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Abstract

Automatische Textgenerierung fiir finanzielle Berichte

Die vorliegende Masterarbeit gibt einen Einblick in die Theorie und Anwendung von verschie-
denen Methoden der Textgenerierung. Da viele Bereiche der Wirtschaft mit textbasierten Pro-
blemen zusammenhéngen, wurde in dieser Arbeit, zur Erlernung der finanziellen Sprache, eine
Datenquelle der Jahresabschliisse von iiber 5000 Unternehmen herangezogen. Mit Hilfe von
verschiedenen Algorithmen, die auf Neuronalen Netzen basieren, wurde versucht, Text, anhand
eines vorgegebenen Themas, automatisch zu generieren. Diese Automatisierung von wiederkeh-
renden und wiederholbaren Aufgaben koénnte in vielen Situationen zur Einsparung von Zeit
sowie zur Vermeidung von menschlichen Fehlern fithren. Die Masterarbeit ist vor allem an
Personen gerichtet, die ein starkes Vorwissen an statistischen und mathematischen Methoden
haben. Die Theorie und Praxisanwendung von Deep Learning ist keine Voraussetzung, da die

grundlegenden Konzepte in der Arbeit weitreichend beschrieben werden.
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1 Einleitung

In allen Bereichen des Lebens trifft man auf geschriebenen Text. Um nur ein paar Beispiele
zu nennen: Bicher, die man liest (in Papierformat wie auch Digitalformat), Briefe, die man
schreibt, sowie E-Mails, Reporte, Berichte und noch eine Menge mehr. Viele dieser Tatigkeiten
sind sehr zeitaufwendig, weil man sich erstens iiberlegen muss, wovon der zu verfassende Text
handeln soll und zweitens macht man sich Gedanken dartiber, in welcher Form und in wel-
chem Stil der Text geschrieben werden soll. Beispielsweise bei E-Mails an Bekannte oder beim
Schreiben eines Buches will man sich Zeit nehmen und genau tiberlegen, um einen einmaligen
und personlichen Text zu erhalten. Bei anderen Aufgaben, wie zum Beispiel beim Reporting
oder beim Schreiben eines Berichts, die oft eine vergleichbare Form annehmen und dazu die-
nen, gewisse Prozesse zu dokumentieren, moéchte man nicht zu viel Zeit investieren, da diese
dem eigentlich zu behandelnden Problem gewidmet werden kénnte. Oft sieht der Prozess des
geschriebenen Textes dhnlich aus, ist aber jedes Mal auf gewisse Zusatzinformationen zurecht-
geschnitten, weshalb immer erneut eine gewisse Zeit in Anspruch genommen werden muss.

In dieser Arbeit wird deshalb der Schwerpunkt auf finanzielle Berichte gelegt, da sie oft man-
datorisch sind und sehr detailliert sein miissen. Auf die genaue Struktur und den Aufbau dieser

Berichte wurde in den folgenden Kapiteln noch néher eingegangen.

1.1 Problemstellung

Hauptziel der Arbeit wird es sein, einen Algorithmus in Richtung einer vollautomatisierten

Textgenerierung zu konzipieren.

Der Prozess der Textgenerierung ist wie folgt aufgebaut: es ist notwendig, konstante, also sich
nicht verandernde, Satze zu generieren. Diese Sequenzen dienen im nachsten Schritt als Anker
und Anfangssequenzen fiir den restlichen Text, der im zweiten und letzten Schritt generiert wird.
In der Regel folgen Texte der gleichen Art dhnlichen Schemata. Dies erlaubt es, eine einheitliche
Struktur zu bestimmen, die wiederum in einem automatisierten Prozess beriicksichtigt werden
kann. Die Aufgabe besteht darin, dem Computer mit Hilfe eines Algorithmus die Sprache eines
gewissen Schreibstils, basierend auf bereits vorliegenden Texten, beizubringen. Diese erlernte
Sprache wiirde im Idealfall mit den, in den vorherigen Schritten generierten Anfangssequenzen
dazu fiithren, dass man sowohl konstante und strikte Satze, die rein quantitative und infor-
mative Zwecke haben, als auch Séatze, die semantisch ausgerichtet sind, kombinieren konnte.
Zusammenfassend sind zwei Schritte notwendig, um einen Bericht vollstandig automatisieren

zu konnen:
1. Bauen von konstanten Satzen, die als Anfangssequenzen dienen.
2. Lernen von einem bestimmten Schreibstil, um Semantik in den Text zu integrieren.

Diese Masterarbeit wird sich hauptsédchlich mit dem zweiten Punkt beschéftigen, da er den

Unterschied zu einem rein technisch generierten Text ausmachen kann. Dariiber hinaus ist fiir



viele Gebiete das Erstellen von text-basierten Aufgaben ein zeitaufwendiger Prozess, weshalb
die angewandten Methoden und das Wissen, die in dieser Arbeit generiert werden, von bedeu-

tendem Interesse sein konnen.

Die Problemstellung der Masterarbeit beschrankt sich folglich darauf, einen Algorithmus zu
entwickeln, der anhand einer Anfangssequenz selbststindig in der Lage ist, eine darauf folgende
Sequenz von Charakteren in eine logische Reihenfolge zu bringen und dadurch verstandliche
Sétze zu bilden. Dies wird mit Hilfe von Recurrent Neural Networks (RNN) und genauer Long
Short-Term Memory (LSTM) Methoden erreicht. Diese werden unter anderem auch in der
Musik- und Spracherkennung verwendet und eignen sich besonders gut fiir Aufgaben, bei de-

nen zeitlich codierte Informationen erkannt werden miissen.

Eine besondere Schwierigkeit dieser Aufgabe besteht darin, dass Texte, im Gegensatz zur Mu-
sik und Bildern, die eher eine kiinstlerische Darstellung sind, sehr strikten grammatikalischen
Regeln unterliegen. Das bedeutet, dass ganz allgemein verstandene Fehler, bezugnehmend auf
Musik, als ein besonderes Attribut angesehen werden kénnen, wobei ein Fehler im Text dazu
fithren kann, dass der Sinn des Satzes oder des ganzen Textes missverstanden werden kann.

Dies kann weitaus groflere Konsequenzen zur Folge haben.

Die Aufgabe wird auf Zeichen-Basis analysiert, was dazu fiihrt, dass einerseits erreicht werden
kann, dass Worter nicht einzeln aus dem Kontext gegriffen werden, weil sie als Sequenz von
Zeichen aufgenommen werden. Allerdings ist der Lernprozess einer solchen Darstellung viel
aufwendiger, da man die ganze Sprache vom Aufbau von Wortern tiber die grammatischen
Zusammenhénge lernen muss. Die Rechenzeit auf Zeichen-Basis ist zudem viel aufwendiger als

beispielsweise bei Analysen auf Worter-Basis.

Zu berticksichtigen:

1. Manche Arten von Texten, wie z.B. Berichte, konnen einen relativ komplizierten und
strikten Aufbau beziiglich der Sadtze haben. Demnach kann das Erlernen einer solchen

Sprache technisch und lexikalisch sehr anspruchsvoll sein.

2. RNN‘s benotigen einen sehr grofien Datensatz. Fiir manche Aufgaben kénnten die vor-
handenen Texte nicht ausreichend sein. In diesem Fall konnten Texte aus einem anderen
Gebiet hinzugezogen werden, was einerseits der Bedingung des groflen Datensatzes ent-
gegenkommt, aber andererseits dazu fiithrt, dass sich die Sprache &ndern kann und nicht

mehr genau der Sprache, der in erster Linie erlernten Richtung, folgt.



1.2 Textgenerierung

Das Problem der Textgenerierung kann unterschiedlich angegangen werden - wie viel Text und
in welcher Form der Text generiert werden soll, hangt stark von dem behandelten Problem
ab. Die einfachste Moglichkeit, Text zu einem bestimmten Problem zu generieren, wire es,
einen konstanten und universellen Text zu schreiben, der allerdings keine spezifischen Merkma-
le des individuellen Beispiels enthalten konnte. Eine zweite Moglichkeit bestiinde darin, einen
konstanten Text zu schreiben, in welchen an den relevanten Stellen beispielsweise spezifische
Informationen (Text oder Zahlen) eingefiigt werden. Diese Methode ist relativ einfach und ist
aus diesem Grund auch weit verbreitet. Der grofle Nachteil dieser Methode ist, dass die Infor-
mationen, die eingebaut werden, in Kombination mit dem restlichen Text dazu fithren kénnen,
dass der Sinn des Textes verloren geht. Dies wiirde nur gut bei solchen Texten funktionieren, in
denen Informationen weitergegeben werden, die keiner Beurteilung oder Meinung unterliegen.
Es wird also deutlich, dass man in Bezug auf manche Probleme nicht unbedingt von Textgene-

rierung sprechen kann, da der Text oft nur einmal generiert und unterschiedlich angepasst wird.

Ein weiterer Faktor, der fiir die textgenerierende Methode von Bedeutung ist, ist in welcher
Form das zu beschreibende Problem vorliegt. Beispiele von Inputs und Outputs, wie auch von

den verwendeten Methoden, findet man in der folgenden Tabelle wieder:

Tabelle 1: Beispiele Textgenerierung

Input Output Methode Beschreibung
' Beschreibung ONN On the 'Automatlfz Generation of
Bild des Bildes RNN Medical Imaging Reports
(Baoyu Jing|[2018)
Spielberichte fiir die
Spielergebnisse|  Spielberichte RNN Begegnungen des aktuellen
P & b Bundesligaspieltags (retrescro
2018)
. Nachrichten- I taught a computer to write like
Stichwort artikel RN Engadget (Souppouris|2015])
IFRS Zahlen Finanzbericht Ll..leen Aut(.)matlsler.ung Vo
fiillen Finanzberichten

Quelle: Eigene Darstellung

Wie man in Tabelle (1] sehen kann, wird immer o6fter, in verschiedenen Bereichen, eine Deep
Learning Methode angewandt. Hierbei werden Methoden wie Convolutional Neural Networks
(CNN) und Recurrent Neural Networks (RNN), die im spateren Verlauf der Arbeit erklart wer-
den, verwendet (Karpathy 2015). Bei manchen Anwendungsfeldern werden jedoch nach wie
vor Methoden verwendet, die auf konstanten Texten basieren. Zum Beispiel werden finanzielle
Berichte, basierend auf IFRS (International Financial Reporting Standards) Kennzahlen, von
manchen Unternehmen dazu verwendet, bestehende Liicken eines konstanten Texts zu fiillen.
Hier ergibt sich demnach ein Anwendungsfeld, dass deutlich verbessert werden kann. Im ersten

Beispiel der Tabelle [1|geht es darum, gewisse Merkmale auf medizinischen Bildern zu erkennen
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und anschlieend zu beschreiben. Fiir den ersten Schritt wurde ein CNN benutzt, um darauf
folgend die extrahierten Features mit Hilfe eines RNNs zu beschreiben. Im zweiten und dritten
Beispiel wurde Text anhand eines RNN generiert, wobei beim ersten der beiden nur das Er-
gebnis eines Spiels libergeben wurde, um den Spielbericht zu verfassen. Beim zweiten Beispiel

wird ein Thema vorgegeben, zu dem im Nachhinein ein Nachrichtenartikel geschrieben wird.



2 Theorie

In diesem Kapitel wurde genauer auf die Theorie der angewandten Methoden eingegangen. Da
Deep Learning Methoden relativ komplex sind und diese die Summe vieler kleinerer analyti-
scher Schritte sind, ist dieses Kapitel in einer modularen Struktur aufgebaut. Die Wahl des
Encodings, Optimierung Algorithmus oder auch die Architektur des Neuronalen Netzes ist ar-
bitrar - dies ermdéglicht dem Leser, die fiir ihn relevanten Methoden und Algorithmen frei zu
wahlen. Dariiber hinaus ist dieser Bereich der Statistik ein sich schnell verdnderndes Gebiet, in

dem immer héufiger neue Losungen fiir unterschiedliche Probleme vorgestellt werden.

Im Unterkapitel wurden verschiedene Moglichkeiten des Encodings der Daten, wie auch
die Vor- und Nachteile in Hinsicht auf die darauf folgenden Methoden, beschrieben. Das Un-
terkapitel [2.2]stellt das Gradient Descent und dessen Erweiterungen dar. Im Folgenden wurde
die Idee von Recurrent Neural Networks, mit Schwerpunkt auf Gated Recurrent Units und Long
Short-Term Memory Cells, vorgestellt. Da RNNs auf Neuronalen Netzen basieren, wurde im

ersten Schritt eine Einfiihrung in die jeweiligen Elemente eines NN aufgezeigt.

2.1 Encoding

Das Encoding der Daten entscheidet dariiber, wie der Algorithmus funktionieren wird, sowohl
aus Sicht der Inanspruchnahme von Rechenkraft, wie auch aus Sicht der Ergebnisse, die man
erhalt. Erstens werden unterschiedliche Datentypen und Formate in Bezug auf deren Tensor
Aufbau, die die Grundlage jeder Deep Learning Methode darstellt, besprochen. Zweitens wird
die Ebene, auf der das Encoding stattfindet, definiert. Hierfiir wird zwischen einem Zeichen-
basierten und einem Worter-basierten FEncoding entschieden. Im dritten und letzten Schritt
werden die zwei haufigst verwendeten Methoden des Encodings dargestellt und deren praktische

Anwendung anhand eines Beispiels erklart.

2.1.1 Inputspace (Tensoren)

Der grundlegende Baustein eines jeden Machine Learning Algorithmus ist der Input, also die
Daten, die man zur Durchfiihrung von Analysen benétigt. Daten kénnen in Deep Learning die
unterschiedlichsten Formen annehmen, da dieses Gebiet verschiedenste Probleme 16sen kann.
In Tabelle [2| werden Beispiele von Daten und deren moglichen Dateiformaten, in denen sie
gespeichert werden, dargestellt. Es ist gleichgiiltig, von welchem Datentyp man redet oder in was
fiir einem Format eine Datei gespeichert ist - man muss sich dennoch tiberlegen, wie man den
Input einheitlich transformieren kann. Der Input muss eine ganz bestimmte Form haben, damit
er in ein in Keras (Deep Learning Framework) entwickeltes Modell einflieBen und verarbeitet
werden kann. Diese bestimmte Form nennt man 7Tensoren, woher auch der Name des Deep
Learning Programms von Google stammt - TensorFlow (Abadi et al.[[2015)). Egal ob man mit
Bildern, Videos, Audioaufnahmen oder Text arbeiten mochte - die Form, in der diese Daten

eingelesen werden, sind Zahlen, die als Tensoren verpackt werden.



Tabelle 2: Zuordnung von Datentypen und deren Formaten

Type Format Tensor Dimension
Audio | MP3, WAV, FLAC 4 D Tensor
Video | AVI, MP4, FLV 5 D Tensor
Bild | JPEG, PNG, BMP 4 D Tensor
Text | TXT, RTF, JSON 3 D Tensor

Quelle: Eigene Darstellung

Tensoren sind eine Verallgemeinerung von Vektoren, da sie eine beliebige Dimension annehmen
kénnen (Francois Chollet| 2018)). So ist ein null-dimensionaler Tensor eine einzige Zahl - Skalar
(Abbildung [1|a)). Ein ein-dimensionaler Tensor (1 D Tensor) wird als die Zusammensetzung
von mehreren Skalaren dargestellt, die einen Vektor bilden (Abbildung (1| b)). Hierbei gibt
es zwei Begriffe, die nicht verwechselt werden sollten: die Tensor Dimensionen, die bei einem
Vektor, wie bereits erwahnt, 1 betragt und die Dimension des Vektors an sich. Bei einem Vektor
der Lénge 5 beispielsweise, redet man von einem fiinf-dimensionalen Vektor - dieser wiederum
hat aber nichts mit einem fiinf-dimensionalen Tensor zu tun. Um sich die Dimension eines
Tensors besser vorstellen zu konnen, konnte man auch die Anzahl der Achse, in der die Daten
verbreitet sind, als Dimension des Tensors hernehmen. Eine Matrix wie auf Abbildung
c) hat die Dimension 5 auf 5 und ist somit ein 2 D Tensor. Wenn man diese 2 D Tensoren
aufstockt, erhdlt man, so wie in Abbildung [1] d) einen Datenwiirfel, der ein 3 D Tensor
ist. Um entsprechende Tensoren der Dimension 4 und 5 zu erhalten, stockt man die jeweils
vorhergehende Daten der Struktur n D Tensor auf (Abbildung (1| e) und f)). In der Praxis
sind dies die héufigsten Beispiele von Tensoren. Es ist jedoch moglich, einen Tensor einer

beliebigen Dimension aufzubauen.
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Abbildung 1: Tensor Darstellung

(a) 0 D Tensor

(b) 1 D Tensor

(c) 2 D Tensor

(d) 3 D Tensor

(e) 4 D Tensor

(f) 5 D Tensor

) AN ) NN ) NI ) NN ) NN

Quelle: Eigene Darstellung
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2.1.2 Zeichen- und Worter-basiertes Encoding

Die Daten, die in dieser Arbeit verwendet werden, sind Textdokumente. Dies wurde genauer in
spateren Kapiteln besprochen, jedoch ist diese Information wichtig um festzustellen, mit wel-
cher Art von Tensoren gearbeitet wird. Da die Aufgabe darin besteht neuen Text zu generieren,
bestehen zwei Moglichkeiten der Ebenen. Die erste ist ein Zeichen-basiertes Encoding was be-
deutet, dass das Ziel sein wird, ein auf eine Anfangssequenz folgendes Zeichen vorauszusagen.
Die zweite Moglichkeit ist, dass man nicht ein néchstes Zeichen, sonder gleich ein ganzes Wort
voraussagen mochte (Worter-basiert).

Bei der ersten Option ist es ein grofler Vorteil, dass die Anzahl der Klassen, die man voraus-
sagen mochte, erheblich begrenzt ist (sie ist gleich der Grofle des Vokabulars). Bei der Worter-
basierten Methode hingegen ist die Anzahl der Klassen gleich der Anzahl der méglichen Wor-
ter im Text (dies wird meistens auf die 10 000 haufigsten Worter begrenzt). Das macht es
schwierig, herkémmliche Verlustfunktionen (Unterkapitel zu benutzen und macht die
Aufgabe des Ausarbeitens einer Architektur eines Neuronalen Netzes erheblich schwerer. Um
diesem Problem auszuweichen, werden oft Embeddings (Unterkapitel benutzt, die die
Output Dimension verringern sollen. Ein Nachteil der Zeichen-basierten Methode ist erstens,
dass Worter und Sétze gebildet werden kénnen, die keinen Sinn ergeben, oder nicht existieren.
Die zweite Methode hingegen wird nur Worter voraussagen, die auch tatséchlich existieren -
oder im schlimmsten Fall ein OOV ( Qut-of-vocabulary) Wort. Des Weiteren sind Worter-basierte
Modelle robuster und produzieren, im Gegensatz zu Zeichen-basierten Modellen, haufiger gram-

matikalisch korrekte Satze.

2.1.3 Lable Encoding und One-hot Encoding

Das Encoding erlaubt dem Algorithmus die Daten in einer entsprechenden Form einzulesen.
Diese Form ist, wie im vorherigem Abschnitt erkléirt, ein Tensor. In dieser Arbeit wird Text
verarbeitet und deswegen muss man die Zeichen nummerisch darstellen. Dazu werden zwei
Methoden zum FEncoden kategorischer Variablen vorgestellt: das Lable Encoding und One-hot
Encoding. Lable Encoding ist die einfachste Form des Encodings, da jeder Kategorie eine be-
stimmt Zahl zugewiesen wird. Dies kann man in Abbildung [2| erkennen - jedes Zeichen in
der Sequenz “annual report! wird als eine vorher festgelegte Zahl dargestellt. Das Produkt aus

diesem FEncoding ist ein 1 D Tensor, der der maximalen Lange der Sequenz entspricht.

Abbildung 2: Label Encoding von Texten

Quelle: Eigene Darstellung
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Das One-hot Encoding hingegen ist eine Methode, in der jedes Zeichen in Form eines Vektors
dargestellt wird. Diese Vektoren sind mit O-len gefiillt - bis auf die Stelle, die der Position
des jeweiligen encodetem Zeichen entspricht. Dies wurde in Abbildung (3| dargestellt, in der
die gleiche Beispiel-Phrase wie im vorherigen Beispiel encodet wurde. Diese Methode liefert
im Endeffekt eine Matrix, also einen 2 D Tensor mit Anzahl der Zeilen gleich der Lange des

Vokabulars und Anzahl der Spalten gleich der maximalen Lénge einer Sequenz.

Abbildung 3: One-hot Encoding von Texten

Quelle: Eigene Darstellung

Allgemein zdhlen zu den Vorteilen des One-hot Encodings, dass jede Kategorie (hier: Zeichen)
unabhéngig betrachtet werden kann - wobei andererseits das Lable Encoding eine Abhéngig-
keit oder einen Zusammenhang der Kategorien voraussetzt. Das Zweitere kann allerdings bei
sogenannten Embeddings von Vorteil sein (diese Methode wurde im weiteren Verlauf der Arbeit
vorgestellt), bei denen man &hnliche Kategorien in einem Vektorraum méglichst gut gruppieren

mochte.

2.1.4 Embedding

Beim Label Encoding wurde im spateren Schritt, also beim Einlesen ins Modell die jeweils ent-
sprechende Zahl der Position eines Zeichens im Vokabular auch in einen Vektor transformiert.
Hierbei ist der Unterschied zum One-hot Encoding der, dass man versucht eine weniger Sparse
Matrix zu erhalten - also eine dichtere Reprasentation der Vektoren. Als Beispiel konnte man
sich vorstellen, dass man anstatt von Zeichen, Woérter Encodet und im Falle eines One-hot
Encoding eine Matrix mit Anzahl der Zeilen gleich der Anzahl der Woérter im behandelten
Problem. Oft kann diese Zahl in die Tausenden gehen und wenn man mit ganzen Dokumenten

arbeitet, wird diese Zahl auf 10 oder 20 Tausend der am haufigsten vorkommenden Worter be-
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grenzt. Um nicht auf Matrizen arbeiten zu miissen, die tausende Zeilen (mit Eintragen 0 oder 1)
enthélt, benutzt man die sogenannten Embeddings. Embeddings komprimieren die Information
eines Datenpunktes (hier Worter oder Zeichen) an einem gewiesen Time Step in einen Vektor
beliebiger Dimension. Diese Vektoren bilden ein bestimmtes Wort in einen z.B 100 dimensio-
nalen Raum ab, sogar wenn die Anzahl aller Worter deutlich grofer ist. Dies hat erstens den
Vorteil, dass man das Problem der Sparsen Matrix umgehen kann und zweitens kann man Zu-
sammenhéange zwischen Wortern modellieren. Wenn man diese Embeddings anschliefend mit
einer Dimension-Reduktion behandelt, ist man in der Lage, diese Zusammenhénge zwischen
Wortern oder Zeichen in einem 2 oder 3 dimensionalen Koordinatensystem darzustellen und

somit zu visualisieren (Falbel [2017).

In Abbildung [{4] wurde das One-hot-Encoding mit dem Embedding dargestellt und verglichen.
Man sieht, dass das Embedding im Vergleich zum One-hot Encoding eine deutlich niedrigere
Dimension und dichtere Vektoren hat, die dariiber hinaus aus den Daten erlernt werden kon-
nen. Beim One-hot Encoding sind die Vektoren Sparser. Diese haben eine hohere Dimension
und sind hart gecodet. Embeddings sind somit besonders gut geeignet fiir Beispiele in denen die
Dimension beim One-hot Encoding zu hoch ist. Ein Beispiel fiir ein Embedding wurde auch fiir

das Textgenerierungsproblem dieser Arbeit im Kapitel mit den Ergebnissen, dargestellt.

Abbildung 4: One-hot Encoding und Embeddings

Quelle: Eigene Darstellung (Francois Chollet||2018))
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2.2 Optimierungsalgorithmen

Es gibt unterschiedliche Optimierungsalgorithmen, die in der Statistik verwendet werden. Einer
davon ist Gradient Descent, welcher in der Literatur sehr oft verwendet wird. Bei Deep Learning-
Ansétzen wird er besonders gern benutzt, da er nicht nur relativ einfach zu verstehen und
implementieren ist, sondern auch fiir hochdimensionale Optimierungsprobleme gut geeignet ist.
Es gibt drei Gradient Descent Varianten (Tushar|2017):

Abbildung 5: Varianten von Gradient Descent

Algorithm BATCH GD MINI BATCH GD STOCHASTIC GD

Accuracy

Time
Memory

Quelle: Eigene Darstellung (Tushar|2017)

Batch Gradient Descent nutzt den ganzen Datensatz, um ein Update zu machen - dies kann
jedoch sehr zeit- und rechenaufwendig sein, besonders wenn der Datensatz zu grof ist, um in
die Memory eingelesen zu werden. Auf der anderen Seite gibt es Stochastick Gradient Descent,
welcher es erlaubt, nach jedem eingelesenen Beispiel ein Update des Gradienten durchzufiihren,
was den Vorteil bringt, dass der Algorithmus viel schneller iterieren kann. Der Nachteil hingegen
ist, dass das Update nur anhand eines Beispiels durchgefiithrt wird, was duflerst ungenau sein
kann. Ein Kompromiss zwischen den beiden Methoden wird durch den Mini-Batch Gradient
Descent Algorithmus erreicht, der das Update anhand einer gewissen Anzahl (Mini-Batch Size)
von Beispielen durchfithrt. Diese Methode ermoglicht es, schneller als Batch Gradient Descent

und genauer als Stochastick Gradient Descent zu sein.

Gradient Descent tritt in der Literatur in vielen Abwandlungen auf (nicht abhéngig von der
Batch Size). Im weiteren Verlauf wurde der elementare Gradient Descent Algorithmus, sowie

auch zwei seiner Erweiterungen, dargestellt:

1. Gradient Descent mit Momentum

2. RMSprop

2.2.1 Gradient Descent

Die allgemeinste Form vom Gradient Descent ist das Abstiegsverfahren, in dem es darum geht,

eine stetige differenzierbare Funktion zu minimieren. Die zentrale Idee vom Abstiegsverfahren
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ist wie folgt: Ist man an einem Punkt x € R™, so sucht man eine Richtung d aus, in welche
der Funktionswert fallt (Abstieg). Entlang dieser Richtung d geht man so lange, bis man den
Funktionswert von Funktion f(z) hinreichend verkleinert hat. Das Gradienten-Verfahren geht
ahnlich vor, ist aber effizienter, weil man nicht in die Richtung eines beliebigen Abstiegs, son-
dern in die Richtung des steilsten Abstiegs (deswegen oft Steepest Descent genannt) geht, was

dazu fihrt, dass man sich schneller dem Minimum néhert. Man kénnte das Verfahren formal

darstellen, in dem (Bischl [2016]):

f(z) eine beliebige, uneingeschrénkte, differenzierbare Zielfunktion, welche man minimieren

mochte, ist(Abbildung [6])
e Der Gradient V f(x) zeigt immer in die Richtung des steilsten Anstiegs (roter Pfeil)

o —V f(x) zeigt somit in die Richtung des steilsten Abstiegs (schwarzer Pfeil)

Man folgt der Richtung des negativen Gradienten so lange, bis man den Funktionswert hinrei-

chend minimiert hat.

Abbildung 6: 3D Gradient Descent

Quelle: Eigene Darstellung

Wenn man wéhrend der Minimierung der Funktion f(z) am Punkt z; steht, kann man diesen

Punkt verbessern, indem man folgenden Schritt durchfiihrt:

Tep1 = T — NV f(1y) (1)

7 ist die Schrittldnge, die auch Lernrate genannt wird. Die Wahl der entsprechenden Schrittlan-
ge ist entscheidend: eine zu grofle Schrittlange konnte dazu fithren, dass man nie nah genug an
das Minimum kommt und im schlimmsten Fall iiber dem Minimum hin und her springt - eine
zu kleine Schrittlénge hingegen kénnte zur Folge haben, dass man eine sehr grofie Anzahl an
Iterationen brauchen wiirde, um beim Minimum anzukommen. Zusammenfassend ist das Gra-

dient Descent Verfahren einfach und unkompliziert, weshalb es weit verbreitet und zudem auch
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bei hochdimensionalen Optimierungsproblemen anwendbar ist (Bischl 2016). Zu den Nachtei-
len zéhlen unter anderem, dass es in einem lokalen Minimum stecken bleiben kann und nie am
globalen Minimum ankommen wiirde. Zudem kann es vorkommen, dass es fiir schlecht kondi-
tionierte Probleme in einem zunehmenden Zick-Zack-Kurs zum Minimum schreitet, wodurch
wiederum die Anzahl der Iterationen und somit die Dauer des Verfahrens erheblich ansteigen

konnte.

2.2.2 Gradient Descent mit Momentum

Den Update Schritt in Gleichung [1] kann man auch als Update der Parameter des Modells

darstellen:
041 =0, — an(Ht) (2)

Da im folgenden Updates mit Hilfe von Mini-Batch GD durchgefithrt werden und somit nicht
mit Hilfe des ganzen Datensatzes, muss die Gleichung [2| um die entsprechende Observation
2@ ynd @) erweitert werden - wo n die Batch Size und i das erste Element des Batches

sind:

Orp1 = O — 0V f(By; 20y ) (3)

Gradient Descent mit Momentum ist eine Erweiterung des Optimierungsalgorithmus, um das
Problem mit dem zunehmenden Zick-Zack-Kurs bei schlecht konditionierten Funktionen zu
bekédmpfen. Anstatt in die Richtung des steilsten Abstiegs zu gehen, wird ein gewichtetes (mit
Gewicht ) Update der letzten Iteration mit auf den mit Schrittlange multiplizierten Gradienten
aufaddiert. Um die folgenden Gleichungen tibersichtlicher zu machen, wird der Mini-Batch GD
Gradient V f(6,; 2+, y(#+7)) als g, und das Update in Iteration t als v, dargestellt. Gradient

Descent mit Momentum nimmt im Endeffekt die folgende Form an (Ruder|2016):

Ory1 = O — (NGt + YVe-1) (4)

Wenn man sich das Gradient Descent Verfahren als einen Ball vorstellt der in Richtung des
Minimum rollt, kann man den Parameter v als Momentum, also Schwung, interpretieren, den
der Ball im Laufe das Fortbewegens aufnimmt. Bei dem urspriinglichen Algorithmus ist dies
nicht der Fall und der Ball wiirde sich bewegen, als ob er keinen Schwung aufnehmen koénnte.
Dies erlaubt es schneller zu konvergieren und zum globalen bzw. lokalen Minimum zu gelangen.
Dartiber hinaus konnte Momentum dabei helfen, nicht in einem lokalen Minimum stecken zu
bleiben, da der aufgenommene Schwung dazu fithren konnte, dass man ein solches Minimum

iiberspringen und weiter in Richtung globales Minimum iterieren konnte.
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Abbildung 7: Momentum Darstellung

Quelle: Eigene Darstellung

In Abbildung [7]wurde genau diese Situation dargestellt. Der Ball rollt in Richtung des steilsten
Abstiegs - hier befindet man sich in einem zweidimensionalen Raum. In der ersten Position (von
links) bewegt er sich nach rechts - mit der Kraft des Gradienten, der an dieser Stelle berechnet
wurde (schwarzer Pfeil). In der zweiten Position ist diese Kraft deutlich schwécher, da die
berechnete Tangente nicht mehr so steil ist wie an der ersten Stelle. Dafiir sieht man jetzt
den griinen Pfeil, der die Kraft vom Momentum reprasentiert, die im ersten Schritt entstanden
ist. An der dritten Position ist die Kraft des Gradienten, die sich auf den Ball auswirkt gleich
Null und wiirde damit im Falle des normalen Gradient Descent bedeuten, dass der Ball stecken
bleibt und nicht iiber die nachste Steigung kommt. Momentum hingegen hat den Ball zur
vierten Stelle gebracht, wo wiederum der berechnete Gradient den Ball zuriick driickt (negativer
schwarzer Pfeil an Position vier), aber der tibriggebliebene Schwung (griner Pfeil an Position

vier) ausreichend ist, um ihn weiter in Richtung Globalen Minimums zu beférdern.

2.2.3 RMSprop(Root mean square) Gradient Descent

Eine weitere Variante des Gradient Descent Verfahrens ist RMSprop GD. Die Idee ist hier,
dass man nicht alle Parameter mit der gleichen Lernrate n gewichtet. Die Lernrate variiert in
der Hinsicht, dass Parameter, die mit Klassen, die héufiger auftreten, in Verbindung stehen,
ein kleineres 7 erhalten - andererseits erhalten Parameter, die Einfluss auf Klassen haben, die
nicht so haufig vorkommen, eine groflere Lernrate, um eine dementsprechende Hochgewichtung
zur erreichen. Zusétzlich wird der n Parameter von der Iteration, in der man sich befindet,
abhéngen. Diese Merkmale sind besonders von Vorteil fiir sparse Daten, in denen man unter-
schiedliche Haufigkeiten der Zielklasse hat (dies ist auch der Fall bei der Textegenerierung).
Der Vollstandigkeit halber muss man sagen, dass die oben beschriebenen Erweiterungen dem
Algorithmus Adagrad (Gleichung entsprechen, der eine Basis des RMSprop Algorithmus
darstellt (Ruder|2016):
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Oriry = brj — ————gu; (5)

GtJ’j +e€
In Gleichung [5|enthalt die Matrix G ;; auf der Diagonalen j, j die Summe der quadratischen
Gradienten hinsichtlich des Parameters 6; bis zum entsprechenden Zeitpunkt ¢. Der € Parameter

(ein sehr kleiner Wert) soll der Dividierung durch Null vorbeugen. Vektorisiert erhilt man:

9t+1 =0, — % X gt (6)

Ein grofler Vorteil hierbei ist, dass sich die Lernrate alleine anpasst und mit der Anzahl der
Iterationen immer ndher an Null geht, was bedeutet, dass die Schritte mit Anndherung an ein
Minimum immer kleiner werden, wodurch das tunen der Lernrate tiberfliissig wird. Der Nachteil
davon ist, dass die Schrittlange durch die anwachsende Anzahl der Iterationen, voranschreitend
ausgeloscht wird. RMSprop ermoglicht es, diese Ausloschung der Lernrate zu umgehen, indem
anstatt der Matrix mit quadratischen Gradienten auf den Diagonalen, ein sogenannter Moving
Average E[g?]; verwendet wird (Ruder|2016):

9t+1 =0, — $gt (7)
Elg?; + €

Der Moving Average wird aus dem aktuellen quadrierten Gradienten und dem gemittelten

Gradienten aller vorheriger Iterationen bis Zeitpunkt ¢ — 1 berechnet:

Elg*: = vE[g")i-1 + (1 —7)g; (8)

Der Parameter + ist hier so dhnlich wie der vorher vorgestellte v Parameter aus dem Momentum
Beispiel. Die Erfinder dieses Algorithmus schlagen als guten default Wert fiir v = 0.9 und fiir die
Lernarate n = 0.01 vor (Ruder|[2016)). Der Name RMSprop kommt daher, das man im Nenner
eigentlich nichts anderes hat, als das quadratische Mittel (Root mean square) - Fehler Term des

Gradienten:

n
9t+1 =0, — Wgt (9)
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2.3 Neural Networks

Dieses Kapitel befasst sich mit den Grundlagen von Deep Learning. Dies wird die Vorausset-
zung sein, um die spéiter erkliarten Recurrent Neural Networks zu verstehen. Anfangs gibt es
eine kurze Einfiihrung in die Geschichte von Deep Learning und anschlieBend wurde in den dar-
auf folgenden Kapiteln auf die grundlegenden Bausteine eines Neuronalen Netzes eingegangen.
Folgende Begriffe werden eingefithrt: Neuron, Backpropagation, Verlustfunktionen und Activa-
tionfunctions, da sie sowohl fiir Neuronale Netze, sowie fiir Recurent Neural Networks relevant

sind.

2.3.1 Die Geschichte von Deep Learning

Die ersten Anwendungen von Deep Learning gehen auf das Jahr 1943 zuriick - Walter Pitts und
Warren McCulloch erschufen ein erstes Computerprogramm, das aus einer Kombination von
Algorithmen und Mathematik entstand (Walter Pitts [1943). Viele Forscher waren skeptisch,
wenn es um die praktische Anwendung von Neronalen Netzen ging, da es anfangs keine Deep
Networks waren und sie damit in ihrer Verarbeitung sehr limitiert waren. Das fiithrte dazu, dass
die wissenschaftliche Arbeit in diesem Gebiet bis in die spédten 70ger und Anfang der 80ger

eingeschrankt wurde.

In dieser Zeit wurde eines der grofiten Hindernisse, das die weitere Entwicklung hinderte - also
die Erfindung eines Optimierungsalgorithmus (Backpropagation), der es erlaubt, effizient mit
Hilfe von Gradient Descent riickwirkend Parameter zu trainieren, tiberwunden (LeCun!|1988)).
Die erste erfolgreiche Anwendung gelang Yann LeCun, der 1989 den Backpropagation Algo-
rithmus mit Convolutional Neural Networks verbunden hatte, um es anschliefend auf einem
Datensatz von handgeschriebenen Zahlen auszuprobieren. Das daraus resultierende Neuronale
Netz, das LeNet genannt wurde, wurde 1990 von dem Postdienst der Vereinigten Staaten fiir
die automatische Erkennung von Postleitzahlen verwendet. Viele Erwartungen wurden in die
weitere und schnelle Entwicklung von Deep Learning gesetzt, die aufgrund von computationalen
Griinden nicht erfiillt werden konnten. Dies fithrte dazu, dass die Forschung zum zweiten Mal
zurtickgegangen ist und erst wieder groBeres Aufsehen erlangte, nachdem im Jahr 1997 Sepp
Hochreiter und Jiirgen Schmidhuber die LSTM Zelle fiir Recurrent Neural Networks entwickelt
haben (Sepp Hochreiter|[1997)).

Im folgendem Jahrzehnt wurde die Rechengeschwindigkeit dank GPU’s (Graphics Processing
Units) um das 1000-fache erhoht, was dazu fiihrte, dass der Deep Learning Forschung zuneh-
mend Aufmerksamkeit gewidmet wurde. Heutzutage werden, dank stets optimierender Rechen-
power, immer mehr Probleme mit Neuronalen Netzen gelost, wie zum Beispiel: Autonomes

Fahren, Ubersetzungen, Bild- und Audio-Verarbeitung.
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2.3.2 Neuronen und Layers

Ein Neuron ist das Basis-Element jedes Neural Networks. Sein Input konnte sowohl von au-
flen kommen, sowie von einem fritherem Neuron (Alpaydin/[2010). In Abbildung |8| sind drei
Layers von Neuronen dargestellt: die ersten dienen als Input Layer (dunkelgraue Neuronen)
und enthalten Neuronen, die ihren Input von auflen erhalten werden - dieser Imput wird nach-
stehend als x; j € 1, ..., n. beschrieben. Weiterhin wird der erste Layer mit Hilfe von Gewichten
wp; (weile Neuronen z, h € 1,...,m) mit dem sogenannten Hidden Layer, der wiederum mit
dem Output Layer verbunden ist (hellgraue Neuronen y; i € 1, ...,0), aufgezeigt. Zwischen dem

Hidden Layer und dem Output Layer befinden sich auch Gewichte v;y,.

Abbildung 8: Beispiel Neuronales Netz

Quelle: Eigene Darstellung

Der Output ist somit die gewichtete Kombination der Hidden Units (Neurons):

Yi =Y Vinzn + Vio =0} 2 (10)
h=1

v;o reprasentiert den Wert fiir die Neuronen-spezifische Verzerrung (Bias). Die Werte von zj,

wurden aus der gewichteten Kombination von z; berechnet:

n

2 = thjxj + wpo = wi (11)
j=1

Wenn man es jetzt mit einem Klassifizierungsproblem zu tun hat, dann wiirden die Qutput
Units in Kombination mit einer Verlustsfunktion bzw. Aktivierungsfunktion, dartiber entschei-
den, welche Klasse die wahrscheinlichste sein wiirde. Klasse C; wird gewahlt, wenn y; = mgwc(yo)
ist (Alpaydin[2010)).
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Der Name Deep Learning stammt daher, dass man theoretisch eine beliebige Anzahl an Hidden
Layers in einem Neural Networks verbinden konnte, was zu Deepen Netzen fithren wiirde. Die
Aufgabe eines Neural Network ist es, die Gewichte wy; und v;;, so zu erlernen, dass am Ende die
richtige Klasse vorausgesagt wird. Die einfachste Form eines solchen Netzes wiirde ein Input und
ein Output Neuron sein, die im Endeffekt genutzt werden konnten, um eine lineare Regression
zu implementieren:

Yy = wx + wy (12)

In Gleichung ist w, genauso wie in der linearen Regression, die Steigung und wy stellt
den Intercept dar. Wenn ein Datensatz gegeben ist, konnte man mit Hilfe der entsprechenden

Verlustfunktion die Regression-Parameter finden.

2.3.3 Activation Function

Der Zweck einer Aktivierungsfunktion in einem Deep-Learning-Kontext ist es, sicherzustellen,
dass die Darstellung vom Input auf einen anderen Raum im Output abgebildet wird. Sie sorgt
erstens dafiir, dass ein gewichteter Neuron aktiviert werden kann - also, dass seine Information
weiter gegeben werden kann. Zweitens sorgt sie dafiir, dass sich der Raum des Inputs zum
Output dndert, um tiefe nicht lineare Reprasentationen der Daten extrahieren zu kénnen. Die
Aktivierung eines Neuron, also das Weitergeben einer relevanten Information, kénnte wie folgt
aussehen: ein Schwellenwert entscheidet, ob der Wert eines Neuron ausreichend grof3 ist, um

weitergegeben zu werden (Sharma)|[2017)).

Ein solcher Mechanismus wiirde entweder eine 1 (aktiviert) oder eine 0 (nicht aktiviert) einem
Wert des Neuron zuordnen. Ein Beispiel einer Funktion, die genau das macht, sieht man in
Tabelle [3] unter dem Namen Step Function. Allerdings ergibt sich hierbei ein Problem: bei
einer Multi class Klassifizierung diirfte nur ein Wert der Neuwronen im Output Layer eine 1
zugeschrieben werden (die der wahren Klasse) und dem Rest misste eine 0 zugeordnet werden.
Ein solches Problem ist allerdings schwer in einem Neural Network zu trainieren, da in einem
Multi class Klassifikationsproblem die Wahrscheinlichkeit grof ist, dass mehrere Neuronen ak-
tiviert wurden, wodurch man mehrere Klassen gleichzeitig wahlen miisste. Eine bessere Losung
ware es, wenn man moglichst unterschiedliche Aktivierungen den Werten der Output Neuronen
zuordnen konnte, um im Nachhinein den Newuron mit der grofiten Aktivierung wéhlen zu kon-

nen. Dies fiihrt zu eindeutigen Ergebnissen und ist einfacher zu trainieren.

Die einfachste Alternative wiére eine lineare Activation Function (Tabelle (3| Identity), die
proportional zu dem Input ist (die gewichtete Summe). Dariiber hinaus erhélt man keine binére
Losung, sondern einen Bewertungsbereich von Aktivierungen, aus dem man zum Beispiel das
Maximum als Entscheidung wéahlen kénnte. Das Problem, das hier auftaucht, ist, dass man
keine nicht linearen Reprasentationen erlernen kann, da sogar mehrere Layer, die aufgestockt
werden und mit einer linearen Activation Function aktiviert werden, immer noch eine lineare

Kombination des Inputs darstellen.
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Sigmoid (Tabelle (3| Sigmoid) verbindet beide guten Eigenschaften der vorher genannten Ac-
tivation Functions. Erstens andert sich der Raum des Inputs auf den OQutput, was es erlaubt,
nicht lineare Représentationen zu erhalten und zweitens ist der Aktivierungswert in einem
eingegrenzten Bereich zwischen 0 und 1, wobei nicht nur die Extrem-Werte vergeben werden
konnen, sondern eine beliebige Zahl dazwischen. Die Werte fiir die Argumente zwischen —2
und 2 sind sehr steil verteilt und die Verdnderungen im Funktionswert sind grof bei kleinen
Verdnderungen in x. Diese Eigenschaft fithrt dazu, dass Aktivierungen schnell in eine der bei-
den Enden gedriickt werden, was dabei hilft, Abgrenzungen fiir Pradiktionen zu schaffen. Der
Nachteil bei der Sigmoid Funktion ist allerdings, dass die Anderungen an den Enden der Funk-
tion bei Verdnderungen in x, sehr klein sind, da die Funktion dort flach ist - das wiederum
bewirkt, dass der berechnete Gradient an diesen Stellen auch klein sein wird und somit die
Updates bei dem Backpropagation ausgeloscht werden. Dieses Problem wird Vanishing Gradi-
ent Problem genannt und wurde, wie der Backpropagation Algorithmus, im spéteren Verlauf
der Arbeit beschrieben. Eine skalierte Version der Sigmoid Funktion ist die Tanh Funktion
(Tabelle |3| Tanh), die den Vorteil hat, dass allgemein der Gradient an den Enden stérker ist
(Ableitung steiler) - das Vanishing Gradient Problem ist jedoch immer noch présent. Die Ak-

tivierungswerte befinden sich im Intervall (—1,1).

Die am meisten genutzte Activation Function ist ReLU (Rectified Linear Unit). Diese Funk-
tion ist im positiven Bereich f(x) = x und im negativen Bereich gleich Null. Es ist also eine
nicht lineare Funktion, deren Kombination auch wieder eine nicht lineare Funktion darstellt.
Mit deren Hilfe kann man eine beliebige andere Funktion approximieren. Ein weiterer grofler
Vorteil von ReLU ist die sparsity der Aktivierungen, die man erhéalt. Bei zum Beispiel der
Sigmoid und Tanh Funktion werden fast alle Neuronen aktiviert und zum Entscheiden tiber
die vorausgesagte Klasse verwendet. Dies sind dichte Aktivierungsfunktionen, die im Hinblick
auf Zeit und Rechenaufwand sehr kostspielig sind. ReL U hingegen halt manche Neuronen auf
Null, wodurch sie bei manchen Iterationen gar nicht unter Betracht genommen werden. Aus
diesem Grund hat die Aktivierung eine geringere Dichte und ist einfacher zu trainieren. Diese
Eigenschaft konnte allerdings auch ein Nachteil sein, da der Gradient im negativen Teil Null
ist und es nicht moglich ist, fiir solche Neuronen auf die Variation im Gradienten Update zu
reagieren. Dieses Problem nennt sich Dying ReL U Problem und kann durch verschiedene Rel U
Abwandlungen begrenzt werden, wie z.B. leaky ReLu, bei der man anstatt einer horizontalen
Linie im negativen Bereich eine Funktion f(z) = 0.1z hat, die es erlaubt, die Neuronen, die in

diesem Aktivierungsbereich liegen, zu befreien.

Die letzte zu beschreibende Aktivierungsfunktion ist die Softmaz Funktion, die im Allgemei-
nen die Wahrscheinlichkeiten jeder Zielklasse iiber alle moglichen Zielklassen berechnet. Diese
berechneten Wahrscheinlichkeiten haben die Eigenschaft, dass sie sich zu 1 aufsummieren, wo-
durch man sich im spaterem Schritt fiir die Zielklasse mit der hochsten Wahrscheinlichkeit

entscheiden kann. Die Gleichung fiir die Softmaz Aktivierungsfunktion sieht wie folgt aus:
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T

e
ZkK:1 erk

wobei K die Anzahl der Klassen ist und ¢ die i-te Klasse repréasentiert.

Ckiel, .k (13)

o(z;) =

Tabelle 3: Activation Functions

Name Abbildung Gleichung
) 0, ifx<0.
Step Function S(x)=14_" 1 v
1, ifx>0.
Identity / flo) =

‘‘‘‘‘

Sigmoid / o(z) = H%

‘‘‘‘‘

Tanh / tanh(r) = 2 — 1

“““““

Rectified Linear Unit Rz) = 0, ifz<0O.
(ReLU) i e, ifz>0.

index

Quelle: Eigene Darstellung (Sharmal|2017)

2.3.4 Verlustfunktionen

Eine Verlustfunktion zeigt, wie unzufrieden man mit einer Fehlpradiktion ist (also mit der Ab-
weichung der Schatzung von dem wahren Wert der Funktion). Der Verlust ist ein nicht negativer

Wert, bei dem die Robustheit mit absteigender Verlustfunktion zunimmt. Die allgemeine Form
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der Verlustfunktion sieht man in Gleichung

n

£0) = > Ly, (., 0) (1)

i=1
Wobei y; der wahre Wert oder Klasse ist und f(z;,0) die dazugehorende Pradiktion darstellt

(0 sind die zu trainierenden Parameter). Im Deep Learning Kontext ist die Funktion f(z;) die
2

i Z""7

entsprechende Aktivierungsfunktion und z; = {z},z x'} das Trainings Sample der Grofie

m. Folgende Charakteristiken von Verlustfunktionen sind relevant (Bischl/2016):

1. Differenzierbarkeit
2. Robustheit

3. Konvexitat

Die Differenzierbarkeit einer Verlustfunktion erleichtert das Optimieren, die Robustheit zeigt
wie stark eine Verlustfunktion auf Abweichungen reagiert und die Konvexitéit garantiert, dass

es nur ein globales Minimum der Funktion gibt. Zwei Bespiele von Verlustfunktionen:

Abbildung 9: Beispiele von Verlustfunktionen

(a) Lo-Verlust (b) Ly-Verlust

Ly=f(x))
L(y=f(x))

y=f(x)

Quelle: Eigene Darstellung

Die Lo-Verlustfunktion (Abbildung @ a)) ist differenzierbar und konvex, was verursacht, dass
die Optimierung einfacher ist als im Fall des L-Verlustes (Abbildung[9] b)) der nicht differen-
zierbar ist. Beide Funktionen reagieren anders auf Abweichungen (y — f(x)). Der La-Verlust ist
sensibler und bestraft zum Beispiel eine Abweichung von 2 mit dem Verlust 4 - der L;-Verlust
hingegen nur mit 2, was bedeutet, dass der L;-Verlust robuster ist als der Lo-Verlust. Diese
Eigenschaft zeigt auf, dass man gut den Erwartungswert des Modells mit dem Lo-Verlust und
zum Beispiel gut den Median mit dem L;-Verlust, schatzen kann. Der Lo-Verlust wird, wie

gerade vorgestellt, oft bei der linearen Regression genutzt und hat folgende Form:
1 " 1 2
_ -\ 15
n Z 2 (15)
Und die Gleichung des L;-Verlustes wurde in Gleichung gezeigt:
i ;) 16
P Z g — f(a (16)
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Die Verlustfunktion, die fiir diese Arbeit von Interesse ist, ist die Categorical Cross-entropy. Die
Categorical Cross-entropy lasst sich aus der Kullback-Leibler-Divergenz erschliefen. Die KL-
Divergenz wird auch relative Entropie genannt und erlaubt es, ein Mafl der Unterschiedlichkeit

zwischen zwei Wahrscheinlichkeitsverteilungen zu berechnen. Die relative Entropie hat folgende

Form:

1 n
— Z DKL Z/z‘ |y1
Tl =1
1.
- yzlog
’fL i=1 yl

1 1&

= - Z(yzlog yz - Z yzlog yz (17)
n i=1 7’L =1
entropy cross-entropy

Die Cross-entropy gibt an, wie weit man mit der geschéatzten Verteilung durch das Modell von
der wahren Verteilung entfernt liegt (Hao|[2017)). Sie wird oftmals bei Neuronalen Netzen mit
Softmaz Aktivierungfunktion verwendet, da hierbei die Aktivierungen als Wahrscheinlichkeits-

verteilungen verstanden werden kénnen. Die Verlustfunktion hat folgende Form:

L= ylog(f(w) (18)

wobei k die Anzahl der Klassen aus der Softmax und f(z;) die Aktivierung des x;-ten Element
darstellt.

2.3.5 Backpropagation

Im folgenden wird der Algorithmus vorgestellt, mit dessen Hilfe man in der Lage ist, die Ge-
wichte des Neural Networks zu trainieren. Dieser Algorithmus heifit Backpropagation (LeCun
1988)) und wird anhand eines vereinfachten Neural Network (Abbildung erklart (Kapur
2017). In diesem Beispiel gibt es einen Input, zwei Hidden Layers und ein Output Layer. In
den jeweiligen Layern befinden sich einfachheitshalber nur ein Neuron, der mit dem darauf fol-
genden Layer auch nur mit einem Weight w; gewichtet wird. Die Activation Functions werden
durch act() markiert. Diese Funktionen werden vorerst nicht festgelegt, konnten jedoch eine

beliebige Aktivierung sein (Unterkapitel [2.3.3]).
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Abbildung 10: Simple Neural Network

Input Hidden 1 Hidden 2 Output
. Wy . w, ‘ Ws .

Quelle: Eigene Darstellung (Kapur|/2017)

Bevor man mit dem Backpropagation beginnt, wird zuerst der Forward Pass durchgefiihrt, um
einen entsprechenden Qutput zu erhalten. Dies erreicht man durch das Durchfiihren des Inputs
durch die aufeinanderfolgenden Layer, die durch die Activation Functions der Hidden Layer
und im Endeffekt des Output Layers transformiert werden. Den Qutput kann man wie folgt

berechnen:
Hiddenl = act(wyz) — Hidden2 = act(wyHiddenl) — Output = act(wsHidden2)

Wenn man die ersten zwei Gleichungen in die Dritte einsetzt, erhdlt man die Formel fiir den
Output:
Output = act(wsact(waact(wyz)))

Im folgenden wird die Ableitung dieser Gleichung bendtigt. Dariiber hinaus ist der OQutput
zusatzlich in eine Verlustfunktion eingebunden, wodurch das Ergebnis mit dem wahren Wert
verglichen wird (Unterkapitel [2.3.4]). Eine Beispiel Ableitung in Bezug auf den Parameter

wy konnte man mit Hilfe der Kettenregel bestimmen:

derror  derror  OOutput OHidden2 OHiddenl
ow,  OOutput OHidden2 OHiddenl owq

Wichtig ist, dass die Verlustfunktion immer noch eine Funktion des Inputs ist. Als nachstes
wiirde die gleiche Ableitung in Bezug auf alle anderen Parameter des Neural Networks berech-
net werden. Diese berechneten Gradienten dienen dem Update des Gradienten mit einem der
in Unterkapitel besprochenen Optimierungsalgorithmen. Daher kommt der Name Back-
propagation: man optimiert die Gewichte in einer vom Verlust berechneten riickwirkenden Art
iiber die jeweiligen Layers. Dies ist natiirlich nur ein einfaches Beispiel fiir einen unwahrschein-
lichen Fall eines solchen Neural Networks, aber in Wirklichkeit andert sich das Vorgehen nicht
wirklich, bei z.B einem Netz wie in Abbildung (8]

Erwahnenswert ist hierbei, dass die Konvergenz des Algorithmus von den Verlust- und Ak-
tivierungsfunktionen, die im Netz verwendet werden, stark abhédngig ist. Als Beispiel konnte
man den MSE (L) mit der Binary Cross-entropy vergleichen, bei denen die Ableitungen mit
Sigmoid Activationfunction im Qutput Layer berechnet wurden (6 die zu optimierenden Para-

meter im Netz): Der Gradient fiir §; = 0(Z;) = o(67 x;) wiirde fiir den MSE wie folgt aussehen
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% = —(y—o0(2))o(2)'z und fiir die Cross-entropy % = —(y —o(z))z. Der Unterschied ist also,
dass im Fall des MSE zusétzlich die Ableitung der Sigmoid Funktion o(z) enthalten ist, die
nah an Null ist, wenn o(z) Richtung 1 oder 0 geht und das Maximum erreicht, wenn o(z) 0.5
ist. Dies verursacht, dass der Gradient klein ist, wenn der Verlust grof ist, wobei genau dass
Gegenteil erwiinscht ist. Die Cross-entropy hat den zusétzlichen ¢'(z) nicht und verhélt sich

somit so, wie man wollen wiirde.
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2.4 Recurrent Neural Network

Dieses Kapitel beschéftigt sich vertieft mit dem Thema Recurrent Neural Networks, die in die-
ser Arbeit verwendet werden, um die Textgenerierung durchzufiihren. Recurrent Neural Net-
works werden hauptsachlich bei sequentiellen Problemstellungen angewandt - wie zum Beispiel
Zeitreihenanalyse oder wie in diesem Fall Texte. Am Anfang dieses Kapitels wurde eine kurze
Einleitung in das Thema dargestellt, um im folgenden gewisse Erweiterungen des Backpropa-
gation Algorithmus fiir sequentielle Modelle und Probleme, die bei Recurrent Neural Networks
auftreten konnen, zu beschreiben. Die zwei am weitesten verbreiteten Modelle wurden dann
zum Ende des Kapitels dargestellt: Erstens das Long Short Term Memory Modell und zweitens
dessen Abwandlung, also das Gated Recurrent Unit (GRU) Modell.

2.4.1 Sequentielle Modelle

Der Unterschied zwischen einem sequentiellen und nicht sequentiellen Modell ist der, dass, so
wie der Name schon sagt, die Reihenfolge der Daten im behandelten Problem mit unter Be-
tracht genommen werden kann. Dies bedeutet, dass in einem normalen Neural Network die
Sequenz, in der die Daten ins Modell eingegeben und verarbeitet werden, keine grofiere Bedeu-
tung haben. Bei sequentiellen Modellen ist es besonders wichtig, die historischen Werte in einer
chronologischen Reihenfolge zu verwenden, um die Pradiktionen von den aufeinanderfolgenden
Ereignissen abhéngig zu machen. Die am meisten verbreiteten sequentiellen Daten sind Texte,
die entweder als Sequenz von Wortern oder, so wie in diesem Fall, als Sequenz von Zeichen
verstanden werden konnen (Francois Chollet||2018]). Ein Unterschied zu einem Feedforward Mo-
dell, das es ermoglicht, eine Sequenz als tatsdchliche Sequenz zu betrachten, ist die Memory,
die es erlaubt, die Vergangenheit zu behalten und die néchsten Time Steps in Abhéngigkeit der
vorherigen zu behandeln. Die Daten werden also nicht alle auf einmal ins Modell eingegeben,
sondern eins nach dem anderen und werden durch eine rezidive (Recurrent) Verkniipfung ver-
bunden, um die Memory des Modells zu simulieren. Es ist moglich, eine Recurrent Verbindung
zu entfalten (dies wurde im spéteren Unterkapitel beschrieben), um es stattdessen in
der dquivalenten Feedforward Form darzustellen. Jedoch ist zu beachten, dass bestimmte An-

passungen zum Backpropagation Algorithmus beigefiigt werden miissen.

Eine wichtige Eigenschaft von RNNs ist, dass sie in der Theorie in der Lage sein miissten, Lang-
zeitabhangigkeiten zu erlernen. Es stellt sich jedoch heraus, dass dies in der Praxis unmoglich
ist, da solche Modelle unter dem Vanishing Gradient Problem (Unterkapitel leiden,
dass man auch haufig bei anderen Deep-en Architekturen beobachten kann. Ein RNN ist also
in der Lage, zum Beispiel den Satz “Die Baume wachsen im 7 mit dem Wort “Wald” zu
Ende zu bringen. Wenn es jedoch zu langen Abhéngigkeiten kommt, bei denen zwischen zwei
Informationen viele Time Steps liegen, die nichts mit einer bestimmten Information zu tun
haben, wird die korrekte Préadiktion schwierig (z.B “Er kommt aus Deutschland ... Er spricht
flieBend 7 — “deutsch”). Die Modellierung von langfristigen Abhéngigkeiten ist jedoch mit
Hilfe von GRU und LSTM moglich.
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2.4.2 (Truncated) Backpropagation through time

Backpropagation through time (BPTT) ist das Aquivalent zu dem Backpropagation Algorithmus
aus Unterkapitel fir RNNs mit sequentiellen Daten. Man konnte sich den Algorith-
mus so vorstellen, dass man wie im Unterkapitel ein LSTM Modell in sequenziell
aufeinanderfolgenden Modellen auflést (Abbildung [11)), die man sich wie Layers in einem
Convolutional Neural Network vorstellen kann. In RNNs wird an jedem Time Step eine Obser-
vation eingelesen, die zu dem gleichen Zeitpunkt auch einen Qutput liefert (Brownlee 2017 a).
Es ist also moglich, jeden dieser Zeitpunkte zu iiberprifen, wie genau man mit der jeweili-
gen Pradiktion war (Verlusfunktion). Wenn man nach dem Berechnen des Verlustes an jedem
Zeitpunkt das Netzwerk wieder zusammenfasst und die Verluste kumuliert, ist es moglich, ein
Gradienten Update iiber alle Time Steps durchzufiihren. Diese Prozedur wird fortgefiihrt, bis
der Verlust hinreichend verkleinert wurde. Ein Problem das jedoch hierbei auftritt, ist dass ein
Gradient Update fir Sequenzen, die sehr viele Time Steps haben, sehr kostspielig sein kann,
weshalb man in der Praxis meist den Truncated Backpropagation through time (TBPTT) ver-
wendet. Der Unterschied besteht darin, dass man nicht wie zuvor die ganze Sequenz nimmt,
sondern eher kleine Teile der Sequenz - die Updates auf diesen durchzufiihren ist deutlich we-
niger kostspielig. Im Vergleich wiirde man in diesem Fall das RNN wie zuvor, fiir eine gewisse
vorbestimmte maximale Lange (ein gewisser Teil der ganzen Sequenz) entfalten, und wiirde, fir
jeden Time Step eine Pradiktion machen und den Verlust berechnen. Anschlieend kénnte man
das Modell wieder zusammenfassen und fiir diesen Teil der Sequenz ein Update durchfiihren.
Dies miisste man fir alle Untersequenzen wiederholen und so lange fortfiihren, bis der Verlust,
wie immer, ausreichend minimiert wurde. Zum Beispiel mit einer Sequenz die 150 Zeichen hat
und in 3 Untersequenzen der Lange 50 geteilt wurde, wiirde der Gradient Update auf jedem
der drei Teile separat durchgefithrt. Die Anzahl der Time Steps, tiber die man zurtick iteriert,
muss nicht notwendigerweise der Anzahl der Lange der Untersequenzen entsprechen, aber in
den meisten Implementierungen von RNNs ist dies der Fall. Der Nachteil ist, dass es nicht

moglich ist, Zusammenhénge zu lernen, die langer als die gebildeten Untersequenzen sind.

2.4.3 Vanishing und Exploding Gradients

Zwei haufige Probleme, die bei Recurrent Neural Network auftreten kénnen, sind erstens das
Vanishing Gradient Problem und zweitens das Ezploding Gradient Problem. Das Vanishing Gra-
dient Problem tritt dann auf, wenn man iiber viele Layers zuriick Propagiert und der Gradienten
Update in den ersten Layers des Netzes immer kleiner wird. Ungiinstig hierbei ist auch, wie
schon im Unterkapitel beschrieben, dass manche Aktivierungsfunktionen verursachen,
dass der berechnete Gradient Richtung Null geht (z.B bei Sigmoid und Tanh Funktionen). Im
folgenden Kapitel wurden die GRU, wie auch LSTM Modelle, die dieses Problem aufheben,
dargestellt.

Das zweite Problem das haufig bei RNNs vorkommt, ist das Problem des Ezploding Gradient.

Die Prozedur von Backpropagation through time wurde im vorherigen Unterkapitel erlautert -
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dadurch weifl man, dass der Verlust und somit der Gradienten Update iiber die jeweiligen Time
Steps kumuliert werden, um das entsprechende Update der Gewichte durchzufiihren. Das kann
dazu fithren, dass Updates sehr grofl werden und im Endeffekt das Lernen aus dem Trainings-
datensatz instabil oder sogar unmoglich wird. Hierfiir konnte es verschiedene Losungen geben:
erstens kann man Gradient Clipping nutzen, um den Gradient Update mit einem Schwellenwert
zu begrenzen. Dieser Wert ist also die maximale Grofle eines Updates, das durchgefithrt werden
kann. Eine weitere Option ist, wie auch beim Vanishing Gradient Problem, das LSTM Modell

und das Aufteilen der ganzen Sequenz in Untersequenzen.

2.4.4 Simple RNN

In Abbildung ist auf der linken Seite der Gleichung ein RNN Modell mit seiner rezidiven
Schleife dargestellt. Die Idee hierbei ist, dass eine Input Observation x;, die an einem Time Step
eingelesen wird, einen Output h, liefert, der gleichzeitig auch als Input der nachsten Zelle ver-
wendet wird. Diese Prozedur kann man auch wie auf der rechten Seite der Abbildung darstellen,
in dem die Schleife in eine sequentielle Verbindung aufgelost wird. Man hat also jetzt mehrere
Kopien des gleichen Netzwerkes, aber diesmal hat man anstatt der rezidiven Verbindung eine
sequenzielle Verbindung zwischen den jeweiligen Kopien . Das erste Netzwerk erhalt sein Input
xo der in der RNN Cell 1 verarbeitet wird, um letztendlich einen Qutput hg zu liefern, der auch
als Information an das niachste Netzwerk weitergegeben wird. Das gleiche passiert mit den dar-
auf folgenden Inputs xi, s, ..., x; (dunkelgrau), bei denen entsprechende Outputs hy, hs, ..., hy

(hellgrau) nach Transformierung in RNN Cell 2,3,..,t (wei}) geliefert werden.

Abbildung 11: Unrolled RNN

i

RNN Cell 1 > RNN Cell 2 > RNN Cell t

I

Quelle: Eigene Darstellung (Olah|[2015)
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In Abbildung sieht man eine RNN Zelle, die den Qutput h,_, aus der letzten Zelle nimmt

und es mit dem Input x; an Zeitpunkt ¢ verbindet. In der Zelle befindet sich ein Neuronales Netz
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Element (griin) mit einer Tanh Aktivierung. Die Tanh Aktivierung reguliert den Output einer
Zelle und presst es in einen Wert zwischen —1 und 1. Ein Netz ohne diese Aktivierung wiirde
schon nach ein paar Zellen grofle Werte annehmen, wodurch das Problem des Ezplodig Gradient
zum Vorschein kommt. Diese Architektur ist jedoch nicht in der Lage lange Abhéngigkeiten
zwischen den Time Stemps zu modellieren, da der berechnete Gradient durch die Kettenregel

ausgeloscht wird.

Abbildung 12: RNN Cell

> tanh >
h, t = J h
)

Quelle: Eigene Darstellung

2.4.5 Long Short Term Memory (LSTM)

Nachfolgend wird ein Recurrent Neural Network mit Long Short Term Memory Zellen beschrie-
ben und dessen Vorteile zu dem vorher dargestellten normalen RNN aufgezeigt. Man koénnte
sagen, dass die LSTM Zelle eine Erweiterung zu dem RNN ist, in dem versucht wurde, die
Nachteile zu umgehen ( Vanishing und Explodig Gradient). LSTM Zellen haben dartiber hinaus
heutzutage eine besondere Beliebtheit erreicht, da alle modernen Ubersetzer und Textgenerie-

rungsprozesse mit diesen Modellen aufgebaut wurden.

Eine LSTM Cell Struktur ist in Abbildung [13]dargestellt. Zwei verschiedene Arten von Trans-
formationen konnen identifiziert werden: erstens die griinen Elemente, die einfache Neural Net-
work Layers mit einer gewissen Anzahl an Hidden Units darstellen und zweitens die orangefar-

benen Elemente, die die Vektoroperationen reprasentieren.

Die Schliisselfunktion, die es erlaubt Informationen von einer Zelle zur anderen auf einem ein-
fachem Weg zu transferieren, ist die horizontale obere Linie, die direkt durch die Zelle verlauft.
Dies ist der so genannte Cell State oder Long Term Memory, die mit der Cell State aus der
vorherigen Zelle beginnt und weiter in die darauf folgende Zelle weitergegeben wird (nach

Durchfithrung von zwei Vektoroperationen).

Die ErschlieSung des Cell State sieht man in Abbildung a) und wird wie folgt berechnet:

Ctzct—l*ft‘i‘it*ét
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Erstens wird der Cell State aus der vorherigen Zelle C;_; mit dem Forget Gate f; multipliziert,

der sich wie folgt erschlieflen lasst:
Je=0Wylhi—1, ] + by)

wobei Wy und by entsprechend die Gewichte und der Bias des Forgets Schritts sind, der als
Aktivierungsfunktion eine Sigmoid Activation hat. Zweitens wird der Term 7, * (Z addiert, der
entscheiden wird, welche neuen Informationen zu dem Cell State hinzugefiigt werden. Diese

Elemente werden wie folgt errechnet:
iy = o(Wilhy—1, 2] + b;)
mit W; als Gewichts Matrix dieses Layers und b; als Bias Term.
Cy = tahn(Wehy_1, z] + be)

mit entsprechender Gewichte Matrix W und Bias bo. Die durchgefithrten Transformationen
haben folgende Interpretation: Die Forget Operation, also die Multiplizierung von C;_; mit
fi sagt aus, wie viel man aus den vorherigen Schritten vergessen sollte. Da f; das Produkt
eines Layers mit Sigmoid Aktivierung ist, ist es ein Vektor von Zahlen zwischen 0 und 1,
bei dem 0 bedeutet, dass diese Information komplett vergessen werden soll und 1, dass die
Information im vollem Umfang beibehalten werden muss. Die C; Werte stellen neue Kandidaten
von Informationen dar, die in den neuen Cell State C; mit eingebunden werden miissen. Dieser
Layer wird mit einer Tanh Funktion aktiviert, wodurch die Werte in den Bereich -1 bis 1 gepusht
werden. Diese Kandidaten werden zusétzlich mit Hilfe von 4; skaliert und entscheiden somit,
wie die entsprechenden Information im Cell State geupdated werden (Sigmoid Aktivierung: also
Werte von 0 bis 1).

Abbildung 13: LSTM Cell
(a) Forget and Remember (b) Output
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Quelle: Eigene Darstellung (Olah|2015)

In Abbildung b) wird zunichst entschieden, wie der Output der Zelle aussehen wird.

Als erstes folgt ein Sigmoid Layer der entscheidet, welcher Teil des Inputs ausgegeben wird.
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Als néchstes wird der im vorherigem Schritt berechnete Cell State durch eine Tanh Funktion
transformiert (um Werte zwischen -1 und 1 zu erhalten), um ihn im Anschluss mit dem Output
aus dem Sigmoid Layer zu multiplizieren - somit soll erreicht werden, dass nur die Teile ausgeben
werden, fir die man sich entschieden hat. Mathematisch dargestellt ist der soeben beschriebe

Prozess wie folgt zu verstehen:
0 = o(Wolhy—1, 4] + b,)

und

ht:Ot*Ct

wobei in der ersten Gleichung der Input im Layer mit den Gewichten W, und dem Bias b,
bearbeitet wird. In der zweiten Gleichung stellt h; den Output und o; die gewiinschten Infor-
mationen aus dem Input dar. Ein wichtiger Hinweis hier ist, dass der Output h; in zweifacher
Ausfithrung aus der LSTM Zelle ausgegeben wird. Einmal wird er als sogenannte Short Term
Memory an die nichste Zelle geleitet und einmal wird er als tatsichlicher Output der aktuellen

Zelle zurtickgegeben.

Mehrere LSTM Zellen bilden ein LSTM Layer. Dies wurde in der Abbildung gezeigt. Da
man es meistens mit Daten zu tun hat, die sehr umfangreich sind, ist es nicht moglich, alles an
einem Stiick in das Modell einflielen zu lassen. Deshalb werden Daten auf kleine Stiicke geteilt,
als Batches, die nacheinander verarbeitet werden, bis der Batch, der den letzten Teil enthélt,
eingelesen wird. Im unteren Teil der Abbildung sieht man den Input (dunkelgrau), bei
dem die Batches nacheinander, also von batch 1 bis Batch batch__size, eingelesen werden. Die
dartiber liegenden Zellen LSTM cell 1 bis LSTM cell time__step stellen die vorher beschrieben
Zellen des LSTM Modells dar. Die Anzahl der Zellen ist gleich der Anzahl der festgelegten T'-
me Steps. Wenn man beispielsweise eine Text Sequenz nimmt, die insgesamt 150 Zeichen hat,
kénnte man sie durch 3 teilen (batch_size 50) und wirde je Batch eine Sequenz der Lénge 50
haben (Anzahl von time_steps in der Untersequenz und somit die Anzahl der LSTM Zellen).
Wenn man anschlieflend jedes Zeichen One-hot encoden wiirde, wiirde jedes Element (dunkel-
graue Késtchen des Inputs) einen Vektor darstellen, der die Lange des Vokabulars (Anzahl der
Features) hétte und auBer der Position des jeweiligen Buchstabens, an dem eine 1 wére, nur
0-en hétte. Diese Vektoren wiirden in den jeweiligen Zellen in die Neuronal Networks (grinen
Elemente in den Zellen) einflieflen und wiirden ihre Dimension zu der Lange von der Anzahl
an Hidden Units &ndern. Der Input hat also die Dimension (batch_size x time step x featu-
res). Die Long Time Memory (Cell State) und Short Time Memory (Hidden State) haben die
gleichen Dimensionen (batch_size x number_units). Die hellgrauen Blocke, die aus den Zellen
entstehen, haben eine andere Dimension, dadurch, dass die Transformationen in den Neural
Networks (grine Elemente) mit Hilfe der Hidden Units stattgefunden haben (batch_size x ti-
me_ step x number__units). Der Qutput kann aus jeder Zelle zurtickgegeben werden - allerdings
ist meistens nur die Information aus dem letzten Block (schwarze Umrandung) relevant (nicht

in allen Problemen), da dort alle Informationen aus den fritheren Time Steps enthalten sind.
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Abbildung 14: LSTM Architektur
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Quelle: Eigene Darstellung

2.4.6 Gated Recurrent Unit (GRU)

Gated Recurrent Unit (GRU) ist eine andere Art von RRNs die im Vergleich zu LSTMs eine
deutlich geringere Rechenkraft in Anspruch nimmt. Hier gibt es, wie in Abbildung zu
sehen, anstatt von drei Elementen (wie beim den LSTM Zellen), nur zwei. Auf Grafik a)
wurde das Reset Gate und auf Grafik b) das Update Gate dargestellt. Die Vektoroperationen
und NN Elemente wurden wie zuvor mit orange bzw. griin markiert. Reset Gate entscheidet,

wie viel von den vergangenen Informationen von dem Modell vergessen werden sollen:
Tty = O'(WT [ht—la l‘t] + b,«)

W, bezeichnet die Gewichte des Netzes, die fir die Zusammensetzung von h; 7 (Information
aus der vorherigen Zelle) und z; (Input zum Zeitpunkt ¢) zustandig sind. Wie zuvor ist b, der
Bias dieses NN Elements. Das Update Gate entscheidet in dem Modell dariiber, wie viele von
den vergangenen Informationen (aus fritheren Zellen) an die darauf folgenden Zellen tibergeben

werden. Dies berechnet man wie folgt:
2z = o(W.lh—1, 2] +02)

in dem W, die Gewichte des Update Gates mit Sigmoid Aktivierung sind und b, der Bias in

diesem Netz darstellt. Der Cell Sate erschliefit sich in diesem Fall aus der Summe des Inputs
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x; und des Produkts von dem Reset Gate r; mit der Information aus der vorherigen Zelle h;_1,
die dann, durch die nicht lineare Tanh Funktion, aktiviert wird. Mathematisch wird das in der

folgenden Gleichung dargestellt:
Ct = tanh(.ft + Tt ® ht—l)

wo ® das elementweise Multiplizieren darstellt. Im letzten Schritt wird die neue Information

aus der Zelle h; an Zeitpunkt ¢ berechnet. Dies wird wie folgt gemacht:
he =2 & hyoy + (1 — 2) ® Cy

z also das Update Gate wird elementweise mit der Information aus der letzten Zelle h;_;

multipliziert und dann zusammenaddiert mit dem elementweisen Produkt aus (1 —2;) und dem

Cell State C;

Abbildung 15: GRU Cell

(a) Reset Gate (b) Update Gate

Quelle: Eigene Darstellung (Olah|2015)
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3 Analyse

Dieses Kapitel befasst sich damit, wie die im vorherigem Kapitel beschriebenen Methoden auf
den gewahlten Datensatz angewandt werden. Im ersten Teil wurde die Datenquelle sowie die
Charakteristiken der Jahresabschliisse vorgestellt. Darauf folgend wurde kurz erklart, wie und
mit welchen Hilfsmitteln die Daten gezogen wurden, um anschlieSend zu zeigen, wie diese Daten
aufbereitet worden sind und welche grundlegenden Statistiken fiir die Textdateien vorliegen.
Im zweiten Teil wurde erstens gezeigt, welche Infrastruktur fiir die darauf folgende Analyse
verwendet wurde. Danach wurden die Ergebnisse fiir unterschiedliche Parameter Settings und
unterschiedliche Architekturen dargestellt und verglichen. Diese Ergebnisse werden sowohl Cha-
rakteristiken der jeweiligen Elemente der Modelle beinhalten sowie Beispiele von generiertem
Text aus verschiedenen Epochen. Dies erlaubt es zu beobachten, ob und wie der Lernprozess

fiir die Modelle verlaufen ist.

3.1 Datensatz

Der Datensatz, der verwendet wird, um das vorher beschriebene Problem zu behandeln, muss
ausreichend grof sein, da Methoden angewandt werden (Neuronale Netze - RNN), die in Hin-
sicht auf Daten sehr greedy sind. Allgemein ist es schwer festzulegen, ab wann man von einem
groflen Datensatz spricht, aber in der Regel hilft die anwachsende Datenmenge der Generali-
sierung also auch der Verhinderung von Owerfitting in einem Modell. Ein groflerer Datensatz
ist allerdings immer mit Aufwand von mehr Rechenkraft verbunden, worauf im spateren Teil

des Kapitels noch detaillierter eingegangen wurde.

Jahresberichte sind generell Texte, die tiber die Tatigkeiten eines Unternehmens im vergangenen
Jahr informieren. Die Geschaftsberichte dienen dazu, Aktiondren und anderen Parteien einen
Einblick in die finanziellen Ergebnisse eines Unternehmen zu geben. Die meisten Rechtsorgane
verlangen, dass solche Berichte erstellt und verdffentlicht werden. Ein solcher Jahresbericht wird
oft beim Handelsregister der Gesellschaft hinterlegt und muss unter anderen folgende Elemente
beinhalten (Oser(2017):

1. Allgemeine Unternehmensinformationen
Betriebs- und Finanziibersicht

Bericht des Geschéftsfithrers
Informationen zur Unternehmensfiihrung
Stellungsnahme des Vorsitzenden

Bericht des Wirtschaftspriifers

NS e N

Jahresabschliisse, einschlieflich:
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Die Bilanz

Gewinn- und Verlustrechnung

Cashflow-Rechnung

Bilanzierungs- und Bewertungsmethoden

Weitere Merkmale

3.1.1 Daten Quelle

Die verwendeten Daten kommen von der Internet Seite AnnualReports.com, die dem Nutzer
durch einen kostenlosen Service die Moglichkeit bietet, einfach und schnell auf alle historischen
Jahresberichte eines Unternehmens zuzugreifen. Die dort vorhandenen Berichte stellen die grof3-
te Ansammlung von Jahresabschliissen der USA dar. Die gelisteten Unternehmen stellen der
Seite jahrlich die neusten Abschliisse zur Verfiigung, die als PDF oder HTML zum Download
angeboten werden. Der ganze Service ist kostenfrei - nur das Bestellen einer gedruckten Version
ist kostenpflichtig. Die Seite ermoglicht es, Investoren, Aktiondren und wissenschaftlichen Ar-
beitern, wie auch Studenten, einen Uberblick auf alle relevanten Informationen iiber bestimmte
Unternehmen zu erhalten. Fiir die geplante Aufgabe der Textgenerierung ist diese Datenbank

von besonderem Interesse, da viele Unternehmensinformationen in Textform vorliegen.

3.1.2 Webcrawler

Ein Webcrawler erlaubt es, ausgewéhlte Internet Seiten zu durchsuchen. Webcraweler sind
Computerprogramme, die in dem Source Code einer Seite nach weiteren URL’s suchen, um im
Endeffekt aus allen gesammelten Seiten eine bestimmte Information zu gewinnen. Man beginnt
also mit einer oder mehreren URL’s und arbeitet sich zu anderen verlinkten Seiten vor, bis die
gewiinschte Information zu finden ist und gespeichert werden kann. Diese Methodik erlaubt
es auf einer groflen Skala, Daten aus dem World Wide Web, ohne das manuelle Durchsuchen

mehrerer (oft) hunderter oder tausender Links, zu gewinnen.

In dieser Arbeit wurde die Python library, Scrapy verwendet. Scrapy basiert auf kleinen Pro-
grammen, die spiders genannt werden. Hierbei handelt es sich um an sich eigenstéandige scraper,
die einfachen Regeln folgen, um sich im World Wide Web fort zu bewegen. Anhand von sich
gegenseitig aufrufenden Funktionen wird die Idee von don’t repeat yourself framework eingehal-
ten. Diese Eigenschaft macht Scrapy zu einem hochst effizienten Webscraper library, weshalb

sie auch in dieser Arbeit verwendet wurde (Scrapinghub|2008]).

3.1.3 Grundlegende Statistiken

In Abbildung sind zwei Grafiken erkennbar, die die Haufigkeiten der Phrasen in allen
analysierten Texten darstellen, die mit Hilfe der N-Gram Methode zerlegt wurden. N-Grams
ist eine Methode aus der Familie von Bag-of-words, die aus einem Text Gruppen von Wortern

(oder Zeichen) mit n oder weniger Wortern bildet. Ein Beispiel wiirde wie folgt aussehen:
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Satz - “Im Wald stehen Baume” und die entsprechenden 2-Grams sind [“Im”, “Im Wald”,
“Wald”, “Wald stehen”, “stehen”, “stehen Baume”, “Baume”]. Dieses Beispiel konnte man
auch als Bag-of-2-grams bezeichnen. In der Grafik a) sieht man ein Balkendiagramm, dass das
durchschnittliche Auftreten der haufigsten Phrasen darstellt. In Grafik b) ist eine sogenannte
WordCloud bzw. PhraseCloud zu sehen, da nicht nur einzelne Worter unter Betracht genommen
wurden, sondern Phrasen, die aus einem bis drei Wortern bestehen. Beide Grafiken stellen eine
dahnliche Information dar - jedoch in unterschiedlichen Formen. In der rechten Grafik lassen sich
schnell die haufigsten Phrasen erkennen, die man dann wiederum leicht in der linken Grafik mit
dem dazugehorigen Durchschnitt wiederfinden kann. Da es sich um finanzielle Texte handelt,
sind die haufigsten Phrasen auch mit diesem Gebiet verbunden. Die am meisten vorkommenden
Worter sind financial, company und wvalue, mit einem entsprechenden Durchschnitt von 341,
318 und 194. Die einzigen zwei Phrasen, also die Kombination von mehr als einem Wort, die
in den Top 100 auftreten, sind financial statements und fair value, wobei das erstere auch das

Thema der zu analysierenden Texte ist und somit einen Sinn ergibt.

Abbildung 16: Phrasen Haufigkeiten

(a) Durchschnittliche Héufigkeiten von Phrasen (b) Phrasen Cloud
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Quelle: Eigene Darstellung

Eine ahnliche Abbildung zu der oben beschriebenen, ist die Abbildung [17], welche allerdings
nicht die Haufigkeit ganzer Worter darstellt, sondern die Héufigkeiten einzelner Zeichen. Die
Texte wurden in einzelne Buchstaben und Sonderzeichen unterteilt und danach aufsummiert
und durch die Anzahl aller Dokumente geteilt, um das durchschnittliche Auftreten einzelner
Zeichen zu bestimmen. Da die spéter verwendeten Methoden auf Zeichen-Basis angewandt
werden, sind diese Informationen von grofler Bedeutung um im Nachhinein den generierten
Text besser verstehen zu konnen. Das Zeichen, dass im Schnitt am meisten auftritt, ist das
Leerzeichen - es tritt im Schnitt ~42 tausend mal auf, was um 10 Tausend mehr ist, als der
haufigste Buchstabe e und mehr als doppelt so viel, wie der zweithaufigste Buchstabe t. Diese
drei Zeichen sind somit die am héaufigsten auftretenden Zeichen und sind in allen Texten am

zahlreichsten représentiert.



Abbildung 17: Zeichen Haufigkeiten

(a) Durchschnittliche Haufigkeiten von Zeichen (b) Zeichen Cloud
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Quelle: Eigene Darstellung

Abbildung enthéalt Informationen iiber die Metadaten der analysierten Texte. In Grafik
a) wurde die Frequenz der Zeichenanzahl in den verschiedenen Dokumenten als Histogramm
dargestellt. Die Streubreite liegt zwischen 0 und 4.5 Millionen Zeichen, wobei die Hauptmasse
der Dokumente eine Anzahl von 0 bis 2 Million Zeichen besitzt. Die Dokumente, die in den
hoheren Bereichen der Zeichenanzahl liegen (4 Millionen), treten weniger héufig auf und kon-
nen damit als Ausreifler anerkannt werden, die jedoch fir die Durchfithrung der Analyse kein
Hindernis darstellen, da diese meist von grofleren Unternehmen erstellt wurden und dadurch
auch einen deutlich grofieren Umfang haben als Dokumente, die von kleineren Unternehmen
verfasst wurden. Beunruhigend werden Dokumente sein, die eine deutlich zu kleine Anzahl an
Zeichen haben - dies wiirde ndmlich darauf hindeuten, dass ein Fehler beim Downloaden oder
Verarbeiten der Dokumente aufgetreten ist. Die Spitze des Histogramms liegt bei 250 Tausend
Zeichen. In der zweiten Grafik b) sieht man, dass die Haufigkeitsverteilung der Anzahl der
Worter in den unterschiedlichen Dokumenten ahnlich aussieht, wie die der Zeichenanzahl, was
bedeutet, dass voraussichtlich eine grofiere Zeichenanzahl auch mit einer grofleren Anzahl von
Wortern zusammenhéangt. Die Streubreite dieser Variable reicht von 0 bis 800 Tausend Worter
und die Spitze liegt bei 40 Tausend Wortern. Die Hauptmasse der Texte befindet sich zwischen
0 und 400 Tausend Wortern. Das dritte Histogramm, welches auf Grafik c) zu sehen ist, stellt
die Verhéltnisse von Zahlen zu allen Zeichen in den jeweiligen Texten dar. Dies wurde berech-
net, um festzustellen, dass man nicht nur Texte hat, die hauptsédchlich Jahresbilanzen zeigen,
sondern Texte, die entsprechend viel geschriebenen Text enthalten. Dies ist in dieser Arbeit von
besonderem Interesse. Hierbei liegt die Streubreite zwischen 0 und 0.6 (60%). Die Hauptmasse
befindet sich auf dem Intervall von 0 bis 0,2 (20%). Es handelt sich also tiberwiegend um Texte,
in denen Zahlen weniger als 20% ausmachen und somit mehr geschriebenen Text als Jahres-
zahlen etc. enthalten. Im Nachhinein werden Texte bei der Transformation von PDF Dateien
in Textdokumente, Absétze, bei denen dieser Parameter grofler als 0.2 (20%) ist, geloscht um

somit die darin enthaltenen Tabellen aus den reinen Textdateien loszuwerden.
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Abbildung 18: Histogramme der Metadaten

(a) Zeichenanzahl (b) Worteranzahl (¢) Zahlen zu Zeichen Ratio
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Quelle: Eigene Darstellung

In Tabelle 4] wurden die deskriptiven Statistiken aller Texte zusammengefasst. Es wurden
die Lagemafle fiir die Zahlen zu Zeichenverhéltnissen, Zeichenanzahl und Worteranzahl berech-
net. Die analysierten Texte haben im Schnitt ein Zahlen- zum Zeichenverhéltnis von 0.018
(also 1.8%), wobei die Texte mit jeweils dem kleinsten und grofiten Verhéltnis, entsprechend
6% und 69%, haben. Der kiurzeste Text, wenn es um Worter geht, hat auch die kleinste An-
zahl an Zeichen (218 Woérter und 9221 Zeichen). Dieser Jahresabschluss enthélt nur eine kurze
Beschreibung des vergangenen Fiskaljahres und einleitende Worter des Geschéftsfithrers. Im
Durchschnitt liegt die Zahl der Worter bei 42282 und die Anzahl der Zeichen bei fast 273 Tau-
send. Der langste Jahresabschluss hat tiber 778 Tausend Worter und der Text mit der hochsten
Anzahl von Zeichen hat mehr als 4.8 Millionen Zeichen. Wenn man die durchschnittliche An-
zahl der Zeichen durch die durchschnittliche Zahl der Worter teilt, dann erhélt man Worter
der durchschnittlichen Zeichenldnge ~6 haben.

Tabelle 4: Grundlegende Statistiken

Ratio | Characters | Words
Min. 0.06 9221 218

1st Qu. | 0.015 146537 22764
Median | 0.017 248540 38322
Mean 0.018 273134 42282
3rd Qu. | 0.020 357018 55095
Max. 0.689 4858544 778254

Quelle: Eigene Darstellung

3.1.4 Datenverarbeitung

Die im vorherigen Schritt erhaltenen PDF'’s sind in einer solcher Form nicht zu gebrauchen.
Zur Verarbeitung der Dokumente und zur Durchfithrung des Experiments muss der Text aus
den PDF'’s extrahiert und gesdubert werden. Dies wurde mit Hilfe eines R-Skripts durchge-
fithrt, welches reinen Text aus den Dokumenten zieht und als .¢xt Datei abspeichert. In diesem
Verfahren wurde auch das Verhéltnis der Anzahl von Zahlen zu allen Zeichen, in den jeweiligen

Sétzen, berechnet. Satze, in denen diese Verhéltnisse 0.2, also 20% tiberstieg, werden aus dem
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extrahierten Text ausgeschlossen, da die Chance, dass ein solcher Satz eine extrahierte Tabel-
le darstellt, sehr hoch ist. Zur Erinnerung: Tabellen mit Kennzahlen iiber Unternehmen sind
in diesem Fall irrelevant und kénnen ohne Probleme ignoriert werden. Im Nachhinein wurden
auch noch alle Zahlen aus den Texten ausgeschlossen, jedoch ist der vorherige Schritt trotzdem
notwendig, um den entsprechenden Text, der in den Tabellen enthalten war, zu finden und im

zweiten Schritt zu loschen.

Die gesammelten PDF'’s sind auflerdem in verschiedenen Programmen und Versionen verfasst
worden, weil sie erstens von unterschiedlichen Unternehmen geschrieben wurden und zweitens
aus einem Zeitraum von mehr als 10 Jahren stammen. Das fiihrt dazu, dass die Dokumente
unterschiedlich gut aufgelost und verarbeitet werden konnen. Hinzu kommt, dass manche Zei-
chen schlecht entschliisselt wurden oder einfach einem anderen Zeichen zugeschrieben worden
sind. Das fithrt dazu, dass viele merkwiirdige Zeichen im Text auftreten, an Stellen, an denen
in den PDF's Zeichen, Bilder, Seitenaufteilungen, etc., aufgetreten sind. Diese Sonderzeichen
oder schlecht entschliisselten Zeichen sind nicht von Interesse, wenn es um das Erlernen von
geschriebenen finanziellen Texten geht, weshalb die Zeichen und Spezialzeichen auf die folgen-
den begrenzt wurden: ’, -, ;LN\, (), 55, 0 L], ., =, a,byc,d e f g h i j k1, mn,
o,p,q1,s, t, u, v, w, X, y, z. Dariiber hinaus wurden alle Buchstaben, die in den Texten als
gro3geschriebene Buchstaben auftreten, zu deren entsprechenden Darstellung in Kleinschrift
transformiert, damit das verwendete Vokabular und damit die interessierenden Klassen des

Modells entsprechend klein gehalten wird.

Zusammenfassend:
1. .pdf Dateien wurden in .txt Dateien transformiert.
2. Tabellen wurden aus dem Text anhand der Zahlen zu Zeichenverhéltnissen entfernt.
3. Grofibuchstaben wurden zu Kleinbuchstaben transformiert.

4. das Vokabular wurde auf folgende Zeichen begrenzt: *, -, ;LU\, (, ), ,, ., 55, % [ ], _, =,

a, ba ¢, d7 ¢, f> g, h7 L, j7 ka 17 m, n, 0, p, q, I, S, ta u, v, w, X, y, 2.

5. Zahlen wurden aus den Texten ausgeschlossen.

3.1.5 Datenaufbereitung (Inputspace)

Nach der Datenverarbeitung ist es noch notwendig, die Daten in die entsprechende Form fiir
Deep Learning Probleme zu bringen. Hierfiir wird das theoretische Wissen aus Kapitel
iiber Tensoren und das One-hot Encoding bendtigt. Da die Aufgabe darin bestehen wird, ein
bestimmtes Zeichen anhand einer vorausgehenden Zeichensequenz vorauszusagen, muss der

Text in entsprechende Komponenten zerteilt werden:

1. Zeichen Sequenz der Lénge mazxlen, die im Folgenden input sequence genannt wird.
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2. Das auf die input sequence folgende Zeichen (following character).

Das folgende Beispiel dient der Visualisierung des Vorgangs:

Ein Ausschnitt aus dem Jahresbericht der Firma Kelloggs aus dem Jahr 2016

“we have experienced, and expect to continue to experience, intense competition for sales of
all of our principal products in our major product categories, both domestically and

internationally.” (Kellogg 2016)

Der oben zitierte Ausschnitt wurde nach den Regeln aus Unterkapitel (3.1.4] verarbeitet und
enthalt somit nur auserwahlte Zeichen. In der Tabelle [5| wird dargestellt, wie der Text in
Untersequenzen aufgeteilt wird. Es werden Sequenzen gebildet, die eine maximale Lange des
Parameter mazlen sind (in diesem Beispiel ist maxzlen 35). Das bedeutet, dass der Text in gleich-
lange Abschnitte der Lange von 35 Zeichen geteilt wird. Die Aufgabe, die zu erlernen ist, besteht
darin, den 36-sten Buchstaben korrekt vorauszusagen. Es werden nicht alle moglichen Zertei-
lungen des Textes in die Analyse mit aufgenommen. Dariiber entscheidet ein Verschiebungs-
Parameter, der weiterhin skipp genannt wird. In diesem Beispiel betragt skipp 3 und bedeutet,
dass nach jeder Aufteilung in Sequenzen der Lange maxlen, die darauf folgende Sequenz nicht
einen Buchstaben danach beginnt, sondern mit zwei. Diese Vorgehensweise verhindert, dass
wahrend des Lernprozesses eines Algorithmus genaue Strukturen des Textes erlernt werden
konnen. Zur Erinnerung: es ist nicht das Ziel, Text aus vorherigen Dokumenten abzubilden,

sondern die Erlernung textgenerierender Prozesse.

Tabelle 5: Text Aufbereitung

sample input sequence following character

1 we have experienced, and expect to ¢
2 have experienced, and expect to con t
3 e experienced, and expect to contin u
4 xperienced, and expect to continue t
5 rienced, and expect to continue to e
6 nced, and expect to continue to exp e
52 es, both domestically and internati 0
53 both domestically and internationa 1
o4 th domestically and internationally

Quelle: Eigene Darstellung

Wenn man im Nachhinein die im vorherigen Schritt erhaltenen Sequenzen so entschliisselt, wie
es in dem Unterkapitel (One-hot Encoding) erldutert wird, erhdlt man eine Ansamm-
lung von Matrizen (2D Tensoren), die bei Aufstockung einen 3 D Tensor bilden. Das gleiche
geschieht, wenn man die Following Characters entschliisselt. Der Effekt dieser Prozedur ist in
Abbildung 19| dargestellt. Auf der linken Seite sieht man die aufgestockten Matrizen der In-
put Sequence, die die Dimension (maxlen = vocab size) haben. Das Tupel dieser Matrizen ist

dann ein Data Qube (3 D Tensor), der zusétzlich zu den zwei Dimensionen noch die Dimension
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beinhaltet, die die Anzahl der Samples reprasentiert. Auf der rechten Seite der Abbildung sieht
man auch einen 3 D Tensor, allerdings fiir die Following Characters. Die Sample Anzahl und
das Vocab Size bleibt hierbei gleich, nur das maxlen ist in diesem Fall 1, da es sich um einen

Buchstaben handelt, den man voraussagen will.

Abbildung 19: 3 D Tensor als Input Space
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Quelle: Eigene Darstellung

3.2 Deep Learning Infrastruktur und Ergebnisse

In diesem Unterkapitel wird zuerst die Hard- und Software, die verwendet wurden, darge-
stellt. Hierzu wurden Keras und TensorFlow verwendet (Unterkapitel [3.2.1). Im zweiten
Schritt wurden die Ergebnisse der Analyse gezeigt, wobei genauer auf die Verteilung der Werte
im Neuronalen Netz sowie die Entwicklung des Verlustes und der Accuracy fir verschiedene
Parametersettings eingegangen worden ist (Ergebnisse fiur alle Modelle gibt es im Anhang).
Dariiber hinaus wurde auch das erlernte Embedding fiir das beste Parametersetting dargestellt.

Die Grafiken wurden teilweise in dem R package ggplot und teilweise in TensorFlow vorbereitet.

3.2.1 Keras und TensorFlow

Zur Durchfithrung der Analyse wird Tensorflow als back-end und Keras als Interface in R
verwendet. Keras ermoglicht es, relativ komplexe Modelle in einer tibersichtlichen Form zusam-
menzusetzen und mit dem gleichen Code die Analyse auf einem CPU oder GPU anzuwenden.
Das vereinfacht es, Prototypen von Modellen zu erstellen und zu testen, um im Anschluss den
funktionierenden Prozess auf einem entsprechend leistungsstarken Gerat auszufiihren. Dartiber
hinaus sind in Keras auch Netzarchitekturen, wie zum Beispiel RNNs oder Convolutional Neural
Networks tiir Computer Vision implementiert. Keras wurde anfangs mit dem Gedanken entwi-
ckelt, Forschern die Moglichkeit zu bieten, schnelle Deep Learning Experimente durchzufithren
und zu testen (Francois Chollet|2018). Heutzutage ist es eines der meist verbreitetsten Frame-
works, um die vorher genannten Probleme zu l6sen. Zusammenfassend ist Keras eine high-level

library, mit derer Hilfe man separate Blocke (die unterschiedlichen Aufgaben nachkommen)
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zusammensetzen kann, um komplexe Deep Learning Strukturen zu entwickeln (Chollet et al.
2015). Tensorflow hingegen ist eine open source Software, die es erlaubt, leistungsstarke num-
merische Berechnungen auf unterschiedlichen Prozessoren (CPU oder GPU) durchzufithren
(Francois Chollet| 2018). Es ist somit eine back-end Losung fir low-level Tensor Operationen,
die es Keras ermoglicht, effizient und schnell Berechnungen durchzufithren. Tensorflow ist nicht
die einzige back-end Losung, welche mit Keras kombiniert werden kann, da Keras das Problem
modular angeht und es damit ermoglicht, verschiedene tensor-basierte back-end Losungen zu
integrieren (sieche Abbildung . TensorFlow wiederum ruft Figen bei einem CPU und cuD-
NN bei einem GPU auf. Eigen und cuDNN stellen die Parallel Computing Plattformen fiir die

jeweiligen Prozessoren dar.

Abbildung 20: Hardware und Software
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Quelle: Eigene Darstellung (Francois Chollet|2018))

3.2.2 Ergebnisse

In Tabelle @ (siehe Anhang) wurden die Modelle mit ihren dazugehorigen Parametersettings
angegeben. Dariiber hinaus wurden auch die Metriken fir die Iteration (Epoche) dargestellt,
in denen der niedrigste Verlust fiir die jeweiligen Settings berechnet wurde. Es wurden sowohl
unterschiedliche Parameter des Netzes ausprobiert: die Anzahl der Hidden Units, die maxima-
le Lange der Input Sequenzen, wie auch verschiedene Optimierungsalgorithmen, die in dieser

Arbeit vorgestellt wurden.

In den folgenden Abbildungen wurden die fiir die in Tabelle [6] vorgestellten Architekturen, die
entsprechenden Metriken grafisch tiber die Iterationen (Epochen - ein vollsténdiger Durchlauf
aller Input Daten) dargestellt. Die Metriken, die fiir diese Arbeit von grofitem Interesse sind,
sind erstens der Verlust und zweitens die Accuracy. In erster Linie will man den Verlust minimie-
ren und die Accuracy wurde als extra Information dargestellt. Dies ist deswegen der Fall, weil
nicht das genaue Voraussagen des nichsten Zeichens von Interesse ist (dies wiirde zur genauen
Abbildung von historischen Texten fithren), sondern die Erlernung von Regeln fir einen gewis-
sen Schreibstil. Der Trainings-Datensatz stellt nur einen Bruchteil aller Jahresabschliisse dar.
Bessere Ergebnisse konnte man durch die Skalierung auf einen grofleren Teil des Datensatzes
erreichen. Man miisste allerdings eine leistungsstarkere Maschine verwenden, um eine akzep-

tierbare Lernzeit beizubehalten. Die Ergebnisse fir alle Architekturen befinden sich im Anhang.
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Abbildung stellt die ersten drei getesteten Modelle dar. Diese haben die gleichen Para-
meter, bis auf den Optimierungsalgorithmus, der die Verlustfunktion minimieren soll. Diese
Algorithmen wurden in Unterkapitel vorgestellt und detailliert beschrieben. Insgesamt
wurden fiir die jeweiligen Modelle 60 Epochen durchgefiihrt, auf denen man beobachten kann,
wie sich der gesamte Verlust tiber die Zeit entwickelt. Am schlechtesten schneidet Stochastic
Gradient Descent (SGD) ab (model 1 - blaue Linie) - er ist von der ersten bis zu letzten Epoche
mit den Verlustwerten iiber den beiden anderen und scheint bei Epoche 10 zu konvergieren und
nicht mehr zu lernen. Nicht viel besser ist der SGD mit Momentum (model 2 - rote Linie), da
er sich dhnlich wie der normale SGD verhalt. Hierbei verringert sich der Verlust im Gegenteil
zum vorherigen Algorithmus nach Epoche 40 wieder und kénnte bei einer grofferen Anzahl von
Iterationen zu besseren Ergebnissen fithren, als in den ersten 60 Epochen. Der Algorithmus, der
sich am besten entwickelt, ist der RMSprop (model 3 - grine Linie), der sowohl nach der ers-
ten Epoche den niedrigsten Verlust hat und auch am schnellsten den Verlust iber die Epochen

minimiert.

Abbildung 21: Verlust von Modellen mit verschieden Optimierungsalgorithmen
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Quelle: Eigene Darstellung

In Abbildung sieht man wieder drei Modelle. Diesmal haben alle drei den gleichen Opti-
mierungsalgorithmus und zwar den RMSprop, da der zu den besten Ergebnissen im vorherigen
Fall gefithrt hat. Diese drei Modelle unterscheiden sich diesmal durch die Batch Size (genauer:
Mini Batch Size). Das Modell mit der Batch Size 512 (model_6 - blaue Linie) schneidet am
besten ab. Dies konnte deswegen der Fall sein, dass das Modell mit einer solchen Anzahl an
Hidden Units in der Lage ist, komplexe Strukturen (Zusammenhénge) aus den Texten zu ler-
nen. Das Modell mit Batch Size 128 (model_ 4 - rote Linie) féngt erst ab Epoche 18 an schneller
den Verlust zu minimieren und néhert sich sogar in den letzten Epochen dem Wert des Verlus-
tes von den Modellen mit Batch Size 256 (model 256 - griine Linie) und 512. Das Modell mit
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Batch Size 256 ist liber alle Iterationen leicht schlechter als das komplexere Modell. Im weiteren
Schritt wird erst die Batch Size 256 genommen (da diese weniger Parameter zum trainieren
hat) und spater wird noch das komplexere Modell mit 512 Hidden Units in Kombination mit

anderen Parametern ausprobiert.

Abbildung 22: Verlust von Modellen mit verschieden Batch Size Parametern

3.0 —\

25

BS_128
—BS_256
20 BS_512

W/W\ YA,

Step

Value

15

1.0

Quelle: Eigene Darstellung

Als nachstes wurden verschiedene Werte fiir den maxlen Parameter getestet. Drei Werte: 50
(model 7 - blaue Linie), 100 (model 5 - rote Linie) und 150 (model 8 - griine Linie). Abbil-
dung stellt die Entwicklung des Verlustes iiber die 60 Epochen fiir diese drei Modelle dar.
Man kann erkennen, dass es keine groflen Unterschiede in Abhéngigkeit des mazlen Parameter
gibt. Der einzige Unterschied ist, dass man eine gewisse Verschiebung in den Ergebnissen des
Verlustes fiir das Modell mit mazlen 150 (griine Linie) erkennt, was dadurch zustande kommt,
dass dieses Modell eine groflere Anzahl an Parametern hat und deswegen schwerer zu trainieren
war. Im Endeffekt haben aber alle drei Modelle &hnliche Ergebnisse und deswegen wiére es egal
mit welchem Wert des Parameters man fortfahren mochte. Allerdings ist es schwerer, Abhén-
gigkeiten im Text zu lernen ,die langer sind als die maximale Liange der Sequenz, weswegen man
sich im weiteren auf den Wert 150 fiir den maxlen entscheidet, um eine lingere Abhéangigkeit

modellieren zu koénnen.
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Abbildung 23: Verlust von Modellen mit verschieden maxlen Parametern
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Quelle: Eigene Darstellung

Die folgenden drei Modelle zeigen unterschiedliche Grade der Komplexitiat der Architekturen
der Neuronalen Netze. Das einfachste Modell mit zwei Layern (Hidden Units in Layer 1 256
und Layer 2 128) hat bis auf die ersten paar Epochen den niedrigsten Verlust (model 8 - rote
Linie). Das zweite Modell mit zwei Layern, aber mit einer gréferen Anzahl an Units (512 und
256), ist anfangs zu komplex und das Modell schafft es erst nach Epoche 30 den Verlust zu
minimieren(model 9 - griine Linie). Bei Epoche 60 ist dieses Modell aber fast gleich auf mit
den beiden anderen Modellen. Das letzte Modell, dass dieses mal drei Layer hat (512, 256 und
128), wurde mit einer niedrigeren Lernrate initialisiert, um den Verlust frither minimieren zu
kénnen (model 13 - blaue Linie). Der Verlust wird allerdings sehr langsam minimiert, da die

Lernrate am Anfang kleiner war.

Abbildung 24: Verlust von Modellen mit verschieden Komplexititsgraden (Batch Size 256)
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Quelle: Eigene Darstellung
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Abbildung [25| zeigt die gleichen Modelle wie in der vorherigen Abbildung - nur dieses mal mit
einer grofleren Batch Size - 512. Man sieht, dass das Modell mit zwei Layern (512 Hidden Units
und 256 Hidden Units - model 11 - griine Linie) anfangs wieder zu komplex war, wodurch
sich der Verlust bis Epoche 37 nicht verdndert hat. Danach ist der Sprung in der Minimierung
des Verlustes jedoch grofl und er passt sich den der zwei anderen Modelle an. Das Modell mit
drei Layern (512 Hidden Units, 256 Hidden Units und 128 Hidden Units - model 12 - blaue
Linie) hingegen, wurde so wie im Fall des Modells mit Batch Size 256, mit einer niedrigeren
Lernrate initialisiert, wodurch die Minimierung des Verlustes schneller beginnen konnte. Das
einfachste Modell (256 Hidden Units und 128 Hidden Units (model 10 - rote Linie) hat tiber
alle 60 Epochen den kleinsten Wert des Verlustes erzielt - es sieht jedoch aus, als ob der Wert
konvergieren wiirde und deswegen besteht der Verdacht, dass die beiden komplexeren Modelle

bei einer hoheren Anzahl von Epochen den Verlust mehr minimieren kénnten.

Abbildung 25: Verlust von Modellen mit verschieden Komplexititsgraden (Batch Size 512)

44

25

256_128
—512_256

Value

2.0 512_256_128

Step

Quelle: Eigene Darstellung

Die folgende Abbildung (Modell mit: zwei LSTM Layern, RMSprop und Softmaz Akti-
vierung) zeigt ein Beispiel eines Aufbaus von einem der Modelle (model 11). Man sieht die
Elemente, die in den vorherigen Kapiteln beschrieben wurden: Layers, Activations, Verlust-
funktion, Optimierungsalgorithmus und die berechneten Metriken. Man sollte diese Grafik von
unten nach oben lesen. Zuerst kommt Istm_ layer! dann Ilstm_ layer2. Diese stellen die jewei-
ligen LSTM Layers im Netzwerk dar und beinhalten alle LSTM Cells mit den dazugehorigen
Elementen. Als nachstes folgt der Dense Layer (eine lineare Transformation, bei der jeder In-
put mit jedem Qutput iiber ein Gewicht verbunden wird) und die Aktivierungsfunktion, die in
diesem Fall die Softmax darstellt, und fir jeden Output (GroBe des Vokabular - 43) eine sich zu
1 aufsummierende Wahrscheinlichkeit des Auftretens berechnet. In Metrics werden die unter-
schiedlichen Metriken berechnet, an denen man interessiert ist und im Loss Element (Verlust),
wird der Wert des Verlustes, der minimiert werden soll, berechnet. Das Training Element stellt

den Lernprozess dar, der alle erhaltenen Informationen aufnimmt (zusammen mit dem Opti-
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mierungsalgorithmus und seinen Parametern) und die entsprechenden Gradienten berechnet

sowie die Gewichte im ganzen Netzwerk Updated.

Abbildung 26: Modell mit id model_ 11
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Quelle: Eigene Darstellung

In den folgenden Abbildungen sieht man Histogramme der jeweiligen Elemente des Neurona-
len Netzes. Dank ihnen kann man erkennen, ob und wie sich die Werte iiber die aufeinander
folgenden Iterationen verdndern. Die Histogramme werden in zwei verschiedenen Arten vor-
gestellt: Erstens ein 3D Plot, der die Histogramme iiber die Iterationen anzeigt und zweitens
ein 2D Plot, der die Verteilung des entsprechenden 3D Plots darstellt. Die Histogramme der
Merkmale aus den ersten Epochen sind in den jeweiligen Grafiken ganz hinten und sind in hel-
leren orange markiert. Umso weiter man sich nach vorne bewegt, desto spatere Epochen werden
sichtbar und umso roter wird der Farbton des Histogramms (das vorderste Histogramm stellt
also die letzte Epoche des Lernprozesses dar). Zwei Merkmale der Histogramme sind tiber den
Zeitraum verfolgbar: Die Spitze, die den Mittelwert repréasentiert und die Varianz der Werte
des jeweiligen Elements. Man kann also beobachten, wie sich die Werte tiber die Iterationen
verandern. Falls man keine Verschiebung des Mittelwerts und keine Verdnderung in der Vari-
anz der Werte sieht, bedeutet das, dass das Modell im Trainingsprozess nichts gelernt hat. Die
Elemente des Neuronalen Netzes. die in diesen Grafiken dargestellt wurden, sind: der Qutput
aus den jeweiligen LSTM Layern, der Output des letzten Fully connected Layers (Dense Layer)
und der Qutput der Softmax Aktivierung. All diese Elemente ermdglichen es zu beobachten, ob

irgendwelche der vorher beschriebenen Probleme aufgetreten sind (Ezploding oder Vanishing
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Gradients). Oft werden diese Darstellungen als Histogramme und Verteilungen zum Debugging

der Architekturen verwendet.

Abbildung stellt insgesamt 8 Grafiken dar (fiir Modell model 11). Man sollte die Ab-
bildung so betrachten, dass auf der linken Seite sich das 3D Histogramm befindet und die
dazugehorige Verteilung auf der rechten Seite. Von unten gesehen kann man also die Werte
des RNN iiber die jeweiligen Layer bis zum QOutput und die Aktivierung beobachten. Zuerst
kommt also LSTM Layer I dann LSTM Layer 2 und so weiter. Hier wurden die Elemente
nur fiir ein Modell betrachtet, da die Beschreibung und Darstellung dieser Grafiken platz- und
zeitaufwendig sind (die Histogramme und Verteilungen fiir alle Modelle befinden sich im An-
hang). In Grafik g) & h) sieht man also ein Histogramm und die Verteilung der Werte, die
aus dem ersten LSTM Layer kommen. In g) sind auf der y Achse die Epochen von 1 bis 60
aufgezeigt und auf der x Achse die entsprechenden Werte. Die z Achse, also die, die den 3D
Effekt ermoglicht, stellt die Haufigkeiten eines bestimmten Wertes dar (Histogramm). Dies be-
deutet, dass wenn man nur einen Ausschnitt von y betrachtet, erhédlt man ein 2D Histogramm
der Oputput Werte fir eine bestimmte Epoche. Die Werte, die der Output in diesem Fall ha-
ben kann, befinden sich zwischen —1 und 1, da die letzte Transformation die Tanh Funktion
beinhaltet (Unterkapitel . Was man gut erkennen kann, ist, dass bis zur Epoche 35 sich
grundsétzlich nichts im Output dieses Layers éndert (dies sehen wir auch in Abbildung
grine Linie - model 11). Erst nach dieser Epoche fangt das Modell an zu lernen und ordnet
die meisten Outputs nah an die Null und nur wenige in Richtung —1 und 1, was gut ist in der
Hinsicht, dass nur manche Informationen aktivieren werden (die kann man besonders gut auf
Grafik h) beobachten). In Grafik e) & f) erkennt man, so wie in den vorher beschriebenen
Grafiken, den Output fir LSTM Layer 2. Der Unterschied hier ist, dass die Werte des Out-
puts anfangs starker Richtung 1 gestreut sind und die Varianz der Daten ab Epoche 35 grofler
wird, im Vergleich mit dem erstem Layer. Als nachstes folgt der Output des Fully Connected
Layers (Dense Layers), der keine Aktivierungsfunktion beinhaltet und deswegen keine begrenz-
ten Werte ausgibt. Hier kann man beobachten, dass sich die links steile Verteilung nicht viel
in den ersten 30 Epochen verdndert und danach sowohl Anderungen im Mittelwert, der sich
ins Negative verschiebt und Verdnderungen in der Varianz, die grofier wird, aufweist. Dartiber
hinaus &dndert sich die ganze Verteilung iiber die Iterationen. In den ersten Epochen sieht man
eine Verteilung die zwei Spitzen hat und in den letzten sieht man eine Verteilung mit nur einer
Spitze, die rechts schief ist. In den beiden letzten Grafiken a) & b) sieht man den OQutput aus
der Softmax Aktivierungsfunktion. Wieder fangt das Modell erst nach den ersten 35 Epochen
an, Outputs aus dem Dense Layer zu aktivieren (Wert 1) héalt jedoch die meisten Aktivierungen
nah an der Null. Dies ist sehr gut, weil das Modell gelernt hat, nur wenigen Klassen eine héhere

Wahrscheinlichkeit zuzuordnen.
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Abbildung 27: Histogramme und Verteilungen der RNN Elemente
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In Abbildung sieht man die Vektor Darstellung der Zeichen aus dem Vokabular. Die Em-
bedding Space wurde mit Hilfe von zwei Methoden auf 3 Dimensionen reduziert, um die Zusam-
menhange zwischen den Zeichen visuell darstellen zu konnen. Die zwei Methoden sind Principal
Component Analysis (PCA) und t-Distributed Stochastic Neighbor Embedding (t-SNE) (Wat-
tenberg et al.[2016). Hieraus kann man erkennen welche Zeichen sich dhnlich sind, wenn es um
das Auftreten in einer Sequenz geht. Dies wurde nur fiir eine Modellarchitektur dargestellt, da
das Berechnen von Embedding aus den Daten besonders rechenaufwendig ist. Dadurch, dass die
Embedding Space eigentlich fiir eine hohere Dimension berechnet wurde, ist die Interpretation
in niedrigeren Dimensionen schwer, weil die spezifischen Distanzen im Original-Raum (zum

Beispiel 10 Dimensionen) nicht immer erhalten werden kann.

Es ist aber moglich, unterschiedliche Gruppen von Zeichen zu identifizieren:

1. space (Leerzeichen) ist das meist vorkommende Zeichen.
2. Spezial Zeichen kommen nicht so oft vor und treten oft zusammen auf.

3. Manche Buchstaben treten oft in Kombination miteinander auf.

Abbildung 28: Embedding Clusters
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Quelle: Eigene Darstellung

Als néachstes wurde der generierte Text fiir verschiedene Epochen und Architekturen fiir eine
zuféllig aus dem Trainingsdatensatz gesampelte Sequenz (die als Anfangssequenz genutzt wird)
dargestellt. Aulerdem wurden verschiedene Perplexties verwendet, um den Algorithmus unter-
schiedliche Freiheiten zum Generieren von Texten zu geben. Die Perplezity entscheidet dartiber,
wie die Wahrscheinlichkeitsverteilung des vorausgesagten Zeichens aussehen wird. Mit diesem

Parameter kann man also die Kreativitat des geschriebenen Textes beeinflussen. Ein Text mit
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einer niedrigen Perplexitdt wird versuchen, immer das Zeichen mit der grofiten Wahrscheinlich-
keit vorauszusagen. Indem man den Parameter hoher setzt, erreicht man, dass der Algorithmus
auch Zeichen voraussagt, die weniger wahrscheinlich sind. Ein zu hoher Parameter fithrt dazu,
dass Buchstaben gewéhlt werden, die im Endeffekt Worter kreieren, die nicht existieren (Die
Buchstaben werden vollkommen zuféllig gewéhlt). Die Wahl der optimalen Groe dieses Pa-
rameters ist nicht einfach und kann nicht anhand eines Kriteriums festgelegt werden, sondern
muss fiir jedes individuelle Problem nach Gefiihl gewahlt werden. Das folgende Beispiel zeigt
den generierten Text fir das Modell mit der id model 6 (Das Modell mit dem niedrigstem Ver-
lust von allen) fir verschiedene Perplexity Parameter und in unterschiedlichen Epochen. Die
Gewichte des Modells sind anfangs zuféllig initialisiert und miissen erst iiber die verschiedenen
Iterationen (Epochen) trainiert werden. Deswegen erkennt man, dass mit ansteigender Anzahl
der Epochen der Text immer besser wird. Anfangs werden nur Texte generiert, die keinen Satz
oder Wort bilden. Fiir Epoche 1 und Peplezity 0.2, erhdlt man einen Text, der nur den Verlust
so klein wie moglich halten moéchte und deswegen Zeichen voraussagt, die fiir diesen Zeitpunkt
des Modells am wahrscheinlichsten sind - also: Leerzeichen, e, t etc.. Wenn man dem Modell
mehr Freiheit gibt, erhédlt man einen Text der Zeichen voraussagt, die unwahrscheinlicher sind.
Bei Epoche 30 hat das Modell schon genug gelernt, um tatsachlich Worter zu bilden, die exis-
tieren. Das erste Wort, dass das Modell nach den ersten Epochen gelernt hat, war das Wort
“the” (dies ist das am héaufigsten vorkommende Wort in allen Texten). Bei Peplexity 0.2 will
sich das Modell, wie zuvor, sehr sicher mit dem vorausgesagten Zeichen sein. Diesmal aber mit
dem Unterschied, dass das Modell mehr Wissen besitzt als in Epoche 1. Das Ergebnis daraus
ist also ein Text, der allgemein oft vorkommende Worter enthalt, wie: the, of, in oder company.
Bei hoheren Perplerity Parametern ist der Text reicher an Wortschatz, allerdings entstehen
auch Worter die gar nicht existieren (aber plausibel klingen). Bei Perplexity 1 wird ein Text
generiert, der tiber keine logischen Zusammenhénge mehr verfiigt. In der Epoche 55, in der der
niedrigste Verlust erreicht worden ist, sicht man bei allen Parametereinstellungen, dass der ge-
nerierte Text Worter enthalt, die es gibt und dass das Modell versucht, durch den ganzen Text
eine gewisse Information weiterzufiihren, auch wenn es an diesem Zeitpunkt nicht gelungen ist,

einen sinnvollen Text zu erschaffen.
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4 Zusammenfassung

Die vorliegende Masterarbeit ist ein Versuch oder auch erster Schritt in Richtung eines voll
automatisierten Textgenerierungprozesses. Viel Zeit wird in verschiedenen Bereichen fiir das
Schreiben unterschiedlichster Texte investiert, wobei viele davon eine meist formelle und strik-
te Struktur haben und deswegen automatisiert werden konnen. Neue Methoden erlauben es,
das Problem der Textgenerierung neu zu betrachten. Neue Ubersetzungsmethoden und ein
automatisches Verfassen von E-Mails wird heutzutage von grofien Firmen, wie z.B. Google,
in deren Produkte, eingefiithrt. Diese basieren immer ofter auf Deep Learning Methoden, wie
Convolutional Neural Networks oder Recurrent Neural Networks, die noch vor kurzem, aus
technologischen Griinden, nicht weit verbreitet waren. Die Entwicklung neuer Prozessoren und
die Erfindung neuer Algorithmen haben es ermoglicht, das volle Potenzial dieser Methoden
zu nutzen und mit deren Errungenschaften die Forschung und das Interesse in diesem Gebiet
weiter voranzutreiben. Die Entwicklung und Hindernisse dieser Methoden wurden genauer in
der Arbeit besprochen und deren heutiges Aussehen grundlegend beschrieben. Da die Aufga-
be im Erlernen von Schreiben von Texten basiert, die wiederum eine sequenzielle Form von
Daten darstellen, wurde der Schwerpunkt der Arbeit auf die Erklarung von Recurrent Neural
Networks (bzw. Long Short-Term Memory Modelle) gelegt. LSTM Modelle erlauben es, die
grofften Probleme von RNNs zu beheben, was deren wachsende Popularitat fordert. Um die
durchaus komplexe und oft nicht tiefgehend beschriebenen (in der Literatur) LSTM Zellen zu
verstehen, wurde eine Analyse von den Grundlagen der Neural Networks bis zu den fortge-
schrittenen Methoden in Recurrent Neural Networks der jeweiligen Elemente durchgefithrt. Die
Wahl dieser Elemente kann von den Nutzern dieser Methoden frei gewahlt werden, weshalb die

Arbeit in einer Modularen Struktur aufgebaut wurde.

Der erste Teil der Arbeit befasst sich mit der allgemeinen Beschreibung des Problems der Text-
generierung, sowie mit einem Uberblick der Literatur, die es zu diesem Thema gibt. Der zweite
Teil hingegen befasst sich mit den Grundlagen der Neural Networks, sowie mit dem Problem
des Encodings der Daten und den Hilfsalgorithmen, die es einem Netz ermoglichen, dessen
Préadiktion zu optimieren. Zunéchst wurden deshalb der Gradient Descent Optimierungs Algo-
rithmus und seine Erweiterungen und Abwandlungen vorgestellt. Diese werden zur Optimierung
von Verlustfunktionen verwendet, deren Funktion im Trainingsprozess auch dargestellt wurden.
Die Verlustfunktion, die von besonderer Relevanz fiir die Aufgabe der Texgenerierung ist, ist die
Cross-Entropy Funktion, deren Gleichung aus der Kullback Leibler Divergenz hergeleitet wurde.
Diese ermoglicht es verschiedene Wahrscheinlichkeitsverteilungen miteinander zu vergleichen.
Zusétzlich wurde in diesem Teil noch die Bedeutung der unterschiedlichen Aktivierungfunktio-
nen beschrieben, die es ermdglichen, nichtlineare Zusammenhéange aus den Daten zu erlernen,
um im Endeffekt mit Hilfe vom Backpropagation Algorithmus die Parameter (Gewichte) des
Modells in einer riickwirkender Art zu transformieren. Als nédchstes wurde der Hauptteil der

Arbeit beschrieben, also die Recurrent Neural Networks sowie die Erweiterung - in diesem Fall
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der vorher vorgestellten Algorithmen. Erstens wurden mogliche Hiirden wie Vanishing und
FExploding Gradients in Hinsicht auf RNN beschrieben, um zweitens zu zeigen, wie Truncated
Backpropagation Through Time und Long Short-Term Memory Zellen diese iiberwinden kon-
nen. Im Vergleich zum Mechanismus der LSTM Zelle wurde die Gated Recurrent Unit Zelle
dargestellt, die eine Alternative zu dem Erstgenannten ist. Der dritte Teil der Arbeit fangt mit
einer Darstellung der Gewinnung und Verarbeitung der Daten an, die verwendet wurden, um
das Erlernen des Textgenerierungsprozesses moglich zu machen. Der Datensatz der hier verwen-
det worden ist, sind Jahresabschliisse von Unternehmen, da dieses Gebiet von Zeitersparnissen
besonders profitieren konnte und die Beschaffung der Daten relativ einfach und zugénglich ist.
Im weiteren Schritt wurden dann verschiedene Modelle (mit unterschiedlichen Parameter Set-
tings) ausprobiert, um letztlich ein niitzliches Modell zu bekommen. Die Qualitat der Modelle

wurde anhand von verschiedenen Kriterien verglichen:

1. die Minimierung des Verlustes, der es erlaubt zu verfolgen, ob sich das Modell iiber die

fortschreitenden Epochen verbessert hat.

2. die Histogramme und Verteilungen der verschieden Elemente der RNN, die auf Probleme

hinweisen koénnen

3. der generierte Text, der das Endprodukt des Modells ist und deswegen der beste Mafistab

ist, ob das Ziel erreicht wurde oder nicht.

Insgesamt wurden ungefahr 48 Tausend PDF Dokumente mit Jahresabschliissen fiir die Durch-
fithrung der Analyse vorbereitet. Aus technischen- und Kostengriinden war es nicht moglich,
alle Dokumente mit ins Modell aufzunehmen. Weitaus bessere Ergebnisse kénnten durch den
grofleren Datensatz erreicht werden und deswegen wiirde sich eine Skalierung auf einer Maschine
mit mehr Rechenkraft (RAM oder VRAM) lohnen. Aus demselben Grund wurde das Parame-
ter Tuning manuell durchgefiihrt und nur einige Architekturen und Parameter Setting wurden
ausprobiert. Hierbei wiirden verschieden Hyperparameter tuning Methoden sehr hilfreich sein,
die aber wie zuvor voraussetzt, dass die Rechenzeit in einem angemessenen Zeitrahmen bleibt.
Dariiber hinaus wird immer mehr Aufmerksamkeit den Attention Based Models geschenkt, da
diese nicht unter den Hardware Problemen leiden wie RNNs (Culurciello 2018). Des weiteren ist
die Memory des Modells bei LSTM oder GRU Strukturen auf Time Steps begrenzt, die in die
hunderte gehen, aber nicht in die tausende oder mehr. Erste Forschungsarbeiten zeigen, dass
Attention Based Models durch ihre hierarchische Architektur dazu fahig sind, langere Abhéan-
gigkeiten zu erlernen, wodurch sie in vielen Problemstellungen herkémmliche RNN Strukturen
iibertreffen. Die Zukunft dieser Modelle ist zum jetzigen Zeitpunkt allerdings noch unklar und
im Gegenteil zu RNN sind dies noch Dinge, die am Anfang ihrer Forschung stehen (Culurciello
2018).
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Abbildung 29: Verlust und Accuracy fiir Trainings und Validierungs Datensatz - model 1
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Abbildung 31: Histogramme und Verteilungen der RNN Elemente Modell 1

(a) Histogramm Activation Output (b) Verteilung Activation Output
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Abbildung 32: Verlust und Accuracy fiir Trainings und Validierungs Datensatz - model_ 2
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Abbildung 33: Graph model_ 2

Quelle: Eigene Darstellung
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Abbildung 34: Histogramme und Verteilungen der RNN Elemente Modell 2

(a) Histogramm Activation Output
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Abbildung 35: Verlust und Accuracy fiir Trainings und Validierungs Datensatz - model__3

(a) Verlust (b) Accuracy
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Abbildung 37: Histogramme und Verteilungen der RNN Elemente Modell 3

(a) Histogramm Activation Output
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Abbildung 38: Verlust und Accuracy fiir Trainings und Validierungs Datensatz - model_ 4

(a) Verlust (b) Accuracy
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Abbildung 39: Graph model_4
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Abbildung 40: Histogramme und Verteilungen der RNN Elemente Modell 4

(a) Histogramm Activation Output (b) Verteilung Activation Output
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Abbildung 41: Verlust und Accuracy fiir Trainings und Validierungs Datensatz - model 5

(a) Verlust (b) Accuracy
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Abbildung 42: Graph model_5
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Abbildung 43: Histogramme und Verteilungen der RNN Elemente Modell 5

(a) Histogramm Activation Output
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Abbildung 44: Verlust und Accuracy fiir Trainings und Validierungs Datensatz - model 6

(a) Verlust (b) Accuracy
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Quelle: Eigene Darstellung

Abbildung 45: Graph model_6
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Abbildung 46: Histogramme und Verteilungen der RNN Elemente Modell 6
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Abbildung 47: Verlust und Accuracy fiir Trainings und Validierungs Datensatz - model__7
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Quelle: Eigene Darstellung

Abbildung 48: Graph model_7
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Abbildung 49: Histogramme und Verteilungen der RNN Elemente Modell 7
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Abbildung 50: Verlust und Accuracy fiir Trainings und Validierungs Datensatz - model_8
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Abbildung 51: Graph model_8
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Quelle: Eigene Darstellung
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Abbildung 52: Histogramme
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Abbildung 53: Verlust und Accuracy fiir Trainings und Validierungs Datensatz - model_9
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Quelle: Eigene Darstellung

Abbildung 54: Graph model_9
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Abbildung 55: Histogramme und Verteilungen der RNN Elemente Modell 9
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Abbildung 56: Verlust und Accuracy fiir Trainings und Validierungs Datensatz - model__10
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Abbildung 57: Graph model_10
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Abbildung 58: Histogramme und Verteilungen der RNN Elemente Modell 10
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Abbildung 59: Verlust und Accuracy fiir Trainings und Validierungs Datensatz - model 11
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Abbildung 60: Graph model_11
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Abbildung 61: Histogramme und Verteilungen der RNN Elemente Modell 11
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Abbildung 62: Verlust und Accuracy fiir Trainings und Validierungs Datensatz - model__12
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Quelle: Eigene Darstellung

Abbildung 63: Graph model 12
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Abbildung 64: Histogramme und Verteilungen der RNN Elemente Modell 12
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Abbildung 65: Verlust und Accuracy fiir Trainings und Validierungs Datensatz - model__13
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Abbildung 66: Graph model 13
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Abbildung 67: Histogramme und Verteilungen der RNN Elemente Modell 13
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Elektronischer Anhang

1.

report__scraper.py

. pdf2txt_and _textcleaner.R

. descriptive_ statisticsdreports.R

plot_activation_function.R

. generator_functions_for batch gen.R
. generate_text on_epoch end.R
. Istm_ text_ generation_model.R

. Istm__embedding example.R
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