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While increasing evidence demonstrated that voluntary wheel running promotes
cognitive function, little is known on how different types of voluntary wheel running
affect cognitive function in elderly populations. We investigated the effects of various
voluntary wheel-running types on adult hippocampal neurogenesis and spatial cognition
in middle-aged mice. Male C57BL6 and Thy1-green fluorescent protein (GFP)
transgenic mice (13 months) were equally assigned to one of the following groups:
(1) T1: no voluntary wheel running; (2) T2: intermittent voluntary wheel running; and
(3) T3: continuous voluntary wheel running. The Thy1-GFP transgenic mice were used
to specifically label granule cells, since Thy-1 is a promoter for neuronal expression.
Behavioral evaluations suggested that intermittent voluntary wheel running improved
Morris water maze performance in middle-aged mice. The number of BrdU-positive
cells was significantly higher in both intermittent and continuous voluntary wheel running
compared with no voluntary wheel running. However, only intermittent voluntary wheel
running facilitated the newborn cells to differentiate into granule cells, while newborn
cells tended to differentiate into astrocytes and repopulation of microglia was also
enhanced in the continuous voluntary wheel-running group. These results indicated that
intermittent voluntary exercise may be more beneficial for enhancing spatial memory.
Effective improvement of hippocampal neurogenesis was also caused by intermittent
voluntary wheel running in middle-aged mice.
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INTRODUCTION

Increased human longevity has magnified the negative impact that aging can have on cognitive
function (Foster et al., 2017), especially on hippocampal-dependent functions (Hullinger and
Puglielli, 2017), such as spatial learning and episodic memory (Foster, 2006). Importantly, the
part which is most vulnerable to neurodegenerative disease pathology is the same part that is
susceptible to synaptic loss during aging in the nervous system, including the hippocampus, which
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directly contributes to age-related cognitive impairment (Canas
et al., 2009). An imaging study demonstrated hippocampal
atrophy in elderly people (Small et al., 2002). In addition,
hippocampal neurogenesis decreases with aging (Lichtenwalner
et al., 2001).

There is substantial evidence from experimental studies
indicating that physical exercise is a key factor in promoting
cognitive function and overall brain health, particularly in elderly
populations (Cotman et al., 2007; Hillman et al., 2008). Several
physical training approaches in cognitive rehabilitation have
been developed, such as voluntary and forced training. However,
very little is known about the different contribution of different
physical training approaches to the cognitive function in aging.
As to forced training, comparing different types by controlling
exercise intensities showed that low-intensity forced training
seemed more effective in enhancing hippocampal neurogenesis
and improving cognitive function than high-intensity forced
training (Shen et al., 2013; Shih et al., 2013; Shimada et al., 2013;
Inoue et al., 2015). However, the effects of voluntary exercise
types on hippocampal neurogenesis and cognitive function in
aging remain unclear. Interestingly, a previous research reported
that the cessation of voluntary wheel running (housed in a
running wheel cage for 8 weeks and subsequently in a standard
cage for 8 weeks) increased anxiety-like behavior and impaired
adult hippocampal neurogenesis in mice (Nishijima et al., 2013).
Since high intensity interval training (HIIT) has been prevalent
recent years, we speculated whether voluntary wheel running at
intervals would eliminate the negative impact of the cessation
and even be more beneficial than continuous exercise. Thus, in
the current study, we compared the effects of various types of
voluntary wheel running, including no voluntary wheel running,
intermittent voluntary wheel running and continuous voluntary
wheel running.

In an attempt to improve our understanding of the impact
of different types of voluntary exercise on brain function, we
investigated the effects of different voluntary wheel-running
protocols on spatial memory performance in middle-aged
mice. Furthermore, we investigated hippocampal neurogenesis
and gliogenesis responding to different voluntary wheel-
running types, which might interpret different performance
in the cognitive task. We hypothesized that intermittent
voluntary wheel running may be more beneficial for enhancing
spatial memory due to effective improvement of hippocampal
neurogenesis.

MATERIALS AND METHODS

Animals and Ethics Statement
Eighteen adult male C57BL6 and 18 adult male Thy1-green
fluorescent protein (GFP) transgenic mice (Model Animal
Research Center of Nanjing university, Stock Number: 003782)
at 13 months of age were used. All animals were housed
with food and water provided ad libitum under a 12:12
light-dark cycle (lights on from 7:00 to 19:00) with controlled
temperature (20–26◦C) and humidity. This study was carried
out in accordance with the recommendations of the Animal

Research Committee of the First Affiliated Hospital of Sun
Yat-sen University. The protocol was approved by the Animal
Research Committee of the First Affiliated Hospital of Sun
Yat-sen University. All efforts were made to minimize the
suffering and number of animals used in this study.

Voluntary Wheel Running
To the best of our knowledge, there have been no exercise
protocols designed to investigate different voluntary running
types. Such being the case, we designed our own exercise
protocols, combining the protocols reported by Nishijima et al.
(2013) and the mode of HIIT. From a conceptual viewpoint,
intermittent voluntary wheel running could be defined as
repeated short-term voluntary wheel running at regular intervals
of cessation. Continuous wheel running could be defined as
long-term voluntary wheel running without cessation. The main
difference between them is the duration of voluntary wheel
running.

Animals were randomly divided into three groups as shown
in Figure 1, including T1: no voluntary wheel running, T2:
intermittent voluntary wheel running, and T3: continuous
voluntary wheel running; each group included six male
C57BL6 and six male Thy1-GFP transgenic mice. Animals in the
T1 group were housed in polypropylene cages (36 cm L× 20 cm
W × 14 cm H) for 12 weeks. Mice in the T2 group were first
housed in polypropylene cages of the same size, with a 16-cm-
diameter running wheel for 2 weeks and subsequently housed
in cages without running wheels for 1 week. This schedule
(running wheel for 2 weeks, followed by no running wheel
for 1 week) was followed for a period of 12 weeks. Mice in
the T3 group were housed in polypropylene cages (36 cm
L × 20 cm W × 14 cm H) with a 16-cm-diameter running
wheel for 12 weeks. All mice were housed in groups (three
animals per cage) and the groups of cage mates were not changed
throughout the experiment (Luo et al., 2007), because social
isolation is known to increase anxiety-like and depression-like
behaviors (Koike et al., 2009) and to suppress exercise-induced
neurogenesis in the hippocampus (Stranahan et al., 2006).
Mice were deliberately not housed in cages with locked wheels
because they would climb in locked wheels and we wanted
to keep physical activity to a minimum in the T1 (sedentary)
group (Rhodes et al., 2003; Clark et al., 2008). All mice were
injected intraperitoneally with 5-bromo-2′-deoxyuridine (BrdU;
50 mg/kg, seven times at 48-h intervals, catalog number 59-14-3,
Sigma, USA) during week 6 and week 7 (Zhao et al., 2003; Kee
et al., 2007a).

Morris Water Maze
The water maze procedure was performed during the 12th
week according to the protocols of van Praag and Akers (van
Praag et al., 1999; Akers et al., 2014). The maze consisted of
a circular tub (120 cm in diameter, 50 cm in height) and a
white circular platform (10 cm). The tub was surrounded by a
curtain that was located about 1 m from the tub wall and painted
with distinct geometric cues; the water (24 ± 1◦C) was made
opaque with white tempera paint to conceal the platform. Over
five consecutive days, the platform was submerged 1 cm under
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the surface of water in the center of one of the pool quadrants.
Mice received four trials (up to 60 s) per day from each of four
different start locations. Animals that failed to locate the platform
within the allotted 60 s were gently guided to the platform. All
mice remained on the platform for 10 s at the end of each trial.
On day 6, the platform was removed and a single 60-s probe
trial was conducted. Swim paths were recorded by an overhead
video camera and tracked by the automated software (San Diego
Instruments, CA, USA), including latency to reach the platform
during water maze training, swimming speed, number of times
the mice crossed the target area (former platform), and time
spent in each quadrant during the probe trial.

Tissue Preparation and Immunochemistry
Two hours after the water maze task, a total of 36mice (n = 12 per
group) were deeply anesthetized with sodium pentobarbital and
transcardially perfused with 50 ml of ice-cold saline, followed
by 50 ml of 4% (w/v) paraformaldehyde (PFA) in phosphate-
buffered saline (PBS; pH 7.4). Their brains were removed and
incubated overnight in PFA and dehydrated in 20%–30% sucrose
in PBS. Coronal sections of 10 µm were serially cut through
the entire rostral caudal extent of the dentate gyrus (DG) using
a microtome (Leica) at intervals of 10 in consecutive frozen
sections and stored at −80◦C for later immunofluorescence
staining.

For immunofluorescence staining, all sections were pretreated
for BrdU staining by denaturing DNA, and then sections
were microwaved with citric acid buffer (pH 6.0) for 5 min.
After cooling, the sections were treated with 0.3% Triton
and 10% goat serum for 1 h at room temperature. Next,
sections were incubated with primary antibody (1:400 anti-NeuN
antibody, catalog number MAB377, Chemicon, USA; 1:500
anti-BrdU antibody, catalog number ab152095, Abcam, USA;
1:400 anti-glial fibrillary acidic protein (GFAP) antibody, catalog
number G3893, Sigma, USA; 4′,6-diamidino-2-phenylindole
(DAPI), catalog number F6057, Sigma, USA; 1:400 anti-ionized
calcium-binding adapter molecule 1 (Iba-1) antibody, catalog
number 019–19741, Wako, Japan) overnight at 4◦C, followed
by secondary antibodies (1:300 Alexa-Fluor-488-conjugated goat
anti-mouse IgG2a antibody, Life Technologies, catalog number
A21131; 1:300 Alexa-Fluor-555-conjugated goat anti-rabbit
IgG1 antibody, Life Technologies, catalog number A31572) at
room temperature in PBS containing 10% NGS for 1 h. Slices
were mounted onto slides, embedded with SlowFader Gold
(Invitrogen), and enclosed with a coverslip.

Immunofluorescence was observed under a confocal
microscope (Leica, DM6000, German). The numbers of
co-labeled BrdU-positive cells were counted throughout the
subgranular and granular cell layers of the entire DG in both
sides using Leica Application Suite X software. About 10 sections
per sample were taken into account. ImageJ software (National
Institutes of Health, Bethesda, MD, USA) was used to analyze
the results of immunohistochemistry.

Data and Statistical Analyses
All statistical analyses were conducted using SPSS 19.0 software
(Armonk, NY, USA). Repeated-measures analyses of variance

(ANOVA) was used for analyzing changes over time. One-way
ANOVA was used for simple group comparisons. LSD-t test
was used for post hoc comparisons. Pearson’s correlation was
used for correlation analysis. A P-value < 0.05 was considering
statistically significant. Data are expressed as the mean and
standard error of the mean (SEM).

RESULTS

Performance in the Morris Water Maze
Task
The results of the Morris water maze task during the
five consecutive training days are presented in Figures 2A,B.
Two-way ANOVA for repeated measures showed a significant
interaction between the group factor and the day of training
factor (F = 3.786, P < 0.0001). The main effects of the group
factor (F = 10.60, P < 0.001) and the time factor (F = 42.28,
P < 0.001) were also significant. On day 1, the latencies to
reach the platform (mean ± SEM) in the T1/T2/T3 groups
were (51.686 ± 0.959 s)/(50.324 ± 1.243 s)/(51.950 ± 0.972 s).
There was no significant difference in latency to reach the
platform among the three groups on day 1 (n = 12/group,
F(2,141) = 0.670, P = 0.513). However, there were significant
differences on the second day (F(2,141) = 22.986, P < 0.001), third
day (F(2,141) = 8.638, P < 0.001), fourth day (F(2,141) = 26.207,
P < 0.001) and fifth day (F(2,141) = 59.213, P < 0.001). On day
2, the latencies to reach the platform in the T1/T2/T3 groups
were (44.948 ± 1.460 s)/(34.562 ± 1.318 s)/(46.926 ± 1.374 s).
Pairwise comparisons showed a significantly decreased latency
to reach the platform in the T2 group compared with the
T1 group (t = −5.302, P < 0.001) or T3 group (t = −6.311,
P < 0.001). However, there was no significant difference between
the T1 and T3 groups (t = −1.010, P = 0.314). On day 3,
the latencies to reach the platform in the T1/T2/T3 groups
were (44.540 ± 1.458 s)/(35.716 ± 1.713 s)/(38.566 ± 1.408 s),
respectively. Pairwise comparisons showed that the latency
significantly decreased both in the T2 (t = −4.072, P < 0.001)
and T3 groups (t = −2.757, P = 0.007) compared with
the T1 group, but there was no significant difference between
the T2 and T3 groups (t = −1.315, P = 0.191). On day 4, the
latencies to reach the platform in the T1/T2/T3 groups were
(33.787 ± 1.456 s)/(18.622 ± 1.778 s)/(30.531 ± 1.419 s). The
latency in the T2 group was significantly decreased compared
with the T1 (t = −6.876, P < 0.001) and T3 group (t = −5.400,
P < 0.001), but there was no significant difference between the
T1 and T3 groups (t = 1.476, P = 0.142). On the last training
day, the latencies to reach the platform in the T1/T2/T3 groups
were (34.646 ± 1.348 s)/(16.222 ± 1.256 s)/(29.447 ± 1.085 s).
Pairwise comparisons showed that the T2 group had a significant
decrease in the latency to reach the platform compared with
the T1 (t = −10.554, P < 0.001) or T3 group (t = −7.576,
P < 0.001). Furthermore, the latency to reach the platform in
the T3 group was significantly decreased compared with the
T1 group (t = −2.978, P = 0.003). As seen in Figure 2C,
there was no significant difference of the velocities among the
T1 (3.385 ± 0.153 cm/s) T2 (3.428 ± 0.141 cm/s), and T3
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FIGURE 1 | Experimental design. Animals in the T1 (no voluntary wheel running) group were housed in standard laboratory cages without access to running wheels.
Mice in the T2 (intermittent voluntary wheel running) group were housed with free access to running wheels for 2 weeks and without access to running wheels for the
next week. This procedure was repeated for a period of 12 weeks. Mice in the T3 (continuous voluntary wheel running) group were housed with free access to
running wheels for 12 weeks. All mice were injected intraperitoneally with BrdU during week 6 and week 7. The water maze task was performed during the last
week, followed by immunofluorescence staining. BrdU, 5-bromo-2′-deoxyuridine; MWM, Morris water maze.

(3.513 ± 0.241 cm/s) groups (F(2,33) = 0.127, P = 0.882) in the
probe trial. During the probe trial (Figure 2D), the number of
times crossing the platform was significantly different among the
three groups (F(2,33) = 15.134, P < 0.001); it was increased in the
T2 group (8.250 ± 0.494) compared with the T1 (4.250 ± 0.494;
t = 5.092, P < 0.001) and T3 groups (4.833 ± 0.661; t = 4.350,
P < 0.001). However, there was no significant difference between
the T1 and T3 groups (t =−0.743, P = 0.463). Similarly, the time
spent in the target quadrant was significantly different among
the three groups (F(2,33) = 7.234, P < 0.001); it was significantly
increased in the T2 group (53.234 ± 4.120%) compared with
the T1 (35.614 ± 2.668%; t = 3.795, P < 0.001) or T3 group
(43.420 ± 2.870%; t = 2.114, P = 0.038), but there was no
significant difference between the T1 and T3 groups (t =−1.681,
P = 0.097).

Neurogenesis and Gliogenesis in the
Dentate Gyrus
We used anti-BrdU to label newborn cells in the DG. We
observed that the number of BrdU-positive cells among the three
groups was significantly different (Figures 3A,B; F(2,33) = 35.834,
P< 0.001). BrdU-positive cells were significantly increased in the
T2 (41.917± 4.209; t = 7.687, P < 0.001) and T3 (38.250± 3.939;
t = 6.915, P < 0.001) groups compared with the T1 group
(5.416 ± 0.763), whereas there was no significant difference
between the T2 and T3 groups (t = 0.772, P = 0.445). Next, we
used Thy1-GFP transgenic mice to study newborn granule cells.
Since Thy-1 is a promoter for neuronal expression, granule cells
were specifically labeled with GFP in Thy1-GFP transgenic mice.
The number of BrdU-positive granule cells was significantly
different among the three groups (Figures 3C,D; F(2,33) = 33.218,
P < 0.001). There was a significant increase of BrdU-positive
granule cells in the T2 group (4.000 ± 0.477) compared with
the T1 (0.583 ± 0.149; t = 7.819, P < 0.001) and T3 groups
(1.417 ± 0.193; t = 5.911, P < 0.001), whereas there was no

significant difference between the T1 and T3 groups (t =−1.906,
P = 0.065). Further, we study gliogenesis using anti-GFAP
for astrocytes and anti-Iba1 for microglia. We observed that
the number of BrdU-positive astrocytes among the three
groups was significantly different (Figures 3E,F; F(2,33) = 7.675,
P = 0.005). There was a significant increase of BrdU-positive
astrocytes in the T3 group (19.000 ± 1.932) compared with
the T1 (11.17 ± 1.138; t = 3.719, P = 0.002) and T2 groups
(12.83 ± 1.276; t = 2.928, P = 0.010), whereas there was no
significant difference between the T1 and T2 groups (t =−0.792,
P = 0.441). As to microgliogenesis, we found that the number
of BrdU-positive microglia was significantly different among
the three groups (Figures 3G,H; F(2,33) = 37.468, P < 0.001).
Post hoc tests revealed a significant increase in BrdU-positive
microglia in the T3 group (11.667± 1.082) compared with the T1
(2.750± 0.479; t = 8.166, P < 0.001) or T2 (4.500± 0.622) group
(t = 6.563, P < 0.001), but there was no significant difference
between the T1 and T2 groups (t =−1.603, P = 0.118).

Correlation Analysis
To assess the relationship between the newly-generated cells and
performance in the water maze task, a Pearson’s correlation
was performed (Table 1). There was a significant negative
correlation between BrdU-positive cells and latency to the
platform (r = −0.602, P < 0.001). There was no correlation
between BrdU-positive cells and velocity during the probe trial. A
significant positive correlation was found between BrdU-positive
cells and number of times crossing the platform (r = 0.375,
P = 0.024). A significant positive correlation was also found
between BrdU-positive cells and time spent in target quadrant
(r = 0.344, P = 0.040). There was a significant negative correlation
between BrdU-positive granule cells and latency to the platform
(r = −0.916, P < 0.001). Neither velocity during the probe trial
nor time spent in target quadrant had a significant correlation
with BrdU-positive granule cells. There was a significant
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FIGURE 2 | Intermittent voluntary wheel running improved water maze cognition in middle-aged mice. (A) Latency to reach the platform. Blue asterisks refer to
statistically significant differences between the T1 and T2 groups; red asterisks refer to differences between the T2 and T3 groups. (B) Swim path recorded by the
video camera. (C) Velocity during the probe trial. There was no significant difference among the T1, T2, and T3 groups. (D) Number of times crossing the platform
(left) and time spent in the target quadrant (right) were significantly increased in the T2 group compared with the T1 or T3 group. Data are presented as
means ± standard error of the mean (SEM). ∗P < 0.05, ∗∗P < 0.01, and ∗∗∗P < 0.001.

positive correlation between BrdU-positive granule cells and
number of times crossing the platform (r = 0.740, P < 0.001).
However, as to gliogenesis, no correlation was found between
performance in the water maze task and BrdU-positive astrocytes
or microglia.

DISCUSSION

In this study, we tested the effects of different voluntary
wheel-running types on hippocampus-dependent cognition and
hippocampal neurogenesis in middle-aged mice. Our results
showed that intermittent voluntary wheel running was more
beneficial for improving spatial memory than continuous
voluntary wheel running. Moreover, we found that intermittent
but not continuous voluntary wheel running could promote
newborn cells to differentiate into granule cells. These results
support the hypothesis that the improvement in spatial memory
is associated with hippocampal neurogenesis induced by
intermittent voluntary wheel running in middle-aged mice.

To evaluate spatial cognitive function, we performed the
Morris water maze task. The results showed that intermittent,
but not continuous voluntary wheel running, hadmore beneficial
effects on water maze cognition in middle-aged mice. Similar
results were observed following forced exercise. It was found
that mild treadmill running training is more beneficial for
improving spatial memory compared with intense treadmill
running training (Inoue et al., 2015). It is now recognized that
neural plasticity in the form of hippocampal neurogenesis occurs
throughout adulthood, even in the elderly (Zhao et al., 2008),

which is closely related to the maintenance and improvement
of hippocampal-dependent cognitive function (Drapeau et al.,
2003). Thus, we hypothesized that the beneficial effects of
intermittent voluntary exercise on cognition may be caused by
increased hippocampal neurogenesis. In our study, newborn cells
were labeled with BrdU, a thymidine analog incorporated into
the genetic material during the synthetic DNA phase (S phase)
of mitotic division. We found that the number of BrdU-positive
cells was significantly increased in both intermittent and
continuous voluntary wheel-running groups compared with the
no voluntary wheel-running group (Figure 3B), indicating that
voluntary wheel running could enhance the survival of newborn
cells and that the number of surviving newborn cells is not
dependent on the duration of voluntary wheel running. These
data are consistent with previous studies (Trejo et al., 2001;
Motta-Teixeira et al., 2016).

Further, we studied another important component of
hippocampal neurogenesis, the differentiation of newborn cells.
Thy1-GFP transgenic mice were used to evaluate granule
cells neurogenesis specifically. The results suggested that
intermittent wheel running facilitated survival of newborn
granule cells (Figures 3C,D), which could structurally and
functionally integrate into the existing cellular networks (Toni
and Sultan, 2011; Mongiat and Schinder, 2014) and contribute to
hippocampus-dependent spatial cognition (Aimone et al., 2010;
Radic et al., 2015).We speculated that the cognitive improvement
in intermittently-exercised mice might be due to the increased
neurogenesis. To prove our hypothesis, we performed correlation
analysis to decipher the relationship between neurogenesis and
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FIGURE 3 | Intermittent voluntary wheel running facilitated newborn cells to differentiate into granule cells in the dentate gyrus (DG) in middle-aged mice.
(A) Representative images of newborn neurons in the DG labeled by anti-BrdU and anti-NeuN. Scale bar = 100 µm. (B) The number of BrdU-positive cells was
significantly increased in the T2 and T3 groups compared with the T1 group. (C) Representative images of newborn granule cells, which were labeled by anti-BrdU
and green fluorescent protein (GFP) in Thy1-GFP transgenic mice. Low magnification: scale bar = 100 µm; high magnification: scale bar = 20 µm. (D) The
BrdU-positive granule cells were significantly increased in the T2 group compared with the T1 and T3 groups. (E) Representative images of newborn astrocytes
labeled by anti-BrdU and anti-glial fibrillary acidic protein (anti-GFAP). Low magnification: scale bar = 100 µm; high magnification: scale bar = 20 µm. (F) The
BrdU-positive astrocytes were significantly increased in the T3 group compared with the T1 and T2 groups. (G) Representative images of repopulated microglia
labeled by anti-BrdU and anti-Iba1. Low magnification: scale bar = 200 µm; high magnification: scale bar = 20 µm. (H) The number of BrdU-positive microglia was
significantly increased in the T3 group compared with the T1 and T2 groups. Data are presented as means ± SEM. ∗P < 0.05, ∗∗P < 0.01, and ∗∗∗P < 0.001.

behavior improvement. We found that neurogenesis had a
significant correlation with performance in the water maze task
(Table 1). Such correlation between hippocampal neurogenesis
and spatial cognition has been observed in several studies.
Mice with decreased hippocampal neurogenesis due to genetic

regulation (Zhao et al., 2003) or aging (Drapeau et al., 2003;
Driscoll et al., 2006) have impaired performance in the Morris
water maze. In contrast, mice with increased neurogenesis due
to voluntary running (van Praag et al., 1999) or enriched
environment (Kempermann et al., 1997) have improved learning
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TABLE 1 | Correlations between measures of newborn cells and performance in the Morris water maze task.

BrdU+ cells BrdU+ granule cells BrdU+ astrocytes BrdU+ microglia

Latency to the platform r = −0.602, p < 0.001 r = −0.916, p < 0.001 n.s. n.s.
Velocity during the probe trial n.s. n.s. n.s. n.s.
Number of times crossing the platform r = 0.375, p = 0.024 r = 0.740, p < 0.001 n.s. n.s.
Time spent in target quadrant r = 0.344, p = 0.040 n.s. n.s. n.s.

n.s., non-siginicant.

and memory function. In the present study, there were just a
few BrdU-positive cells in high magnification (Figures 3C,D),
but the results were consistent with previous studies that a
low number of BrdU-positive neurons were observed (Kee
et al., 2007b). Moreover, it has been confirmed that only a
small fraction of neurons was used during the water maze task
(Kee et al., 2007a). Meanwhile, new granule cells were more
likely to be recruited into circuits supporting spatial memory
than existing granule cells (Kee et al., 2007b; Clark et al.,
2008). Therefore, this preferential recruitment supported our
speculation that increased granule cells neurogenesis made a
unique contribution to cognitive improvement in intermittently-
exercised mice.

It has been reported that glial cells make up a larger
proportion of newborn cells in aged mice compared with
young mice (van Praag et al., 2005). We further studied
gliogenesis, including astrogliogenesis and microgliogenesis. As
to astrogliogenesis, our results demonstrated that continuous
wheel running could increase newly-generated astrocytes
(Figures 3E,F). Since in the adult subgranular zone, only the
neuronal and astroglial lineages could be generated from neural
stem cells (NSC; Suh et al., 2007; Bonaguidi et al., 2011), we
hypothesized that the decrease in neuronal differentiation in
the continuous voluntary running group was due to an increase
in the number of new cells that differentiated into astrocytes.
Given that the newborn neurons were positively correlated with
spatial cognition, this explained why behavior performance
in the continuous running group was not as good as that in
the intermittent running group. In the current study, we also
found that continuous wheel running facilitated repopulation of
microglia (Figures 3G,H). It has been reported that repopulated
microglia are derived from pre-existing microglia, rather than
progenitor cells (Huang et al., 2018). As the resident immune
cells in the brain, microglia mediate the inflammation-induced
reduction in neurogenesis and are the key contributor to the
acceleration of cognitive decline in aged mice (Gebara et al.,
2013; Wu et al., 2016). The experimental activation of microglia
has been shown to decrease adult neurogenesis by specifically
inhibiting the proliferation or the survival of new cells and lead
to NSC-derived astrogliogenesis (Monje et al., 2003; Cacci et al.,
2005; Fujioka and Akema, 2010). Hence, in the current study, the
availability of a larger number of new neurons, rather than glia,
might facilitate improved spatial cognition in the intermittent
wheel-running group.

Another possibility for the observed phenomenon is that
the activation of progression from NSCs to lineage-committed
progenitors to their progeny was different between intermittent
and continuous running. It has been reported that the effects

of short-term and long-term running in adult hippocampal
neurogenesis could be different. Short-term (2 weeks) wheel-
running paradigms promoted an increase of activated type 1 cells
rather than an increase in number of cells, thus suggesting that
running recruited quiescent NSCs rather than expanding the
pool through symmetric division (Lugert et al., 2010; Gebara
et al., 2016). However, long-term running failed to induce an
increase of activated NSCs (Kronenberg et al., 2003; Steiner
et al., 2008). Interestingly, it has been shown that at the
end of short-term running, there was a decrease in the cell
cycle length of type 2 and 3 cells (Farioli-Vecchioli et al.,
2014). In our study, we speculated that intermittent voluntary
running, namely repeated short-term running, might benefit
from activated type 1 cells and a decrease in the cell cycle length.
It will be of substantial interest in the future to investigate the
cellular and molecular components related to neurogenesis and
cognition.
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