section 1.4. To limit the overhead of the memory tracing, only the

28

4.5 Symbol Lookup

main()

int i=0;

foo(i)

i *= 2;

++x;

x=x*2;

bar(i)

x = x%2;

return i;

Figure 4.2: Visualization of the call-graph (colored bars) and a partitioning into f-segments

for a sample C++ program.

current IP is stored for each memory-reference (instead of the callstack). Hence, we have to

enrich each memory-reference entry with the callstack of the current f-segment when feeding

them into the detector. This has to be done after the last instruction of a f-segment, as

the shadow stack changes immediately after. Hence, we process the buffer containing the

memory references in the call and ret instrumentation directly before changing the shadow

stack. As calls occur regularly the discrepancy between the actual time memory was accessed

and the time it is fed into the detector remains low. Additionally, we avoid overhead by re

using clean-calls instead of adding new ones.

Issues and Improvements For highly compiler-optimized programs (e.g compiled with the

-O3 flag), the shadow stack provides only an approximation of what the user would expect

according to the program sources. While the call hierarchy of the executed code is observed

correctly, compilers heavily use inlining to avoid the overhead of calls. With inlining, the

body of a function is directly copied into the calling function, instead of using a call. However,

we found that this is normally no problem as the most interesting IP is the one which finally

lead to the race. This is always correct, as it is determined using the memory reference

instrumentation. Conceptional this becomes clear as this IP is inside the body of the calling

function and hence is not a call itself.

In future iterations of DRace we plan to refine the second callstack using a debugger.

By that, we can reduce the depth of the shadow stack while we are still able to print a

precise callstack for the second access of a race. There is also ongoing work in DynamoRIO

regarding callstack walking.

4.5 Symbol Lookup

With symbol lookup we refer to the mapping of instruction pointers to function names and

locations in the source code. This mapping is needed in both directions, which means there

must be also a map from function names to the instruction pointers. To intercept and wrap

the synchronization functions we have to determine the corresponding function calls in the

29

4 Architecture and Implementation

Windows API DLLs by querying the function names. On the other hand, when a race

occurs the instruction pointers of the callstack entries have to be converted into a function

and possibly a source file, line and offset.

We do that using the drsyms extensions of DynamoRIO, which internally uses the db-

geng.dll[Mic17] to perform the lookup. If the functions to be looked up are exported, no

further information is needed. This is the case for the Windows Sync-API functions[Mic18b],

which provide POSIX synchronization mechanisms. Hence, we do not need any debug in-

formation to detect data races on accesses which are not properly synchronized according to

these functions.

However, for helpful information regarding races on the target application, debug informa-

tion is needed. If the debug symbols also contain line information, the involved instruction

pointers are symbolized to a filename, line and offset. Additionally, debug information is

necessary to wrap non exported functions which are common in C++ header only libraries.

Normally the symbol lookup is performed when a module is loaded. After the lookup

and wrapping, the symbol information is unloaded to limit the memory overhead. However,

for data races, this information has to be re-loaded to symbolize the callstack. As this

might be time consuming for a large amount of races, we provide a mode where the symbol

lookup is delayed until the shutdown of the target application. This avoids overhead during

runtime. For managed code however, the symbol lookup has to be performed immediately.

The situation on Dotnet code is described more precisely in Section 5.2.

4.6 Extensible Logic

One of the goals of this thesis is to provide ways to extend the instrumentation and detector

logic. Thereto, parts of the instrumentation logic are not hard-coded into the client, but

configured using a config file. This includes the function names (symbols) which implement a

specific synchronization pattern. DRace then looks for these names in the target application

and wraps them accordingly. We tested this approach successfully on a Qt5 application,

where we started with default settings and iterative configured the Qt synchronization pat-

terns.

To limit overhead or to exclude known-to-be race-free parts, functions, modules or whole

file paths can be excluded from the analysis. For excluded modules or module paths, the

memory tracking instrumentation is then not added. However, some instrumentation like

the shadow-stack (see Section 4.4) has to be added anyways as otherwise the reported races

are imprecise. We found that this is no limitation in practice, as the constant overhead is

low. For detailed considerations regarding this topic, see Chapter 6.

30

4.6 Extensible Logic

Additionally, more advanced logic can be implemented by extending the corresponding

modules of DRace. The source code of DRace is publicly available on GitHub.1

1https://github.com/siemens/drace

31

4
A

rch
itectu

re
a
n
d

Im
p
lem

en
ta

tio
n

Function

Wrapper
Module

Tracker

Memory Tracker

Instrumentator

Statistics

Module A

Symbol Resolver

Race-Collector

Exporter

(xml, text)

Thread Start

Thread End

Module Load

Module Unload

Basic Block

Application

DynamoRio + Client

R
a
c
e
-D

e
te

c
to

r
In

te
rf

a
c
e

Application Memory

Module B HeapStack Code Cache

DR Events Instrumentation Race Detection & Reporting

callback

D
R

 i
n
te

rn
a
l

triggers BB evt

fault in CC

Figure 4.3: Internal architecture of DRace: The framework is purely event driven by events from both DynamoRIO and clean-calls
from the application instrumentation.

3
2

5 Managed Code

In this chapter we show a proof of concept for data race detection on hybrid code consisting

of native and managed parts. With managed code we refer to machine code that is executed

under the management of a CLR virtual machine, whereby we focus on the Dotnet CoreCLR

implementation. In this setting we target applications containing managed parts that are

written in the C# programming language, which is based on the Dotnet framework.

We show that data races happening in managed code parts are detectable by analyzing

the raw memory operations executed by the CPU. For this purpose, the memory referencing

instructions in just-in-time compiled fragments are instrumented exactly identical to the

ones in native code. While we use a uniform detection logic on both managed and native

parts, managed parts require a different architecture to perform the symbol lookup and to

locate synchronization contracts.

5.1 Intermediate Language

The Common Intermediate Language (CIL) is a low-level programming language defined

by the Common Language Infrastructure (CLI) specification and used by the Dotnet based

programming languages. In earlier versions of Dotnet it was called Microsoft Intermediate

Language (MSIL) but after the standardization of the CLI this name was dropped.

During the compilation of a managed program, the source code is translated into an

intermediate language rather into processor-specific (native) object code. This intermediate

bytecode is then executable in any environment providing a runtime (also called VM) for

this language. At this juncture, the JIT compiler compiles the bytecode into native machine

code directly before execution. This native code is stored on the heap to be executed by the

CPU by jumping to an address in this memory block.

One advantage of this approach is that the same program can be executed on both Win-

dows and Linux based OSs. While it is possible to directly write programs in the intermediate

language, this is not common due to the low level of the assembler like instructions.

Using programs like “ildasm.exe”, “ilasm.exe” or “IlSpy” it is possible to modify the CIL

of executables and libraries before execution. These tools decompile the CIL bytecode into

a human-readable representation of CIL and re-compile it after the modifications have been

applied. This makes it possible to create instrumented copies of the application and its

libraries.

33

5 Managed Code

Recent versions of the Dotnet framework add the option to pre-compile IL parts for a

specific target architecture using a Native Image Generator (NGen). This eliminates the

JIT overhead which reduces the startup time of the application. However, this increases

the complexity when modifying the CIL, as both the compiled and the IL parts have to

be changed. As recent Dotnet system libraries already use this approach, DRace has to

support these cases as well. At time of this thesis we do not know of a tool that supports

IL modifications on modules containing NGen’d parts.

5.2 Managed Functions

Function wrapping is essential to detect managed synchronization mechanisms like mutexes.

Experiments and theoretical examinations have shown that it is not sufficient to track the

related system calls, as optimized implementations of C# use a mixture of system and user

level synchronization techniques. Consider a fast lock implementation as an example: at first

a user-level Spinlock is used. If this spinlock cannot be acquired in a few cycles, a system

lock is used as fallback. This observation requires us to directly detect synchronization in

the managed part of the code, as otherwise synchronization contracts are missed.

There are various approaches to achieve this:

1. Modification of the CIL

2. Replacing the Dotnet System.Threading DLL with an instrumented version

3. Using the CLRProfiling infrastructure

4. Instrument JITed fragments directly using DynamoRIO

These approaches are evaluated regarding the following aspects:

• Compatibility: Are modifications necessary to support most Dotnet versions. Is it

likely that this breaks with future Dotnet implementations (higher is better)

• Performance: Expected slowdown of the application (higher performance is better)

• Technical Complexity: Amount and complexity of the implementation (lower is

better)

• Documentation Available: How well is this approach documented. This includes

API documentation, reference implementations, blog posts and entries on Stackover-

flow.

A tabular comparison of the relevant aspects is given in Table 5.1.

34

5.2 Managed Functions

Method Compatibility Performance Complexity Doc. Avail.

(1) CIL Modification high high impossible -
(2) Threading Mod. Repl. low high medium - -
(3) CLR Profiling Infra. medium low medium-high +
(4) JIT-Fragment Mod. high medium low ++

Table 5.1: Comparison of a set of approaches to intercept Dotnet internal synchronization
mechanisms. All ratings are based on theoretical considerations

After an initial evaluation of all described approaches, the only one that proved to be

realizable was the instrumentation of JITed fragments using DynamoRIO. This method is

presented in Section 5.2.4. For the sake of completeness and as a starting point for future

work, we briefly discuss the other approaches as well in the following sections.

5.2.1 CIL Modification

Instead of instrumenting the JITed machine code, the basic concept of this strategy is to

add the instrumentation at CIL level. For synchronization primitives, it is sufficient to add

a pre and a post function call into a non-managed library. The calls to these functions are

then intercepted and fed into the race-detector.

With common Dotnet instrumentation techniques like Mono.Cecil the approach to modify

CIL is the following: At first the CIL is loaded from the DLL, then the tool analyzes it and

adds the instrumentation code. In a final step, the modified intermediate language is written

to a new DLL.

However, this is has shown to be inappropriate as the managed DLL is already loaded

into the programs address space after the module load event has fired. Hence, no further

modification of the DLL is possible. Additionally, we did not find a solution to instrument

modules that contain NGen pre-compiled parts along with the IL parts.

5.2.2 C# Threading Module Replacement

All C# synchronization routines are at least wrapped with a tiny C# layer. The idea is

to replace the wrapper with a custom version that implements the same functionality but

additionally informs the detector backend about this synchronization event.

To be compatible with different Dotnet versions, we tried to generate this wrapper based on

an existing version using the Mono.Cecil framework. However, this approach was dropped

after empirical tests, as various issues showed up: The modules are often loaded using abso-

lute paths, which makes interception tricky. Modern C# applications are often shipped with

a self-contained Dotnet environment, which makes it hard to pre-build modified DLLs for

all Dotnet versions. Furthermore we did not find a solution to modify the CIL in DLLs con-

35

5 Managed Code

sisting of managed and native parts. For the System.Private.CoreLib.dll which provides

parts of the synchronization implementation, this is unfortunately the case.

5.2.3 CLR Profiling Infrastructure

A profiler is a tool that monitors the execution of an application during runtime[Wen17].

The CLR profiling infrastructure specifies an adapter between messages from the CLR and

the Windows profiling API[Lan07b]. By implementing the interface, the user is able to select

events he is interested in and to register a callback for each event.

Unfortunately, the interface is not well documented and there are only rare reference

implementations available. To use it, dozens of functions have to be implemented or mocked

before testing. Additionally, it remains unclear if it is compatible with DynamoRIO as it

might rely on hardware states which are not fully transparent to the API (see Section 4.3.2).

Due to time constraints of this thesis we decided to choose a different approach.

5.2.4 JIT-Fragment Modification

The general idea of this approach is to instrument the JITed machine code similar to the in-

strumentation described in Section 4.3.4 using DynamoRIO. The main challenge is posed by

locating synchronization contracts in these fragments. Thereto we need a mapping between

managed symbol names and IPs in the JITed code fragments.

Managed Code Debugging We observed that symbol resolution of hybrid applications is

supported by the “WinDbg” debugger using the “sos.dll” debugger extension. This exten-

sion uses helper DLLs provided by the Dotnet runtime implementation to map just-in-time

compiled addresses to the CIL and finally to a location in the source files. As the debugger

extension only provides a textual API which is intended to be used from the debugger com-

mand line, we use the interface of the Dotnet runtime helper DLLs directly. For the CoreCLR

implementation, this is “mscordaccore.dll”, for CLR it is “mscordacwks.dll”. These libraries

implement functions and macros to access the internal Data Access Component (DAC) struc-

tures which describe how managed code is mapped to physical (virtual) addresses [Lan07a].

Finally, the DAC is available to an attached debugger that implements the “ICorDebug”

interface. An overview of this architecture is provided in Figure 5.2.

The DAC helper dynamic library cannot be loaded into the DRace process as it is incom-

patible with DynamoRIO’s private loader. Hence we use a second process called Managed

Symbol Resolver (MSR) for this task. The architecture of this solution is shown in Fig-

ure 5.1. The MSR communicates with DRace using shared memory and attaches to the

process of the target application using the Windows debugging API. Here it is important to

attach in the non-invasive mode as otherwise the interrupt in the target application clashes

with DynamoRIO and results in a crash. In non-invasive mode, the debugger suspends all

36

5.3 Synchronization Primitives

Hardware Platform

DynamoRIO DRace

Binary (C++ & .Net)

.Net CIL

.Net JIT Compiler + RT

Detector

MSR

W
in

.
D

e
b
u
g
 A

P
I

Native Code

Figure 5.1: Layered architecture showing a hybrid application running under DRace. A
second process (MSR) is used for symbol lookup in the managed code parts.
Both processes communicate using shared memory.

of the target’s threads and gains access to its registers and memory, but it does not modify

the execution behavior apart from that.

External Symbol Lookup Symbol lookup requests of DRace are forwarded to the MSR and

the result is returned to DRace again. All code manipulations including function wrapping

and callstack tracing are performed in DRace. Using the MSR, we are able to download

missing symbols from a Microsoft Symbol Server. This is not possible for a DynamoRIO

client, but as the MSR is executed as a standalone process these limitations do not apply.

When DRace detects that a managed module is loaded, it notifies the MSR which then issues

a download of the debug information for this library. The automated symbol download is

beneficial as Dotnet versions require perfectly matching debug information.

To locate the native address of a synchronization primitive, we query the corresponding

symbol name using the MSR. After that we wrap the returned address with our synchro-

nization handling routines and process it just like native synchronization procedures (see

Section 4.3.4). Data races also occur on native (virtual) memory addresses. When a race

is detected we determine the symbol name of each callstack entry from the corresponding

instruction pointer. If the IP belongs to a managed module, we perform the symbolization

using the MSR and pass the result back to DRace. There, managed and unmanaged callstack

entries are merged and presented uniformly.

5.3 Synchronization Primitives

All synchronization primitives are declared in System.Private.CoreLib.dll. However,

some methods (e.g. System.Threading.Monitor) are implemented using native code.

37

5 Managed Code

managed

app
CLR DAC DBI Debugger

ICorDebug

interface

DAC/DBI

interface

Data

TargetReadVirtual

Target Host

Figure 5.2: Scenario where an external debugger attaches to the managed application using
the ICorDebug interface and the DAC structures. [Lan07a]

For native functions we need debug information and rely on the drsyms infrastructure

of DynamoRIO. If the debug information is not available, we trigger a download from the

Microsoft Symbol Server, using the MSR. For managed symbols, DAC helper support is

necessary. Hence each lookup request is passed to the MSR and all matching IPs are then

returned to DRace. The wrapping of the functions is done in DRace using DynamoRIO’s

drwrap infrastructure.

Dotnet Monitors An important and special Dotnet synchronization technique is the

System.Threading.Monitor class. Internally, locks on an object (lock(x){...}) are for-

warded to the monitor. Mutual exclusion is then initiated (internally) by Monitor::Enter

and left with Monitor::Exit. Here, Enter semantically corresponds to the acquisition and

Exit to the release of a mutex.

The (managed) function heads of these methods are decorated with the at-

tribute [MethodImplAttribute(MethodImplOptions.InternalCall)]. When viewing the

System.Threading.Monitor::Exit function in ILSpy, the disassembly looks as follows:

Listing 5.1: CIL disassembly of a Dotnet Monitor Enter.

. method public hidebysig static

void Exit (object obj) cil managed internalcall

{

} // end of method Monitor :: Exit

The internalcall attribute tells the JIT to replace this occurrence by a native function

call. The pointer to this function is stored in an internal virtual method table in the JIT

and depends on the system architecture. To intercept a call to a function of this kind, we

have to intercept the native function call. However, the exact symbol names heavily change

between Dotnet versions. For the Dotnet CoreCLR implementation the names are specified

in the ecallist.h header1. At time of this thesis, we specify the symbol names manually in

DRace’ configuration file for the last Dotnet CoreCLR implementations. In future iterations

1https://github.com/dotnet/coreclr/blob/a9c90ffd84e987a1793a1ed5c5ad7d89b27d493a/src/vm/

ecalllist.h#L1824-L1833

38

5.4 Separation of Native and Managed Code

we plan to automate this process by reading the names directly form the corresponding

header file.

5.4 Separation of Native and Managed Code

For the data race detection itself no separation of managed and unmanaged code parts are

necessary. However, to locate and wrap managed synchronization procedures as well as to

symbolize managed frames in a callstack, we have to apply different logic on managed and

native modules. Before managed code can be executed the just in time compiler compiles the

intermediate language into machine code. The machine code is then either stored inside the

address range of a managed module, or on the heap. In the latter case, the JITed instruction

pointers are not in the address range of any module.

In the module load event we determine if the current module is managed by looking at

the COM_ENTRY value in the data directory header. If the value is zero the module contains

only native code. Otherwise it is a managed module [Mic18a]. The full header walking is

shown in Listing 5.2.

When a race occurs, each callstack entry is symbolized. Here we check if it is inside any

module and if it is a native module. In this case the symbol lookup is performed using

DynamoRIO. In all other cases the instruction pointer is managed and we perform the

symbol lookup using the MSR.

Listing 5.2: Header walking to determine if a module is managed.

include <Windows .h>

IMAGE_DOS_HEADER pidh = (PIMAGE_DOS_HEADER)module -> start ;

PIMAGE_NT_HEADERS pinh = (PIMAGE_NT_HEADERS)((BYTE *) pidh + pidh -> e_lfanew);

PIMAGE_OPTIONAL_HEADER pioh = (PIMAGE_OPTIONAL_HEADER)& pinh -> OptionalHeader ;

// clr != 0 if managed

DWORD clr = pioh -> DataDirectory [IMAGE_DIRECTORY_ENTRY_COM_DESCRIPTOR]. VirtualAddress ;

5.5 Evaluation

As a proof of concept of our uniform analysis approach, we analyze a managed demo ap-

plication based on the Dotnet CoreCLR implementation. The application is used to verify

the detection of synchronization mechanisms as well as our assumption that a tracking of

physical / logical memory accesses is sufficient.

5.5.1 Demo Application

The demo application acts as a test to verify that user-level synchronization procedures are

processed correctly. Additionally, we test the symbol lookup of the callstacks in case of a

data race.

39

5 Managed Code

To locate the Dotnet internal synchronization procedures, debug symbols containing source

information are necessary. For Dotnet internal modules this information is automatically

downloaded from a Microsoft Symbol Server using the MSR. However, to symbolize the

callstacks correctly this is not sufficient as debug information on the target application itself

is required. Otherwise stack frames which belong to these sections cannot be resolved.

Unfortunately, the default setting of Microsoft Visual Studio is to not include this kind of

debug information in the PDB files.

The logic of the demo application is to concurrently increment a shared counter using n

threads. Here, we test three settings:

1. racy increment

2. increment guarded by a lock()

3. increment guarded by a mutex

The source code of the application is attached in Appendix 2. In setting (1) we expect

DRace to find a race. In the two other settings we expect the code to be race-free. The

main difference between setting (2) and (3) is that the first one implements user-level syn-

chronization. The latter always uses an OS lock, which is already tracked by the native

instrumentation.

5.5.2 Results

Indeed the race was correctly detected in setting (1) and no races were detected in the two

other settings. The main slowdown of the application happened during the startup of the

Dotnet runtime. Especially the download of the symbols of the Dotnet internal modules

takes significant time on the first execution. This exact duration mainly depends on the

throughput of the Internet connection and was approximately a minute in our tests. For

later executions, the symbols are already in the local cache, which avoids this delay.

To get precise callstacks inlining of the C# code has to be disabled currently. This is due

to the shadow stack which is used instead of stack walking which could possibly use debug

information to circumvent this limitation. Listing 5.3 shows the race as it is reported by

DRace. At the time of this thesis DRace is not capable of mapping a managed instruction

pointer to a source file and line. Currently only the module and function name can be

resolved.

40

5.5 Evaluation

Listing 5.3: Race reported on a concurrent increment in managed code.

Access 0 tid: 20696 read to/from 0000000000034 D40 with size 1. Stack (Size 10) Type: -1

→֒ :

Block not on heap (anymore)

#0 PC 00007 FFBB74F23DF (dynamic code)

Module TestCS -win64 -racy -exe\ TestCS .dll - MultithreadingApplication .

→֒ ThreadCreationProgram . IncByOne (MultithreadingApplication . param)

#1 PC 00007 FFBB74F0078 (dynamic code)

Module JIT - MultithreadingApplication . ThreadCreationProgram . IncByOne (

→֒ MultithreadingApplication . param)

[...]

#9 PC 00007 FFC16FBDF84 (rel: 00000000000 FDF84)

Module coreclr .dll - ThreadNative :: KickOffThread_Worker

from 00007 FFC16EC0000 to 00007 FFC1740B000

File e:\a\ _work \308\ s\src\vm\ comsynchronizable .cpp :257 + 0

Access 1 tid: 10496 write to/from 0000000000034 D40 with size 1. Stack (Size 1) Type: -1

→֒ :

[...]

41

6 Performance Optimization

From a theoretical perspective, the execution speed of a physical machine must neither

change the correctness, nor the behavior of an application running on it. In theoretical

computer science, the physical machine which executes a program is abstracted by a Turing

machine (TM). The program is then defined as the strip of tape which is the input of the TM.

It is further possible to simulate a TM with its input by using a second TM. Conceptional

this analogy is very similar to what we present in this thesis: we take a program which can

be run on a target machine and simulate it on another machine. As the TM has no sense of

physical time, but only logical steps, the input ⇔ output relation of the program (strip) is

not changed.

However, this only holds in theory, as in practice resources are limited. This especially

applies to the time it takes to perform this simulation, which finally bounds how many

logical steps can be executed. The simulation approach only works for applications which

can be fully simulated including the surrounding environment and hence do not rely on any

external state. This is a different field of application which is not focused by this thesis.

Instead of simulating the program, we modify (instrument) it and execute it natively.

This is done in a manner that these changes are hidden from the perspective of the tar-

get application. In practice, large applications are not fully self-contained, but depend on

external components. This can be e.g. calls to external APIs which have to be processed

within an externally defined time span. Additionally, the development cycles consisting of

running DRace and fixing races should be as tight as possible. Hence, we have to reduce the

overhead of DRace to finally meet these external constraints.

As most of the overhead is induced by the detector, we have to reduce the amount of data

it has to process. This can be done either by sampling, or by excluding application parts

(scoping) from the analysis. Given that, less memory references have to be processed and

program execution is less retarded. This approach is especially interesting for interactive

applications (e.g. GUIs) and long-running procedures. While sampling excludes elements at

a regular interval, scoping completely excludes regions of the target application. Hence we

will find data races in areas where sampling is used with a given probability. In contrast to

that, we will never find data races in areas which are not in the analysis scope.

In this chapter we cover various sampling and scoping strategies. These are evaluated

regarding their performance, universal suitability and impacts on the quality of the race

detection.

43

6 Performance Optimization

6.1 Sampling

With static sampling we mean to process only a small subset of memory references by

sampling approximately each T ’th memory access. This assumes that the parts of the

application which should be analyzed are executed multiple times. Both server processes

and GUI applications mostly consist of three phases: A startup phase, a steady state phase

where the main logic happens and a shutdown phase. The steady state phase is normally

implemented as a loop, which means that the same instructions are executed over and over

again. This makes it likely that a race is detected, even if only a small part of memory

references are analyzed. In contrast, races during the startup and shutdown phase are

unlikely to be detected with sampling.

We expect this approach to work well only if the following conditions are met:

• functions are executed multiple times

• the application has a steady-state

• the application is executed long enough

6.1.1 Probability Estimation

While sampling is useful to limit the overhead, there is a loss in the detection accuracy. With

accuracy we mean the number of missed races, which maps to the amount of false negatives.

Here we consider a pure happens-before based detector, but we expect the calculations to

also apply to hybrid detectors.

For being able to detect a race, we have to capture the two non-synchronized accesses.

The probability to sample both accesses in a series of x events is calculated according to

the urn problem1. The fundamental question we ask is: given a sampling period T and a

stream of memory-referencing instructions [I1, I2, . . . , It], what is the probability to catch

both references at least once when each racy access occurs m and n times.

Thereto we first compute the total number of samples as s = t
T

, where t is the total

number of instructions and T is the sampling period. The probability p for catching both

memory references at least once is then:

p = 1 −
A¬m + A¬n

− A¬(m∩n)

T
= 1 −

(t
s−m

)

+
(t

s−n

)

−
(t

s−m−n

)

(t
s

) (6.1)

Here, A denotes appropriate selections and T the total number of combinations to sample s

events in a sequence of length t. For A¬m, we consider all combinations where we miss the

1This estimation is based on [She+11, p. 405], but fixes the calculations by correctly labeling the variables
s and t, as well as fixing the binomial coefficient.

44

6.1 Sampling

0 1000 2000 3000 4000 5000
Sampling Period T

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y
p

m
t = 10−5

t = 1e6
t = 1e7
t = 1e8

0 100 200 300 400 500
Sampling Period T

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y
p

m
t = 10−5

t = 1e6
t = 1e7
t = 1e8

Figure 6.1: Probability to find a data race with various sampling periods T and sequence
length t, based on theoretical considerations. We assume that m

t
= 10−5 of the

total executed (memory-referencing) instructions are racy.

first access, A¬n where we miss the second access and A¬(m∩n) where we miss both accesses

(these are counted twice otherwise).

p ≈ 1 −

(

1 −
m

t

)s

−

(

1 −
n

t

)s

+

(

1 −
m

t
−

n

t

)s

(6.2)

The approximation assumes that after an instruction is sampled, it is returned to the

pool and can be sampled again. Additionally, we assume that instructions are sampled

independently. If t >> m and t >> n holds, this does not significantly affect the calculation

as the Equation in 6.1 converges against the Equation in 6.2 (Stirling’s approximation).

In practice we do not use a fixed period but a probabilistic approach (see Section 6.1.2).

This mitigates the issue that instructions might not be sampled independently.

As both m
t

and n
t

are properties of the program, we must increase s to increase the

probability of detecting a race. This can be done by either reducing the sampling period T

or running the program longer, which increases s.

As we do not directly target extremely long-running applications like [She+11] did, we

empirically found the following parameters to provide good results: {t = 10, 000, 000, T =

25, m
t

= n
t

= 10−5}. Hence we get s = 400, 000 samples and compute the final probability

to find a race to be 96%. In contrast to [She+11], we found that races are less likely then
m
t

= 10−4. In our opinion this is too optimistic for non-service applications. Hence, we

recommend using m
t

= n
t

= 10−5. A comparison of the race detection probability and the

sampling rate is given in Figure 6.1.

45

6 Performance Optimization

Instrumentation

C
u
m

u
la

ti
v
e
 O

v
e
rh

e
a
d
 (

re
la

ti
v
e
)

+25%

+15%

+7%

+40%

Figure 6.2: Each step of the processing pipeline adds overhead to the execution. As the
actual overhead heavily depends on the target application only estimates are
given. The constant part of the overhead cannot be avoided.

6.1.2 Sampling without systematic error

Consider the processing pipeline showing all steps necessary to finally analyze a memory

reference:

1. Instrumentation Code blow-up by adding instrumentation assembly

2. Memory Tracing Instrumentation code writes metadata into a buffer on each mem-

ory access

3. Buffer Processing The buffer is processed, filtered and passed to the detector

4. Analysis Finally, the memory references are analyzed in the detector

We have to sample as early as possible, but without a systematic error. Sampling in

instrumentation provides maximum performance boost, but the number of missed references

is unpredictable.

For later stages than Memory Tracing, large amounts of the total overhead did already

happen (see Figure 6.2). So it is best to implement sampling before the accesses are actually

imposed. A visualization of both sampling techniques and scoping is provided in Figure 6.3.

6.1.3 Block Based Sampling

As our instrumentation already provides a short circuit for a disabled detector, this could

be used to skip references. However, we are then limited to block-based sampling, as the

state-flag does not impose a counter.

Given that the sampling is implemented using the detector state, we have to minimize the

overhead of state-changes. For good analysis capabilities, we prefer a uniform distributed

46

6.1 Sampling

Figure 6.3: Differences between two sampling techniques and scoping visualized on a se-
quence of n memory references. The blue ranges are analyzed.

sampling with a minimal variance. However, before changing the state, other state-related

characteristics have to be checked, so this has to be done in a clean-call.

As the clean-calls are relatively expensive (compared to inline instrumentation), it is best

to use an already existing one. The call should be executed after roughly the same number

of references each time, to keep the variance low. A suitable clean-call is the call event of

the shadow stack, as empirical analysis showed that this happens after 8 to 16 references in

average.

We also experimented with other techniques to change the state, but the approach de-

scribed above has turned out to have both minimal overhead and no interference with the

target application. A promising idea was to use a shadow thread for the switching, as this

avoids systematic errors. With the approach described above, the granularity is always a

whole f-segment (sequence of instructions between two consecutive calls). However, the

overhead of an additional thread including atomic instructions to modify the switch has

proven to be way to high. This is also due to the frequent wakeups, as the detector has to

be toggled in very short intervals.

Fast estimator for sampling decision

As the state should be changed after each bunch of references, the Random Number Gener-

ator (RNG) must not create a bottleneck. However, to avoid systematic errors, the quality

of the random numbers has to be at a reasonable level. Hence, some trivial approaches

like using a counter and the reminder of a division are inappropriate. An example of this

case would be a loop containing 100 memory referencing instructions and a sampling rate of

T = 5. Without adding a random delta to each period, the sampling would always select the

same 20 memory references. To further avoid this systematic error, we recommend choosing

a prime as period length T .

In our implementation we use a Mersenne-Twister Engine (MT) and a uniform integer

distribution to calculate the next period length. The length is calculated to be T ± 10%

47

6 Performance Optimization

to add some variance and break circular loops. During execution we just decrement the

sampling counter until it becomes 0. Then the next period length is calculated. This further

reduces the overhead per skipped reference, as only a single decrement and one comparison

is necessary to make the decision to sample or skip the next block. For small sampling

periods we re-calculate the period length only every few iterations to reduce the overhead

of the MT. Additionally, the period length has to be an integer value, so for periods smaller

T = 10, we calculate Tnext = T ± 1 to get periods with variable length.

6.1.4 Reference Based Sampling

This approach implements sampling directly on the number of memory references, instead

of the number of function calls. Hence, we expect the results to closely map our theoretical

considerations from Section 6.1.1. However, this comes at the cost of an additional overhead

per memory reference:

While we used the detector state flag to decide if a reference is going to be sampled,

this is not sufficient here. On each memory access, we have to increment our position in the

sampling period. If the period length is reached, we have to sample this reference. Otherwise

the reference is skipped.

This can be implemented either in the memory tracing or in the buffer processing stage.

In the first case, the sampling logic is directly implemented into the inline instrumentation

which is added around every memory reference. However, as the size of this instrumentation

is limited by DynamoRIO this requires us to instrument with fewer instructions. Thereto

we have to use assembly instructions which modify the condition flags, finally requiring us

to save and restore them. This enables us to optimize away a memory access, as we combine

the sampling counter and the detector state in a single 64 bit value. The instrumentation

assembly code is provided in Listing 6.1. Here, we use the following assembly to decide if

this reference should be processed:

Listing 6.1: Detector state and sampling logic added to every memory referencing instruc-

tion.

mov reg2 , [reg3 + offs(ctrlblock)] # load controlblock

bt reg2 , 63 # check bit 63 (detector state)

jcc JB , restore # if set , short - circuit

sub [reg3 + offs(ctrlblock)], 1 # decrement sampling counter

jecxz process # process this ref

jmp restore # skip this ref

.process

mov reg2 , [reg3 + offs(period)] # load sampling period

mov [reg3 + offs(ctrlblock)], reg2 # reset sampling cntr

... put this reference into the buffer

48

6.2 Scoping

In the second case where we sample in the buffer processing stage, all memory references

are written into the buffer. This simplifies the inline instrumentation logic, but adds a

significant overhead per reference. Sampling is then performed on the values in the buffer,

by feeding just some access entries into the detector. There is still a reduction in the runtime

overhead, as most overhead is created in the race detection stage (see Figure 6.2), but this

contradicts our goals described in Section 6.1.2.

6.2 Scoping

In contrast to sampling, scoping means to just include some parts of the application in the

analysis. Other parts, which are not in the scope are completely excluded. Given that, data

races which are not in the scope of the analysis will never be found. However, if the scoping

is applied dynamically, only high-traffic areas of the program are excluded. The key idea

here is to execute all parts at least a few times, before the high-traffic parts are excluded.

This gives a good tradeoff between correctness and performance.

6.2.1 Dynamic Scoping

One problem with static sampling is that we do not distinguish between high and low-traffic

parts of the application. Hence, the quality of the detection is bound by the sampling factor

and the requested slowdown. Mathematically spoken, detection quality and slowdown are

inversely proportional.

Often the maximum slowdown of the application is limited by real-time constraints, like

timeouts of calls to external resources. Hence, the sampling rate has to be chosen such that

these limits are not exceeded.

Dynamic Approach

To lessen this problem, frequently executed parts of the application can be sampled with a

smaller density than the rest of the application. As it is not possible to pre-determine these

parts during the analysis phase, this has to be done while the application is running.

A simple approach would be to build a histogram of the observed instruction pointers and

change the instrumentation on the top-k (most frequent) blocks. However, in its unopti-

mized version this is not possible as the tracking of the IPs adds more overhead than the

instrumentation itself.

Altering the Instrumentation

Given that we have a possibly approximated histogram of frequent IPs, the next step is to

change the fragments in the code-cache. We are interested in fragments which contain a

frequent IP, but there is no efficient direct mapping.

49

6 Performance Optimization

As already covered in previous chapters, the instrumentation is added whenever a fresh

fragment is moved to the cache. This happens when the fragment is going to be executed, or

when the fragment becomes a trace. Traces are high-traffic parts of the target application,

which are handled differently by DynamoRIO.

In both cases, the fragment is already in the cache, as it has already been executed.

Given that, we have to locate the fragment in the cache, flush (erase) it in a safe way, and

instrument it differently on the next execution.

Altering Algorithm

The algorithm to update the instrumentation consists of two parts: First we have to remove

the affected fragment from the code cache. After that, on the next execution of this fragment,

DynamoRIO will detect that it is not in the cache and calls the “basic-block” event. In this

event, we check if the block is in the current top-k and add only our minimal instrumentation.

Algorithm 2 Schematic version of the block altering algorithm.

{Flushing the cache}

store current and previous top-k histogram

calculate set-difference between both histograms

issue a delayed flush (erase) of the approximated block

{Re-instrumentation}

wait for next bb execution (not in cache anymore)

if block in top-k histogram then

insert lightweight instrumentation

else

proceed as normally (possibly re-add full instrumentation)

end if

For efficiency reasons we provide a mode which just relies on DynamoRIO’s internal classi-

fication of fragments. This simplifies the implementation as the altering of the cache is done

in DynamoRIO internally. Besides the reduced complexity, the overhead of tracking IPs and

building histograms is avoided. However, this approach allows no fine-grained tuning based

on the histogram of executed IPs.

Space Efficient IP Tracking

Computational intense parts of an application have a high instruction locality most times.

This is necessary to keep the next instructions in the L1 and L2 cache.

50

6.2 Scoping

Hence, it is sufficient to track only parts of the IP’s address. Our evaluation showed that

a good strategy is to round the pcs down to 128 byte boundaries. This means that on a 64

bit system, the histogram is built upon 16 element blocks, aligned at 128 byte boundaries.

The good empirical results are also due to the observation that most basic blocks are slightly

smaller than 16 elements.

To avoid an ever-growing histogram, we use the Lossy Counting algorithm. This saves

space and thus computation time by still giving some guarantees on the accuracy of the

counters. The Lossy Counting Model is parameterized by a frequency (f) and an error

threshold (e).

Here, our evaluation showed that good results can be achieved with f = 0.02 and e = 0.002.

This means that the blocks survive, which had a share of at least 2%. For elements between

2% and 1.8% we might get false-positives.

Alternative Approaches: Sliding Windows While the model above retains counters for the

complete history of accesses, sliding window histograms could be used as well. These have the

advantage that they adapt better to changes in the working set of the running application.

However, it has to be ensured that no ping-pong between two histograms occurs. This

approach is conceptional prone to this case, as previous frequent addresses are not tracked

anymore after the cache is updated. In its worst form, this degrades to static sampling with

a huge overhead of updating the code cache.

Exclude Code from Analysis

Given that we have a histogram containing the most frequent instruction pointer prefixes,

we have to find the related basic blocks to alter the instrumentation. We do that efficiently

by dividing the address of the basic block by the block size (16 elements) and check if it is

in the top-k entries.

There are two ways to exclude a frequent block from the processing: at instrumentation

time and at execution time. The best performance improvement is achieved, if the memory

related instrumentation is actually removed from the basic block. However, this requires us

to remove this block from the code cache and to re-instrument it (without memory tracing

code). This adds significant overhead, if the histogram often changes.

The other option is to just disable the instrumentation during the execution of this

block (see “short-circuit” in Listing 6.1). While this avoids the cache altering and re-

instrumentation overhead, it adds additional overhead per block as the histogram has to

be checked. Additionally, each memory reference is still instrumented and the analysis part

of the instrumentation is just skipped. This reduces the locality of the machine code, which

finally leads to reduced L1-Cache hit rates.

51

6 Performance Optimization

We found that there is no silver bullet regarding this topic. Both strategies have their

pros and cons which finally depend on the target application. Therefore we provide this as

a runtime flag to let the use decide which strategy to use.

Exclude Memory from Analysis Observing the actual binary execution is a blessing and

a curse at the same time: While we can analyze dynamically assembled and hybrid applica-

tions, we have to deal with non-application related artifacts. These artifacts lead to many

false positives, as they are out of the scope of our synchronization tracking. Examples are

writes into the virtual address space of the kernel. We see these accesses, as we intercept and

observe parts of the application “beneath” the Windows-API. Hence, we drop all memory

references which are outside the virtual address space of the executing process.2

To limit the overhead of DRace, we further support excluding stack addresses. The stack

is almost always accessed local only and pays for a decent share of all memory references.

As this might hide some true races, this feature is controlled by a flag. The address range

of the stack of each thread is queried in the “thread-start” event using the Windows-API.

6.2.2 Static Scoping & External Control

Often an analysis of the whole program is not necessary, as critical logic might be imple-

mented in small modules. Other use cases are iterative tests, where known-to-be race free

parts are already marked. However, with classic race detectors this “scoping” is not possible

as they cannot be controlled during runtime.

We support scoping on the following levels of granularity:

1. exclude module and file paths

2. exclude functions

3. exclude static-memory accesses (sometimes misleadingly called “stack” accesses)

4. toggle the detection using an external process

The most intuitive way to analyze a module of a large GUI application is to use the

external control. By that, the operator starts with the detector being disabled, navigates to

the interesting module and enables it. This reduces iteration cycles, as the memory intense

startup phase of the program is skipped. Additionally, this does not require knowledge on

the internal structure of the application.

The external control feature is implemented by using a second controller process, which

communicates with DRace using shared memory. The controller also supports to modify

other processing characteristics, like the sampling rate.

2https://docs.microsoft.com/en-us/Windows-hardware/drivers/gettingstarted/

virtual-address-spaces

52

6.3 Evaluation

Excluding modules and paths is useful to exclude the system libraries, which are also

visible to DRace. Furthermore, custom or user-level synchronization functions itself should

be excluded, as they almost always create false-positive races due to concurrent accesses on

the synchronization logic.

6.3 Evaluation

We evaluate both sampling and (dynamic) scoping approaches on a small application. This

enables us to validate our model in a controlled environment. For a case study on real world

applications, see Chapter 7.

The mini-app is implemented to measure the effects of sampling on the accuracy of the

race detection. Here, we consider two scenarios: one without any synchronization and a more

realistic scenario, where a lock is used but some accesses bypass the lock. The application

is parameterized by a period length, a number of rounds and the mode (sync / no-sync). In

each period, exactly one non-synchronized access is performed. In the synchronized setting,

one additional access - which is guarded by a lock - happens. All other accesses in the period

are local only, giving O(T) total accesses for a period length T . The number of rounds selects

how often the test is repeated.

This closely represents the model described in Section 6.1.1 by setting T =
(

m
t

)−1
= t

m
.

So the period between two races is the inverse of the number of races per memory access.

Hence, m
t

= 10−5 corresponds to T = 105. This is the scenario we evaluate here.

It is tricky to empirically estimate the probability to find a race, as this requires a precise

control over the total number of memory accesses which is not possible. Instead, we measure

the time until a race is found for a given sampling rate. This directly corresponds to a

variable parameter t of our model. The longer the application is executed, the more memory

references are processed. Additionally, we measured that the throughput in references/sec

remains approximately constant. Figure 6.4 provides a visualization of this setting for various

sampling rates.

We observe that for sampling periods up to 27 the time to find the race is approximately

equal. In this case, the race is almost instantly found after the application starts. The

constant overhead (≈ 2s) is being caused by the time it takes to analyze the basic blocks

and to add the instrumentation. As the application is small, all instrumented blocks fit into

the code cache. Hence, the overhead due to adding instrumentation appears only at startup

time.

For larger sampling periods, we see an exponential growth in the time it takes to find the

race. We expect that according to the theoretical model in Section 6.1.1, as this range is

past the “elbow” of the probability graph shown in Figure 6.1. In the experiment we run the

53

6 Performance Optimization

21 23 25 27 29 211
sampling period

102

103

104

105
ex

ec
ut
io
n
tim

e
[m

s]

reference based
mean
median
races missed [%]

21 23 25 27 29 211
sampling period

block based

0

20

40

60

80

100

0

20

40

60

80

100

Figure 6.4: Time to find a data race with access probability of m
t

= 10−5 for various sampling
periods. The experiment is executed 10 times each, the error bar denotes one
standard deviation.

application with up to 218 rounds. We choose this constraint to limit the total measurement

time for our experiments.

For sampling periods larger than 210 ≈ 1000 this is not long enough to find all races.

Hence, for practical use cases we recommend to choose a sampling period below this point.

When comparing the reference-based and block-based sampling techniques we see that

the overhead of the former is approximately 2 times larger for large sampling periods (where

most memory accesses are skipped). This discrepancy comes from the instrumentation that

is executed on each skipped memory reference: In the block-based case, a preservation of

the flags register is not required. Hence, only a single memory access is required to check

the detector state. Additionally, the instrumentation consists of fewer instructions which

results in higher L1 and L2 cache hit rates. In contrast, the “reference-based” logic requires

preserving the conditional flags and executes more logic. Finally, this results in a higher

constant overhead which cannot be avoided by using sampling. This also means that using

large sampling rates in combination with block-based sampling just results in worse detection

results but not in a reduction of the overhead.

6.3.1 Sampling Techniques

We measured that the block-based approach works best on applications with many function

calls, as each call triggers the shadow-stack and hence the state-changing logic. However,

in benchmarks and applications with long-running loops without function calls, we missed

even frequently occurring races. This is due to the time points when the detector state is

changed: Often the only calls made in these long-running loops come from the synchroniza-

tion mechanisms. These mechanisms are often implemented using multiple call statements,

54

6.3 Evaluation

which distorts the relation between the number of calls and the number of processed memory

references. In this case, we observe a large f-segment, containing many memory accesses

followed by many calls with only few memory references. As the exact distribution of mem-

ory references per function call strongly depends on the application, we cannot provide a

generic model to calculate the detection probability.

If the interesting code section does not contain any calls (e.g. a loop), we either catch all

references or none. This is due to the detector state which is only changed on calls. While

we could lessen this issue by also changing the state in the clean-call (buffer full) event,

this further degrades the results: If we start with an enabled detector, we capture the first

n references, then process the buffer and recalculate the sampling decision. This disables

the detector and hence, no further references are captured. This implies that no further

clean-call is executed. Unfortunately, we found no efficient solution to recover from this

situation. In future iterations of DRace we plan to investigate this issue further and possibly

instrument a small portion of jumps as well.

With reference-based sampling the race detection probabilities are more predictable. How-

ever, the overhead of the additional logic that has to be executed on each memory reference

is significant. Finally, this increases the minimal overhead we can achieve, even if exten-

sive sampling is used. In our opinion block-based sampling should be used in time critical

applications, even if the detection accuracy is less predictable.

Overhead Comparison

Figure 6.5 (left) shows the execution time of the “sampler” mini-app for a growing sampling

period. Here, the overhead of the block-based sampling technique is significantly lower

compared to the reference-based one for small sampling periods. For larger periods the

execution times converge. We explain this through the instrumentation that is added to

each memory referencing instruction. Consider the inserted instructions (Listing 6.1) which

are executed on both a skipped and a sampled instruction: In the block-based case, skipping

an instruction requires just one additional read of the detector state. In contrast to that,

reference-based sampling requires one additional read and a write to the control block, which

includes the sampling counter.

For references which are sampled, two additional memory accesses are required to update

the sampling counter: one to read the next period length and one to store the new control

block. This explains why the overhead of this approach grows hyper-exponentially when

reducing the sampling period (i.e. processing more events). To ensure that approximately

the same number of references is sampled in both settings, we track this number as well.

The results are visualized in Figure 6.5 (right). Here we also observe that the variance in the

number of sampled references in the block-based setting remains low for sampling periods

up to 211.

55

6 Performance Optimization

21 23 25 27 29 211

sampling period

102

103

104

105

106
ex

ec
ut
io
n
tim

e
[m

s]

execution time
ref. based
block based

21 23 25 27 29 211

sampling period

102

103

104

105

106

107

108

m
em

or
y
re
fe
re
nc

es

sampled references
ref. based
block based

Figure 6.5: Execution time and processed memory references for both reference based and
block based sampling.

In real world application we expect the overhead to be smaller, as these applications are

not purely memory bound. The evaluated benchmark “sampler” implements the worst case

situation, where almost all instructions are reads or writes to the memory.

In future iterations of DRace we plan to further reduce the number of memory accesses

by combining multiple values and states in one 64 bit value. Additionally, multimedia or

vector registers could be used as most applications do not use them.

6.3.2 Dynamic Scoping

With dynamic scoping we try to exclude high-traffic application parts from the analysis. As

these parts have to be located first, each executed fragment of the application is analyzed

at least n times before the instrumentation is removed. We further observe that races are

mostly detected on the first few executions of a program section. This enables us to analyze

every fragment with full instrumentation and to remove the instrumentation later on. We

may only remove the memory tracking instrumentation, but not the instrumentation of

calls to synchronization logic. As most overhead comes from the tracking and processing of

memory references, this is not a limitation. For non-instrumented blocks we measured an

execution overhead of ≈ 20% compared to the native execution.

We achieved best results by just using DynamoRIO’s internal differentiation between

traces and normal fragments. Here, our client does not add any additional overhead as the

logic is directly implemented in DynamoRIO. However, we have to admit that this approach

is limited to tracking frequent basic blocks, including frequent instruction pointers. What

we are more interested in is a combination of instruction pointer and memory location.

Otherwise concurrent accesses to dynamically calculated memory locations might not be

56

6.3 Evaluation

processed properly. Unfortunately, we did not find a solution to implement this tracking

efficiently.

Nonetheless, we observed that a tracking at the granularity level of fragments is sufficient

to find most races. In the case of our mini-apps, this strategy proved to be best as we were

able to find all races while achieving the lowest total overhead among all tested strategies.

Tests on real world applications are evaluated in the next chapter.

57

7 Case Studies

In this chapter we evaluate our tool DRace on real-world applications and show that our

theoretical considerations also apply in this setting. We further demonstrate the impact

of sampling and scoping on the runtime overhead as well as the detection quality. When

applicable, we compare our results with the Intel R© Inspector XE and show that our tool is

superior in both overhead and detection accuracy.

Cluster Similar Races Often, a single data race is detected multiple times. To avoid print-

ing the same race over and over again, the detectors group similar races and just report the

first occurrence. This reduces the size of the report and makes it easier for the developer to

find the actual root cause. However, when comparing multiple race detectors this clustering

becomes a problem as not all detectors follow the same logic. In our case, the only applicable

detectors are the Intel R© Inspector and the TSan which is included in DRace.

Here, we observed that the TSan treats two races as equal only if both accessed memory

entries, rw-mode per access and the first callstack do exactly match. In contrast to that, the

Intel R© Inspector groups races on the accessed memory and the top-entry of both callstacks

only. By that, the number of races which are reported by TSan is significantly higher than

what Intel R© Inspector reports. For a fair comparison we agree on the Intel R© Inspector logic

and summarize the TSan reports accordingly.

7.1 Industrial Application

We analyzed an industrial human machine interface application which is written in C++

using the Qt5 Graphical User Interface (GUI) libraries. As the application is confidential, we

can neither provide any quantitative numbers nor source code information. Nevertheless we

include this application as it shows the extendability of DRace and it serves as an example

of how to perform a data race analysis. The general idea is to perform the analysis itera-

tively. This means, we first observe the found data races, locate and annotate the missing

synchronization procedures and re-run the detector. Additionally, we annotate or exclude

the benign races.

At first we start with the default instrumentation configuration of DRace and use a long

sampling period of 1024 to locate (un-instrumented) synchronization procedures by looking

59

7 Case Studies

at the observed races. After every iteration we reduce the sampling-period until we reach a

point where the responsiveness of the GUI significantly drops.

Qt5 Synchronization The Qt5 synchronization procedures are implemented in the Qt head-

ers. Hence, the logic is directly bundled with the application using it and executed in the

user level. A tracking of the locks using the OS’ synchronization API is not sufficient, as the

QMutex implementation uses a combination of a fast Spinlock and a native lock to improve

the performance. Additionally, we do not want to annotate this would require us to either

modify the internal Qt sources or to insert code all over the target application.

Instead, we use the debug information of the application binaries to locate the instances of

synchronization functions. This is supported in DRace by adding the aquire and release

symbol names to the corresponding entries in the configuration file. Here we obtain the

symbol names from the official documentation.1 We follow this procedure for all other Qt

synchronization procedures similarly.

Small String Optimization and Allocators After we added the Qt5 synchronization data

races appear that are related to lock-free memory allocators and string classes. These topics

are often related, as many string implementations have an optimization for short strings

(strings up to an arbitrary length). These small strings are allocated on the stack by using

a buffer in the string object. If the buffer is too small, memory is allocated on the heap by

possibly using an allocator. In case of custom (user-level) allocators, the allocator has to

ensure that no memory is published twice. Often this is done using lock-free data structures.

These lead to false-positively detected data races, if their logic is not annotated.

Challenges We found many data races related to efficient string implementations. However,

it is tricky to finally decide if a reported data race is actually a correctness issue. In highly

optimized implementations often only the team that initially developed the code is able

to verify this. Finally, we reported the results back to the development team for further

analysis.

This is not a particular problem of DRace, but data race detection in general. Hence,

we recommend introducing this technique as early as possible in the development process

to annotate these cases. Starting with a race-free code base makes it easier to find newly

added races as the user is not tamped with many false positives. Finally, the race detection

can be integrated into the continuous integration process.

Performance and Applicability Previous attempts to analyze the target application using

the Intel Inspector XE failed, as the application crashed after a few minutes during the

startup phase. We suppose that this is related to the memory consumption of the tool

1http://doc.qt.io/qt-5/qmutex.html

60

7.2 Managed Application

which is higher than the available Random Access Memory (RAM) of the machine. This

also applies to the coarsest grained detection and instrumentation settings.

With DRace we were able to analyze this application by using an instrumentation sampling

period of 5 and a sampling period of 20. Using this setting, the GUI remained responsive and

data races were reported. Additionally, we were able to speed up the analysis by externally

disabling the detector during the startup phase. This reduced the startup time from 5

minutes to 30 seconds.

Static scoping turned out to be tricky without deeper knowledge in the architecture of the

application, as we were not able to spot memory intense sections. With dynamic scoping

we were able to further reduce the runtime overhead by a factor of 2x to 5x at the cost of

possibly missing some data races.

7.2 Managed Application

As a proof of concept we analyzed a managed sample Dotnet Core application that demon-

strates basic features of ASP.NET Core: The “West Wind Album Viewer” is a showcase

application consisting of a backend, written in C# and a web frontend based on AngularJS.

The source code is publicly available on GitHub.2 We choose this application mainly because

the communication between the frontend and the backend imposes time constraints.

The application internally uses a database with music albums and provides a user interface

to view and modify the data. The database uses “SqLite” and is bundled with the applica-

tion. Hence, it is instrumented along with the rest of the application. For the performance

analysis, we measure the following operations:

1. Startup: the time until the web frontend becomes active

2. Overview: the album overview page, where all albums are shown including a short

description

3. Album: a page that shows all information regarding a single album

We run the analysis with the settings shown in Table 7.1. A sampling period of infinity

corresponds to a disabled detector

Performance A challenge in this context was the application startup phase, where ≈ 170

modules where loaded. For each Dotnet internal module, debug information is queried using

the MSR. This took in average 15 ± 2s in total if the debug information is already cached,

which is in average ≈ 90ms per module. If the debug information is not in the cache, it is

downloaded which takes a few second per module, depending on its size.

2https://github.com/RickStrahl/AlbumViewerVNext

61

7 Case Studies

setting sampling period instr. period mode exclude stack scoping

(1) [2 − 64] 1 fast-mode yes no
(2) ∞ 1 fast-mode yes no
(3) ∞ ∞ fast-mode yes no

(4) DynamoRIO without DRace
(5) native execution

Table 7.1: Settings of DRace used in the West Wind Album Viewer evaluation.

We experimented with disabling the detector during this phase which reduced the total

startup time from 74s to 55s for sampling period T = 2. This shows that the major overhead

during the startup phase is due to the module handling and instrumentation but not due to

the race-detection itself. With T = 1 we were not able to run the program, as timeouts of a

heartbeat procedure occurred. Figure 7.1 shows the startup time and times for two requests

for various settings and sampling rates.

We observe that large parts of the overhead during the starting phase are created by

DynamoRIO (setting 4). As DRace uses DynamoRIO, this defines the minimal possible

overhead DRace could achieve. The additional slowdown in setting (3) is generated by the

analysis and instrumentation of calls (shadow stack, see Section 4.4) and of synchronization

procedures (see Section 4.3.4).

Setting (2) defines the baseline for sampling (setting 1), as a sampling period of Ts = ∞

means that no reference at all is analyzed. The difference in the overhead between the

settings also depends on the workload. During the startup phase, the module processing and

instrumentation mainly accounts for the overhead. In the other two scenarios, the overhead

is predominantly due to the processing of the instrumented code. Here, we consider only the

second execution of each scenario, as the first execution triggers a just-in-time compilation

and instrumentation of the newly generated machine code. Additionally, we observe that

the effect of sampling is more visible in these scenarios, as now the overhead of the analysis

becomes dominant.

Results We found many races that are related to a concurrent queue implemented in

System.Collections.Concurrent. Here, custom synchronization or tasks are used which is

currently not implemented in DRace. The symbol lookup worked correctly and the obtained

callstacks where correct. However, inlined functions did not show up as we currently just

rely on the shadow stack information (see Section 4.4). This is an issue for large Dotnet

applications as they heavily use inlining. In future iterations of DRace, we plan to refine the

callstacks by using the ICorProfiling API.

62

7
.2

M
a
n
a
g
ed

A
p
p
lica

tio
n

21 22 23 24 25 26

sampling period

0

10000

20000

30000

40000

50000

60000

70000

ex
ec

ut
io

n
tim

e
[m

s]
startup

DRace
DRace Ts = ∞
DRace Ti = ∞
DynamoRIO
native

21 22 23 24 25 26

sampling period

0

10000

20000

30000

40000

50000

60000

70000

ex
ec

ut
io

n
tim

e
[m

s]

overview
DRace
DRace Ts = ∞
DRace Ti = ∞
DynamoRIO
native

21 22 23 24 25 26

sampling period

0

1000

2000

3000

4000

5000

ex
ec

ut
io

n
tim

e
[m

s]

album

DRace
DRace Ts = ∞
DRace Ti = ∞
DynamoRIO
native

Figure 7.1: Times for the startup and two application requests of the West Wind Album Viewer. For Ts = ∞ no reference is sampled,
for Ti = ∞ no memory access is instrumented.

63

7 Case Studies

7.3 Open Source Applications

To show the universal applicability of DRace we run the tool on two open source applications:

a publicly available file manager and compression tool “7-zip” as well as a ray tracer (“POV-

Ray”). We benchmark this application with with various performance tuning options of

DRace to compare the impact on both found races and tool overhead.

The analysis is done on a consumer grade notebook with 16GB of memory and 2 physical

CPU cores, using hyper-threading with 2 threads per core. To avoid a colored view on the

results, we show the raw number of races our tool outputs. Races are just merged, if they

share two identical stack traces. Hence, we might find many races, even if there is actual

just one concurrency issue. Additionally, we observed that especially for GUI applications

most races are benign races.

7.3.1 7-Zip File Manager

In this test, we use the GUI version (“7zFM.exe”) and analyze a predefined click sequence of

events. We do that to compare different settings of DRace for the same task, and finally to

get reproducible results. Here we compare two common scenarios: extracting a ZIP archive

(1) and calculating a checksum of another archive (2). For practical reasons we choose the

ZIP archive in a way such that a single measurement takes at most five minutes.

Setting 1: ZIP Extraction

1. start “7zFM.exe”

2. extract embb1.0.0.zip

(Siemens/EMBB 1.0.0 Release3)

3. close “7zFM.exe”

Setting 2: Checksum Calculation

1. start “7zFM.exe”

2. open (inspect) boost_1_68_0.zip

(Boost 1.68.0) Release4)

3. calculate sha256 checksum of archive

4. close “7zFM.exe”

Preparation

To validate the race detection on this application, we inserted five artificial data races in

the adapter between the progress dialog and the extraction algorithms. We did this by

removing the critical sections around the accesses. As the protected data is only used to

display statistics regarding the deflation progress, the correctness of the extraction process

is not affected. For the exact positions in the code, we refer to the Appendix 3.

We evaluate the performance tuning strategies “static sampling” and “dynamic scoping”

on this application regarding both runtime overhead and the number of detected races. To

3https://github.com/siemens/embb/releases/tag/v1.0.0
4https://dl.bintray.com/boostorg/release/1.68.0/source/

64

7.3 Open Source Applications

differentiate between the overhead added by the detector and the overhead of the instru-

mentation itself, we perform all strategies also with the “dummy” detector. Of course, the

dummy detector does not detect any races, but it shows that the overhead of the instrumen-

tation itself is small.

Sampling

Figure 7.2 visualizes the effect of sampling on both the runtime overhead and the race

detection on the 7-zip benchmark. In setting one, the racy sections are executed ≈ 1200 times

per execution. For sampling periods up to T = 32, all race-causes are correctly identified.

Only the number of different callstacks which result in a race decreases, which is not an

issue as the cause is always the same. For larger sampling periods, no data races at all are

discovered. In these cases, the data races are missed as possibly unrelated synchronization

prevents the Happened Before logic to detect a race (see Sec. 3.1.2, Fig. 3.2). In setting two,

the racy sections are less often executed and hence the impact of sampling on race detection

is larger. Here we already miss data races if sampling is applied at all. For sampling periods

up to T = 8 we correctly detect three out of five total data races (Figure 7.2 bottom right).

The overhead during this benchmark ranges from 1.4 to 4x, where 1x means no overhead.

Here we discovered that the relatively small overhead is due to the I/O bound task: When

extracting the zip-archive most CPU cycles are spent in creating the extracted files on disk.

Hence, most of the race detection logic is performed during the otherwise wasted CPU time.

For large sampling periods the overhead converges against a fixed value. We expect that,

as the sampling only affects the processing of optional events (see Section 4.1). Both manda-

tory events and the overhead due to the added instrumentation (see Section 6.1.2) remains

constant. When comparing the difference in the overhead between the dummy and the

TSan detector, we directly see the cost of processing mandatory events. In the checksum

calculation benchmark (setting 2), more synchronization events are processed and hence this

difference is larger.

Cross Validation of Sampling Model With the data from the “7-zip” benchmark (setting 1)

we cross validate our assumptions made in Section 6.1.1. There, we assumed that for a

particular race, 2×10−5 of all instructions of a target application are racy. This was already

one magnitude more pessimistic than what the authors of [She+11] estimated.

In the “7-Zip” run with sampling period T = 1 (no-sampling) we observed 33 races by

analyzing ≈ 125 million memory references. With the further assumption that none of these

races share a memory location, there must be 33×2 = 66 unique racy locations. Given that,

we calculate m
t

= 33
125×106 ≈ 26 × 10−8 (for a particular race).

However, we do not know how often a racy location has been processed exactly, but from

the difference between the test with T = 32 and s = 64 (boundary) we estimate the following:

65

7 Case Studies

ZIP Extraction (1)

21 23 25 27 29

sampling period

1.0

1.2

1.4

1.6

1.8

ov
er

he
ad

time compared to native
Detector (tsan)
Instrumentation
DynamoRio

21 23 25 27 29

sampling period

0

5

10

15

20

25

30

ra
ce

s

detected data races
raw
causes

Checksum Calculation (2)

21 23 25 27 29

sampling period

1.0

1.5

2.0

2.5

3.0

ov
er

he
ad

time compared to native
Detector (tsan)
Instrumentation
DynamoRio

21 23 25 27 29

sampling period

0

10

20

30

40

50

60

ra
ce

s

detected data races
raw
causes

Figure 7.2: 7-zip: relative execution time compared to native execution (left) for various
period length. For sampling periods larger than the boundary (dashed vertical
line), data race causes are missed. The right graph shows detected races and
race-causes.

66

7.3 Open Source Applications

ZIP Extraction (1)

1:full 2:excl s 3:excl s+t 4:excl s+l 5:excl s+lf
0

1

2

3

4

ov
er
he

ad

time compared to native
DynamoRio
Detector (tsan)
Instrumentation
Inspector XE

1:full 2:excl s 3:excl s+t 4:excl s+l 5:excl s+lf
0

10

20

30

40

50

60

ra
ce

s

detected data races
expected
raw (tsan)
causes (tsan)
causes (XE)

Checksum Calculation (2)

1:full 2:excl s 3:excl s+t 4:excl s+l 5:excl s+lf
0.0

2.5

5.0

7.5

10.0

12.5

ov
er

he
ad

time compared to native
DynamoRio
Detector (tsan)
Instrumentation
Inspector XE

1:full 2:excl s 3:excl s+t 4:excl s+l 5:excl s+lf
0

10

20

30

40

50

60

ra
ce

s

detected data races
expected
raw (tsan)
causes (tsan)
causes (XE)

Figure 7.3: 7-zip: relative execution time compared to native execution (left) for various
scoping strategies. The right graph shows detected races and race-causes. The
first two scenarios are evaluated with Intel R© Inspector XE as well.

If we plug the calculated m
t

into Equation 6.2, we would expect to catch 40% of all races

with s = 64. This is obviously not the case (in fact, we did not find any).

Hence, we can conclude that a decent amount of races only occur rarely. A deeper in-

vestigation of the benchmark code reveals that 95% of all processed memory references are

located in the compression module, which has a much lower race-density. Additionally, the

racy GUI updates are triggered by a timer and account only for very few memory accesses per

iteration. The synchronization code between two updates of the GUI prevents the Happened

Before logic to capture these races if extensive sampling is applied.

This confirms that this model is only applicable to application parts with very long running

loops. This holds only partially in this setting, as the GUI update thread runs just for a

very short time per iteration. Nonetheless, even in this setting sampling has proved to

be a suitable method to reduce the runtime overhead while still maintaining a reasonable

detection probability.

Dynamic Scoping

With dynamic scoping we are able to exclude frequent code sections from the analysis after

they have been executed a few times. In theory this combines good race detection results

67

7 Case Studies

setting tool sampl. period instr. period exclude stack scoping

(1) DRace/ Inspector 1 1 no no
(2) DRace/ Inspector 1 1 yes no
(3) DRace 1 1 yes excl-traces
(4) DRace 1 1 yes lossy
(5) DRace 1 1 yes lossy-flush

(6) DynamoRIO without DRace
(7) native execution

Table 7.2: Settings of DRace and Intel R© Inspector XE used in the “7-zip” scoping evaluation.

with a low overhead. Here we compare the scenarios listed in Table 7.2. The results are

visualized in Figure 7.3. For a comparison we also run the benchmarks using the Intel R©

Inspector XE. Here we use the latest version available at time of this Thesis.5 For a fair

comparison we measure the time beginning at the execution of the analysis until all data race

results are reported. Additionally, we use the “use-maximum resources” switch, as otherwise

no data races are detected in this setting.

In contrast to the results in Section 6.2.1 we observe that the exclusion of stack accesses

does only reduce the overhead in some settings. A inspection of the source code executed in

setting one revealed that almost all memory accesses are heap accesses and hence this opti-

mization only affects a small share. The lowest overhead is achieved when traces are excluded

(scenario 3). In this scenario code sections which are marked as frequent by DynamoRIO

are excluded. While this avoids the overhead of tracking frequent IPs, we have no control on

the minimal number of executions of this IP. This also explains why only three out of five

data race causes are detected in the ZIP extraction benchmark. In the checksum calculation

benchmark, less data races are detected as the executed code uses more synchronization.

The settings (4) and (5) both use the lossy-counting approach (see Section 6.2.1) to identify

frequent IPs. This results in more fully instrumented executions before the dynamic scoping

kicks in. Hence, we detect more data race causes. The difference between setting (4) and (5)

is that the first one does not change the instrumentation but disables the detector during a

function starting with a frequent block. In the second case, the instrumentation is removed

from all frequent basic-blocks which reduces the memory accesses per execution of this block.

Additionally, the scoping is more precise as there is not always a direct mapping between

basic blocks and function calls as the basic blocks have a limited size. This explains why

setting (4) does only detect four causes while the logically equivalent setting (5) does detect

all five causes correctly.

When comparing the overhead between setting four and five, the additional overhead per

function call becomes visible: to check if the next f-segment is frequent, a lookup in the

frequency histogram is necessary. This matches the results in Section 6.2.1 that measured

5Version: Intel R© Inspector XE 2018, Update 4 (build 574143)

68

7.3 Open Source Applications

that the lossy-flush strategy is more efficient in most cases, especially if the histogram

does not change frequently.

Non-Artificial Races

We found two data races which turned out to be benign races. Both races are related to the

progress dialog: When an action takes longer than a given time span, a progress dialog is

opened. This is done in a second thread, where a Boolean flag is set during the initialization

that the dialog has been opened. When the action is finished, it is checked if this flag is set

and a message is displayed in the dialog. The accesses to the flag are neither synchronized

nor locked. This is ok for x64 systems as loads and stores of a size up to 64 bit are always

atomic. In other words, no half-loads happen on these values. However, the visibility of the

change depends on the memory model of the CPU as well. For other target architectures

like ARM an atomic operation with memory_order_relaxed should be used.

7.3.2 POV-Ray Raytracer

The “Persistence of Vision Raytracer” is a 3D software raytracer available on Windows and

Linux, known for its photo realistic raytracing capabilities. It is freely available to the public

in both binary and source code format.6

While POV-Ray does not include a 3D modeler, the to-be-rendered scene is specified using

a custom scene description language. In contrast to common raytracers, POV-Ray internally

represents objects by using their mathematical definitions instead of triangle meshes. This

makes it possible to create good-looking scenes with only a few kilobytes in scene source

code.

We choose this application as it is known for its highly optimized and compute intensive

implementation. This includes a comprehensive usage of the vector and multimedia CPU

registers, as well as cache-optimized data accesses. Hence, we expect that possible trans-

parency errors of DRace would show up in this setting. Additionally, we expect the overhead

per instrumented memory reference to be higher than normal, as it is unlikely that we find

dead registers to avoid the spilling overhead (see Section 4.3.3). Hence, the required registers

have to be saved before each inline instrumentation and restored afterwards. This makes

it an ideal candidate to both verify the transparency of DRace, as well as to measure the

overhead of our tool.

Benchmark Setting

We evaluate the performance of DRace on two scenes that are shipped with the POV-Ray

executable. Each scene is rendered with a resolution of 480 × 270 pixels and an anti-aliasing

6http://www.povray.org/download/

69

7 Case Studies

(a) quilt1.pov (b) optics.pov

Figure 7.4: Scenes that are rendered during the POV-Ray benchmark.

21 23 25 27 29 211

sampling period

5

10

15

20

25

30

ov
er

he
ad

time compared to native
Detector (tsan)
Instrumentation
DynamoRio

(a) quilt1.pov

21 23 25 27 29 211

sampling period

5

10

15

20

25

30

35

ov
er

he
ad

time compared to native
Detector (tsan)
Instrumentation
DynamoRio

(b) optics.pov

Figure 7.5: POV-Ray: relative execution time compared to native execution for various pe-
riod length.

factor of 0.3. Here, we measure the overhead of DRace using both the TSan and the “dummy”

detector backend. For practical reasons we exclude all stack accesses from the detection to

finally limit the execution time of a single benchmark to 40 minutes. To measure the impact

of sampling on the overhead, we evaluate all sampling periods from T = 1 to T = 4096

which are powers of two.

As we were not able to compile POV-Ray with debug information we do not get symbol-

ized callstacks on the detected races. Hence, we present only measurements regarding the

overhead of DRace. According to the raw number of reported data races which resides in

the hundreds, we assume that most of them are benign races.

70

7.3 Open Source Applications

Results

We were able to perform the analysis for sampling periods up to T = 1 (no sampling) using

both the TSan and the “dummy” detector backend. For a comparison we also tried to run

the benchmark using the Intel R© Inspector XE, but we did not find a setting where POV-Ray

was able to start. With DRace, we did not observe a single application crash during our

benchmark measurements.

Figure 7.5 shows the measured overhead of DRace on both scenes compared to native

execution. The benchmark execution took 180 seconds for the “quilt1.pov” (a) scene and

1820 seconds respectively for the “optics.pov” (b) scene with sampling period T = 1. During

the execution, DRace processed ≈ 10 × 109 (a), ≈ 133 × 109 (b) memory references.

As the POV-Ray application is compute-bound the analysis of data accesses cannot be

performed during idle CPU periods. Hence, the overhead of 8x to 36x (compared to native)

is significantly higher than what we observed in the 7-Zip benchmark.

Similar to the 7-Zip benchmark we observe that the overhead converges against a fixed

value for large sampling periods. Due to the optimizations in POV-Ray, no dead registers are

available to be used by DRace’ inline instrumentation. Hence, a constant overhead remains

even for large sampling periods as three registers have to be preserved and restored on each

memory referencing instruction. Finally, this leads to a minimal overhead of factor 8.

In Figure 7.5 (b) we observe a spike in the overhead at sampling period T = 2. To ensure

that this is not an outlier, we executed this setting with T = [1, 2] three times with approx-

imately equal results. Finally, this turned out to be due to frequent re-calculations of the

sampling decision (see Section 6.1.3) resulting in a higher L2 cache miss rate. Without sam-

pling, less logic has to be executed per call, as the sampling related parts are skipped. This

increases the locality of the code resulting in a higher cache hit rate and better performance.

71

8 Conclusion and Future Work

In this chapter we discuss the previous work and point out future ideas to further improve

DRace. Finally, we summarize this thesis.

8.1 Revisiting the Objective

After a short introduction on aspects of data race detection, we specify the goals of this

thesis and highlight our contributions (Chapter 1). In Chapter 2, we locate our work in the

surrounding field of applications. Subsequently, we outline existing work related to this topic

(Chapter 3). Here, we identify shortcomings of existing detectors in the context of large and

real-time applications.

In the following Chapter 4, a new data race detector is shaped which provides novel fea-

tures to approach the shortcomings of the existing tools. Here we discuss the two main

goals “Exchangeable Race-Detection Algorithm” and “Customizable Instrumentation”: For

the former goal, we specify a generic interface to separate the detection algorithm from

the instrumentation. Finally, this creates a framework for data race detection which sup-

ports multiple algorithmic backends. The second goal focuses on the instrumentation itself:

Here we cover strategies to efficiently trace the memory accesses and the related callstacks.

Additionally, we present options to extend the instrumentation to work with custom syn-

chronization patterns.

In Chapter 5, managed code applications based on the Dotnet runtime are discussed. We

demonstrate that a uniform processing of managed and native code is possible and that

cross-code data races are detected properly. Further, we discuss strategies on how to per-

form symbol resolution on managed code that is running under a dynamic instrumentation

framework. Finally, we present an enhanced strategy to handle user-level synchronization in

managed code which has not been implemented prior to our work.

Chapter 6 covers a set of sampling and scoping techniques to reduce the runtime overhead

of the data race detection. We discuss a theoretical model to predict the influence of sampling

on the accuracy of the data race detection as well as multiple strategies to implement the

sampling logic. Subsequent, the model and its implementation is evaluated on a sample

application. Multiple scoping approaches are discussed to select interesting parts of the

target application manually and dynamically at runtime. Finally, we evaluate the strategies

on managed and native demo applications regarding overhead and detection accuracy.

73

8 Conclusion and Future Work

The last Chapter 7 covers an evaluation of the previously discussed features of DRace

on real world applications. Here, we show that DRace is suited to analyze a native in-

dustrial application which is bound by external time constraints. We further evaluate the

performance optimization strategies on a managed application as well as on two open source

applications and finally show that DRace fulfills the goals specified in the problem statement

(Section 1.1).

8.2 Future Work

The next goals are to evolve DRace from the beta state to a tool that can be used produc-

tively. One step regarding this is to further optimize the instrumentation:

A good starting point in this context is to optimize the inline instrumentation to reduce

the number of additional memory accesses. We further evaluate how to reduce the num-

ber of clean-calls by combining subsequent calls. This should improve the performance on

synchronization heavy applications. Additionally, we work on reducing the complexity and

cost of the memory processing logic to further reduce the overhead of the detector. In this

context we plan to avoid the pre-processing of events that are pushed into the detector which

is currently necessary for the TSan implementation. Last but not least we plan to implement

other data race detection algorithms like “FastTrack2” which are optimized for massively

parallel applications.

In some corner cases, locks in DRace interfere with application locks which sometimes

results in deadlocks. Here we plan to completely remove the necessity for locking by using

local and lock-free data structures if possible. Due to the client transparency limitations

we cannot use widely available implementations but have to implement custom versions of

these data structures.

Currently the support for managed code is in the state of a proof-of-concept. In the

future we plan to work intensively on this feature. Together with domain experts we plan to

improve this component by adding support for exclusions, improving the symbol lookup and

finally reducing the relatively high overhead discovered on managed targets. This is likely

to require modifications on the instrumentation framework (DynamoRIO) itself to better

support managed code components.

8.3 Summary

Modern applications have become more and more complex which creates a growing need for

tools to analyze these. Aspects in this context are correctness issues which are notoriously

hard to find with testing. Tools for correctness analysis of multithreaded applications have

been used for decades, but mostly limited to native applications and static build processes

as well as the unix OS. With modern programming languages that are executed using a JIT,

74

8.3 Summary

new tools are required to analyze a target application that is assembled at runtime. This

thesis conclusively shows a concept of a data race detector that supports a uniform analysis

of managed and native components. We present DRace, a framework for dynamic threading

analysis with focus on extensibility and performance tuning. To show the capability to

analyze hybrid applications, we extended DRace to support applications with Dotnet based

managed components.

One issue in the context of data race detection is the high overhead of the tool which

massively slows down the execution of the application. Here we show that a low overhead

data race detector is feasible by using sampling and scoping approaches. With DRace,

large applications can be analyzed which are beyond the scope of off the shelf applications.

External time constraints of the application under test can be met by using a combination

of sampling and scoping techniques.

We have made the source code of DRace available to the public, to be used and extended

for custom applications. We hope that our tool helps in finding correctness issues in large

applications and finally to reduce the number of concurrency related bugs.

75

Glossary

ABI Application Binary Interface.

API Application Programming Interface.

CIL Common Intermediate Language.

CLI Common Language Infrastructure.

CLR Common Language Runtime.

CPU Central Processing Unit.

CTI CPU instruction that modifies the instruction pointer.

DAC Data Access Component.

DAG Directed Acyclic Graph.

DLL Dynamic Link Library.

fragment sequence of machine-code instructions that terminates with a control transfer
operation (e.g. JMP, CALL, RET, etc.).

GCC GNU Compiler Collection.

GUI Graphical User Interface.

HB Happened Before.

IP Instruction Pointer.

JIT Just-in-Time Compiler.

LEA Load Effective Address.

LLVM The LLVM Project is a collection of modular and reusable compiler and toolchain
technologies. Despite its name, LLVM has little to do with traditional virtual machines.
The name “LLVM” itself is not an acronym; it is the full name of the project.

LTL Load-Time Locatable code is modified at load time and then must be executed from a
particular memory address.

MinGW MinGW, a contraction of ”Minimalist GNU for Windows”, is a minimalist devel-
opment environment for native Microsoft Windows applications.

77

Glossary

MPI Message Passing Interface.

MSIL Microsoft Intermediate Language.

MSR Managed Symbol Resolver.

MT Mersenne-Twister Engine.

NGen The Native Image Generator allows to pre-compile a CLI assembly for a specific target
architecture instead of letting the CLR do a just-in-time compilation at runtime.

OpenMP Open Multi-Processing is a API for shared-memory programming using multiple
threads in C and C++.

OS Operating System.

PDB Program database (PDB) is a proprietary file format (developed by Microsoft) for
storing debugging information about a program.

RAM Random Access Memory.

RNG Random Number Generator.

Spinlock a method to perform mutual exclusion of a code section by repeatedly checking
the state of a Boolean variable. The mechanism can be implemented in the user-
mode which avoids expensive calls to the OS synchronization procedures. For a C++
implementation see Appendix 1.

TLS Thread Local Storage.

TSan ThreadSanitizer.

Valkyrie Valkyrie is a GUI for the Memcheck and Helgrind tools which enables the user to
browse and inspect the analysis reports.

XML The Extensible Markup Language defines an encoding for documents in a format that
is both machine and human readable.

78

List of Figures

1.1 Layered architecture showing a hybrid application running under DRace. . . 3

2.1 Scope (blue) of this thesis located in the surrounding field of applications. . . 6

3.1 Example of the Happened Before relation. S1 ≺ S4 (same thread);
S1 ≺ S5 (happens-before arc SignalT1

(H1)−WaitT2
(H1)); S1 ≺ S7 (happens-

before is transitive); S4 ⊀ S2 (no relation).[SI09, p.63] 10

3.2 In pure Happened Before based detectors, the timing of spurious synchroniza-
tion events determines if a data race is found. 11

4.1 Process of inserting additional instructions into the instruction list. Orange
blocks represent CTIs, the mov instruction is going to be instrumented. 24

4.2 Visualization of the call-graph (colored bars) and a partitioning into
f-segments for a sample C++ program. 29

4.3 Internal architecture of DRace: The framework is purely event driven
by events from both DynamoRIO and clean-calls from the application instru-
mentation. 32

5.1 Layered architecture showing a hybrid application running under DRace. A
second process (MSR) is used for symbol lookup in the managed code parts.
Both processes communicate using shared memory. 37

5.2 Scenario where an external debugger attaches to the managed application
using the ICorDebug interface and the DAC structures. [Lan07a] 38

6.1 Probability to find a data race with various sampling periods T and sequence
length t, based on theoretical considerations. We assume that m

t
= 10−5 of

the total executed (memory-referencing) instructions are racy. 45

6.2 Each step of the processing pipeline adds overhead to the execution. As the
actual overhead heavily depends on the target application only estimates are
given. The constant part of the overhead cannot be avoided. 46

6.3 Differences between two sampling techniques and scoping visualized on a se-
quence of n memory references. The blue ranges are analyzed. 47

6.4 Time to find a data race with access probability of m
t

= 10−5 for various
sampling periods. The experiment is executed 10 times each, the error bar
denotes one standard deviation. 54

6.5 Execution time and processed memory references for both reference based and
block based sampling. 56

7.1 Times for the startup and two application requests of the West Wind Album
Viewer. For Ts = ∞ no reference is sampled, for Ti = ∞ no memory access
is instrumented. 63

79

List of Figures

7.2 7-zip: relative execution time compared to native execution (left) for various
period length. For sampling periods larger than the boundary (dashed vertical
line), data race causes are missed. The right graph shows detected races and
race-causes. 66

7.3 7-zip: relative execution time compared to native execution (left) for various
scoping strategies. The right graph shows detected races and race-causes. The
first two scenarios are evaluated with Intel R© Inspector XE as well. 67

7.4 Scenes that are rendered during the POV-Ray benchmark. 70
7.5 POV-Ray: relative execution time compared to native execution for various

period length. 70

80

Bibliography

[App11] Andrew W. Appel. “Verified software toolchain”. In: European Symposium on
Programming. 2011, pp. 1–17.

[Atz+16] Simone Atzeni et al. “ARCHER: effectively spotting data races in large OpenMP
applications”. In: 2016 IEEE International Parallel and Distributed Processing
Symposium (IPDPS). 2016, pp. 53–62.

[Bey+07] Dirk Beyer et al. “The software model checker b last”. In: International Journal
on Software Tools for Technology Transfer 9.5-6 (2007), pp. 505–525.

[Blä18] Luc Bläser. “Practical detection of concurrency issues at coding time”. In: Pro-
ceedings of the 27th ACM SIGSOFT International Symposium on Software Test-
ing and Analysis. 2018, pp. 221–231.

[Bru04] Derek L. Bruening. “Efficient, Transparent, and Comprehensive Runtime Code
Manipulation”. PhD thesis. MASSACHUSETTS INSTITUTE OF TECHNOL-
OGY, 2004.

[Bru18] Derek Bruening. The DynamoRIO API. 2018. url: http://dynamorio.org/

docs/.

[DNS05] David Detlefs, Greg Nelson, and James B. Saxe. “Simplify: a theorem prover for
program checking”. In: Journal of the ACM (JACM) 52.3 (2005), pp. 365–473.

[DS91] Anne Dinning and Edith Schonberg. “Detecting access anomalies in programs
with critical sections”. In: ACM SIGPLAN Notices. Vol. 26. 1991, pp. 85–96.

[FF09] Cormac Flanagan and Stephen N. Freund. “FastTrack: Efficient and Precise
Dynamic Race Detection”. In: (2009).

[FF10] Cormac Flanagan and Stephen N. Freund. “The RoadRunner dynamic analysis
framework for concurrent programs”. In: Proceedings of the 9th ACM SIGPLAN-
SIGSOFT workshop on Program analysis for software tools and engineering.
2010, pp. 1–8.

[FF17] Cormac Flanagan and Stephen N. Freund. The FASTTRACK2 Race Detec-
tor. 2017. url: http : / / dept . cs . williams . edu / ˜freund / papers / ft2 -

techreport.pdf.

[Hil+13] Tobias Hilbrich et al. “MPI runtime error detection with MUST: advances in
deadlock detection”. In: Scientific Programming 21.3-4 (2013), pp. 109–121. issn:
1058-9244.

[Hol97] Gerard J. Holzmann. “The model checker SPIN”. In: IEEE Transactions on
software engineering 23.5 (1997), pp. 279–295.

[HP00] Klaus Havelund and Thomas Pressburger. “Model checking java programs using
java pathfinder”. In: International Journal on Software Tools for Technology
Transfer 2.4 (2000), pp. 366–381.

81

Bibliography

[Huf54] David A. Huffman. “The synthesis of sequential switching circuits”. In: (1954).

[JT08] Ali Jannesari and Walter F. Tichy. “On-the-fly race detection in multi-threaded
programs”. In: Proceedings of the 6th workshop on Parallel and distributed sys-
tems: testing, analysis, and debugging. 2008, p. 6.

[KW10] Vineet Kahlon and Chao Wang. “Universal causality graphs: A precise happens-
before model for detecting bugs in concurrent programs”. In: International Con-
ference on Computer Aided Verification. 2010, pp. 434–449.

[KZC12] Baris Kasikci, Cristian Zamfir, and George Candea. “Data races vs. data race
bugs: telling the difference with portend”. In: ACM SIGPLAN Notices 47.4
(2012), pp. 185–198.

[Lam78] Leslie Lamport. “Time, clocks, and the ordering of events in a distributed sys-
tem”. In: Communications of the ACM 21.7 (1978), pp. 558–565.

[Lan07a] Rich Lander. Data Access Component (DAC) Notes. 2007. url: https://raw.

githubusercontent.com/dotnet/coreclr/master/Documentation/botr/

dac-notes.md.

[Lan07b] Rich Lander. Profiling. 2007. url: https://github.com/dotnet/coreclr/

blob/master/Documentation/botr/profiling.md.

[Luk+05] Chi-Keung Luk et al. “Pin: building customized program analysis tools with
dynamic instrumentation”. In: Acm sigplan notices. Vol. 40. 2005, pp. 190–200.

[Mag+02] Peter S. Magnusson et al. “Simics: A full system simulation platform”. In: Com-
puter 35.2 (2002), pp. 50–58.

[Mic17] Microsoft. Anatomy of a DbgEng Extension DLL. Ed. by Microsoft Hardware
Dev Center. 2017. url: https://docs.microsoft.com/en- us/windows-

hardware/drivers/debugger/anatomy-of-a-dbgeng-extension-dll.

[Mic18a] Microsoft. PE Format. Ed. by Microsoft Windows Dev Center. 2018. url:
https://docs.microsoft.com/de-de/windows/desktop/Debug/pe-format.

[Mic18b] Microsoft. Synchronization Functions. Ed. by Microsoft Windows Dev Center.
2018. url: https://docs.microsoft.com/en-us/Windows/desktop/sync/

synchronization-functions.

[MMN09] Daniel Marino, Madanlal Musuvathi, and Satish Narayanasamy. “LiteRace: Ef-
fective Sampling for Lightweight Data-Race Detection”. In: (2009).

[Muc+99] Philip J. Mucci et al. “PAPI: A portable interface to hardware performance
counters”. In: Proceedings of the department of defense HPCMP users group
conference. Vol. 710. 1999.

[MW07] Arndt Müehlenfeld and Franz Wotawa. “Fault detection in multi-threaded C++
server applications”. In: Proceedings of the 12th ACM SIGPLAN symposium on
Principles and practice of parallel programming. 2007, pp. 142–143.

[Nas17] Phil Nash. Catch2. 2017. url: https://github.com/catchorg/Catch2.

[NS07] Nicholas Nethercote and Julian Seward. “Valgrind: a framework for heavy-
weight dynamic binary instrumentation”. In: ACM Sigplan notices. Vol. 42. 2007,
pp. 89–100.

82

Bibliography

[OC03] Robert O’Callahan and Jong-Deok Choi. “Hybrid Dynamic Data Race Detec-
tion”. In: (2003).

[Ots+18] Yuto Otsuki et al. “Building stack traces from memory dump of Windows x64”.
In: Digital Investigation 24 (2018), S101–S110. doi: 10.1016/j.diin.2018.01.

013.

[Pat+11] Avadh Patel et al. “MARSS: a full system simulator for multicore x86 CPUs”.
In: Design Automation Conference (DAC), 2011 48th ACM/EDAC/IEEE. 2011,
pp. 1050–1055.

[Pau94] Lawrence C. Paulson. Isabelle: A generic theorem prover. Vol. 828. Springer
Science & Business Media, 1994.

[PS03] Eli Pozniansky and Assaf Schuster. “Efficient On-the-Fly Data Race Detection
in Multithreaded C++ Programs”. In: (2003).

[Sav97] Stefan Savage. “Eraser: A Dynamic Data Race Detector for Multithreaded Pro-
grams”. In: (1997).

[She+11] Tianwei Sheng et al. “RACEZ: a lightweight and non-invasive race detection tool
for production applications”. In: Proceedings of the 33rd International Confer-
ence on Software Engineering. 2011, pp. 401–410.

[SI09] Konstantin Serebryany and Timur Iskhodzhanov. “ThreadSanitizer – data race
detection in practice”. In: (2009).

[SL14] Young Wn Song and Yann-Hang Lee. “Efficient data race detection for C/C++
programs using dynamic granularity”. In: Parallel and Distributed Processing
Symposium, 2014 IEEE 28th International. 2014, pp. 679–688.

[Sut05] Herb Sutter. “The free lunch is over: A fundamental turn toward concurrency
in software”. In: Dr. Dobb’s journal 30.3 (2005), pp. 202–210.

[TA13] Andrew S. Tanenbaum and Todd Austin. Structured computer organization. 6.
ed. Boston: Pearson, 2013. isbn: 0132916525.

[THW10] Jan Treibig, Georg Hager, and Gerhard Wellein. “Likwid: A lightweight
performance-oriented tool suite for x86 multicore environments”. In: Parallel
Processing Workshops (ICPPW), 2010 39th International Conference on. 2010,
pp. 207–216.

[Tv07] Andrew S. Tanenbaum and Maarten van Steen. Distributed systems: principles
and paradigms. Prentice-Hall, 2007.

[Wen17] Maira Wenzel. Profiling Overview. Ed. by Microsoft. 2017. url: https://docs.

microsoft . com / en - us / dotnet / framework / unmanaged - api / profiling /

profiling-overview.

[Xam08] Xamarin. Cecil Mono: Bytecode inspector. 2008. url: http : / / www . mono -

project.com/Cecil.

83

Appendix

1 Spinlock Implementation

Listing 1: A spinlock implementation in C++ which does not require a context switch.

/**

* Simple mutex implemented as a spinlock

* implements interface of std :: mutex

*/

class spinlock {

std :: atomic_flag _flag = ATOMIC_FLAG_INIT ;

public :

inline void lock () noexcept

{

while (_flag . test_and_set (std :: memory_order_acquire)) { }

}

inline bool try_lock () noexcept

{

return !(_flag . test_and_set (std :: memory_order_acquire));

}

inline void unlock () noexcept

{

_flag . clear (std :: memory_order_release);

}

};

2 Dotnet Concurrent Increment

Listing 2: Demo C# application which concurrently increments a shared counter.

using System ;

using System . Threading ;

namespace MultithreadingApplication

{

class param

{

public int acc = 0;

}

class ThreadCreationProgram

{

public static void IncByOne (param p)

{

// alternatively use a System . Threading . Mutex

// or no locking at all for a racy

// increment

lock (p)

{

++(p.acc);

}

85

Appendix

}

static void Main(string [] args)

{

int numThreads = 2;

param p = new param ();

Thread [] threads = new Thread [numThreads];

for (int i = 0; i < numThreads ; i++)

{

Thread t = new Thread (() => IncByOne (p));

threads [i] = t;

}

for (int i = 0; i < numThreads ; i++)

{

threads [i]. Start ();

}

foreach (var t in threads)

t.Join ();

Console . WriteLine (" Value after {0} increments : {1}", numThreads , p.acc);

}

}

}

3 7-zip Data Race Locations

For the case study in Section 7.3 we use “7-zip” version 18.05 which can be ob-
tained from Sourceforge.1 We inserted data races into the following functions in file
ProgressDialog2.cpp:

• CProgressSync::Set_NumFilesCur

• CProgressSync::Set_NumBytesCur

• CProgressSync::Set_TitleFileName

• CProgressSync::Set_Status2

• CProgressDialog::UpdateStatInfo

1https://sourceforge.net/projects/sevenzip/files/7-Zip/18.05/

86

