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Abstract
Automatische Textgenerierung für finanzielle Berichte

Die vorliegende Masterarbeit gibt einen Einblick in die Theorie und Anwendung von verschie-
denen Methoden der Textgenerierung. Da viele Bereiche der Wirtschaft mit textbasierten Pro-
blemen zusammenhängen, wurde in dieser Arbeit, zur Erlernung der finanziellen Sprache, eine
Datenquelle der Jahresabschlüsse von über 5000 Unternehmen herangezogen. Mit Hilfe von
verschiedenen Algorithmen, die auf Neuronalen Netzen basieren, wurde versucht, Text, anhand
eines vorgegebenen Themas, automatisch zu generieren. Diese Automatisierung von wiederkeh-
renden und wiederholbaren Aufgaben könnte in vielen Situationen zur Einsparung von Zeit
sowie zur Vermeidung von menschlichen Fehlern führen. Die Masterarbeit ist vor allem an
Personen gerichtet, die ein starkes Vorwissen an statistischen und mathematischen Methoden
haben. Die Theorie und Praxisanwendung von Deep Learning ist keine Voraussetzung, da die
grundlegenden Konzepte in der Arbeit weitreichend beschrieben werden.
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1 Einleitung

In allen Bereichen des Lebens trifft man auf geschriebenen Text. Um nur ein paar Beispiele
zu nennen: Bücher, die man liest (in Papierformat wie auch Digitalformat), Briefe, die man
schreibt, sowie E-Mails, Reporte, Berichte und noch eine Menge mehr. Viele dieser Tätigkeiten
sind sehr zeitaufwendig, weil man sich erstens überlegen muss, wovon der zu verfassende Text
handeln soll und zweitens macht man sich Gedanken darüber, in welcher Form und in wel-
chem Stil der Text geschrieben werden soll. Beispielsweise bei E-Mails an Bekannte oder beim
Schreiben eines Buches will man sich Zeit nehmen und genau überlegen, um einen einmaligen
und persönlichen Text zu erhalten. Bei anderen Aufgaben, wie zum Beispiel beim Reporting
oder beim Schreiben eines Berichts, die oft eine vergleichbare Form annehmen und dazu die-
nen, gewisse Prozesse zu dokumentieren, möchte man nicht zu viel Zeit investieren, da diese
dem eigentlich zu behandelnden Problem gewidmet werden könnte. Oft sieht der Prozess des
geschriebenen Textes ähnlich aus, ist aber jedes Mal auf gewisse Zusatzinformationen zurecht-
geschnitten, weshalb immer erneut eine gewisse Zeit in Anspruch genommen werden muss.
In dieser Arbeit wird deshalb der Schwerpunkt auf finanzielle Berichte gelegt, da sie oft man-
datorisch sind und sehr detailliert sein müssen. Auf die genaue Struktur und den Aufbau dieser
Berichte wurde in den folgenden Kapiteln noch näher eingegangen.

1.1 Problemstellung

Hauptziel der Arbeit wird es sein, einen Algorithmus in Richtung einer vollautomatisierten
Textgenerierung zu konzipieren.

Der Prozess der Textgenerierung ist wie folgt aufgebaut: es ist notwendig, konstante, also sich
nicht verändernde, Sätze zu generieren. Diese Sequenzen dienen im nächsten Schritt als Anker
und Anfangssequenzen für den restlichen Text, der im zweiten und letzten Schritt generiert wird.
In der Regel folgen Texte der gleichen Art ähnlichen Schemata. Dies erlaubt es, eine einheitliche
Struktur zu bestimmen, die wiederum in einem automatisierten Prozess berücksichtigt werden
kann. Die Aufgabe besteht darin, dem Computer mit Hilfe eines Algorithmus die Sprache eines
gewissen Schreibstils, basierend auf bereits vorliegenden Texten, beizubringen. Diese erlernte
Sprache würde im Idealfall mit den, in den vorherigen Schritten generierten Anfangssequenzen
dazu führen, dass man sowohl konstante und strikte Sätze, die rein quantitative und infor-
mative Zwecke haben, als auch Sätze, die semantisch ausgerichtet sind, kombinieren könnte.
Zusammenfassend sind zwei Schritte notwendig, um einen Bericht vollständig automatisieren
zu können:

1. Bauen von konstanten Sätzen, die als Anfangssequenzen dienen.

2. Lernen von einem bestimmten Schreibstil, um Semantik in den Text zu integrieren.

Diese Masterarbeit wird sich hauptsächlich mit dem zweiten Punkt beschäftigen, da er den
Unterschied zu einem rein technisch generierten Text ausmachen kann. Darüber hinaus ist für
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viele Gebiete das Erstellen von text-basierten Aufgaben ein zeitaufwendiger Prozess, weshalb
die angewandten Methoden und das Wissen, die in dieser Arbeit generiert werden, von bedeu-
tendem Interesse sein können.

Die Problemstellung der Masterarbeit beschränkt sich folglich darauf, einen Algorithmus zu
entwickeln, der anhand einer Anfangssequenz selbstständig in der Lage ist, eine darauf folgende
Sequenz von Charakteren in eine logische Reihenfolge zu bringen und dadurch verständliche
Sätze zu bilden. Dies wird mit Hilfe von Recurrent Neural Networks (RNN) und genauer Long
Short-Term Memory (LSTM) Methoden erreicht. Diese werden unter anderem auch in der
Musik- und Spracherkennung verwendet und eignen sich besonders gut für Aufgaben, bei de-
nen zeitlich codierte Informationen erkannt werden müssen.

Eine besondere Schwierigkeit dieser Aufgabe besteht darin, dass Texte, im Gegensatz zur Mu-
sik und Bildern, die eher eine künstlerische Darstellung sind, sehr strikten grammatikalischen
Regeln unterliegen. Das bedeutet, dass ganz allgemein verstandene Fehler, bezugnehmend auf
Musik, als ein besonderes Attribut angesehen werden können, wobei ein Fehler im Text dazu
führen kann, dass der Sinn des Satzes oder des ganzen Textes missverstanden werden kann.
Dies kann weitaus größere Konsequenzen zur Folge haben.

Die Aufgabe wird auf Zeichen-Basis analysiert, was dazu führt, dass einerseits erreicht werden
kann, dass Wörter nicht einzeln aus dem Kontext gegriffen werden, weil sie als Sequenz von
Zeichen aufgenommen werden. Allerdings ist der Lernprozess einer solchen Darstellung viel
aufwendiger, da man die ganze Sprache vom Aufbau von Wörtern über die grammatischen
Zusammenhänge lernen muss. Die Rechenzeit auf Zeichen-Basis ist zudem viel aufwendiger als
beispielsweise bei Analysen auf Wörter-Basis.

Zu berücksichtigen:

1. Manche Arten von Texten, wie z.B. Berichte, können einen relativ komplizierten und
strikten Aufbau bezüglich der Sätze haben. Demnach kann das Erlernen einer solchen
Sprache technisch und lexikalisch sehr anspruchsvoll sein.

2. RNN‘s benötigen einen sehr großen Datensatz. Für manche Aufgaben könnten die vor-
handenen Texte nicht ausreichend sein. In diesem Fall könnten Texte aus einem anderen
Gebiet hinzugezogen werden, was einerseits der Bedingung des großen Datensatzes ent-
gegenkommt, aber andererseits dazu führt, dass sich die Sprache ändern kann und nicht
mehr genau der Sprache, der in erster Linie erlernten Richtung, folgt.
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1.2 Textgenerierung

Das Problem der Textgenerierung kann unterschiedlich angegangen werden - wie viel Text und
in welcher Form der Text generiert werden soll, hängt stark von dem behandelten Problem
ab. Die einfachste Möglichkeit, Text zu einem bestimmten Problem zu generieren, wäre es,
einen konstanten und universellen Text zu schreiben, der allerdings keine spezifischen Merkma-
le des individuellen Beispiels enthalten könnte. Eine zweite Möglichkeit bestünde darin, einen
konstanten Text zu schreiben, in welchen an den relevanten Stellen beispielsweise spezifische
Informationen (Text oder Zahlen) eingefügt werden. Diese Methode ist relativ einfach und ist
aus diesem Grund auch weit verbreitet. Der große Nachteil dieser Methode ist, dass die Infor-
mationen, die eingebaut werden, in Kombination mit dem restlichen Text dazu führen können,
dass der Sinn des Textes verloren geht. Dies würde nur gut bei solchen Texten funktionieren, in
denen Informationen weitergegeben werden, die keiner Beurteilung oder Meinung unterliegen.
Es wird also deutlich, dass man in Bezug auf manche Probleme nicht unbedingt von Textgene-
rierung sprechen kann, da der Text oft nur einmal generiert und unterschiedlich angepasst wird.

Ein weiterer Faktor, der für die textgenerierende Methode von Bedeutung ist, ist in welcher
Form das zu beschreibende Problem vorliegt. Beispiele von Inputs und Outputs, wie auch von
den verwendeten Methoden, findet man in der folgenden Tabelle wieder:

Tabelle 1: Beispiele Textgenerierung

Input Output Methode Beschreibung

Bild Beschreibung
des Bildes

CNN +
RNN

On the Automatic Generation of
Medical Imaging Reports

(Baoyu Jing 2018)

Spielergebnisse Spielberichte RNN

Spielberichte für die
Begegnungen des aktuellen

Bundesligaspieltags (retrescro
2018)

Stichwort Nachrichten-
artikel RNN I taught a computer to write like

Engadget (Souppouris 2015)

IFRS Zahlen Finanzbericht Lücken
füllen

Automatisierung von
Finanzberichten

Quelle: Eigene Darstellung

Wie man in Tabelle 1 sehen kann, wird immer öfter, in verschiedenen Bereichen, eine Deep
Learning Methode angewandt. Hierbei werden Methoden wie Convolutional Neural Networks
(CNN) und Recurrent Neural Networks (RNN), die im späteren Verlauf der Arbeit erklärt wer-
den, verwendet (Karpathy 2015). Bei manchen Anwendungsfeldern werden jedoch nach wie
vor Methoden verwendet, die auf konstanten Texten basieren. Zum Beispiel werden finanzielle
Berichte, basierend auf IFRS (International Financial Reporting Standards) Kennzahlen, von
manchen Unternehmen dazu verwendet, bestehende Lücken eines konstanten Texts zu füllen.
Hier ergibt sich demnach ein Anwendungsfeld, dass deutlich verbessert werden kann. Im ersten
Beispiel der Tabelle 1 geht es darum, gewisse Merkmale auf medizinischen Bildern zu erkennen
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und anschließend zu beschreiben. Für den ersten Schritt wurde ein CNN benutzt, um darauf
folgend die extrahierten Features mit Hilfe eines RNNs zu beschreiben. Im zweiten und dritten
Beispiel wurde Text anhand eines RNN generiert, wobei beim ersten der beiden nur das Er-
gebnis eines Spiels übergeben wurde, um den Spielbericht zu verfassen. Beim zweiten Beispiel
wird ein Thema vorgegeben, zu dem im Nachhinein ein Nachrichtenartikel geschrieben wird.
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2 Theorie

In diesem Kapitel wurde genauer auf die Theorie der angewandten Methoden eingegangen. Da
Deep Learning Methoden relativ komplex sind und diese die Summe vieler kleinerer analyti-
scher Schritte sind, ist dieses Kapitel in einer modularen Struktur aufgebaut. Die Wahl des
Encodings, Optimierung Algorithmus oder auch die Architektur des Neuronalen Netzes ist ar-
biträr - dies ermöglicht dem Leser, die für ihn relevanten Methoden und Algorithmen frei zu
wählen. Darüber hinaus ist dieser Bereich der Statistik ein sich schnell veränderndes Gebiet, in
dem immer häufiger neue Lösungen für unterschiedliche Probleme vorgestellt werden.

Im Unterkapitel 2.1 wurden verschiedene Möglichkeiten des Encodings der Daten, wie auch
die Vor- und Nachteile in Hinsicht auf die darauf folgenden Methoden, beschrieben. Das Un-
terkapitel 2.2 stellt das Gradient Descent und dessen Erweiterungen dar. Im Folgenden wurde
die Idee von Recurrent Neural Networks, mit Schwerpunkt auf Gated Recurrent Units und Long
Short-Term Memory Cells, vorgestellt. Da RNNs auf Neuronalen Netzen basieren, wurde im
ersten Schritt eine Einführung in die jeweiligen Elemente eines NN aufgezeigt.

2.1 Encoding

Das Encoding der Daten entscheidet darüber, wie der Algorithmus funktionieren wird, sowohl
aus Sicht der Inanspruchnahme von Rechenkraft, wie auch aus Sicht der Ergebnisse, die man
erhält. Erstens werden unterschiedliche Datentypen und Formate in Bezug auf deren Tensor
Aufbau, die die Grundlage jeder Deep Learning Methode darstellt, besprochen. Zweitens wird
die Ebene, auf der das Encoding stattfindet, definiert. Hierfür wird zwischen einem Zeichen-
basierten und einem Wörter-basierten Encoding entschieden. Im dritten und letzten Schritt
werden die zwei häufigst verwendeten Methoden des Encodings dargestellt und deren praktische
Anwendung anhand eines Beispiels erklärt.

2.1.1 Inputspace (Tensoren)

Der grundlegende Baustein eines jeden Machine Learning Algorithmus ist der Input, also die
Daten, die man zur Durchführung von Analysen benötigt. Daten können in Deep Learning die
unterschiedlichsten Formen annehmen, da dieses Gebiet verschiedenste Probleme lösen kann.
In Tabelle 2 werden Beispiele von Daten und deren möglichen Dateiformaten, in denen sie
gespeichert werden, dargestellt. Es ist gleichgültig, von welchem Datentyp man redet oder in was
für einem Format eine Datei gespeichert ist - man muss sich dennoch überlegen, wie man den
Input einheitlich transformieren kann. Der Input muss eine ganz bestimmte Form haben, damit
er in ein in Keras (Deep Learning Framework) entwickeltes Modell einfließen und verarbeitet
werden kann. Diese bestimmte Form nennt man Tensoren, woher auch der Name des Deep
Learning Programms von Google stammt - TensorFlow (Abadi et al. 2015). Egal ob man mit
Bildern, Videos, Audioaufnahmen oder Text arbeiten möchte - die Form, in der diese Daten
eingelesen werden, sind Zahlen, die als Tensoren verpackt werden.
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Tabelle 2: Zuordnung von Datentypen und deren Formaten

Type Format Tensor Dimension
Audio MP3, WAV, FLAC 4 D Tensor
Video AVI, MP4, FLV 5 D Tensor
Bild JPEG, PNG, BMP 4 D Tensor
Text TXT, RTF, JSON 3 D Tensor

Quelle: Eigene Darstellung

Tensoren sind eine Verallgemeinerung von Vektoren, da sie eine beliebige Dimension annehmen
können (Francois Chollet 2018). So ist ein null-dimensionaler Tensor eine einzige Zahl - Skalar
(Abbildung 1 a)). Ein ein-dimensionaler Tensor (1 D Tensor) wird als die Zusammensetzung
von mehreren Skalaren dargestellt, die einen Vektor bilden (Abbildung 1 b)). Hierbei gibt
es zwei Begriffe, die nicht verwechselt werden sollten: die Tensor Dimensionen, die bei einem
Vektor, wie bereits erwähnt, 1 beträgt und die Dimension des Vektors an sich. Bei einem Vektor
der Länge 5 beispielsweise, redet man von einem fünf-dimensionalen Vektor - dieser wiederum
hat aber nichts mit einem fünf-dimensionalen Tensor zu tun. Um sich die Dimension eines
Tensors besser vorstellen zu können, könnte man auch die Anzahl der Achse, in der die Daten
verbreitet sind, als Dimension des Tensors hernehmen. Eine Matrix wie auf Abbildung 1
c) hat die Dimension 5 auf 5 und ist somit ein 2 D Tensor. Wenn man diese 2 D Tensoren
aufstockt, erhält man, so wie in Abbildung 1 d) einen Datenwürfel, der ein 3 D Tensor
ist. Um entsprechende Tensoren der Dimension 4 und 5 zu erhalten, stockt man die jeweils
vorhergehende Daten der Struktur n D Tensor auf (Abbildung 1 e) und f)). In der Praxis
sind dies die häufigsten Beispiele von Tensoren. Es ist jedoch möglich, einen Tensor einer
beliebigen Dimension aufzubauen.
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Abbildung 1: Tensor Darstellung

(a) 0 D Tensor (b) 1 D Tensor

(c) 2 D Tensor (d) 3 D Tensor

(e) 4 D Tensor (f) 5 D Tensor

Quelle: Eigene Darstellung
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2.1.2 Zeichen- und Wörter-basiertes Encoding

Die Daten, die in dieser Arbeit verwendet werden, sind Textdokumente. Dies wurde genauer in
späteren Kapiteln besprochen, jedoch ist diese Information wichtig um festzustellen, mit wel-
cher Art von Tensoren gearbeitet wird. Da die Aufgabe darin besteht neuen Text zu generieren,
bestehen zwei Möglichkeiten der Ebenen. Die erste ist ein Zeichen-basiertes Encoding was be-
deutet, dass das Ziel sein wird, ein auf eine Anfangssequenz folgendes Zeichen vorauszusagen.
Die zweite Möglichkeit ist, dass man nicht ein nächstes Zeichen, sonder gleich ein ganzes Wort
voraussagen möchte (Wörter-basiert).
Bei der ersten Option ist es ein großer Vorteil, dass die Anzahl der Klassen, die man voraus-
sagen möchte, erheblich begrenzt ist (sie ist gleich der Größe des Vokabulars). Bei der Wörter-
basierten Methode hingegen ist die Anzahl der Klassen gleich der Anzahl der möglichen Wör-
ter im Text (dies wird meistens auf die 10 000 häufigsten Wörter begrenzt). Das macht es
schwierig, herkömmliche Verlustfunktionen (Unterkapitel 2.3) zu benutzen und macht die
Aufgabe des Ausarbeitens einer Architektur eines Neuronalen Netzes erheblich schwerer. Um
diesem Problem auszuweichen, werden oft Embeddings (Unterkapitel 2.1.4) benutzt, die die
Output Dimension verringern sollen. Ein Nachteil der Zeichen-basierten Methode ist erstens,
dass Wörter und Sätze gebildet werden können, die keinen Sinn ergeben, oder nicht existieren.
Die zweite Methode hingegen wird nur Wörter voraussagen, die auch tatsächlich existieren -
oder im schlimmsten Fall ein OOV (Out-of-vocabulary) Wort. Des Weiteren sindWörter-basierte
Modelle robuster und produzieren, im Gegensatz zu Zeichen-basierten Modellen, häufiger gram-
matikalisch korrekte Sätze.

2.1.3 Lable Encoding und One-hot Encoding

Das Encoding erlaubt dem Algorithmus die Daten in einer entsprechenden Form einzulesen.
Diese Form ist, wie im vorherigem Abschnitt erklärt, ein Tensor. In dieser Arbeit wird Text
verarbeitet und deswegen muss man die Zeichen nummerisch darstellen. Dazu werden zwei
Methoden zum Encoden kategorischer Variablen vorgestellt: das Lable Encoding und One-hot
Encoding. Lable Encoding ist die einfachste Form des Encodings, da jeder Kategorie eine be-
stimmt Zahl zugewiesen wird. Dies kann man in Abbildung 2 erkennen - jedes Zeichen in
der Sequenz “annual report! wird als eine vorher festgelegte Zahl dargestellt. Das Produkt aus
diesem Encoding ist ein 1 D Tensor, der der maximalen Länge der Sequenz entspricht.

Abbildung 2: Label Encoding von Texten
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Das One-hot Encoding hingegen ist eine Methode, in der jedes Zeichen in Form eines Vektors
dargestellt wird. Diese Vektoren sind mit 0-len gefüllt - bis auf die Stelle, die der Position
des jeweiligen encodetem Zeichen entspricht. Dies wurde in Abbildung 3 dargestellt, in der
die gleiche Beispiel-Phrase wie im vorherigen Beispiel encodet wurde. Diese Methode liefert
im Endeffekt eine Matrix, also einen 2 D Tensor mit Anzahl der Zeilen gleich der Länge des
Vokabulars und Anzahl der Spalten gleich der maximalen Länge einer Sequenz.

Abbildung 3: One-hot Encoding von Texten
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Quelle: Eigene Darstellung

Allgemein zählen zu den Vorteilen des One-hot Encodings, dass jede Kategorie (hier: Zeichen)
unabhängig betrachtet werden kann - wobei andererseits das Lable Encoding eine Abhängig-
keit oder einen Zusammenhang der Kategorien voraussetzt. Das Zweitere kann allerdings bei
sogenannten Embeddings von Vorteil sein (diese Methode wurde im weiteren Verlauf der Arbeit
vorgestellt), bei denen man ähnliche Kategorien in einem Vektorraum möglichst gut gruppieren
möchte.

2.1.4 Embedding

Beim Label Encoding wurde im späteren Schritt, also beim Einlesen ins Modell die jeweils ent-
sprechende Zahl der Position eines Zeichens im Vokabular auch in einen Vektor transformiert.
Hierbei ist der Unterschied zum One-hot Encoding der, dass man versucht eine weniger Sparse
Matrix zu erhalten - also eine dichtere Repräsentation der Vektoren. Als Beispiel könnte man
sich vorstellen, dass man anstatt von Zeichen, Wörter Encodet und im Falle eines One-hot
Encoding eine Matrix mit Anzahl der Zeilen gleich der Anzahl der Wörter im behandelten
Problem. Oft kann diese Zahl in die Tausenden gehen und wenn man mit ganzen Dokumenten
arbeitet, wird diese Zahl auf 10 oder 20 Tausend der am häufigsten vorkommenden Wörter be-
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grenzt. Um nicht auf Matrizen arbeiten zu müssen, die tausende Zeilen (mit Einträgen 0 oder 1)
enthält, benutzt man die sogenannten Embeddings. Embeddings komprimieren die Information
eines Datenpunktes (hier Wörter oder Zeichen) an einem gewiesen Time Step in einen Vektor
beliebiger Dimension. Diese Vektoren bilden ein bestimmtes Wort in einen z.B 100 dimensio-
nalen Raum ab, sogar wenn die Anzahl aller Wörter deutlich größer ist. Dies hat erstens den
Vorteil, dass man das Problem der Sparsen Matrix umgehen kann und zweitens kann man Zu-
sammenhänge zwischen Wörtern modellieren. Wenn man diese Embeddings anschließend mit
einer Dimension-Reduktion behandelt, ist man in der Lage, diese Zusammenhänge zwischen
Wörtern oder Zeichen in einem 2 oder 3 dimensionalen Koordinatensystem darzustellen und
somit zu visualisieren (Falbel 2017).

In Abbildung 4 wurde das One-hot-Encoding mit dem Embedding dargestellt und verglichen.
Man sieht, dass das Embedding im Vergleich zum One-hot Encoding eine deutlich niedrigere
Dimension und dichtere Vektoren hat, die darüber hinaus aus den Daten erlernt werden kön-
nen. Beim One-hot Encoding sind die Vektoren Sparser. Diese haben eine höhere Dimension
und sind hart gecodet. Embeddings sind somit besonders gut geeignet für Beispiele in denen die
Dimension beim One-hot Encoding zu hoch ist. Ein Beispiel für ein Embedding wurde auch für
das Textgenerierungsproblem dieser Arbeit im Kapitel mit den Ergebnissen, dargestellt.

Abbildung 4: One-hot Encoding und Embeddings
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Quelle: Eigene Darstellung (Francois Chollet 2018)
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2.2 Optimierungsalgorithmen

Es gibt unterschiedliche Optimierungsalgorithmen, die in der Statistik verwendet werden. Einer
davon istGradient Descent, welcher in der Literatur sehr oft verwendet wird. Bei Deep Learning-
Ansätzen wird er besonders gern benutzt, da er nicht nur relativ einfach zu verstehen und
implementieren ist, sondern auch für hochdimensionale Optimierungsprobleme gut geeignet ist.
Es gibt drei Gradient Descent Varianten (Tushar 2017):

Abbildung 5: Varianten von Gradient Descent

Algorithm BATCH GD MINI BATCH GD STOCHASTIC GD

Accuracy

  Time
Memory

Quelle: Eigene Darstellung (Tushar 2017)

Batch Gradient Descent nutzt den ganzen Datensatz, um ein Update zu machen - dies kann
jedoch sehr zeit- und rechenaufwendig sein, besonders wenn der Datensatz zu groß ist, um in
die Memory eingelesen zu werden. Auf der anderen Seite gibt es Stochastick Gradient Descent,
welcher es erlaubt, nach jedem eingelesenen Beispiel ein Update des Gradienten durchzuführen,
was den Vorteil bringt, dass der Algorithmus viel schneller iterieren kann. Der Nachteil hingegen
ist, dass das Update nur anhand eines Beispiels durchgeführt wird, was äußerst ungenau sein
kann. Ein Kompromiss zwischen den beiden Methoden wird durch den Mini-Batch Gradient
Descent Algorithmus erreicht, der das Update anhand einer gewissen Anzahl (Mini-Batch Size)
von Beispielen durchführt. Diese Methode ermöglicht es, schneller als Batch Gradient Descent
und genauer als Stochastick Gradient Descent zu sein.

Gradient Descent tritt in der Literatur in vielen Abwandlungen auf (nicht abhängig von der
Batch Size). Im weiteren Verlauf wurde der elementare Gradient Descent Algorithmus, sowie
auch zwei seiner Erweiterungen, dargestellt:

1. Gradient Descent mit Momentum

2. RMSprop

2.2.1 Gradient Descent

Die allgemeinste Form vom Gradient Descent ist das Abstiegsverfahren, in dem es darum geht,
eine stetige differenzierbare Funktion zu minimieren. Die zentrale Idee vom Abstiegsverfahren
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ist wie folgt: Ist man an einem Punkt x ∈ Rn, so sucht man eine Richtung d aus, in welche
der Funktionswert fällt (Abstieg). Entlang dieser Richtung d geht man so lange, bis man den
Funktionswert von Funktion f(x) hinreichend verkleinert hat. Das Gradienten-Verfahren geht
ähnlich vor, ist aber effizienter, weil man nicht in die Richtung eines beliebigen Abstiegs, son-
dern in die Richtung des steilsten Abstiegs (deswegen oft Steepest Descent genannt) geht, was
dazu führt, dass man sich schneller dem Minimum nähert. Man könnte das Verfahren formal
darstellen, in dem (Bischl 2016):

f(x) eine beliebige, uneingeschränkte, differenzierbare Zielfunktion, welche man minimieren
möchte, ist(Abbildung 6)

• Der Gradient ∇f(x) zeigt immer in die Richtung des steilsten Anstiegs (roter Pfeil)

• −∇f(x) zeigt somit in die Richtung des steilsten Abstiegs (schwarzer Pfeil)

Man folgt der Richtung des negativen Gradienten so lange, bis man den Funktionswert hinrei-
chend minimiert hat.

Abbildung 6: 3D Gradient Descent

Quelle: Eigene Darstellung

Wenn man während der Minimierung der Funktion f(x) am Punkt xt steht, kann man diesen
Punkt verbessern, indem man folgenden Schritt durchführt:

xt+1 = xt − η∇f(xt) (1)

η ist die Schrittlänge, die auch Lernrate genannt wird. Die Wahl der entsprechenden Schrittlän-
ge ist entscheidend: eine zu große Schrittlänge könnte dazu führen, dass man nie nah genug an
das Minimum kommt und im schlimmsten Fall über dem Minimum hin und her springt - eine
zu kleine Schrittlänge hingegen könnte zur Folge haben, dass man eine sehr große Anzahl an
Iterationen brauchen würde, um beim Minimum anzukommen. Zusammenfassend ist das Gra-
dient Descent Verfahren einfach und unkompliziert, weshalb es weit verbreitet und zudem auch
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bei hochdimensionalen Optimierungsproblemen anwendbar ist (Bischl 2016). Zu den Nachtei-
len zählen unter anderem, dass es in einem lokalen Minimum stecken bleiben kann und nie am
globalen Minimum ankommen würde. Zudem kann es vorkommen, dass es für schlecht kondi-
tionierte Probleme in einem zunehmenden Zick-Zack-Kurs zum Minimum schreitet, wodurch
wiederum die Anzahl der Iterationen und somit die Dauer des Verfahrens erheblich ansteigen
könnte.

2.2.2 Gradient Descent mit Momentum

Den Update Schritt in Gleichung 1 kann man auch als Update der Parameter des Modells
darstellen:

θt+1 = θt − η∇f(θt) (2)

Da im folgenden Updates mit Hilfe von Mini-Batch GD durchgeführt werden und somit nicht
mit Hilfe des ganzen Datensatzes, muss die Gleichung 2 um die entsprechende Observation
x(i:i+n) und y(i:i+n) erweitert werden - wo n die Batch Size und i das erste Element des Batches
sind:

θt+1 = θt − η∇f(θt;x(i:i+n); y(i:i+n)) (3)

Gradient Descent mit Momentum ist eine Erweiterung des Optimierungsalgorithmus, um das
Problem mit dem zunehmenden Zick-Zack-Kurs bei schlecht konditionierten Funktionen zu
bekämpfen. Anstatt in die Richtung des steilsten Abstiegs zu gehen, wird ein gewichtetes (mit
Gewicht γ) Update der letzten Iteration mit auf den mit Schrittlänge multiplizierten Gradienten
aufaddiert. Um die folgenden Gleichungen übersichtlicher zu machen, wird der Mini-Batch GD
Gradient ∇f(θt;x(i:i+n); y(i:i+n)) als gt und das Update in Iteration t als νt, dargestellt. Gradient
Descent mit Momentum nimmt im Endeffekt die folgende Form an (Ruder 2016):

θt+1 = θt − (ηgt + γνt−1) (4)

Wenn man sich das Gradient Descent Verfahren als einen Ball vorstellt der in Richtung des
Minimum rollt, kann man den Parameter γ als Momentum, also Schwung, interpretieren, den
der Ball im Laufe das Fortbewegens aufnimmt. Bei dem ursprünglichen Algorithmus ist dies
nicht der Fall und der Ball würde sich bewegen, als ob er keinen Schwung aufnehmen könnte.
Dies erlaubt es schneller zu konvergieren und zum globalen bzw. lokalen Minimum zu gelangen.
Darüber hinaus könnte Momentum dabei helfen, nicht in einem lokalen Minimum stecken zu
bleiben, da der aufgenommene Schwung dazu führen könnte, dass man ein solches Minimum
überspringen und weiter in Richtung globales Minimum iterieren könnte.
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Abbildung 7: Momentum Darstellung

Quelle: Eigene Darstellung

InAbbildung 7 wurde genau diese Situation dargestellt. Der Ball rollt in Richtung des steilsten
Abstiegs - hier befindet man sich in einem zweidimensionalen Raum. In der ersten Position (von
links) bewegt er sich nach rechts - mit der Kraft des Gradienten, der an dieser Stelle berechnet
wurde (schwarzer Pfeil). In der zweiten Position ist diese Kraft deutlich schwächer, da die
berechnete Tangente nicht mehr so steil ist wie an der ersten Stelle. Dafür sieht man jetzt
den grünen Pfeil, der die Kraft vom Momentum repräsentiert, die im ersten Schritt entstanden
ist. An der dritten Position ist die Kraft des Gradienten, die sich auf den Ball auswirkt gleich
Null und würde damit im Falle des normalen Gradient Descent bedeuten, dass der Ball stecken
bleibt und nicht über die nächste Steigung kommt. Momentum hingegen hat den Ball zur
vierten Stelle gebracht, wo wiederum der berechnete Gradient den Ball zurück drückt (negativer
schwarzer Pfeil an Position vier), aber der übriggebliebene Schwung (grüner Pfeil an Position
vier) ausreichend ist, um ihn weiter in Richtung Globalen Minimums zu befördern.

2.2.3 RMSprop(Root mean square) Gradient Descent

Eine weitere Variante des Gradient Descent Verfahrens ist RMSprop GD. Die Idee ist hier,
dass man nicht alle Parameter mit der gleichen Lernrate η gewichtet. Die Lernrate variiert in
der Hinsicht, dass Parameter, die mit Klassen, die häufiger auftreten, in Verbindung stehen,
ein kleineres η erhalten - andererseits erhalten Parameter, die Einfluss auf Klassen haben, die
nicht so häufig vorkommen, eine größere Lernrate, um eine dementsprechende Hochgewichtung
zur erreichen. Zusätzlich wird der η Parameter von der Iteration, in der man sich befindet,
abhängen. Diese Merkmale sind besonders von Vorteil für sparse Daten, in denen man unter-
schiedliche Häufigkeiten der Zielklasse hat (dies ist auch der Fall bei der Textegenerierung).
Der Vollständigkeit halber muss man sagen, dass die oben beschriebenen Erweiterungen dem
Algorithmus Adagrad (Gleichung 5) entsprechen, der eine Basis des RMSprop Algorithmus
darstellt (Ruder 2016):
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θt+1,j = θt,j −
η√

Gt,jj + ε
gt,j (5)

In Gleichung 5 enthält die Matrix Gt,jj auf der Diagonalen j, j die Summe der quadratischen
Gradienten hinsichtlich des Parameters θj bis zum entsprechenden Zeitpunkt t. Der ε Parameter
(ein sehr kleiner Wert) soll der Dividierung durch Null vorbeugen. Vektorisiert erhält man:

θt+1 = θt −
η√

Gt + ε
⊗ gt (6)

Ein großer Vorteil hierbei ist, dass sich die Lernrate alleine anpasst und mit der Anzahl der
Iterationen immer näher an Null geht, was bedeutet, dass die Schritte mit Annäherung an ein
Minimum immer kleiner werden, wodurch das tunen der Lernrate überflüssig wird. Der Nachteil
davon ist, dass die Schrittlänge durch die anwachsende Anzahl der Iterationen, voranschreitend
ausgelöscht wird. RMSprop ermöglicht es, diese Auslöschung der Lernrate zu umgehen, indem
anstatt der Matrix mit quadratischen Gradienten auf den Diagonalen, ein sogenannter Moving
Average E[g2]t verwendet wird (Ruder 2016):

θt+1 = θt −
η√

E[g2]t + ε
gt (7)

Der Moving Average wird aus dem aktuellen quadrierten Gradienten und dem gemittelten
Gradienten aller vorheriger Iterationen bis Zeitpunkt t− 1 berechnet:

E[g2]t = γE[g2]t−1 + (1− γ)g2
t (8)

Der Parameter γ ist hier so ähnlich wie der vorher vorgestellte γ Parameter aus dem Momentum
Beispiel. Die Erfinder dieses Algorithmus schlagen als guten default Wert für γ = 0.9 und für die
Lernarate η = 0.01 vor (Ruder 2016). Der Name RMSprop kommt daher, das man im Nenner
eigentlich nichts anderes hat, als das quadratische Mittel (Root mean square) - Fehler Term des
Gradienten:

θt+1 = θt −
η

RMS[g2]t
gt (9)
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2.3 Neural Networks

Dieses Kapitel befasst sich mit den Grundlagen von Deep Learning. Dies wird die Vorausset-
zung sein, um die später erklärten Recurrent Neural Networks zu verstehen. Anfangs gibt es
eine kurze Einführung in die Geschichte von Deep Learning und anschließend wurde in den dar-
auf folgenden Kapiteln auf die grundlegenden Bausteine eines Neuronalen Netzes eingegangen.
Folgende Begriffe werden eingeführt: Neuron, Backpropagation, Verlustfunktionen und Activa-
tionfunctions, da sie sowohl für Neuronale Netze, sowie für Recurent Neural Networks relevant
sind.

2.3.1 Die Geschichte von Deep Learning

Die ersten Anwendungen von Deep Learning gehen auf das Jahr 1943 zurück - Walter Pitts und
Warren McCulloch erschufen ein erstes Computerprogramm, das aus einer Kombination von
Algorithmen und Mathematik entstand (Walter Pitts 1943). Viele Forscher waren skeptisch,
wenn es um die praktische Anwendung von Neronalen Netzen ging, da es anfangs keine Deep
Networks waren und sie damit in ihrer Verarbeitung sehr limitiert waren. Das führte dazu, dass
die wissenschaftliche Arbeit in diesem Gebiet bis in die späten 70ger und Anfang der 80ger
eingeschränkt wurde.

In dieser Zeit wurde eines der größten Hindernisse, das die weitere Entwicklung hinderte - also
die Erfindung eines Optimierungsalgorithmus (Backpropagation), der es erlaubt, effizient mit
Hilfe von Gradient Descent rückwirkend Parameter zu trainieren, überwunden (LeCun 1988).
Die erste erfolgreiche Anwendung gelang Yann LeCun, der 1989 den Backpropagation Algo-
rithmus mit Convolutional Neural Networks verbunden hatte, um es anschließend auf einem
Datensatz von handgeschriebenen Zahlen auszuprobieren. Das daraus resultierende Neuronale
Netz, das LeNet genannt wurde, wurde 1990 von dem Postdienst der Vereinigten Staaten für
die automatische Erkennung von Postleitzahlen verwendet. Viele Erwartungen wurden in die
weitere und schnelle Entwicklung von Deep Learning gesetzt, die aufgrund von computationalen
Gründen nicht erfüllt werden konnten. Dies führte dazu, dass die Forschung zum zweiten Mal
zurückgegangen ist und erst wieder größeres Aufsehen erlangte, nachdem im Jahr 1997 Sepp
Hochreiter und Jürgen Schmidhuber die LSTM Zelle für Recurrent Neural Networks entwickelt
haben (Sepp Hochreiter 1997).

Im folgendem Jahrzehnt wurde die Rechengeschwindigkeit dank GPU’s (Graphics Processing
Units) um das 1000-fache erhöht, was dazu führte, dass der Deep Learning Forschung zuneh-
mend Aufmerksamkeit gewidmet wurde. Heutzutage werden, dank stets optimierender Rechen-
power, immer mehr Probleme mit Neuronalen Netzen gelöst, wie zum Beispiel: Autonomes
Fahren, Übersetzungen, Bild- und Audio-Verarbeitung.
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2.3.2 Neuronen und Layers

Ein Neuron ist das Basis-Element jedes Neural Networks. Sein Input könnte sowohl von au-
ßen kommen, sowie von einem früherem Neuron (Alpaydin 2010). In Abbildung 8 sind drei
Layers von Neuronen dargestellt: die ersten dienen als Input Layer (dunkelgraue Neuronen)
und enthalten Neuronen, die ihren Input von außen erhalten werden - dieser Input wird nach-
stehend als xj j ∈ 1, ..., n. beschrieben. Weiterhin wird der erste Layer mit Hilfe von Gewichten
whj (weiße Neuronen zh h ∈ 1, ...,m) mit dem sogenannten Hidden Layer, der wiederum mit
dem Output Layer verbunden ist (hellgraue Neuronen yi i ∈ 1, ..., o), aufgezeigt. Zwischen dem
Hidden Layer und dem Output Layer befinden sich auch Gewichte vih.

Abbildung 8: Beispiel Neuronales Netz

Quelle: Eigene Darstellung

Der Output ist somit die gewichtete Kombination der Hidden Units (Neurons):

yi =
m∑
h=1

vihzh + vi0 = vTi z (10)

vi0 repräsentiert den Wert für die Neuronen-spezifische Verzerrung (Bias). Die Werte von zh

wurden aus der gewichteten Kombination von xj berechnet:

zh =
n∑
j=1

whjxj + wh0 = wTh x (11)

Wenn man es jetzt mit einem Klassifizierungsproblem zu tun hat, dann würden die Output
Units in Kombination mit einer Verlustsfunktion bzw. Aktivierungsfunktion, darüber entschei-
den, welche Klasse die wahrscheinlichste sein würde. Klasse Ci wird gewählt, wenn yi = max

o
(yo)

ist (Alpaydin 2010).
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Der Name Deep Learning stammt daher, dass man theoretisch eine beliebige Anzahl an Hidden
Layers in einem Neural Networks verbinden könnte, was zu Deepen Netzen führen würde. Die
Aufgabe eines Neural Network ist es, die Gewichte whj und vih so zu erlernen, dass am Ende die
richtige Klasse vorausgesagt wird. Die einfachste Form eines solchen Netzes würde ein Input und
ein Output Neuron sein, die im Endeffekt genutzt werden könnten, um eine lineare Regression
zu implementieren:

y = wx+ w0 (12)

In Gleichung 12 ist w, genauso wie in der linearen Regression, die Steigung und w0 stellt
den Intercept dar. Wenn ein Datensatz gegeben ist, könnte man mit Hilfe der entsprechenden
Verlustfunktion die Regression-Parameter finden.

2.3.3 Activation Function

Der Zweck einer Aktivierungsfunktion in einem Deep-Learning-Kontext ist es, sicherzustellen,
dass die Darstellung vom Input auf einen anderen Raum im Output abgebildet wird. Sie sorgt
erstens dafür, dass ein gewichteter Neuron aktiviert werden kann - also, dass seine Information
weiter gegeben werden kann. Zweitens sorgt sie dafür, dass sich der Raum des Inputs zum
Output ändert, um tiefe nicht lineare Repräsentationen der Daten extrahieren zu können. Die
Aktivierung eines Neuron, also das Weitergeben einer relevanten Information, könnte wie folgt
aussehen: ein Schwellenwert entscheidet, ob der Wert eines Neuron ausreichend groß ist, um
weitergegeben zu werden (Sharma 2017).

Ein solcher Mechanismus würde entweder eine 1 (aktiviert) oder eine 0 (nicht aktiviert) einem
Wert des Neuron zuordnen. Ein Beispiel einer Funktion, die genau das macht, sieht man in
Tabelle 3 unter dem Namen Step Function. Allerdings ergibt sich hierbei ein Problem: bei
einer Multi class Klassifizierung dürfte nur ein Wert der Neuronen im Output Layer eine 1
zugeschrieben werden (die der wahren Klasse) und dem Rest müsste eine 0 zugeordnet werden.
Ein solches Problem ist allerdings schwer in einem Neural Network zu trainieren, da in einem
Multi class Klassifikationsproblem die Wahrscheinlichkeit groß ist, dass mehrere Neuronen ak-
tiviert wurden, wodurch man mehrere Klassen gleichzeitig wählen müsste. Eine bessere Lösung
wäre es, wenn man möglichst unterschiedliche Aktivierungen den Werten der Output Neuronen
zuordnen könnte, um im Nachhinein den Neuron mit der größten Aktivierung wählen zu kön-
nen. Dies führt zu eindeutigen Ergebnissen und ist einfacher zu trainieren.

Die einfachste Alternative wäre eine lineare Activation Function (Tabelle 3 Identity), die
proportional zu dem Input ist (die gewichtete Summe). Darüber hinaus erhält man keine binäre
Lösung, sondern einen Bewertungsbereich von Aktivierungen, aus dem man zum Beispiel das
Maximum als Entscheidung wählen könnte. Das Problem, das hier auftaucht, ist, dass man
keine nicht linearen Repräsentationen erlernen kann, da sogar mehrere Layer, die aufgestockt
werden und mit einer linearen Activation Function aktiviert werden, immer noch eine lineare
Kombination des Inputs darstellen.

22



Sigmoid (Tabelle 3 Sigmoid) verbindet beide guten Eigenschaften der vorher genannten Ac-
tivation Functions. Erstens ändert sich der Raum des Inputs auf den Output, was es erlaubt,
nicht lineare Repräsentationen zu erhalten und zweitens ist der Aktivierungswert in einem
eingegrenzten Bereich zwischen 0 und 1, wobei nicht nur die Extrem-Werte vergeben werden
können, sondern eine beliebige Zahl dazwischen. Die Werte für die Argumente zwischen −2
und 2 sind sehr steil verteilt und die Veränderungen im Funktionswert sind groß bei kleinen
Veränderungen in x. Diese Eigenschaft führt dazu, dass Aktivierungen schnell in eine der bei-
den Enden gedrückt werden, was dabei hilft, Abgrenzungen für Prädiktionen zu schaffen. Der
Nachteil bei der Sigmoid Funktion ist allerdings, dass die Änderungen an den Enden der Funk-
tion bei Veränderungen in x, sehr klein sind, da die Funktion dort flach ist - das wiederum
bewirkt, dass der berechnete Gradient an diesen Stellen auch klein sein wird und somit die
Updates bei dem Backpropagation ausgelöscht werden. Dieses Problem wird Vanishing Gradi-
ent Problem genannt und wurde, wie der Backpropagation Algorithmus, im späteren Verlauf
der Arbeit beschrieben. Eine skalierte Version der Sigmoid Funktion ist die Tanh Funktion
(Tabelle 3 Tanh), die den Vorteil hat, dass allgemein der Gradient an den Enden stärker ist
(Ableitung steiler) - das Vanishing Gradient Problem ist jedoch immer noch präsent. Die Ak-
tivierungswerte befinden sich im Intervall (−1, 1).

Die am meisten genutzte Activation Function ist ReLU (Rectified Linear Unit). Diese Funk-
tion ist im positiven Bereich f(x) = x und im negativen Bereich gleich Null. Es ist also eine
nicht lineare Funktion, deren Kombination auch wieder eine nicht lineare Funktion darstellt.
Mit deren Hilfe kann man eine beliebige andere Funktion approximieren. Ein weiterer großer
Vorteil von ReLU ist die sparsity der Aktivierungen, die man erhält. Bei zum Beispiel der
Sigmoid und Tanh Funktion werden fast alle Neuronen aktiviert und zum Entscheiden über
die vorausgesagte Klasse verwendet. Dies sind dichte Aktivierungsfunktionen, die im Hinblick
auf Zeit und Rechenaufwand sehr kostspielig sind. ReLU hingegen hält manche Neuronen auf
Null, wodurch sie bei manchen Iterationen gar nicht unter Betracht genommen werden. Aus
diesem Grund hat die Aktivierung eine geringere Dichte und ist einfacher zu trainieren. Diese
Eigenschaft könnte allerdings auch ein Nachteil sein, da der Gradient im negativen Teil Null
ist und es nicht möglich ist, für solche Neuronen auf die Variation im Gradienten Update zu
reagieren. Dieses Problem nennt sich Dying ReLU Problem und kann durch verschiedene ReLU
Abwandlungen begrenzt werden, wie z.B. leaky ReLu, bei der man anstatt einer horizontalen
Linie im negativen Bereich eine Funktion f(x) = 0.1x hat, die es erlaubt, die Neuronen, die in
diesem Aktivierungsbereich liegen, zu befreien.

Die letzte zu beschreibende Aktivierungsfunktion ist die Softmax Funktion, die im Allgemei-
nen die Wahrscheinlichkeiten jeder Zielklasse über alle möglichen Zielklassen berechnet. Diese
berechneten Wahrscheinlichkeiten haben die Eigenschaft, dass sie sich zu 1 aufsummieren, wo-
durch man sich im späterem Schritt für die Zielklasse mit der höchsten Wahrscheinlichkeit
entscheiden kann. Die Gleichung für die Softmax Aktivierungsfunktion sieht wie folgt aus:
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σ(xi) = exi∑K
k=1 e

xk
, k, i ∈ 1, ..., k (13)

wobei K die Anzahl der Klassen ist und i die i-te Klasse repräsentiert.

Tabelle 3: Activation Functions

Name Abbildung Gleichung

Step Function S(x) =

0, if x < 0.
1, if x > 0.

Identity f(x) = x

Sigmoid σ(x) = 1
1+e−x

Tanh tanh(x) = 2
1+e−2x − 1

Rectified Linear Unit
(ReLU) R(x) =

0, if x < 0.
x, if x > 0.

Quelle: Eigene Darstellung (Sharma 2017)

2.3.4 Verlustfunktionen

Eine Verlustfunktion zeigt, wie unzufrieden man mit einer Fehlprädiktion ist (also mit der Ab-
weichung der Schätzung von dem wahren Wert der Funktion). Der Verlust ist ein nicht negativer
Wert, bei dem die Robustheit mit absteigender Verlustfunktion zunimmt. Die allgemeine Form
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der Verlustfunktion sieht man in Gleichung 14:

L(θ) = 1
n

n∑
i=1

L(yi, f(xi, θ)) (14)

Wobei yi der wahre Wert oder Klasse ist und f(xi, θ) die dazugehörende Prädiktion darstellt
(θ sind die zu trainierenden Parameter). Im Deep Learning Kontext ist die Funktion f(xi) die
entsprechende Aktivierungsfunktion und xi = {x1

i , x
2
i , ..., x

m
1 } das Trainings Sample der Größe

m. Folgende Charakteristiken von Verlustfunktionen sind relevant (Bischl 2016):

1. Differenzierbarkeit

2. Robustheit

3. Konvexität

Die Differenzierbarkeit einer Verlustfunktion erleichtert das Optimieren, die Robustheit zeigt
wie stark eine Verlustfunktion auf Abweichungen reagiert und die Konvexität garantiert, dass
es nur ein globales Minimum der Funktion gibt. Zwei Bespiele von Verlustfunktionen:

Abbildung 9: Beispiele von Verlustfunktionen

(a) L2-Verlust
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Quelle: Eigene Darstellung

Die L2-Verlustfunktion (Abbildung 9 a)) ist differenzierbar und konvex, was verursacht, dass
die Optimierung einfacher ist als im Fall des L1-Verlustes (Abbildung 9 b)) der nicht differen-
zierbar ist. Beide Funktionen reagieren anders auf Abweichungen (y− f(x)). Der L2-Verlust ist
sensibler und bestraft zum Beispiel eine Abweichung von 2 mit dem Verlust 4 - der L1-Verlust
hingegen nur mit 2, was bedeutet, dass der L1-Verlust robuster ist als der L2-Verlust. Diese
Eigenschaft zeigt auf, dass man gut den Erwartungswert des Modells mit dem L2-Verlust und
zum Beispiel gut den Median mit dem L1-Verlust, schätzen kann. Der L2-Verlust wird, wie
gerade vorgestellt, oft bei der linearen Regression genutzt und hat folgende Form:

L = 1
n

n∑
i=1

1
2(yi − f(xi))2 (15)

Und die Gleichung des L1-Verlustes wurde in Gleichung 16 gezeigt:

L = 1
n

n∑
i=1
|yi − f(xi)| (16)
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Die Verlustfunktion, die für diese Arbeit von Interesse ist, ist die Categorical Cross-entropy. Die
Categorical Cross-entropy lässt sich aus der Kullback-Leibler-Divergenz erschließen. Die KL-
Divergenz wird auch relative Entropie genannt und erlaubt es, ein Maß der Unterschiedlichkeit
zwischen zwei Wahrscheinlichkeitsverteilungen zu berechnen. Die relative Entropie hat folgende
Form:

L = − 1
n

n∑
i=1

DKL(yi||ŷi)

= − 1
n

n∑
i=1

[yilog(
yi
ŷi

)]

= 1
n

n∑
i=1

(yilog(yi))︸ ︷︷ ︸
entropy

− 1
n

n∑
i=1

(yilog(ŷi))︸ ︷︷ ︸
cross-entropy

(17)

Die Cross-entropy gibt an, wie weit man mit der geschätzten Verteilung durch das Modell von
der wahren Verteilung entfernt liegt (Hao 2017). Sie wird oftmals bei Neuronalen Netzen mit
Softmax Aktivierungfunktion verwendet, da hierbei die Aktivierungen als Wahrscheinlichkeits-
verteilungen verstanden werden können. Die Verlustfunktion hat folgende Form:

L = − 1
n

k∑
i=1

yi log(f(xi)) (18)

wobei k die Anzahl der Klassen aus der Softmax und f(xi) die Aktivierung des xi-ten Element
darstellt.

2.3.5 Backpropagation

Im folgenden wird der Algorithmus vorgestellt, mit dessen Hilfe man in der Lage ist, die Ge-
wichte des Neural Networks zu trainieren. Dieser Algorithmus heißt Backpropagation (LeCun
1988) und wird anhand eines vereinfachten Neural Network (Abbildung 10) erklärt (Kapur
2017). In diesem Beispiel gibt es einen Input, zwei Hidden Layers und ein Output Layer. In
den jeweiligen Layern befinden sich einfachheitshalber nur ein Neuron, der mit dem darauf fol-
genden Layer auch nur mit einem Weight wi gewichtet wird. Die Activation Functions werden
durch act() markiert. Diese Funktionen werden vorerst nicht festgelegt, könnten jedoch eine
beliebige Aktivierung sein (Unterkapitel 2.3.3).
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Abbildung 10: Simple Neural Network

x act() act()act()

Input OutputHidden 1 Hidden 2

w1 w2 w3

Quelle: Eigene Darstellung (Kapur 2017)

Bevor man mit dem Backpropagation beginnt, wird zuerst der Forward Pass durchgeführt, um
einen entsprechenden Output zu erhalten. Dies erreicht man durch das Durchführen des Inputs
durch die aufeinanderfolgenden Layer, die durch die Activation Functions der Hidden Layer
und im Endeffekt des Output Layers transformiert werden. Den Output kann man wie folgt
berechnen:

Hidden1 = act(w1x) −→ Hidden2 = act(w2Hidden1) −→ Output = act(w3Hidden2)

Wenn man die ersten zwei Gleichungen in die Dritte einsetzt, erhält man die Formel für den
Output:

Output = act(w3act(w2act(w1x)))

Im folgenden wird die Ableitung dieser Gleichung benötigt. Darüber hinaus ist der Output
zusätzlich in eine Verlustfunktion eingebunden, wodurch das Ergebnis mit dem wahren Wert
verglichen wird (Unterkapitel 2.3.4). Eine Beispiel Ableitung in Bezug auf den Parameter
w1 könnte man mit Hilfe der Kettenregel bestimmen:

∂error

∂w1
= ∂error

∂Output

∂Output

∂Hidden2
∂Hidden2
∂Hidden1

∂Hidden1
∂w1

Wichtig ist, dass die Verlustfunktion immer noch eine Funktion des Inputs ist. Als nächstes
würde die gleiche Ableitung in Bezug auf alle anderen Parameter des Neural Networks berech-
net werden. Diese berechneten Gradienten dienen dem Update des Gradienten mit einem der
in Unterkapitel 2.2 besprochenen Optimierungsalgorithmen. Daher kommt der Name Back-
propagation: man optimiert die Gewichte in einer vom Verlust berechneten rückwirkenden Art
über die jeweiligen Layers. Dies ist natürlich nur ein einfaches Beispiel für einen unwahrschein-
lichen Fall eines solchen Neural Networks, aber in Wirklichkeit ändert sich das Vorgehen nicht
wirklich, bei z.B einem Netz wie in Abbildung 8.

Erwähnenswert ist hierbei, dass die Konvergenz des Algorithmus von den Verlust- und Ak-
tivierungsfunktionen, die im Netz verwendet werden, stark abhängig ist. Als Beispiel könnte
man den MSE (L2) mit der Binary Cross-entropy vergleichen, bei denen die Ableitungen mit
Sigmoid Activationfunction im Output Layer berechnet wurden (θ die zu optimierenden Para-
meter im Netz): Der Gradient für ŷi = σ(Zi) = σ(θTxi) würde für den MSE wie folgt aussehen
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∂L
∂θ

= −(y−σ(z))σ(z)′x und für die Cross-entropy ∂L
∂θ

= −(y−σ(z))x. Der Unterschied ist also,
dass im Fall des MSE zusätzlich die Ableitung der Sigmoid Funktion σ(z)′ enthalten ist, die
nah an Null ist, wenn σ(z) Richtung 1 oder 0 geht und das Maximum erreicht, wenn σ(z) 0.5
ist. Dies verursacht, dass der Gradient klein ist, wenn der Verlust groß ist, wobei genau dass
Gegenteil erwünscht ist. Die Cross-entropy hat den zusätzlichen σ′(z) nicht und verhält sich
somit so, wie man wollen würde.
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2.4 Recurrent Neural Network

Dieses Kapitel beschäftigt sich vertieft mit dem Thema Recurrent Neural Networks, die in die-
ser Arbeit verwendet werden, um die Textgenerierung durchzuführen. Recurrent Neural Net-
works werden hauptsächlich bei sequentiellen Problemstellungen angewandt - wie zum Beispiel
Zeitreihenanalyse oder wie in diesem Fall Texte. Am Anfang dieses Kapitels wurde eine kurze
Einleitung in das Thema dargestellt, um im folgenden gewisse Erweiterungen des Backpropa-
gation Algorithmus für sequentielle Modelle und Probleme, die bei Recurrent Neural Networks
auftreten können, zu beschreiben. Die zwei am weitesten verbreiteten Modelle wurden dann
zum Ende des Kapitels dargestellt: Erstens das Long Short Term Memory Modell und zweitens
dessen Abwandlung, also das Gated Recurrent Unit (GRU) Modell.

2.4.1 Sequentielle Modelle

Der Unterschied zwischen einem sequentiellen und nicht sequentiellen Modell ist der, dass, so
wie der Name schon sagt, die Reihenfolge der Daten im behandelten Problem mit unter Be-
tracht genommen werden kann. Dies bedeutet, dass in einem normalen Neural Network die
Sequenz, in der die Daten ins Modell eingegeben und verarbeitet werden, keine größere Bedeu-
tung haben. Bei sequentiellen Modellen ist es besonders wichtig, die historischen Werte in einer
chronologischen Reihenfolge zu verwenden, um die Prädiktionen von den aufeinanderfolgenden
Ereignissen abhängig zu machen. Die am meisten verbreiteten sequentiellen Daten sind Texte,
die entweder als Sequenz von Wörtern oder, so wie in diesem Fall, als Sequenz von Zeichen
verstanden werden können (Francois Chollet 2018). Ein Unterschied zu einem Feedforward Mo-
dell, das es ermöglicht, eine Sequenz als tatsächliche Sequenz zu betrachten, ist die Memory,
die es erlaubt, die Vergangenheit zu behalten und die nächsten Time Steps in Abhängigkeit der
vorherigen zu behandeln. Die Daten werden also nicht alle auf einmal ins Modell eingegeben,
sondern eins nach dem anderen und werden durch eine rezidive (Recurrent) Verknüpfung ver-
bunden, um die Memory des Modells zu simulieren. Es ist möglich, eine Recurrent Verbindung
zu entfalten (dies wurde im späteren Unterkapitel 2.4.5 beschrieben), um es stattdessen in
der äquivalenten Feedforward Form darzustellen. Jedoch ist zu beachten, dass bestimmte An-
passungen zum Backpropagation Algorithmus beigefügt werden müssen.

Eine wichtige Eigenschaft von RNNs ist, dass sie in der Theorie in der Lage sein müssten, Lang-
zeitabhängigkeiten zu erlernen. Es stellt sich jedoch heraus, dass dies in der Praxis unmöglich
ist, da solche Modelle unter dem Vanishing Gradient Problem (Unterkapitel 2.4.3) leiden,
dass man auch häufig bei anderen Deep-en Architekturen beobachten kann. Ein RNN ist also
in der Lage, zum Beispiel den Satz “Die Bäume wachsen im __” mit dem Wort “Wald” zu
Ende zu bringen. Wenn es jedoch zu langen Abhängigkeiten kommt, bei denen zwischen zwei
Informationen viele Time Steps liegen, die nichts mit einer bestimmten Information zu tun
haben, wird die korrekte Prädiktion schwierig (z.B “Er kommt aus Deutschland ... Er spricht
fließend __” −→ “deutsch”). Die Modellierung von langfristigen Abhängigkeiten ist jedoch mit
Hilfe von GRU und LSTM möglich.
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2.4.2 (Truncated) Backpropagation through time

Backpropagation through time (BPTT) ist das Äquivalent zu dem Backpropagation Algorithmus
aus Unterkapitel 2.3.5 für RNNs mit sequentiellen Daten. Man könnte sich den Algorith-
mus so vorstellen, dass man wie im Unterkapitel 2.4.5 ein LSTM Modell in sequenziell
aufeinanderfolgenden Modellen auflöst (Abbildung 11), die man sich wie Layers in einem
Convolutional Neural Network vorstellen kann. In RNNs wird an jedem Time Step eine Obser-
vation eingelesen, die zu dem gleichen Zeitpunkt auch einen Output liefert (Brownlee 2017a).
Es ist also möglich, jeden dieser Zeitpunkte zu überprüfen, wie genau man mit der jeweili-
gen Prädiktion war (Verlusfunktion). Wenn man nach dem Berechnen des Verlustes an jedem
Zeitpunkt das Netzwerk wieder zusammenfasst und die Verluste kumuliert, ist es möglich, ein
Gradienten Update über alle Time Steps durchzuführen. Diese Prozedur wird fortgeführt, bis
der Verlust hinreichend verkleinert wurde. Ein Problem das jedoch hierbei auftritt, ist dass ein
Gradient Update für Sequenzen, die sehr viele Time Steps haben, sehr kostspielig sein kann,
weshalb man in der Praxis meist den Truncated Backpropagation through time (TBPTT) ver-
wendet. Der Unterschied besteht darin, dass man nicht wie zuvor die ganze Sequenz nimmt,
sondern eher kleine Teile der Sequenz - die Updates auf diesen durchzuführen ist deutlich we-
niger kostspielig. Im Vergleich würde man in diesem Fall das RNN wie zuvor, für eine gewisse
vorbestimmte maximale Länge (ein gewisser Teil der ganzen Sequenz) entfalten, und würde, für
jeden Time Step eine Prädiktion machen und den Verlust berechnen. Anschließend könnte man
das Modell wieder zusammenfassen und für diesen Teil der Sequenz ein Update durchführen.
Dies müsste man für alle Untersequenzen wiederholen und so lange fortführen, bis der Verlust,
wie immer, ausreichend minimiert wurde. Zum Beispiel mit einer Sequenz die 150 Zeichen hat
und in 3 Untersequenzen der Länge 50 geteilt wurde, würde der Gradient Update auf jedem
der drei Teile separat durchgeführt. Die Anzahl der Time Steps, über die man zurück iteriert,
muss nicht notwendigerweise der Anzahl der Länge der Untersequenzen entsprechen, aber in
den meisten Implementierungen von RNNs ist dies der Fall. Der Nachteil ist, dass es nicht
möglich ist, Zusammenhänge zu lernen, die länger als die gebildeten Untersequenzen sind.

2.4.3 Vanishing und Exploding Gradients

Zwei häufige Probleme, die bei Recurrent Neural Network auftreten können, sind erstens das
Vanishing Gradient Problem und zweitens das Exploding Gradient Problem. Das Vanishing Gra-
dient Problem tritt dann auf, wenn man über viele Layers zurück Propagiert und der Gradienten
Update in den ersten Layers des Netzes immer kleiner wird. Ungünstig hierbei ist auch, wie
schon im Unterkapitel 2.3.3 beschrieben, dass manche Aktivierungsfunktionen verursachen,
dass der berechnete Gradient Richtung Null geht (z.B bei Sigmoid und Tanh Funktionen). Im
folgenden Kapitel wurden die GRU, wie auch LSTM Modelle, die dieses Problem aufheben,
dargestellt.

Das zweite Problem das häufig bei RNNs vorkommt, ist das Problem des Exploding Gradient.
Die Prozedur von Backpropagation through time wurde im vorherigen Unterkapitel erläutert -
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dadurch weiß man, dass der Verlust und somit der Gradienten Update über die jeweiligen Time
Steps kumuliert werden, um das entsprechende Update der Gewichte durchzuführen. Das kann
dazu führen, dass Updates sehr groß werden und im Endeffekt das Lernen aus dem Trainings-
datensatz instabil oder sogar unmöglich wird. Hierfür könnte es verschiedene Lösungen geben:
erstens kann man Gradient Clipping nutzen, um den Gradient Update mit einem Schwellenwert
zu begrenzen. Dieser Wert ist also die maximale Größe eines Updates, das durchgeführt werden
kann. Eine weitere Option ist, wie auch beim Vanishing Gradient Problem, das LSTM Modell
und das Aufteilen der ganzen Sequenz in Untersequenzen.

2.4.4 Simple RNN

In Abbildung 11 ist auf der linken Seite der Gleichung ein RNN Modell mit seiner rezidiven
Schleife dargestellt. Die Idee hierbei ist, dass eine Input Observation xt, die an einem Time Step
eingelesen wird, einen Output ht liefert, der gleichzeitig auch als Input der nächsten Zelle ver-
wendet wird. Diese Prozedur kann man auch wie auf der rechten Seite der Abbildung darstellen,
in dem die Schleife in eine sequentielle Verbindung aufgelöst wird. Man hat also jetzt mehrere
Kopien des gleichen Netzwerkes, aber diesmal hat man anstatt der rezidiven Verbindung eine
sequenzielle Verbindung zwischen den jeweiligen Kopien . Das erste Netzwerk erhält sein Input
x0 der in der RNN Cell 1 verarbeitet wird, um letztendlich einen Output h0 zu liefern, der auch
als Information an das nächste Netzwerk weitergegeben wird. Das gleiche passiert mit den dar-
auf folgenden Inputs x1, x2, ..., xt (dunkelgrau), bei denen entsprechende Outputs h1, h2, ..., ht

(hellgrau) nach Transformierung in RNN Cell 2,3,..,t (weiß) geliefert werden.

Abbildung 11: Unrolled RNN

RNN Cell = RNN Cell 1 RNN Cell 2 RNN Cell t

...Xt

ht

X0 X1 Xt

h0 hth1

Quelle: Eigene Darstellung (Olah 2015)

In Abbildung 12 sieht man eine RNN Zelle, die den Output ht−1 aus der letzten Zelle nimmt
und es mit dem Input xt an Zeitpunkt t verbindet. In der Zelle befindet sich ein Neuronales Netz
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Element (grün) mit einer Tanh Aktivierung. Die Tanh Aktivierung reguliert den Output einer
Zelle und presst es in einen Wert zwischen −1 und 1. Ein Netz ohne diese Aktivierung würde
schon nach ein paar Zellen große Werte annehmen, wodurch das Problem des Explodig Gradient
zum Vorschein kommt. Diese Architektur ist jedoch nicht in der Lage lange Abhängigkeiten
zwischen den Time Stemps zu modellieren, da der berechnete Gradient durch die Kettenregel
ausgelöscht wird.

Abbildung 12: RNN Cell

xt

ht-1 ht

tanh

ht

Quelle: Eigene Darstellung

2.4.5 Long Short Term Memory (LSTM)

Nachfolgend wird ein Recurrent Neural Network mit Long Short Term Memory Zellen beschrie-
ben und dessen Vorteile zu dem vorher dargestellten normalen RNN aufgezeigt. Man könnte
sagen, dass die LSTM Zelle eine Erweiterung zu dem RNN ist, in dem versucht wurde, die
Nachteile zu umgehen (Vanishing und Explodig Gradient). LSTM Zellen haben darüber hinaus
heutzutage eine besondere Beliebtheit erreicht, da alle modernen Übersetzer und Textgenerie-
rungsprozesse mit diesen Modellen aufgebaut wurden.

Eine LSTM Cell Struktur ist inAbbildung 13 dargestellt. Zwei verschiedene Arten von Trans-
formationen können identifiziert werden: erstens die grünen Elemente, die einfache Neural Net-
work Layers mit einer gewissen Anzahl an Hidden Units darstellen und zweitens die orangefar-
benen Elemente, die die Vektoroperationen repräsentieren.

Die Schlüsselfunktion, die es erlaubt Informationen von einer Zelle zur anderen auf einem ein-
fachem Weg zu transferieren, ist die horizontale obere Linie, die direkt durch die Zelle verläuft.
Dies ist der so genannte Cell State oder Long Term Memory, die mit der Cell State aus der
vorherigen Zelle beginnt und weiter in die darauf folgende Zelle weitergegeben wird (nach
Durchführung von zwei Vektoroperationen).

Die Erschließung des Cell State sieht man in Abbildung 13 a) und wird wie folgt berechnet:

Ct = Ct−1 ∗ ft + it ∗ Ĉt
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Erstens wird der Cell State aus der vorherigen Zelle Ct−1 mit dem Forget Gate ft multipliziert,
der sich wie folgt erschließen lässt:

ft = σ(Wf [ht−1, xt] + bf )

wobei Wf und bf entsprechend die Gewichte und der Bias des Forgets Schritts sind, der als
Aktivierungsfunktion eine Sigmoid Activation hat. Zweitens wird der Term it ∗ Ĉt addiert, der
entscheiden wird, welche neuen Informationen zu dem Cell State hinzugefügt werden. Diese
Elemente werden wie folgt errechnet:

it = σ(Wi[ht−1, xt] + bi)

mit Wi als Gewichts Matrix dieses Layers und bi als Bias Term.

Ĉt = tahn(WC [ht−1, xt] + bC)

mit entsprechender Gewichte Matrix WC und Bias bC . Die durchgeführten Transformationen
haben folgende Interpretation: Die Forget Operation, also die Multiplizierung von Ct−1 mit
ft sagt aus, wie viel man aus den vorherigen Schritten vergessen sollte. Da ft das Produkt
eines Layers mit Sigmoid Aktivierung ist, ist es ein Vektor von Zahlen zwischen 0 und 1,
bei dem 0 bedeutet, dass diese Information komplett vergessen werden soll und 1, dass die
Information im vollem Umfang beibehalten werden muss. Die Ĉt Werte stellen neue Kandidaten
von Informationen dar, die in den neuen Cell State Ct mit eingebunden werden müssen. Dieser
Layer wird mit einer Tanh Funktion aktiviert, wodurch die Werte in den Bereich -1 bis 1 gepusht
werden. Diese Kandidaten werden zusätzlich mit Hilfe von it skaliert und entscheiden somit,
wie die entsprechenden Information im Cell State geupdated werden (Sigmoid Aktivierung: also
Werte von 0 bis 1).

Abbildung 13: LSTM Cell
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Quelle: Eigene Darstellung (Olah 2015)

In Abbildung 13 b) wird zunächst entschieden, wie der Output der Zelle aussehen wird.
Als erstes folgt ein Sigmoid Layer der entscheidet, welcher Teil des Inputs ausgegeben wird.
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Als nächstes wird der im vorherigem Schritt berechnete Cell State durch eine Tanh Funktion
transformiert (um Werte zwischen -1 und 1 zu erhalten), um ihn im Anschluss mit dem Output
aus dem Sigmoid Layer zu multiplizieren - somit soll erreicht werden, dass nur die Teile ausgeben
werden, für die man sich entschieden hat. Mathematisch dargestellt ist der soeben beschriebe
Prozess wie folgt zu verstehen:

ot = σ(Wo[ht−1, xt] + bo)

und
ht = ot ∗ Ct

wobei in der ersten Gleichung der Input im Layer mit den Gewichten Wo und dem Bias bo
bearbeitet wird. In der zweiten Gleichung stellt ht den Output und ot die gewünschten Infor-
mationen aus dem Input dar. Ein wichtiger Hinweis hier ist, dass der Output ht in zweifacher
Ausführung aus der LSTM Zelle ausgegeben wird. Einmal wird er als sogenannte Short Term
Memory an die nächste Zelle geleitet und einmal wird er als tatsächlicher Output der aktuellen
Zelle zurückgegeben.

Mehrere LSTM Zellen bilden ein LSTM Layer. Dies wurde in der Abbildung 14 gezeigt. Da
man es meistens mit Daten zu tun hat, die sehr umfangreich sind, ist es nicht möglich, alles an
einem Stück in das Modell einfließen zu lassen. Deshalb werden Daten auf kleine Stücke geteilt,
als Batches, die nacheinander verarbeitet werden, bis der Batch, der den letzten Teil enthält,
eingelesen wird. Im unteren Teil der Abbildung 14 sieht man den Input (dunkelgrau), bei
dem die Batches nacheinander, also von batch 1 bis Batch batch_size, eingelesen werden. Die
darüber liegenden Zellen LSTM cell 1 bis LSTM cell time_step stellen die vorher beschrieben
Zellen des LSTM Modells dar. Die Anzahl der Zellen ist gleich der Anzahl der festgelegten Ti-
me Steps. Wenn man beispielsweise eine Text Sequenz nimmt, die insgesamt 150 Zeichen hat,
könnte man sie durch 3 teilen (batch_size 50) und würde je Batch eine Sequenz der Länge 50
haben (Anzahl von time_steps in der Untersequenz und somit die Anzahl der LSTM Zellen).
Wenn man anschließend jedes Zeichen One-hot encoden würde, würde jedes Element (dunkel-
graue Kästchen des Inputs) einen Vektor darstellen, der die Länge des Vokabulars (Anzahl der
Features) hätte und außer der Position des jeweiligen Buchstabens, an dem eine 1 wäre, nur
0-en hätte. Diese Vektoren würden in den jeweiligen Zellen in die Neuronal Networks (grünen
Elemente in den Zellen) einfließen und würden ihre Dimension zu der Länge von der Anzahl
an Hidden Units ändern. Der Input hat also die Dimension (batch_size x time_step x featu-
res). Die Long Time Memory (Cell State) und Short Time Memory (Hidden State) haben die
gleichen Dimensionen (batch_size x number_units). Die hellgrauen Blöcke, die aus den Zellen
entstehen, haben eine andere Dimension, dadurch, dass die Transformationen in den Neural
Networks (grüne Elemente) mit Hilfe der Hidden Units stattgefunden haben (batch_size x ti-
me_step x number_units). Der Output kann aus jeder Zelle zurückgegeben werden - allerdings
ist meistens nur die Information aus dem letzten Block (schwarze Umrandung) relevant (nicht
in allen Problemen), da dort alle Informationen aus den früheren Time Steps enthalten sind.
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Abbildung 14: LSTM Architektur
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Quelle: Eigene Darstellung

2.4.6 Gated Recurrent Unit (GRU)

Gated Recurrent Unit (GRU) ist eine andere Art von RRNs die im Vergleich zu LSTMs eine
deutlich geringere Rechenkraft in Anspruch nimmt. Hier gibt es, wie in Abbildung 15 zu
sehen, anstatt von drei Elementen (wie beim den LSTM Zellen), nur zwei. Auf Grafik a)
wurde das Reset Gate und auf Grafik b) das Update Gate dargestellt. Die Vektoroperationen
und NN Elemente wurden wie zuvor mit orange bzw. grün markiert. Reset Gate entscheidet,
wie viel von den vergangenen Informationen von dem Modell vergessen werden sollen:

rt = σ(Wr[ht−1, xt] + br)

Wr bezeichnet die Gewichte des Netzes, die für die Zusammensetzung von ht−1 (Information
aus der vorherigen Zelle) und xt (Input zum Zeitpunkt t) zuständig sind. Wie zuvor ist br der
Bias dieses NN Elements. Das Update Gate entscheidet in dem Modell darüber, wie viele von
den vergangenen Informationen (aus früheren Zellen) an die darauf folgenden Zellen übergeben
werden. Dies berechnet man wie folgt:

zt = σ(Wz[ht−1, xt] + bz)

in dem Wz die Gewichte des Update Gates mit Sigmoid Aktivierung sind und bz der Bias in
diesem Netz darstellt. Der Cell Sate erschließt sich in diesem Fall aus der Summe des Inputs

35



xt und des Produkts von dem Reset Gate rt mit der Information aus der vorherigen Zelle ht−1,
die dann, durch die nicht lineare Tanh Funktion, aktiviert wird. Mathematisch wird das in der
folgenden Gleichung dargestellt:

Ct = tanh(xt + rt ⊗ ht−1)

wo ⊗ das elementweise Multiplizieren darstellt. Im letzten Schritt wird die neue Information
aus der Zelle ht an Zeitpunkt t berechnet. Dies wird wie folgt gemacht:

ht = zt ⊗ ht−1 + (1− zt)⊗ Ct

zt also das Update Gate wird elementweise mit der Information aus der letzten Zelle ht−1

multipliziert und dann zusammenaddiert mit dem elementweisen Produkt aus (1−zt) und dem
Cell State Ct

Abbildung 15: GRU Cell
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Quelle: Eigene Darstellung (Olah 2015)
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3 Analyse

Dieses Kapitel befasst sich damit, wie die im vorherigem Kapitel beschriebenen Methoden auf
den gewählten Datensatz angewandt werden. Im ersten Teil wurde die Datenquelle sowie die
Charakteristiken der Jahresabschlüsse vorgestellt. Darauf folgend wurde kurz erklärt, wie und
mit welchen Hilfsmitteln die Daten gezogen wurden, um anschließend zu zeigen, wie diese Daten
aufbereitet worden sind und welche grundlegenden Statistiken für die Textdateien vorliegen.
Im zweiten Teil wurde erstens gezeigt, welche Infrastruktur für die darauf folgende Analyse
verwendet wurde. Danach wurden die Ergebnisse für unterschiedliche Parameter Settings und
unterschiedliche Architekturen dargestellt und verglichen. Diese Ergebnisse werden sowohl Cha-
rakteristiken der jeweiligen Elemente der Modelle beinhalten sowie Beispiele von generiertem
Text aus verschiedenen Epochen. Dies erlaubt es zu beobachten, ob und wie der Lernprozess
für die Modelle verlaufen ist.

3.1 Datensatz

Der Datensatz, der verwendet wird, um das vorher beschriebene Problem zu behandeln, muss
ausreichend groß sein, da Methoden angewandt werden (Neuronale Netze - RNN ), die in Hin-
sicht auf Daten sehr greedy sind. Allgemein ist es schwer festzulegen, ab wann man von einem
großen Datensatz spricht, aber in der Regel hilft die anwachsende Datenmenge der Generali-
sierung also auch der Verhinderung von Overfitting in einem Modell. Ein größerer Datensatz
ist allerdings immer mit Aufwand von mehr Rechenkraft verbunden, worauf im späteren Teil
des Kapitels noch detaillierter eingegangen wurde.

Jahresberichte sind generell Texte, die über die Tätigkeiten eines Unternehmens im vergangenen
Jahr informieren. Die Geschäftsberichte dienen dazu, Aktionären und anderen Parteien einen
Einblick in die finanziellen Ergebnisse eines Unternehmen zu geben. Die meisten Rechtsorgane
verlangen, dass solche Berichte erstellt und veröffentlicht werden. Ein solcher Jahresbericht wird
oft beim Handelsregister der Gesellschaft hinterlegt und muss unter anderen folgende Elemente
beinhalten (Oser 2017):

1. Allgemeine Unternehmensinformationen

2. Betriebs- und Finanzübersicht

3. Bericht des Geschäftsführers

4. Informationen zur Unternehmensführung

5. Stellungsnahme des Vorsitzenden

6. Bericht des Wirtschaftsprüfers

7. Jahresabschlüsse, einschließlich:
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• Die Bilanz
• Gewinn- und Verlustrechnung
• Cashflow-Rechnung
• Bilanzierungs- und Bewertungsmethoden
• Weitere Merkmale

3.1.1 Daten Quelle

Die verwendeten Daten kommen von der Internet Seite AnnualReports.com, die dem Nutzer
durch einen kostenlosen Service die Möglichkeit bietet, einfach und schnell auf alle historischen
Jahresberichte eines Unternehmens zuzugreifen. Die dort vorhandenen Berichte stellen die größ-
te Ansammlung von Jahresabschlüssen der USA dar. Die gelisteten Unternehmen stellen der
Seite jährlich die neusten Abschlüsse zur Verfügung, die als PDF oder HTML zum Download
angeboten werden. Der ganze Service ist kostenfrei - nur das Bestellen einer gedruckten Version
ist kostenpflichtig. Die Seite ermöglicht es, Investoren, Aktionären und wissenschaftlichen Ar-
beitern, wie auch Studenten, einen Überblick auf alle relevanten Informationen über bestimmte
Unternehmen zu erhalten. Für die geplante Aufgabe der Textgenerierung ist diese Datenbank
von besonderem Interesse, da viele Unternehmensinformationen in Textform vorliegen.

3.1.2 Webcrawler

Ein Webcrawler erlaubt es, ausgewählte Internet Seiten zu durchsuchen. Webcraweler sind
Computerprogramme, die in dem Source Code einer Seite nach weiteren URL’s suchen, um im
Endeffekt aus allen gesammelten Seiten eine bestimmte Information zu gewinnen. Man beginnt
also mit einer oder mehreren URL’s und arbeitet sich zu anderen verlinkten Seiten vor, bis die
gewünschte Information zu finden ist und gespeichert werden kann. Diese Methodik erlaubt
es auf einer großen Skala, Daten aus dem World Wide Web, ohne das manuelle Durchsuchen
mehrerer (oft) hunderter oder tausender Links, zu gewinnen.

In dieser Arbeit wurde die Python library, Scrapy verwendet. Scrapy basiert auf kleinen Pro-
grammen, die spiders genannt werden. Hierbei handelt es sich um an sich eigenständige scraper,
die einfachen Regeln folgen, um sich im World Wide Web fort zu bewegen. Anhand von sich
gegenseitig aufrufenden Funktionen wird die Idee von don’t repeat yourself framework eingehal-
ten. Diese Eigenschaft macht Scrapy zu einem höchst effizienten Webscraper library, weshalb
sie auch in dieser Arbeit verwendet wurde (Scrapinghub 2008).

3.1.3 Grundlegende Statistiken

In Abbildung 16 sind zwei Grafiken erkennbar, die die Häufigkeiten der Phrasen in allen
analysierten Texten darstellen, die mit Hilfe der N-Gram Methode zerlegt wurden. N-Grams
ist eine Methode aus der Familie von Bag-of-words, die aus einem Text Gruppen von Wörtern
(oder Zeichen) mit n oder weniger Wörtern bildet. Ein Beispiel würde wie folgt aussehen:
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Satz - “Im Wald stehen Bäume” und die entsprechenden 2-Grams sind [“Im”, “Im Wald”,
“Wald”, “Wald stehen”, “stehen”, “stehen Bäume”, “Bäume”]. Dieses Beispiel könnte man
auch als Bag-of-2-grams bezeichnen. In der Grafik a) sieht man ein Balkendiagramm, dass das
durchschnittliche Auftreten der häufigsten Phrasen darstellt. In Grafik b) ist eine sogenannte
WordCloud bzw. PhraseCloud zu sehen, da nicht nur einzelne Wörter unter Betracht genommen
wurden, sondern Phrasen, die aus einem bis drei Wörtern bestehen. Beide Grafiken stellen eine
ähnliche Information dar - jedoch in unterschiedlichen Formen. In der rechten Grafik lassen sich
schnell die häufigsten Phrasen erkennen, die man dann wiederum leicht in der linken Grafik mit
dem dazugehörigen Durchschnitt wiederfinden kann. Da es sich um finanzielle Texte handelt,
sind die häufigsten Phrasen auch mit diesem Gebiet verbunden. Die am meisten vorkommenden
Wörter sind financial, company und value, mit einem entsprechenden Durchschnitt von 341,
318 und 194. Die einzigen zwei Phrasen, also die Kombination von mehr als einem Wort, die
in den Top 100 auftreten, sind financial statements und fair value, wobei das erstere auch das
Thema der zu analysierenden Texte ist und somit einen Sinn ergibt.

Abbildung 16: Phrasen Häufigkeiten
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Quelle: Eigene Darstellung

Eine ähnliche Abbildung zu der oben beschriebenen, ist die Abbildung 17, welche allerdings
nicht die Häufigkeit ganzer Wörter darstellt, sondern die Häufigkeiten einzelner Zeichen. Die
Texte wurden in einzelne Buchstaben und Sonderzeichen unterteilt und danach aufsummiert
und durch die Anzahl aller Dokumente geteilt, um das durchschnittliche Auftreten einzelner
Zeichen zu bestimmen. Da die später verwendeten Methoden auf Zeichen-Basis angewandt
werden, sind diese Informationen von großer Bedeutung um im Nachhinein den generierten
Text besser verstehen zu können. Das Zeichen, dass im Schnitt am meisten auftritt, ist das
Leerzeichen - es tritt im Schnitt ~42 tausend mal auf, was um 10 Tausend mehr ist, als der
häufigste Buchstabe e und mehr als doppelt so viel, wie der zweithäufigste Buchstabe t. Diese
drei Zeichen sind somit die am häufigsten auftretenden Zeichen und sind in allen Texten am
zahlreichsten repräsentiert.
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Abbildung 17: Zeichen Häufigkeiten

(a) Durchschnittliche Häufigkeiten von Zeichen
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Quelle: Eigene Darstellung

Abbildung 18 enthält Informationen über die Metadaten der analysierten Texte. In Grafik
a) wurde die Frequenz der Zeichenanzahl in den verschiedenen Dokumenten als Histogramm
dargestellt. Die Streubreite liegt zwischen 0 und 4.5 Millionen Zeichen, wobei die Hauptmasse
der Dokumente eine Anzahl von 0 bis 2 Million Zeichen besitzt. Die Dokumente, die in den
höheren Bereichen der Zeichenanzahl liegen (4 Millionen), treten weniger häufig auf und kön-
nen damit als Ausreißer anerkannt werden, die jedoch für die Durchführung der Analyse kein
Hindernis darstellen, da diese meist von größeren Unternehmen erstellt wurden und dadurch
auch einen deutlich größeren Umfang haben als Dokumente, die von kleineren Unternehmen
verfasst wurden. Beunruhigend werden Dokumente sein, die eine deutlich zu kleine Anzahl an
Zeichen haben - dies würde nämlich darauf hindeuten, dass ein Fehler beim Downloaden oder
Verarbeiten der Dokumente aufgetreten ist. Die Spitze des Histogramms liegt bei 250 Tausend
Zeichen. In der zweiten Grafik b) sieht man, dass die Häufigkeitsverteilung der Anzahl der
Wörter in den unterschiedlichen Dokumenten ähnlich aussieht, wie die der Zeichenanzahl, was
bedeutet, dass voraussichtlich eine größere Zeichenanzahl auch mit einer größeren Anzahl von
Wörtern zusammenhängt. Die Streubreite dieser Variable reicht von 0 bis 800 Tausend Wörter
und die Spitze liegt bei 40 Tausend Wörtern. Die Hauptmasse der Texte befindet sich zwischen
0 und 400 Tausend Wörtern. Das dritte Histogramm, welches auf Grafik c) zu sehen ist, stellt
die Verhältnisse von Zahlen zu allen Zeichen in den jeweiligen Texten dar. Dies wurde berech-
net, um festzustellen, dass man nicht nur Texte hat, die hauptsächlich Jahresbilanzen zeigen,
sondern Texte, die entsprechend viel geschriebenen Text enthalten. Dies ist in dieser Arbeit von
besonderem Interesse. Hierbei liegt die Streubreite zwischen 0 und 0.6 (60%). Die Hauptmasse
befindet sich auf dem Intervall von 0 bis 0,2 (20%). Es handelt sich also überwiegend um Texte,
in denen Zahlen weniger als 20% ausmachen und somit mehr geschriebenen Text als Jahres-
zahlen etc. enthalten. Im Nachhinein werden Texte bei der Transformation von PDF Dateien
in Textdokumente, Absätze, bei denen dieser Parameter größer als 0.2 (20%) ist, gelöscht um
somit die darin enthaltenen Tabellen aus den reinen Textdateien loszuwerden.
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Abbildung 18: Histogramme der Metadaten

(a) Zeichenanzahl (b) Wörteranzahl (c) Zahlen zu Zeichen Ratio

Quelle: Eigene Darstellung

In Tabelle 4 wurden die deskriptiven Statistiken aller Texte zusammengefasst. Es wurden
die Lagemaße für die Zahlen zu Zeichenverhältnissen, Zeichenanzahl und Wörteranzahl berech-
net. Die analysierten Texte haben im Schnitt ein Zahlen- zum Zeichenverhältnis von 0.018
(also 1.8%), wobei die Texte mit jeweils dem kleinsten und größten Verhältnis, entsprechend
6% und 69%, haben. Der kürzeste Text, wenn es um Wörter geht, hat auch die kleinste An-
zahl an Zeichen (218 Wörter und 9221 Zeichen). Dieser Jahresabschluss enthält nur eine kurze
Beschreibung des vergangenen Fiskaljahres und einleitende Wörter des Geschäftsführers. Im
Durchschnitt liegt die Zahl der Wörter bei 42282 und die Anzahl der Zeichen bei fast 273 Tau-
send. Der längste Jahresabschluss hat über 778 Tausend Wörter und der Text mit der höchsten
Anzahl von Zeichen hat mehr als 4.8 Millionen Zeichen. Wenn man die durchschnittliche An-
zahl der Zeichen durch die durchschnittliche Zahl der Wörter teilt, dann erhält man Wörter
der durchschnittlichen Zeichenlänge ~6 haben.

Tabelle 4: Grundlegende Statistiken

Ratio Characters Words
Min. 0.06 9221 218
1st Qu. 0.015 146537 22764
Median 0.017 248540 38322
Mean 0.018 273134 42282
3rd Qu. 0.020 357018 55095
Max. 0.689 4858544 778254

Quelle: Eigene Darstellung

3.1.4 Datenverarbeitung

Die im vorherigen Schritt erhaltenen PDF’s sind in einer solcher Form nicht zu gebrauchen.
Zur Verarbeitung der Dokumente und zur Durchführung des Experiments muss der Text aus
den PDF’s extrahiert und gesäubert werden. Dies wurde mit Hilfe eines R-Skripts durchge-
führt, welches reinen Text aus den Dokumenten zieht und als .txt Datei abspeichert. In diesem
Verfahren wurde auch das Verhältnis der Anzahl von Zahlen zu allen Zeichen, in den jeweiligen
Sätzen, berechnet. Sätze, in denen diese Verhältnisse 0.2, also 20% überstieg, werden aus dem
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extrahierten Text ausgeschlossen, da die Chance, dass ein solcher Satz eine extrahierte Tabel-
le darstellt, sehr hoch ist. Zur Erinnerung: Tabellen mit Kennzahlen über Unternehmen sind
in diesem Fall irrelevant und können ohne Probleme ignoriert werden. Im Nachhinein wurden
auch noch alle Zahlen aus den Texten ausgeschlossen, jedoch ist der vorherige Schritt trotzdem
notwendig, um den entsprechenden Text, der in den Tabellen enthalten war, zu finden und im
zweiten Schritt zu löschen.

Die gesammelten PDF’s sind außerdem in verschiedenen Programmen und Versionen verfasst
worden, weil sie erstens von unterschiedlichen Unternehmen geschrieben wurden und zweitens
aus einem Zeitraum von mehr als 10 Jahren stammen. Das führt dazu, dass die Dokumente
unterschiedlich gut aufgelöst und verarbeitet werden können. Hinzu kommt, dass manche Zei-
chen schlecht entschlüsselt wurden oder einfach einem anderen Zeichen zugeschrieben worden
sind. Das führt dazu, dass viele merkwürdige Zeichen im Text auftreten, an Stellen, an denen
in den PDF’s Zeichen, Bilder, Seitenaufteilungen, etc., aufgetreten sind. Diese Sonderzeichen
oder schlecht entschlüsselten Zeichen sind nicht von Interesse, wenn es um das Erlernen von
geschriebenen finanziellen Texten geht, weshalb die Zeichen und Spezialzeichen auf die folgen-
den begrenzt wurden: ’, -, , !, \, (, ), „ ., :, ;, ?, [, ], _, =, a, b, c, d, e, f, g, h, i, j, k, l, m, n,
o, p, q, r, s, t, u, v, w, x, y, z. Darüber hinaus wurden alle Buchstaben, die in den Texten als
großgeschriebene Buchstaben auftreten, zu deren entsprechenden Darstellung in Kleinschrift
transformiert, damit das verwendete Vokabular und damit die interessierenden Klassen des
Modells entsprechend klein gehalten wird.

Zusammenfassend:

1. .pdf Dateien wurden in .txt Dateien transformiert.

2. Tabellen wurden aus dem Text anhand der Zahlen zu Zeichenverhältnissen entfernt.

3. Großbuchstaben wurden zu Kleinbuchstaben transformiert.

4. das Vokabular wurde auf folgende Zeichen begrenzt: ’, -, , !, \, (, ), „ ., :, ;, ?, [, ], _, =,
a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z.

5. Zahlen wurden aus den Texten ausgeschlossen.

3.1.5 Datenaufbereitung (Inputspace)

Nach der Datenverarbeitung ist es noch notwendig, die Daten in die entsprechende Form für
Deep Learning Probleme zu bringen. Hierfür wird das theoretische Wissen aus Kapitel 2
über Tensoren und das One-hot Encoding benötigt. Da die Aufgabe darin bestehen wird, ein
bestimmtes Zeichen anhand einer vorausgehenden Zeichensequenz vorauszusagen, muss der
Text in entsprechende Komponenten zerteilt werden:

1. Zeichen Sequenz der Länge maxlen, die im Folgenden input sequence genannt wird.
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2. Das auf die input sequence folgende Zeichen (following character).

Das folgende Beispiel dient der Visualisierung des Vorgangs:
Ein Ausschnitt aus dem Jahresbericht der Firma Kelloggs aus dem Jahr 2016

“we have experienced, and expect to continue to experience, intense competition for sales of
all of our principal products in our major product categories, both domestically and

internationally.” (Kellogg 2016)

Der oben zitierte Ausschnitt wurde nach den Regeln aus Unterkapitel 3.1.4 verarbeitet und
enthält somit nur auserwählte Zeichen. In der Tabelle 5 wird dargestellt, wie der Text in
Untersequenzen aufgeteilt wird. Es werden Sequenzen gebildet, die eine maximale Länge des
Parameter maxlen sind (in diesem Beispiel ist maxlen 35). Das bedeutet, dass der Text in gleich-
lange Abschnitte der Länge von 35 Zeichen geteilt wird. Die Aufgabe, die zu erlernen ist, besteht
darin, den 36-sten Buchstaben korrekt vorauszusagen. Es werden nicht alle möglichen Zertei-
lungen des Textes in die Analyse mit aufgenommen. Darüber entscheidet ein Verschiebungs-
Parameter, der weiterhin skipp genannt wird. In diesem Beispiel beträgt skipp 3 und bedeutet,
dass nach jeder Aufteilung in Sequenzen der Länge maxlen, die darauf folgende Sequenz nicht
einen Buchstaben danach beginnt, sondern mit zwei. Diese Vorgehensweise verhindert, dass
während des Lernprozesses eines Algorithmus genaue Strukturen des Textes erlernt werden
können. Zur Erinnerung: es ist nicht das Ziel, Text aus vorherigen Dokumenten abzubilden,
sondern die Erlernung textgenerierender Prozesse.

Tabelle 5: Text Aufbereitung

sample input sequence following character
1 we have experienced, and expect to c
2 have experienced, and expect to con t
3 e experienced, and expect to contin u
4 xperienced, and expect to continue t
5 rienced, and expect to continue to e
6 nced, and expect to continue to exp e
... ... ...
52 es, both domestically and internati o
53 both domestically and internationa l
54 th domestically and internationally .

Quelle: Eigene Darstellung

Wenn man im Nachhinein die im vorherigen Schritt erhaltenen Sequenzen so entschlüsselt, wie
es in dem Unterkapitel 2.1.3 (One-hot Encoding) erläutert wird, erhält man eine Ansamm-
lung von Matrizen (2D Tensoren), die bei Aufstockung einen 3 D Tensor bilden. Das gleiche
geschieht, wenn man die Following Characters entschlüsselt. Der Effekt dieser Prozedur ist in
Abbildung 19 dargestellt. Auf der linken Seite sieht man die aufgestockten Matrizen der In-
put Sequence, die die Dimension (maxlen x vocab size) haben. Das Tupel dieser Matrizen ist
dann ein Data Qube (3 D Tensor), der zusätzlich zu den zwei Dimensionen noch die Dimension
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beinhaltet, die die Anzahl der Samples repräsentiert. Auf der rechten Seite der Abbildung sieht
man auch einen 3 D Tensor, allerdings für die Following Characters. Die Sample Anzahl und
das Vocab Size bleibt hierbei gleich, nur das maxlen ist in diesem Fall 1, da es sich um einen
Buchstaben handelt, den man voraussagen will.

Abbildung 19: 3 D Tensor als Input Space
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Quelle: Eigene Darstellung

3.2 Deep Learning Infrastruktur und Ergebnisse

In diesem Unterkapitel wird zuerst die Hard- und Software, die verwendet wurden, darge-
stellt. Hierzu wurden Keras und TensorFlow verwendet (Unterkapitel 3.2.1). Im zweiten
Schritt wurden die Ergebnisse der Analyse gezeigt, wobei genauer auf die Verteilung der Werte
im Neuronalen Netz sowie die Entwicklung des Verlustes und der Accuracy für verschiedene
Parametersettings eingegangen worden ist (Ergebnisse für alle Modelle gibt es im Anhang).
Darüber hinaus wurde auch das erlernte Embedding für das beste Parametersetting dargestellt.
Die Grafiken wurden teilweise in dem R package ggplot und teilweise in TensorFlow vorbereitet.

3.2.1 Keras und TensorFlow

Zur Durchführung der Analyse wird Tensorflow als back-end und Keras als Interface in R
verwendet. Keras ermöglicht es, relativ komplexe Modelle in einer übersichtlichen Form zusam-
menzusetzen und mit dem gleichen Code die Analyse auf einem CPU oder GPU anzuwenden.
Das vereinfacht es, Prototypen von Modellen zu erstellen und zu testen, um im Anschluss den
funktionierenden Prozess auf einem entsprechend leistungsstarken Gerät auszuführen. Darüber
hinaus sind in Keras auch Netzarchitekturen, wie zum Beispiel RNNs oder Convolutional Neural
Networks für Computer Vision implementiert. Keras wurde anfangs mit dem Gedanken entwi-
ckelt, Forschern die Möglichkeit zu bieten, schnelle Deep Learning Experimente durchzuführen
und zu testen (Francois Chollet 2018). Heutzutage ist es eines der meist verbreitetsten Frame-
works, um die vorher genannten Probleme zu lösen. Zusammenfassend ist Keras eine high-level
library, mit derer Hilfe man separate Blöcke (die unterschiedlichen Aufgaben nachkommen)
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zusammensetzen kann, um komplexe Deep Learning Strukturen zu entwickeln (Chollet et al.
2015). Tensorflow hingegen ist eine open source Software, die es erlaubt, leistungsstarke num-
merische Berechnungen auf unterschiedlichen Prozessoren (CPU oder GPU) durchzuführen
(Francois Chollet 2018). Es ist somit eine back-end Lösung für low-level Tensor Operationen,
die es Keras ermöglicht, effizient und schnell Berechnungen durchzuführen. Tensorflow ist nicht
die einzige back-end Lösung, welche mit Keras kombiniert werden kann, da Keras das Problem
modular angeht und es damit ermöglicht, verschiedene tensor-basierte back-end Lösungen zu
integrieren (siehe Abbildung 20). TensorFlow wiederum ruft Eigen bei einem CPU und cuD-
NN bei einem GPU auf. Eigen und cuDNN stellen die Parallel Computing Plattformen für die
jeweiligen Prozessoren dar.

Abbildung 20: Hardware und Software
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Quelle: Eigene Darstellung (Francois Chollet 2018)

3.2.2 Ergebnisse

In Tabelle 6 (siehe Anhang) wurden die Modelle mit ihren dazugehörigen Parametersettings
angegeben. Darüber hinaus wurden auch die Metriken für die Iteration (Epoche) dargestellt,
in denen der niedrigste Verlust für die jeweiligen Settings berechnet wurde. Es wurden sowohl
unterschiedliche Parameter des Netzes ausprobiert: die Anzahl der Hidden Units, die maxima-
le Länge der Input Sequenzen, wie auch verschiedene Optimierungsalgorithmen, die in dieser
Arbeit vorgestellt wurden.

In den folgenden Abbildungen wurden die für die in Tabelle 6 vorgestellten Architekturen, die
entsprechenden Metriken grafisch über die Iterationen (Epochen - ein vollständiger Durchlauf
aller Input Daten) dargestellt. Die Metriken, die für diese Arbeit von größtem Interesse sind,
sind erstens der Verlust und zweitens die Accuracy. In erster Linie will man den Verlust minimie-
ren und die Accuracy wurde als extra Information dargestellt. Dies ist deswegen der Fall, weil
nicht das genaue Voraussagen des nächsten Zeichens von Interesse ist (dies würde zur genauen
Abbildung von historischen Texten führen), sondern die Erlernung von Regeln für einen gewis-
sen Schreibstil. Der Trainings-Datensatz stellt nur einen Bruchteil aller Jahresabschlüsse dar.
Bessere Ergebnisse könnte man durch die Skalierung auf einen größeren Teil des Datensatzes
erreichen. Man müsste allerdings eine leistungsstärkere Maschine verwenden, um eine akzep-
tierbare Lernzeit beizubehalten. Die Ergebnisse für alle Architekturen befinden sich im Anhang.
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Abbildung 21 stellt die ersten drei getesteten Modelle dar. Diese haben die gleichen Para-
meter, bis auf den Optimierungsalgorithmus, der die Verlustfunktion minimieren soll. Diese
Algorithmen wurden in Unterkapitel 2.2 vorgestellt und detailliert beschrieben. Insgesamt
wurden für die jeweiligen Modelle 60 Epochen durchgeführt, auf denen man beobachten kann,
wie sich der gesamte Verlust über die Zeit entwickelt. Am schlechtesten schneidet Stochastic
Gradient Descent (SGD) ab (model_1 - blaue Linie) - er ist von der ersten bis zu letzten Epoche
mit den Verlustwerten über den beiden anderen und scheint bei Epoche 10 zu konvergieren und
nicht mehr zu lernen. Nicht viel besser ist der SGD mit Momentum (model_2 - rote Linie), da
er sich ähnlich wie der normale SGD verhält. Hierbei verringert sich der Verlust im Gegenteil
zum vorherigen Algorithmus nach Epoche 40 wieder und könnte bei einer größeren Anzahl von
Iterationen zu besseren Ergebnissen führen, als in den ersten 60 Epochen. Der Algorithmus, der
sich am besten entwickelt, ist der RMSprop (model_3 - grüne Linie), der sowohl nach der ers-
ten Epoche den niedrigsten Verlust hat und auch am schnellsten den Verlust über die Epochen
minimiert.

Abbildung 21: Verlust von Modellen mit verschieden Optimierungsalgorithmen
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Quelle: Eigene Darstellung

In Abbildung 22 sieht man wieder drei Modelle. Diesmal haben alle drei den gleichen Opti-
mierungsalgorithmus und zwar den RMSprop, da der zu den besten Ergebnissen im vorherigen
Fall geführt hat. Diese drei Modelle unterscheiden sich diesmal durch die Batch Size (genauer:
Mini Batch Size). Das Modell mit der Batch Size 512 (model_6 - blaue Linie) schneidet am
besten ab. Dies könnte deswegen der Fall sein, dass das Modell mit einer solchen Anzahl an
Hidden Units in der Lage ist, komplexe Strukturen (Zusammenhänge) aus den Texten zu ler-
nen. Das Modell mit Batch Size 128 (model_4 - rote Linie) fängt erst ab Epoche 18 an schneller
den Verlust zu minimieren und nähert sich sogar in den letzten Epochen dem Wert des Verlus-
tes von den Modellen mit Batch Size 256 (model_256 - grüne Linie) und 512. Das Modell mit
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Batch Size 256 ist über alle Iterationen leicht schlechter als das komplexere Modell. Im weiteren
Schritt wird erst die Batch Size 256 genommen (da diese weniger Parameter zum trainieren
hat) und später wird noch das komplexere Modell mit 512 Hidden Units in Kombination mit
anderen Parametern ausprobiert.

Abbildung 22: Verlust von Modellen mit verschieden Batch Size Parametern

1.0

1.5

2.0

2.5

3.0

0 20 40 60
Step

V
al

ue

BS_128

BS_256

BS_512

Quelle: Eigene Darstellung

Als nächstes wurden verschiedene Werte für den maxlen Parameter getestet. Drei Werte: 50
(model_7 - blaue Linie), 100 (model_5 - rote Linie) und 150 (model_8 - grüne Linie). Abbil-
dung 23 stellt die Entwicklung des Verlustes über die 60 Epochen für diese drei Modelle dar.
Man kann erkennen, dass es keine großen Unterschiede in Abhängigkeit des maxlen Parameter
gibt. Der einzige Unterschied ist, dass man eine gewisse Verschiebung in den Ergebnissen des
Verlustes für das Modell mit maxlen 150 (grüne Linie) erkennt, was dadurch zustande kommt,
dass dieses Modell eine größere Anzahl an Parametern hat und deswegen schwerer zu trainieren
war. Im Endeffekt haben aber alle drei Modelle ähnliche Ergebnisse und deswegen wäre es egal
mit welchem Wert des Parameters man fortfahren möchte. Allerdings ist es schwerer, Abhän-
gigkeiten im Text zu lernen ,die länger sind als die maximale Länge der Sequenz, weswegen man
sich im weiteren auf den Wert 150 für den maxlen entscheidet, um eine längere Abhängigkeit
modellieren zu können.
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Abbildung 23: Verlust von Modellen mit verschieden maxlen Parametern
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Quelle: Eigene Darstellung

Die folgenden drei Modelle zeigen unterschiedliche Grade der Komplexität der Architekturen
der Neuronalen Netze. Das einfachste Modell mit zwei Layern (Hidden Units in Layer 1 256
und Layer 2 128) hat bis auf die ersten paar Epochen den niedrigsten Verlust (model_8 - rote
Linie). Das zweite Modell mit zwei Layern, aber mit einer größeren Anzahl an Units (512 und
256), ist anfangs zu komplex und das Modell schafft es erst nach Epoche 30 den Verlust zu
minimieren(model_9 - grüne Linie). Bei Epoche 60 ist dieses Modell aber fast gleich auf mit
den beiden anderen Modellen. Das letzte Modell, dass dieses mal drei Layer hat (512, 256 und
128), wurde mit einer niedrigeren Lernrate initialisiert, um den Verlust früher minimieren zu
können (model_13 - blaue Linie). Der Verlust wird allerdings sehr langsam minimiert, da die
Lernrate am Anfang kleiner war.

Abbildung 24: Verlust von Modellen mit verschieden Komplexitätsgraden (Batch Size 256)
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Quelle: Eigene Darstellung
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Abbildung 25 zeigt die gleichen Modelle wie in der vorherigen Abbildung - nur dieses mal mit
einer größeren Batch Size - 512. Man sieht, dass das Modell mit zwei Layern (512 Hidden Units
und 256 Hidden Units - model_11 - grüne Linie) anfangs wieder zu komplex war, wodurch
sich der Verlust bis Epoche 37 nicht verändert hat. Danach ist der Sprung in der Minimierung
des Verlustes jedoch groß und er passt sich den der zwei anderen Modelle an. Das Modell mit
drei Layern (512 Hidden Units, 256 Hidden Units und 128 Hidden Units - model_12 - blaue
Linie) hingegen, wurde so wie im Fall des Modells mit Batch Size 256, mit einer niedrigeren
Lernrate initialisiert, wodurch die Minimierung des Verlustes schneller beginnen konnte. Das
einfachste Modell (256 Hidden Units und 128 Hidden Units (model_10 - rote Linie) hat über
alle 60 Epochen den kleinsten Wert des Verlustes erzielt - es sieht jedoch aus, als ob der Wert
konvergieren würde und deswegen besteht der Verdacht, dass die beiden komplexeren Modelle
bei einer höheren Anzahl von Epochen den Verlust mehr minimieren könnten.

Abbildung 25: Verlust von Modellen mit verschieden Komplexitätsgraden (Batch Size 512)
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Quelle: Eigene Darstellung

Die folgende Abbildung 26 (Modell mit: zwei LSTM Layern, RMSprop und Softmax Akti-
vierung) zeigt ein Beispiel eines Aufbaus von einem der Modelle (model_11). Man sieht die
Elemente, die in den vorherigen Kapiteln beschrieben wurden: Layers, Activations, Verlust-
funktion, Optimierungsalgorithmus und die berechneten Metriken. Man sollte diese Grafik von
unten nach oben lesen. Zuerst kommt lstm_layer1 dann lstm_layer2. Diese stellen die jewei-
ligen LSTM Layers im Netzwerk dar und beinhalten alle LSTM Cells mit den dazugehörigen
Elementen. Als nächstes folgt der Dense Layer (eine lineare Transformation, bei der jeder In-
put mit jedem Output über ein Gewicht verbunden wird) und die Aktivierungsfunktion, die in
diesem Fall die Softmax darstellt, und für jeden Output (Größe des Vokabular - 43) eine sich zu
1 aufsummierende Wahrscheinlichkeit des Auftretens berechnet. In Metrics werden die unter-
schiedlichen Metriken berechnet, an denen man interessiert ist und im Loss Element (Verlust),
wird der Wert des Verlustes, der minimiert werden soll, berechnet. Das Training Element stellt
den Lernprozess dar, der alle erhaltenen Informationen aufnimmt (zusammen mit dem Opti-

49



mierungsalgorithmus und seinen Parametern) und die entsprechenden Gradienten berechnet
sowie die Gewichte im ganzen Netzwerk Updated.

Abbildung 26: Modell mit id model_11

Quelle: Eigene Darstellung

In den folgenden Abbildungen sieht man Histogramme der jeweiligen Elemente des Neurona-
len Netzes. Dank ihnen kann man erkennen, ob und wie sich die Werte über die aufeinander
folgenden Iterationen verändern. Die Histogramme werden in zwei verschiedenen Arten vor-
gestellt: Erstens ein 3D Plot, der die Histogramme über die Iterationen anzeigt und zweitens
ein 2D Plot, der die Verteilung des entsprechenden 3D Plots darstellt. Die Histogramme der
Merkmale aus den ersten Epochen sind in den jeweiligen Grafiken ganz hinten und sind in hel-
leren orange markiert. Umso weiter man sich nach vorne bewegt, desto spätere Epochen werden
sichtbar und umso roter wird der Farbton des Histogramms (das vorderste Histogramm stellt
also die letzte Epoche des Lernprozesses dar). Zwei Merkmale der Histogramme sind über den
Zeitraum verfolgbar: Die Spitze, die den Mittelwert repräsentiert und die Varianz der Werte
des jeweiligen Elements. Man kann also beobachten, wie sich die Werte über die Iterationen
verändern. Falls man keine Verschiebung des Mittelwerts und keine Veränderung in der Vari-
anz der Werte sieht, bedeutet das, dass das Modell im Trainingsprozess nichts gelernt hat. Die
Elemente des Neuronalen Netzes. die in diesen Grafiken dargestellt wurden, sind: der Output
aus den jeweiligen LSTM Layern, der Output des letzten Fully connected Layers (Dense Layer)
und der Output der Softmax Aktivierung. All diese Elemente ermöglichen es zu beobachten, ob
irgendwelche der vorher beschriebenen Probleme aufgetreten sind (Exploding oder Vanishing
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Gradients). Oft werden diese Darstellungen als Histogramme und Verteilungen zum Debugging
der Architekturen verwendet.

Abbildung 27 stellt insgesamt 8 Grafiken dar (für Modell model_11). Man sollte die Ab-
bildung so betrachten, dass auf der linken Seite sich das 3D Histogramm befindet und die
dazugehörige Verteilung auf der rechten Seite. Von unten gesehen kann man also die Werte
des RNN über die jeweiligen Layer bis zum Output und die Aktivierung beobachten. Zuerst
kommt also LSTM Layer I dann LSTM Layer 2 und so weiter. Hier wurden die Elemente
nur für ein Modell betrachtet, da die Beschreibung und Darstellung dieser Grafiken platz- und
zeitaufwendig sind (die Histogramme und Verteilungen für alle Modelle befinden sich im An-
hang). In Grafik g) & h) sieht man also ein Histogramm und die Verteilung der Werte, die
aus dem ersten LSTM Layer kommen. In g) sind auf der y Achse die Epochen von 1 bis 60
aufgezeigt und auf der x Achse die entsprechenden Werte. Die z Achse, also die, die den 3D
Effekt ermöglicht, stellt die Häufigkeiten eines bestimmten Wertes dar (Histogramm). Dies be-
deutet, dass wenn man nur einen Ausschnitt von y betrachtet, erhält man ein 2D Histogramm
der Oputput Werte für eine bestimmte Epoche. Die Werte, die der Output in diesem Fall ha-
ben kann, befinden sich zwischen −1 und 1, da die letzte Transformation die Tanh Funktion
beinhaltet (Unterkapitel 2.4.5). Was man gut erkennen kann, ist, dass bis zur Epoche 35 sich
grundsätzlich nichts im Output dieses Layers ändert (dies sehen wir auch in Abbildung 25
grüne Linie - model_11). Erst nach dieser Epoche fängt das Modell an zu lernen und ordnet
die meisten Outputs nah an die Null und nur wenige in Richtung −1 und 1, was gut ist in der
Hinsicht, dass nur manche Informationen aktivieren werden (die kann man besonders gut auf
Grafik h) beobachten). In Grafik e) & f) erkennt man, so wie in den vorher beschriebenen
Grafiken, den Output für LSTM Layer 2. Der Unterschied hier ist, dass die Werte des Out-
puts anfangs stärker Richtung 1 gestreut sind und die Varianz der Daten ab Epoche 35 größer
wird, im Vergleich mit dem erstem Layer. Als nächstes folgt der Output des Fully Connected
Layers (Dense Layers), der keine Aktivierungsfunktion beinhaltet und deswegen keine begrenz-
ten Werte ausgibt. Hier kann man beobachten, dass sich die links steile Verteilung nicht viel
in den ersten 30 Epochen verändert und danach sowohl Änderungen im Mittelwert, der sich
ins Negative verschiebt und Veränderungen in der Varianz, die größer wird, aufweist. Darüber
hinaus ändert sich die ganze Verteilung über die Iterationen. In den ersten Epochen sieht man
eine Verteilung die zwei Spitzen hat und in den letzten sieht man eine Verteilung mit nur einer
Spitze, die rechts schief ist. In den beiden letzten Grafiken a) & b) sieht man den Output aus
der Softmax Aktivierungsfunktion. Wieder fängt das Modell erst nach den ersten 35 Epochen
an, Outputs aus dem Dense Layer zu aktivieren (Wert 1) hält jedoch die meisten Aktivierungen
nah an der Null. Dies ist sehr gut, weil das Modell gelernt hat, nur wenigen Klassen eine höhere
Wahrscheinlichkeit zuzuordnen.
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Abbildung 27: Histogramme und Verteilungen der RNN Elemente

(a) Histogramm Activation Output (b) Verteilung Activation Output

(c) Histogramm Dense Layer Output (d) Verteilung Dense Layer Output

(e) Histogramm LSTM Layer II Output (f) Verteilung LSTM Layer II Output

(g) Histogramm LSTM Layer I Output (h) Verteilung LSTM Layer I Output

Quelle: Eigene Darstellung
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In Abbildung 28 sieht man die Vektor Darstellung der Zeichen aus dem Vokabular. Die Em-
bedding Space wurde mit Hilfe von zwei Methoden auf 3 Dimensionen reduziert, um die Zusam-
menhänge zwischen den Zeichen visuell darstellen zu können. Die zwei Methoden sind Principal
Component Analysis (PCA) und t-Distributed Stochastic Neighbor Embedding (t-SNE) (Wat-
tenberg et al. 2016). Hieraus kann man erkennen welche Zeichen sich ähnlich sind, wenn es um
das Auftreten in einer Sequenz geht. Dies wurde nur für eine Modellarchitektur dargestellt, da
das Berechnen von Embedding aus den Daten besonders rechenaufwendig ist. Dadurch, dass die
Embedding Space eigentlich für eine höhere Dimension berechnet wurde, ist die Interpretation
in niedrigeren Dimensionen schwer, weil die spezifischen Distanzen im Original-Raum (zum
Beispiel 10 Dimensionen) nicht immer erhalten werden kann.

Es ist aber möglich, unterschiedliche Gruppen von Zeichen zu identifizieren:

1. space (Leerzeichen) ist das meist vorkommende Zeichen.

2. Spezial Zeichen kommen nicht so oft vor und treten oft zusammen auf.

3. Manche Buchstaben treten oft in Kombination miteinander auf.

Abbildung 28: Embedding Clusters

Quelle: Eigene Darstellung

Als nächstes wurde der generierte Text für verschiedene Epochen und Architekturen für eine
zufällig aus dem Trainingsdatensatz gesampelte Sequenz (die als Anfangssequenz genutzt wird)
dargestellt. Außerdem wurden verschiedene Perplexties verwendet, um den Algorithmus unter-
schiedliche Freiheiten zum Generieren von Texten zu geben. Die Perplexity entscheidet darüber,
wie die Wahrscheinlichkeitsverteilung des vorausgesagten Zeichens aussehen wird. Mit diesem
Parameter kann man also die Kreativität des geschriebenen Textes beeinflussen. Ein Text mit
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einer niedrigen Perplexität wird versuchen, immer das Zeichen mit der größten Wahrscheinlich-
keit vorauszusagen. Indem man den Parameter höher setzt, erreicht man, dass der Algorithmus
auch Zeichen voraussagt, die weniger wahrscheinlich sind. Ein zu hoher Parameter führt dazu,
dass Buchstaben gewählt werden, die im Endeffekt Wörter kreieren, die nicht existieren (Die
Buchstaben werden vollkommen zufällig gewählt). Die Wahl der optimalen Größe dieses Pa-
rameters ist nicht einfach und kann nicht anhand eines Kriteriums festgelegt werden, sondern
muss für jedes individuelle Problem nach Gefühl gewählt werden. Das folgende Beispiel zeigt
den generierten Text für das Modell mit der id model_6 (Das Modell mit dem niedrigstem Ver-
lust von allen) für verschiedene Perplexity Parameter und in unterschiedlichen Epochen. Die
Gewichte des Modells sind anfangs zufällig initialisiert und müssen erst über die verschiedenen
Iterationen (Epochen) trainiert werden. Deswegen erkennt man, dass mit ansteigender Anzahl
der Epochen der Text immer besser wird. Anfangs werden nur Texte generiert, die keinen Satz
oder Wort bilden. Für Epoche 1 und Peplexity 0.2, erhält man einen Text, der nur den Verlust
so klein wie möglich halten möchte und deswegen Zeichen voraussagt, die für diesen Zeitpunkt
des Modells am wahrscheinlichsten sind - also: Leerzeichen, e, t etc.. Wenn man dem Modell
mehr Freiheit gibt, erhält man einen Text der Zeichen voraussagt, die unwahrscheinlicher sind.
Bei Epoche 30 hat das Modell schon genug gelernt, um tatsächlich Wörter zu bilden, die exis-
tieren. Das erste Wort, dass das Modell nach den ersten Epochen gelernt hat, war das Wort
“the” (dies ist das am häufigsten vorkommende Wort in allen Texten). Bei Peplexity 0.2 will
sich das Modell, wie zuvor, sehr sicher mit dem vorausgesagten Zeichen sein. Diesmal aber mit
dem Unterschied, dass das Modell mehr Wissen besitzt als in Epoche 1. Das Ergebnis daraus
ist also ein Text, der allgemein oft vorkommende Wörter enthält, wie: the, of, in oder company.
Bei höheren Perplexity Parametern ist der Text reicher an Wortschatz, allerdings entstehen
auch Wörter die gar nicht existieren (aber plausibel klingen). Bei Perplexity 1 wird ein Text
generiert, der über keine logischen Zusammenhänge mehr verfügt. In der Epoche 55, in der der
niedrigste Verlust erreicht worden ist, sieht man bei allen Parametereinstellungen, dass der ge-
nerierte Text Wörter enthält, die es gibt und dass das Modell versucht, durch den ganzen Text
eine gewisse Information weiterzuführen, auch wenn es an diesem Zeitpunkt nicht gelungen ist,
einen sinnvollen Text zu erschaffen.

Modell id: model_6
Perplexity: 0.2
Epoch: 1
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Modell id: model_6
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Perplexity: 0.5
Epoch: 1
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Modell id: model_6
Perplexity: 1
Epoch: 1
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Modell id: model_6
Perplexity: 0.2
Epoch: 30
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4 Zusammenfassung

Die vorliegende Masterarbeit ist ein Versuch oder auch erster Schritt in Richtung eines voll
automatisierten Textgenerierungprozesses. Viel Zeit wird in verschiedenen Bereichen für das
Schreiben unterschiedlichster Texte investiert, wobei viele davon eine meist formelle und strik-
te Struktur haben und deswegen automatisiert werden können. Neue Methoden erlauben es,
das Problem der Textgenerierung neu zu betrachten. Neue Übersetzungsmethoden und ein
automatisches Verfassen von E-Mails wird heutzutage von großen Firmen, wie z.B. Google,
in deren Produkte, eingeführt. Diese basieren immer öfter auf Deep Learning Methoden, wie
Convolutional Neural Networks oder Recurrent Neural Networks, die noch vor kurzem, aus
technologischen Gründen, nicht weit verbreitet waren. Die Entwicklung neuer Prozessoren und
die Erfindung neuer Algorithmen haben es ermöglicht, das volle Potenzial dieser Methoden
zu nutzen und mit deren Errungenschaften die Forschung und das Interesse in diesem Gebiet
weiter voranzutreiben. Die Entwicklung und Hindernisse dieser Methoden wurden genauer in
der Arbeit besprochen und deren heutiges Aussehen grundlegend beschrieben. Da die Aufga-
be im Erlernen von Schreiben von Texten basiert, die wiederum eine sequenzielle Form von
Daten darstellen, wurde der Schwerpunkt der Arbeit auf die Erklärung von Recurrent Neural
Networks (bzw. Long Short-Term Memory Modelle) gelegt. LSTM Modelle erlauben es, die
größten Probleme von RNNs zu beheben, was deren wachsende Popularität fördert. Um die
durchaus komplexe und oft nicht tiefgehend beschriebenen (in der Literatur) LSTM Zellen zu
verstehen, wurde eine Analyse von den Grundlagen der Neural Networks bis zu den fortge-
schrittenen Methoden in Recurrent Neural Networks der jeweiligen Elemente durchgeführt. Die
Wahl dieser Elemente kann von den Nutzern dieser Methoden frei gewählt werden, weshalb die
Arbeit in einer Modularen Struktur aufgebaut wurde.

Der erste Teil der Arbeit befasst sich mit der allgemeinen Beschreibung des Problems der Text-
generierung, sowie mit einem Überblick der Literatur, die es zu diesem Thema gibt. Der zweite
Teil hingegen befasst sich mit den Grundlagen der Neural Networks, sowie mit dem Problem
des Encodings der Daten und den Hilfsalgorithmen, die es einem Netz ermöglichen, dessen
Prädiktion zu optimieren. Zunächst wurden deshalb der Gradient Descent Optimierungs Algo-
rithmus und seine Erweiterungen und Abwandlungen vorgestellt. Diese werden zur Optimierung
von Verlustfunktionen verwendet, deren Funktion im Trainingsprozess auch dargestellt wurden.
Die Verlustfunktion, die von besonderer Relevanz für die Aufgabe der Texgenerierung ist, ist die
Cross-Entropy Funktion, deren Gleichung aus der Kullback Leibler Divergenz hergeleitet wurde.
Diese ermöglicht es verschiedene Wahrscheinlichkeitsverteilungen miteinander zu vergleichen.
Zusätzlich wurde in diesem Teil noch die Bedeutung der unterschiedlichen Aktivierungfunktio-
nen beschrieben, die es ermöglichen, nichtlineare Zusammenhänge aus den Daten zu erlernen,
um im Endeffekt mit Hilfe vom Backpropagation Algorithmus die Parameter (Gewichte) des
Modells in einer rückwirkender Art zu transformieren. Als nächstes wurde der Hauptteil der
Arbeit beschrieben, also die Recurrent Neural Networks sowie die Erweiterung - in diesem Fall
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der vorher vorgestellten Algorithmen. Erstens wurden mögliche Hürden wie Vanishing und
Exploding Gradients in Hinsicht auf RNN beschrieben, um zweitens zu zeigen, wie Truncated
Backpropagation Through Time und Long Short-Term Memory Zellen diese überwinden kön-
nen. Im Vergleich zum Mechanismus der LSTM Zelle wurde die Gated Recurrent Unit Zelle
dargestellt, die eine Alternative zu dem Erstgenannten ist. Der dritte Teil der Arbeit fängt mit
einer Darstellung der Gewinnung und Verarbeitung der Daten an, die verwendet wurden, um
das Erlernen des Textgenerierungsprozesses möglich zu machen. Der Datensatz der hier verwen-
det worden ist, sind Jahresabschlüsse von Unternehmen, da dieses Gebiet von Zeitersparnissen
besonders profitieren könnte und die Beschaffung der Daten relativ einfach und zugänglich ist.
Im weiteren Schritt wurden dann verschiedene Modelle (mit unterschiedlichen Parameter Set-
tings) ausprobiert, um letztlich ein nützliches Modell zu bekommen. Die Qualität der Modelle
wurde anhand von verschiedenen Kriterien verglichen:

1. die Minimierung des Verlustes, der es erlaubt zu verfolgen, ob sich das Modell über die
fortschreitenden Epochen verbessert hat.

2. die Histogramme und Verteilungen der verschieden Elemente der RNN, die auf Probleme
hinweisen können

3. der generierte Text, der das Endprodukt des Modells ist und deswegen der beste Maßstab
ist, ob das Ziel erreicht wurde oder nicht.

Insgesamt wurden ungefähr 48 Tausend PDF Dokumente mit Jahresabschlüssen für die Durch-
führung der Analyse vorbereitet. Aus technischen- und Kostengründen war es nicht möglich,
alle Dokumente mit ins Modell aufzunehmen. Weitaus bessere Ergebnisse könnten durch den
größeren Datensatz erreicht werden und deswegen würde sich eine Skalierung auf einer Maschine
mit mehr Rechenkraft (RAM oder VRAM ) lohnen. Aus demselben Grund wurde das Parame-
ter Tuning manuell durchgeführt und nur einige Architekturen und Parameter Setting wurden
ausprobiert. Hierbei würden verschieden Hyperparameter tuning Methoden sehr hilfreich sein,
die aber wie zuvor voraussetzt, dass die Rechenzeit in einem angemessenen Zeitrahmen bleibt.
Darüber hinaus wird immer mehr Aufmerksamkeit den Attention Based Models geschenkt, da
diese nicht unter den Hardware Problemen leiden wie RNNs (Culurciello 2018). Des weiteren ist
die Memory des Modells bei LSTM oder GRU Strukturen auf Time Steps begrenzt, die in die
hunderte gehen, aber nicht in die tausende oder mehr. Erste Forschungsarbeiten zeigen, dass
Attention Based Models durch ihre hierarchische Architektur dazu fähig sind, längere Abhän-
gigkeiten zu erlernen, wodurch sie in vielen Problemstellungen herkömmliche RNN Strukturen
übertreffen. Die Zukunft dieser Modelle ist zum jetzigen Zeitpunkt allerdings noch unklar und
im Gegenteil zu RNN sind dies noch Dinge, die am Anfang ihrer Forschung stehen (Culurciello
2018).
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Abbildung 29: Verlust und Accuracy für Trainings und Validierungs Datensatz - model_1
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Quelle: Eigene Darstellung

Abbildung 30: Graph model_1

Quelle: Eigene Darstellung
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Abbildung 31: Histogramme und Verteilungen der RNN Elemente Modell 1

(a) Histogramm Activation Output (b) Verteilung Activation Output

(c) Histogramm Dense Layer Output (d) Verteilung Dense Layer Output

(e) Histogramm LSTM Layer I Output (f) Verteilung LSTM Layer I Output

Quelle: Eigene Darstellung
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Abbildung 32: Verlust und Accuracy für Trainings und Validierungs Datensatz - model_2
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Quelle: Eigene Darstellung

Abbildung 33: Graph model_2

Quelle: Eigene Darstellung
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Abbildung 34: Histogramme und Verteilungen der RNN Elemente Modell 2

(a) Histogramm Activation Output (b) Verteilung Activation Output

(c) Histogramm Dense Layer Output (d) Verteilung Dense Layer Output

(e) Histogramm LSTM Layer I Output (f) Verteilung LSTM Layer I Output

Quelle: Eigene Darstellung
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Abbildung 35: Verlust und Accuracy für Trainings und Validierungs Datensatz - model_3

(a) Verlust

1.5

2.0

2.5

3.0

0 20 40 60

Step

V
al

ue loss

vall_los

(b) Accuracy

0.2

0.3

0.4

0.5

0.6

0 20 40 60

Step

V
al

ue acc

vall_acc

Quelle: Eigene Darstellung

Abbildung 36: Graph model_3

Quelle: Eigene Darstellung
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Abbildung 37: Histogramme und Verteilungen der RNN Elemente Modell 3

(a) Histogramm Activation Output (b) Verteilung Activation Output

(c) Histogramm Dense Layer Output (d) Verteilung Dense Layer Output

(e) Histogramm LSTM Layer I Output (f) Verteilung LSTM Layer I Output

Quelle: Eigene Darstellung
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Abbildung 38: Verlust und Accuracy für Trainings und Validierungs Datensatz - model_4

(a) Verlust
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Quelle: Eigene Darstellung

Abbildung 39: Graph model_4

Quelle: Eigene Darstellung

70



Abbildung 40: Histogramme und Verteilungen der RNN Elemente Modell 4

(a) Histogramm Activation Output (b) Verteilung Activation Output

(c) Histogramm Dense Layer Output (d) Verteilung Dense Layer Output

(e) Histogramm LSTM Layer II Output (f) Verteilung LSTM Layer II Output

(g) Histogramm LSTM Layer I Output (h) Verteilung LSTM Layer I Output

Quelle: Eigene Darstellung
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Abbildung 41: Verlust und Accuracy für Trainings und Validierungs Datensatz - model_5

(a) Verlust
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Quelle: Eigene Darstellung

Abbildung 42: Graph model_5

Quelle: Eigene Darstellung
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Abbildung 43: Histogramme und Verteilungen der RNN Elemente Modell 5

(a) Histogramm Activation Output (b) Verteilung Activation Output

(c) Histogramm Dense Layer Output (d) Verteilung Dense Layer Output

(e) Histogramm LSTM Layer II Output (f) Verteilung LSTM Layer II Output

(g) Histogramm LSTM Layer I Output (h) Verteilung LSTM Layer I Output

Quelle: Eigene Darstellung
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Abbildung 44: Verlust und Accuracy für Trainings und Validierungs Datensatz - model_6

(a) Verlust
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Quelle: Eigene Darstellung

Abbildung 45: Graph model_6

Quelle: Eigene Darstellung
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Abbildung 46: Histogramme und Verteilungen der RNN Elemente Modell 6

(a) Histogramm Activation Output (b) Verteilung Activation Output

(c) Histogramm Dense Layer Output (d) Verteilung Dense Layer Output

(e) Histogramm LSTM Layer II Output (f) Verteilung LSTM Layer II Output

(g) Histogramm LSTM Layer I Output (h) Verteilung LSTM Layer I Output

Quelle: Eigene Darstellung
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Abbildung 47: Verlust und Accuracy für Trainings und Validierungs Datensatz - model_7

(a) Verlust
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Quelle: Eigene Darstellung

Abbildung 48: Graph model_7

Quelle: Eigene Darstellung
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Abbildung 49: Histogramme und Verteilungen der RNN Elemente Modell 7

(a) Histogramm Activation Output (b) Verteilung Activation Output

(c) Histogramm Dense Layer Output (d) Verteilung Dense Layer Output

(e) Histogramm LSTM Layer II Output (f) Verteilung LSTM Layer II Output

(g) Histogramm LSTM Layer I Output (h) Verteilung LSTM Layer I Output

Quelle: Eigene Darstellung
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Abbildung 50: Verlust und Accuracy für Trainings und Validierungs Datensatz - model_8

(a) Verlust
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Quelle: Eigene Darstellung

Abbildung 51: Graph model_8

Quelle: Eigene Darstellung
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Abbildung 52: Histogramme und Verteilungen der RNN Elemente Modell 8

(a) Histogramm Activation Output (b) Verteilung Activation Output

(c) Histogramm Dense Layer Output (d) Verteilung Dense Layer Output

(e) Histogramm LSTM Layer II Output (f) Verteilung LSTM Layer II Output

(g) Histogramm LSTM Layer I Output (h) Verteilung LSTM Layer I Output

Quelle: Eigene Darstellung
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Abbildung 53: Verlust und Accuracy für Trainings und Validierungs Datensatz - model_9

(a) Verlust
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Quelle: Eigene Darstellung

Abbildung 54: Graph model_9

Quelle: Eigene Darstellung
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Abbildung 55: Histogramme und Verteilungen der RNN Elemente Modell 9

(a) Histogramm Activation Output (b) Verteilung Activation Output

(c) Histogramm Dense Layer Output (d) Verteilung Dense Layer Output

(e) Histogramm LSTM Layer II Output (f) Verteilung LSTM Layer II Output

(g) Histogramm LSTM Layer I Output (h) Verteilung LSTM Layer I Output

Quelle: Eigene Darstellung
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Abbildung 56: Verlust und Accuracy für Trainings und Validierungs Datensatz - model_10

(a) Verlust
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Quelle: Eigene Darstellung

Abbildung 57: Graph model_10

Quelle: Eigene Darstellung
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Abbildung 58: Histogramme und Verteilungen der RNN Elemente Modell 10

(a) Histogramm Activation Output (b) Verteilung Activation Output

(c) Histogramm Dense Layer Output (d) Verteilung Dense Layer Output

(e) Histogramm LSTM Layer II Output (f) Verteilung LSTM Layer II Output

(g) Histogramm LSTM Layer I Output (h) Verteilung LSTM Layer I Output

Quelle: Eigene Darstellung
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Abbildung 59: Verlust und Accuracy für Trainings und Validierungs Datensatz - model_11

(a) Verlust
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Quelle: Eigene Darstellung

Abbildung 60: Graph model_11

Quelle: Eigene Darstellung
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Abbildung 61: Histogramme und Verteilungen der RNN Elemente Modell 11

(a) Histogramm Activation Output (b) Verteilung Activation Output

(c) Histogramm Dense Layer Output (d) Verteilung Dense Layer Output

(e) Histogramm LSTM Layer II Output (f) Verteilung LSTM Layer II Output

(g) Histogramm LSTM Layer I Output (h) Verteilung LSTM Layer I Output

Quelle: Eigene Darstellung
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Abbildung 62: Verlust und Accuracy für Trainings und Validierungs Datensatz - model_12

(a) Verlust
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Quelle: Eigene Darstellung

Abbildung 63: Graph model_12

Quelle: Eigene Darstellung
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Abbildung 64: Histogramme und Verteilungen der RNN Elemente Modell 12

(a) Histogramm Activation Out-
put

(b) Verteilung Activation Out-
put

(c) Histogramm Dense Layer
Output

(d) Verteilung Dense Layer Out-
put

(e) Histogramm LSTM Layer III
Output

(f) Verteilung LSTM Layer III
Output

(g) Histogramm LSTM Layer II
Output

(h) Verteilung LSTM Layer II
Output

(i) Histogramm LSTM Layer I
Output

(j) Verteilung LSTM Layer I
Output

Quelle: Eigene Darstellung
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Abbildung 65: Verlust und Accuracy für Trainings und Validierungs Datensatz - model_13

(a) Verlust
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Quelle: Eigene Darstellung

Abbildung 66: Graph model_13

Quelle: Eigene Darstellung
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Abbildung 67: Histogramme und Verteilungen der RNN Elemente Modell 13

(a) Histogramm Activation Out-
put

(b) Verteilung Activation Out-
put

(c) Histogramm Dense Layer
Output

(d) Verteilung Dense Layer Out-
put

(e) Histogramm LSTM Layer III
Output

(f) Verteilung LSTM Layer III
Output

(g) Histogramm LSTM Layer II
Output

(h) Verteilung LSTM Layer II
Output

(i) Histogramm LSTM Layer I
Output

(j) Verteilung LSTM Layer I
Output

Quelle: Eigene Darstellung
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Elektronischer Anhang
1. report_scraper.py

2. pdf2txt_and_textcleaner.R

3. descriptive_statistics4reports.R

4. plot_activation_function.R

5. generator_functions_for_batch_gen.R

6. generate_text_on_epoch_end.R

7. lstm_text_generation_model.R

8. lstm_embedding_example.R
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