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Abstract

The release of neurotransmitters from synapses obeys complex and stochastic dynamics.

Depending on the recent history of synaptic activation, many synapses depress the proba-

bility of releasing more neurotransmitter, which is known as synaptic depression. Our under-

standing of how synaptic depression affects the information efficacy, however, is limited.

Here we propose a mathematically tractable model of both synchronous spike-evoked

release and asynchronous release that permits us to quantify the information conveyed by a

synapse. The model transits between discrete states of a communication channel, with the

present state depending on many past time steps, emulating the gradual depression and

exponential recovery of the synapse. Asynchronous and spontaneous releases play a criti-

cal role in shaping the information efficacy of the synapse. We prove that depression can

enhance both the information rate and the information rate per unit energy expended, pro-

vided that synchronous spike-evoked release depresses less (or recovers faster) than

asynchronous release. Furthermore, we explore the theoretical implications of short-term

synaptic depression adapting on longer time scales, as part of the phenomenon of meta-

plasticity. In particular, we show that a synapse can adjust its energy expenditure by chang-

ing the dynamics of short-term synaptic depression without affecting the net information

conveyed by each successful release. Moreover, the optimal input spike rate is independent

of the amplitude or time constant of synaptic depression. We analyze the information effi-

cacy of three types of synapses for which the short-term dynamics of both synchronous and

asynchronous release have been experimentally measured. In hippocampal autaptic synap-

ses, the persistence of asynchronous release during depression cannot compensate for the

reduction of synchronous release, so that the rate of information transmission declines with

synaptic depression. In the calyx of Held, the information rate per release remains constant

despite large variations in the measured asynchronous release rate. Lastly, we show that

dopamine, by controlling asynchronous release in corticostriatal synapses, increases the

synaptic information efficacy in nucleus accumbens.
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Author summary

Fatigue is an intrinsic property of living systems and synapses are no exception. Synaptic

depression reduces the ability of synapses to release vesicles in response to an incoming

action potential. Whether synaptic depression simply reflects the exhaustion of neuronal

resources or whether it serves some additional function is still an open question. We ask

how synaptic depression modulates the information transfer between neurons by keeping

the synapse in an appropriate operating range. Using a tractable mathematical model

for synaptic depression of both synchronous spike-evoked and asynchronous release of

neurotransmitter, we derive a closed-form expression for the mutual information rate.

Depression, it turns out, can both enhance or impair information transfer, depending on

the relative level of depression for synchronous spike-evoked and asynchronous releases.

We also study the compromise a synapse makes between its energy consumption and the

rate of information transmission. Interestingly, we show that synaptic depression can reg-

ulate energy use without affecting the information (measured in bits) per synaptic release.

By applying our mathematical framework to experimentally measured synapses, we show

that some synapses can compensate for intrinsic variability in asynchronous release rates;

moreover, we show how neuromodulators such as dopamine act to improve the informa-

tion transmission rate.

Introduction

Chemical synapses are the main conduits of information in the nervous system [1]. At such

synapses, a presynaptic action potential induces docked vesicles, packed with neurotransmit-

ters, to release with a certain probability. A vesicle release leads to a local postsynaptic dendritic

voltage fluctuation, which, in turn, can lead to the generation or inhibition of a postsynaptic

action potential, depending on whether the synapse is excitatory or inhibitory [2]. Due to the

stochastic nature of vesicle release, a release failure may occur upon the arrival of an action

potential; alternatively, a synapse can release a vesicle asynchronously [3], or a spontaneous

release may occur even without an action-potential [4]. In addition, at many synaptic connec-

tions, the release probability is not constant, but exhibits short-term dynamics on time scales

of tens to hundreds of milliseconds [5–8]. The prevalent dynamics consists of short-term

depression, in which the release probability instantaneously decrease upon vesicle release, and

gradually recovers back during quiescent periods [9, 10]. Several hypotheses have been sug-

gested for the functional role of short-term depression, such as temporal filtering of presynap-

tic spike trains [11, 12], decorrelation and compression of inputs [13], adaptation to identical

stimuli [14], and regulation of information transfer [15–17].

In particular, the rate of information transfer at a synapse is an essential measure of its effi-

cacy. Synaptic information efficacy has been studied numerically [16, 18, 19], its capacity

bounded analytically [20], and, in combination with numerical methods, some approxima-

tions of the information rate have been derived [21, 22]. However, the complexity and

dynamics of synaptic transmission have forced the use of elaborate models for information

transmission and have proved to be an obstacle to the derivation of a closed form expression

for synaptic information efficacy. Furthermore, the energy-efficiency of information transfer

at synapses has yet to be studied analytically. Stronger depression and slower recovery reduce

both the use of metabolic energy and the release probability, so the parameters of depression

tune the information-energy trade-off in neurons [23]. Moreover, it remains elusive how the
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stochastic properties of the synapse, in particular asynchronous and spontaneous release, mod-

ulate the energy-information regime of the synapse.

To address these issues, we present a tractable, mathematical multi-state model for short-

term depression at a single release site. The stochastic relation between spikes and synaptic

releases is represented by a binary asymmetric channel for each state. The model allows us to

distinguish between the synaptic release mechanisms, namely synchronous spike-evoked

release and asynchronous (including spontaneous) release; and the current state (release prob-

ability) of the channel is determined by the release history. Building upon an earlier model

[24], the introduction of multiple states allows the present model to capture the gradual recov-

ery of the site after a release, and thus connects to classic models of depression based on differ-

ential equations [22].

Using this model, we derive analytical closed-from expression for the mutual information

rate of the release site under depression. We also consider the energy consumption of the syn-

apse and calculate the energy-normalized information rate of the release site. We study the

impact of depression parameters on the information rate and information-energy compromise

of the synapse. Our findings clarify how the level of depression and the recovery time constant

modulate the information rate of the release site. We subsequently assess the impact of asyn-

chronous and spontaneous release on the information rate of a synapse during short-term

depression. The joint analysis of short-term depression and asynchronous release reveals the

modulatory impact of stochastic features of the synapse on the functional role of depression.

Our results present a new categorization for synapses which is based on the increase/decrease

of information rate and energy-normalized information rate of the synapse during short-term

depression.

We apply our framework to the experimental measurements and evaluate the information

efficacy of three types of synapses: hippocampal autaptic synapses, calyx of Held, and corticos-

triatal synapses in nucleus accumbens. Our analysis leads to compelling results about the role

of asynchronous release and modulatory neurotransmitters (like dopamine) in changing syn-

aptic information efficacy.

Methods

We model a single release site as a binary asymmetric channel with memory (Fig 1A). The

input of the channel is the presynaptic spike train, a Poisson process which is modeled by a

sequence of independent Bernoulli random variables, X ¼ fXig
n
i¼1

. The random variable Xi
corresponds to the presence (Xi = 1) or absence (Xi = 0) of the spike at time i, with α = P(Xi =

1) representing the normalized input spike rate. The output of the channel, Y ¼ fYig
n
i¼1

, is

the release outcome of the release site. If a vesicle is released at time i, then Yi = 1 and otherwise

Yi = 0. The synchronous spike-evoked release mechanism of the synapse is modeled by transi-

tion from Xi = 1 to Yi = 1, and the transition probability pi represents the synchronous release

probability. The asynchronous and spontaneous release modes are modeled together by transi-

tion from Xi = 0 to Yi = 1, and qi is called the asynchronous release probability.

We use a memory of the last L release outcomes of the channel to implement the short-

term depression in our model. The release probabilities of the release site, pi and qi, are deter-

mined by,

pi ¼ piðYi� L;Yi� Lþ1; . . . ;Yi� 2;Yi� 1Þ; ð1Þ

qi ¼ qiðYi� L;Yi� Lþ1; . . . ;Yi� 2;Yi� 1Þ: ð2Þ

Information rate of depressing synapses
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After each successful release, the synchronous and asynchronous release probabilities

decrease to a fraction of their earlier values. This fraction is represented by the multiplier c or

d, depending on the type of release. In quiescent intervals, in which no vesicle is released, the

release probabilities gradually recover back to their default values (p0 and q0) with recovery

coefficients e and f. The algorithm in Fig 1B describes how the synchronous release probability,

pi, is calculated from the release site’s history (Yi−L, Yi−L+1, . . ., Yi−2, Yi−1). The asynchronous

release probability, qi, is independently parameterized by the depression multiplier d and the

recovery coefficient f. The interval between two discrete time indices i and i + 1 is called the

time unit of the model and is represented by Δ. Throughout this paper, we set Δ = 10 msec.

The biological interpretation of Δ, as well as the other model parameters, is discussed in more

details in Section C of the S1 Text. Our model can reproduce the depression and recovery

Fig 1. (A) A binary asymmetric channel with a finite memory is used to model the release site under short-term depression. The synchronous

release probability, pi, and the asynchronous release probability, qi, are determined based on the previous L release outcomes of the release site. (B)

The algorithm for calculating the synchronous spike-evoked release probability, pi, given the last L release outcomes, (Yi−L, Yi−L+1, . . ., Yi−1). The

asynchronous release probability, qi, can be derived similarly by substituting c, e and p with d, f and q respectively. We assume that the model

parameters (α, c, d, e, f, p0, q0) are strictly greater than zero and less than one. The seed value of the algorithm, u0, is set to p0 for synchronous

release and q0 for asynchronous release. (C) The performance of the algorithm is compared with the stochastic model of depression [22]. The

stochastic model is based on the differential equation
dpr
dt ¼

p0 � pr
t
� uprdðt � trÞ, where pr, τ, p0, u, and tr are the release probability, recovery time

constant, default (maximum) release probability, depression coefficient and the release timing. At the bottom of the panel, the orange stem plot

shows the timing of the release, tr, during an interval of 200 msec. The orange line demonstrates the release probability, pr, calculated from the

differential equation. By assuming a time unit of Δ = 10 msec for the MRO model, the 200 msec interval corresponds to a memory of length L = 20.

The memory content of the model is shown at the top of the panel. The blue line demonstrates the release probability calculated from the

algorithm in (B). The final values of the release probability are indicated by filled circles. (D) Every arbitrary state of the release site can transit to

two other states, depending on the release outcome. The transition probabilities are shown on the transition links.

https://doi.org/10.1371/journal.pcbi.1006666.g001
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dynamics of the release site and is consistent with the probabilistic models of synaptic depres-

sion [22] (Fig 1C). Throughout this paper, we refer to the model as the binary asymmetric

channel with a Memory of Release Outcomes, abbreviated by MRO.

To study the synaptic information efficacy of the release site under depression, we use

information-theoretic measures (please see Section A of the S1 Text for an overview). The

information rate of the release site is derived by calculating the mutual information between

the presynaptic input spike train, X, and the release outcome process of the release site Y.

The release site in the MRO model can be in any one of 2L states. Let j = Yi−1 + 2Yi−2 +

22Yi−3 +. . .+ 2L−1Yi−L, 0� j� 2L − 1, be an arbitrary state of the release site with synchronous

and asynchronous release probabilities p(j) and q(j). It can be easily shown that the mutual

information rate of the binary asymmetric channel at state j, denoted by Rj, is equal to

Rj ¼ hðaqðjÞ þ apðjÞÞ � ahðqðjÞÞ � ahðpðjÞÞ; ð3Þ

where a ¼ 1 � a and hðxÞ ¼ � x log
2
ðxÞ � x log

2
ðxÞ.

Each state of the release site can transit to two other states, depending on the release out-

come (Fig 1D). The state transitions of the release site are modeled by a Markov chain with 2L

states (e.g., Fig 2 shows the Markov chain for the case of L = 2). We prove that regardless of the

initial state, the probability of each state j converges to a stationary probability πj. The station-

ary probabilities are calculated using the power iteration method [25].

The next theorem provides a closed-form expression for the information rate of the release

site.

Theorem 1. Let RD be the mutual information rate of the release site with short-term depres-
sion. Then

RD ¼
X2L � 1

j¼0

Rjpj: ð4Þ

This theorem shows that the mutual information rate of the release site is equal to the statis-

tical average over the information rates of its constituent states. Therefore, the rate of every

release profile has a linear share in the overall information rate of the release site; the share is

Fig 2. An example of the MRO model. (A) The binary asymmetric channel with a memory of length L = 2. (B) The table of release probabilities for

every possible release outcome. The synchronous and asynchronous release probabilities are calculated from the Algorithm in Fig 1B. (C) The Markov

chain model representing the transitions between the 2L = 4 states of the model. The transition probabilities are calculated using the values in table (B)

and the rule given in Fig 1D.

https://doi.org/10.1371/journal.pcbi.1006666.g002
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determined by the occurrence probability of the profile. This theorem is an extension of the

result that we derived for a two-state model of depression (equivalent to L = 1) [24]. All the

proofs are found in Section D of the S1 Text.

The brain uses more energy on synaptic transmission than on any other process [26]. To

gain a better understanding of the trade-off between the energy consumption and information

rate in a synapse during short-term depression, we consider the energy cost of synaptic release

and derive the energy-normalized information rate of the release site. The energy-normalized

information rate is calculated by dividing the mutual information (between the input and out-

put processes) of the release site by the total amount of energy that is consumed for synaptic

release. This measure quantifies the amount of information that can be transferred through

the release site for one unit of energy (see Section A of the S1 Text for the mathematical formu-

lation of these concepts).

The next theorem gives a simple expression for calculating the energy-normalized informa-

tion rate of the release site.

Theorem 2. Assume that the neuron consumes one unit of energy for each vesicle release. If
we denote the energy-normalized information rate of the release site under depression by RðEÞD ,

then

RðEÞD ¼
P2L � 1

j¼0
Rjpj

P2ðL� 1Þ� 1

j¼0
p2jþ1

: ð5Þ

The energy normalized information rate, RðEÞD , can be used to evaluate the compromise

between the rate of information transfer and the energy consumption of the synapse.

We derived the mutual information rate and energy-normalized information rate of a syn-

apse with depression in Theorem 1 and Theorem 2. For a synapse without depression, we can

use the same theorems to calculate the corresponding information rates.

Corollary 1. Let R0 and R
ðEÞ
0 be the mutual information rate and energy-normalized informa-

tion rate of the release site ‘without’ depression. Then

R0 ¼ hðaq0 þ ap0Þ � ahðq0Þ � ahðp0Þ; ð6Þ

RðEÞ0 ¼
R0

aq0 þ ap0

: ð7Þ

In contrast to the MRO model, for which the current state is determined by the last L
releases, another approach would be to let the channel’s state depend only on the release out-

come and the release probabilities at time i − 1, i.e.,

pi ¼ piðYi� 1; pi� 1Þ; ð8Þ

qi ¼ qiðYi� 1; qi� 1Þ: ð9Þ

To compute the mutual information rate analytically for this second model, we need to quan-

tize the release probabilities to a finite set of possible pi and qi, as we describe in detail in Sec-

tion E of the S1 Text. The two models generate similar performance results (please see Section

F of the S1 Text). Table 1 gives a summary of notations used in this paper.

Information rate of depressing synapses
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Results

Effective memory length

Short-term synaptic depression represents a memory buffer for the synapse, as the current

release dynamics of the synapse depends on the history of releases. When presynaptic spikes

accumulate, the initial state of the synapse, as measured by its release probability, is slowly for-

gotten. We measure the effective memory length of short-term depression by calculating the

time that the synapse requires to become independent from its past (which is represented by

the seed value, u0, in the algorithm in Fig 1B). This effective memory length can differ from

the nominal recovery time constant of the synapse from a single release. We find that, if the

release probability of the synapse is halved after each release (c = d = 0.5), after 160 msec (cor-

responding to L = 16), the relative variation of the mutual information caused by different ini-

tial values drops to 10% (Fig 3A). For a synapse with stronger depression (e.g., c = d = 0.1), the

effective memory of the synapse reduces to 120 msec.

The memory length of the MRO model, L, should match the effective memory of the syn-

apse. We show in Section C of the S1 Text that for a large enough L, the mutual information

rate of the MRO model converges to the information rate of a classical stochastic model of

depression [22], the latter of which can only be evaluated numerically.

Information capacity

The capacity of a release site is the maximum amount of information that can be transferred

through it. We show that the capacity is reduced significantly by increasing the depression

level (i.e. reducing c and d, while c = d). In the temporal coding framework, asynchronous and

spontaneous release can be associated with the noise component of signal transmission, since

they give rise to a postsynaptic potential in the absence of a presynaptic spike. Short-term

depression reduces the release probability of asynchronous release, leading to lower noise at

the release site. In contrast, as the rate of information transmission is mainly determined

by the synchronous release of vesicles, depression of the synchronous release mode has a

negative impact on the information rate. Therefore, if depression affects synchronous and

asynchronous release equally, the overall “signal to noise” ratio decreases and information

Table 1. Definition of notations.

Symbol Definition

X Presynaptic input spike process

Y Release outcome process

L Memory length of the release site

p Synchronous spike-evoked release probability

q Asynchronous release probability

c Depression multiplier for synchronous spike-evoked release

d Depression multiplier for asynchronous release

e Recovery coefficient for synchronous spike-evoked release

f Recovery coefficient for asynchronous release

α Normalized input spike rate

Δ Time unit of the MRO model

RD Mutual information rate of the release site with depression

RðEÞD Energy-normalized information rate of the release site with depression

R0 Mutual information rate of the release site without depression

RðEÞ0
Energy-normalized information rate of the release site without depression

https://doi.org/10.1371/journal.pcbi.1006666.t001
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efficacy of the synapse degrades. In Section B of the S1 Text, it is shown that increasing the

recovery time constant of short-term depression also deteriorates the signal-to-noise ratio.

For a weakly depressing synapse with high synchronous release probability, the corre-

sponding communication channel is akin to an ideal channel. Hence the optimal spike rate is

close to the rate α = 0.5, which yields a spike train with maximal entropy. As the level of short-

term depression increases, the communication channel becomes more unreliable and the

uncertainty of the release outcome Yi given an input spike Xi = 1 increases. Given that synaptic

depression penalizes higher input spike rates, the capacity (maximal information rate) is

attained at lower input rates (solid lines in Fig 3B).

Energy-normalized information rate

The total energy consumption of the synapse is determined by the number of releases, so it

is a monotonically increasing function of the input spike rate and the release probability.

Fig 3. (A) The mutual information rate of the release site as a function of the memory length of the channel, L, for different values of depression coefficients. Three

different seed values, u0, are used in the algorithm in Fig 1B to measure the effective memory of the depressing synapse. (B) The mutual information rate (solid lines),

RD, and the energy-normalized information rate (dashed lines), RðEÞD , as a function of input spike rate, α, for various depression coefficients, c and d. The black lines

connect the maximum values of the curves. The other parameters of the model are p0 = 0.7, q0 = 0.1 and e = f = 0.1. In (A), α = 0.3, and in (B), L = 20.

https://doi.org/10.1371/journal.pcbi.1006666.g003

Fig 4. The ratio between synchronous and asynchronous release probability controls the optimal operating point of the synapse. Mutual information rate (solid

lines) and energy-normalized information rate (dashed lines) of the synapse are plotted as a function of input spike rate for different values of default (maximum)

synchronous spike-evoked release probability, p0. (A) The default asynchronous release probability is fixed at q0 = 0.1. The black lines connect the maximum values of the

curves. (B) The default asynchronous release probability is a fraction of the default synchronous spike-evoked release probability, q0 = p0/10. (C) Similar to (B) for q0 = p0/

5. The other parameters of the model are L = 20, c = d = 0.5, and e = f = 0.1.

https://doi.org/10.1371/journal.pcbi.1006666.g004
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Increasing the level of short-term depression reduces both the mutual information rate and

the energy consumption of the synapse. As both quantities decrease in equal measure under

depression, the ratio of mutual information to total energy expenditure, which defines the

energy-normalized information rate, is rendered robust to variations in the parameters of

depression, as long as the input spike rate is fixed. As a corollary, the spike rate that optimizes

the release site’s rate-energy trade-off is independent of the depression level and its associated

recovery constant (dashed lines in Fig 3B). Our numerical analysis shows that even synapses

with different synaptic dynamics ought to be activated at similar rates to work optimally (see

also Section B of the S1 Text).

Critical ratio

The mutual information rate of a synapse changes substantially with the synchronous release

probability p0 (Fig 4A). Provided that the ratio between synchronous and asynchronous release

probability remains constant (
q0

p0
¼ K), then dividing the mutual information rate by the energy

consumption of the synapse largely eliminates the dependency of mutual information rate on

p0. Consequently, the energy-normalized information rate and optimal input spike rate are

nearly independent of the release probability p0 (Fig 4B and 4C).

State-space representation of a synapse

A release site with a memory length of L = 20 consists of more than one million states. In The-

orem 1, we prove that the mutual information rate of the release site is equal to the statistical

average of the information rates of its constituent states. Therefore, the distribution of infor-

mation rates and stationary probabilities of the states specifies the share of the memory pat-

terns in the mutual information rate. We show that there are no dominant states for the

release site. Indeed, the majority of the states have a very low mutual information rate (Fig

5A). We also calculate the distribution of stationary probabilities (Fig 5B) and the distribution

of the product of rates and stationary probabilities of the states (Fig 5C). The states of the

release site cluster, as seen in the rate-probability representation in Fig 5D. To characterize the

clusters, we identify them for the case of L = 5 (Fig 5E). The clusters each turn out to represent

a fixed number of releases within the release site’s history.

Rate-energy classes of synapses

We now study how depression dynamics of synchronous spike-evoked release affect the infor-

mation efficacy of the release site, while keeping the dynamics of asynchronous release fixed.

We show that for low values of synchronous release probability, p0, and high values of synchro-

nous spike-evoked depression multiplier, c, short-term depression increases the mutual infor-

mation rate (Fig 6A) and energy-normalized information rate (Fig 6B) of the release site.

When the asynchronous release (which is associated with the noise in release) depresses more

than the synchronous release (which is associated with the signal component of release), the

overall “signal to noise” ratio of the release site can be enhanced by short-term depression.

However, if the synchronous release probability is much higher than asynchronous release

probability (i.e., p0� q0), even a slight depression of synchronous release lowers the “signal

to noise” ratio remarkably and as a result, the information rate decreases during short-term

depression.

Under unusual circumstances, stronger synaptic depression of synchronous release can

improve the information rate. Such a situation arises when the synapse as a communication

channel inverts the input spike train, which can happen when the initial release probability p0

Information rate of depressing synapses
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is very low. In that case, stronger depression of synchronous release enhances the inversion of

the incoming spike train.

Based on our analysis, release sites can be classified into three functional categories depend-

ing on their depression dynamics (Fig 6C):

Category 1: Depression increases both the mutual information rate and energy-normalized

information rate of the release site.

Category 2: Depression increases the energy-normalized information rate, while the mutual

information rate of the release site is reduced.

Category 3: Depression impairs the performance of the release site by decreasing both the

mutual information rate and the energy-normalized information rate.

The enhancement effect of depression on the synaptic information efficacy is larger for the

synapses with lower input spike rates, because the impact of asynchronous release is more sig-

nificant at lower input spike rates. Also, the three categories imply that the enhancement of

Fig 5. Distribution of the release site’s states for L = 20. (A) Histogram of the mutual information rates of the states, Ri. (B) Histogram of the

logarithm of states’ stationary probabilities, log(πi). The logarithm function shows the dynamic range of probabilities more clearly. (C) The histogram

of log(Ri πi). (D) The stationary probability of each state is plotted against its mutual information rate. The clusters get more prominent by setting

f(x) = x0.15. (E) Similar to (D), for a release site with a memory length of L = 5. The corresponding memory pattern is also shown for each state. The

other simulation parameters are c = d = 0.5, e = f = 0.1, p0 = 0.7, q0 = 0.1, and α = 0.2.

https://doi.org/10.1371/journal.pcbi.1006666.g005
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energy-normalized information rate is a necessary condition for the increase of mutual infor-

mation rate during depression. We also note that the recovery coefficient of synchronous

spike-evoked release has a similar impact on the synaptic information efficacy and creates the

same functional categories (refer to Section B of the S1 Text).

Critical role of asynchronous release

Although asynchronous and spontaneous releases are usually ignored in information rate

analysis, we show that their dynamics have a critical impact on the synaptic information effi-

cacy during short-term depression; the release probability and depression multiplier of asyn-

chronous release can completely change the regime of information transmission (Fig 7A–7C).

We see that for synapses with larger asynchronous release probability, q0, and lower depression

multiplier, d, the mutual information rate and energy-normalized information rate increase

Fig 6. The impact of synchronous spike-evoked release dynamics on synaptic information transmission during short-term depression. (A) Relative

difference between the mutual information rates of the release site with and without depression, as a function of depression multiplier, c, and release

probability, p0, of synchronous spike-evoked release. The black line indicates the boundary at which the functional role of synaptic depression switches

from degradation to enhancement of information rate. Each column corresponds to a different input spike rate. (B) Relative difference between the

energy-normalized information rates of the release site with and without depression under the same conditions as (A). (C) Classification of release sites

to three functional categories based on the impact of depression on the mutual information rate and energy-normalized information rate of the release

site. The parameters of asynchronous release are fixed at d = 0.5 and q0 = 0.1, and the recovery coefficients are e = f = 0.1.

https://doi.org/10.1371/journal.pcbi.1006666.g006
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during short-term depression. On the other hand, in the absence of asynchronous release

(q0 = 0), depression always decreases both the mutual information rate and energy-normalized

information rate of the release site (Fig 7D). Interestingly, if asynchronous release does not

depress at all (d = 1), depression can still increase the information rate of the release site, pro-

vided that asynchronous release probability, q0, is large enough (Fig 7D). In addition, as long

as asynchronous and synchronous spike-evoked release have similar depression dynamics (c =

d and e = f), depression will always decrease the energy-normalized information rate (Fig 7E).

Information efficacy of experimentally measured synapses

Here we use the experimental measurements of three synapses and assess the information effi-

cacy of each synapse during short-term depression.

Hippocampal synapses. In the hippocampal autaptic synapses, synchronous spike-

evoked release and asynchronous release compete for a common limited pool of vesicles [27].

Although synchronous release is attenuated by short-term depression, the asynchronous com-

ponent of release is not affected; instead the rate of asynchronous release is preserved. It has

been suggested that asynchronous release can compensate for the depression of synchronous

release, so that the rate of information transmission will remain unaffected [27]. Here, we

apply our framework to assess this prediction quantitatively.

We fit the depression dynamics of synchronous release to Fig. 1Db of [27] and estimate the

depression multiplier of synchronous spike-evoked release as c = 0.75. This value is also consis-

tent with the paired-pulse measurements of EPSP in the same type of synapse where the ratio

of the second EPSP to the first EPSP is 0.78 ± 0.04 [28]. The default (maximum) synchronous

spike-evoked release probability is p0 = 0.4, and the actual recovery time constant of synchro-

nous release is suggested to be 250 msec (corresponding to e = 0.039 in our model) [27].

In hippocampal synapses, the stationary value of asynchronous release probability increases

with the input spike rate, however, it is not affected by short-term depression (i.e., d = 1) [29].

We estimate asynchronous release probabilities at input spike rates of 5 Hz, 10 Hz, and 20 Hz

using the asynchronous release ratios in Fig. 5A of [29]. We use a base value for the asynchro-

nous release probability of 0.002/msec, as derived from measurements in a single stimulation

protocol [30]. Translating these parameters into our framework, we have q0(α = 5 Hz) = 0.04,

q0(α = 10 Hz) = 0.08, and q0(α = 20 Hz) = 0.12.

Using Theorems 1 and 2, we estimate the mutual information rate (in bits per second: bps)

and energy-normalized information rate (in bits per second per unit of energy: bps/E) of the

hippocampal synapse with and without depression for different input spike rates (Table 2). In

contrast to the conclusion in [27], our analysis shows that asynchronous release in hippocam-

pal synapses does not preserve the temporally encoded information about the presynaptic

spike train during short-term depression. Synaptic depression degrades both the information

rate and the energy-normalized rate.

Calyx of Held. The calyx of Held, a well-studied synapse in the mammalian nervous sys-

tem, contains both fast phasic release and slow asynchronous release [31–33]. Notably, the

time-course of recovery of synaptic release for these two release components, as measured

experimentally, is very different: around 200 milliseconds for asynchronous release, and up to

4.2 seconds for spike-evoked synchronous release (as reviewed in [31, 34]). The strength of

synaptic depression has been measured by fitting time constants to the apparent decay of aver-

aged postsynaptic voltage responses. The corresponding decay time constant of synchronous

release is 159 msec (for a 10 Hz stimulation) [34], while asynchronous release decays with a

much shorter time constant of 15 msec [32]. This discrepancy in time scales accentuates the

importance of considering the potential differences between the depression dynamics of
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Fig 7. The modulatory effect of asynchronous release dynamics on synaptic information efficacy during short-term depression. (A)

Relative difference between the mutual information rates of the release site with and without depression, as a function of depression

multiplier, d, and release probability, q0, of asynchronous release. For the synchronous spike-evoked release, the dynamics is kept fixed at

c = 0.5 and p0 = 0.7. The black line shows the boundary between positive and negative values. (B) Relative difference between the energy-

normalized information rates of the release site with and without depression. (C) Three functional categories of the release site during

depression. (D) Changes in the mutual information rate (solid lines), R0−RD, and energy-normalized information rate (dashed lines),

RðEÞ0 � R
ðEÞ
D , during depression. The functions are plotted against asynchronous release probability, q0, for different values of depression

multiplier, d. (E) The impact of similar depression dynamics for asynchronous and synchronous spike-evoked release (c = d) on the rate

changes during depression. We simulate R0 − RD and RðEÞ0 � R
ðEÞ
D as a function of input spike rate, α, for different values of depression

multiplier. For the simulations in this figure, the recovery time constants are fixed at e = f = 0.1.

https://doi.org/10.1371/journal.pcbi.1006666.g007
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synchronous and asynchronous release in computational models of synaptic transmission, as

we did in this study.

The maximum (default) synchronous spike-evoked release probability at the calyx of Held

is between 0.25 to 0.4 [35]. Measurements in the calyx of Held indicate that the rate of asyn-

chronous release is highly variable among synapses; the release rates between 0.2 to 15.2 vesi-

cles per millisecond (with an average of 2.3 vesicles per millisecond) have been observed [32].

We now study the impact of the broad range of asynchronous release rates on the informa-

tion efficacy of release sites in the calyx of Held. The parameters of the model are estimated

using the aforementioned measurements: c = 0.53, d = 0.5, e = 0.0024, f = 0.0153, p0(average) =

0.32, a = 0.1, q0(minimum) = 0.0033, q0(average) = 0.038, and q0(maximum) = 0.25. To esti-

mate these parameters, we have assumed the calyx of Held has on average 600 active zones [9,

35–37]. The time unit of the model is Δ = 10 msec.

Table 3 displays the mutual information rate (in bits per second: bps) and energy-normal-

ized information rate (in bits per second per unit of energy: bps/E) of a single release site in the

calyx of Held for the minimum, average, and the maximum of asynchronous release probabil-

ity. The results reveal that asynchronous release remarkably degrades the information efficacy

of synaptic transmission in the calyx of Held; it drops nearly to zero for synapses with very

high asynchronous release rates.

The level of depression for asynchronous release is higher than the depression level of

synchronous release, however, asynchronous release recovers much faster. The competition

between the depression dynamics of synchronous and asynchronous release leads to a decline

in mutual information rate of the synapse with depression. Nevertheless, the energy-normal-

ized information rate remains almost unchanged, suggesting that under metaplasticity, the

rate of information per release could be preserved in the calyx of Held.

Corticostriatal synapses in nucleus accumbens. Measurements in nucleus accumbens

reveal asynchronous vesicular release in corticostriatal synapses [38]. The synapse is stimulated

by 8 stimuli with a frequency of 25 Hz, and the depression dynamics of synchronous release

and the rate of asynchronous release are estimated [38, 39]. The recovery time constant of syn-

chronous release is 406 msec (corresponding to e = 0.024), and the depression multiplier of

synchronous spike-evoked release is estimated as c = 0.75 by fitting the depression dynamics

to the EPSP responses of the eight stimuli (Fig. 1 in [39]). Also the probability of synchronous

spike-evoked release has been measured as p0 = 0.42 [40].

Asynchronous release comprises 40% of the releases that occur in the first 20 msec after

the eighth stimulation. Since the synchronous release probability of the eighth stimulus is

Table 2. The impact of short-term depression on the mutual information rate and energy-normalized information

rate of hippocampal synapses.

Input spike rate (Hz) R0 (bps) RD (bps) RðEÞ0 (bps/E) RðEÞD (bps/E)

5 4.1 3.0 70.2 54.6

10 4.7 2.3 41.8 22.9

20 5.3 1.4 30.4 10.1

https://doi.org/10.1371/journal.pcbi.1006666.t002

Table 3. Information efficacy of a single release site in the calyx of Held during short-term depression.

Asynchronous release probability R0 (bps) RD (bps) RðEÞ0 (bps/E) RðEÞD (bps/E)

0.0033 (minimum) 9.9 7.6 284.6 280.5

0.038 (average) 5.1 3.2 77.6 72.9

0.25 (maximum) 0.16 0.0003 0.6 0.3

https://doi.org/10.1371/journal.pcbi.1006666.t003
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approximately 0.28 × p0, the probability of asynchronous release would be q0 = 0.04 (for a time

unit of Δ = 10 msec). It is also assumed that asynchronous release is not depressed in corticos-

triatal synapses, i.e., d = 1.

Dopamine modulates the activity of the medium spiny neurons in nucleus accumbens by

inhibiting the release of glutamate and GABA neurotransmitters [39, 41]. In experiments,

application of dopamine (75 μM) reduces the rate of asynchronous release by 46% (corre-

sponding to q0 = 0.01), but does not affect the steady-state rate of synchronous release [39].

We use our framework to study the modulatory impact of dopamine on the information

efficacy of corticostriatal synapses during short-term depression. In Table 4, we compare the

mutual information rate and energy-normalized information rate of the afferent excitatory

synapses at medium spiny neurons in nucleus accumbens in the presence or absence of dopa-

mine. Our analysis shows that the release of dopamine increases the information efficacy of

corticostriatal synapses, allowing the nucleus accumbens to receive more information from

cortical afferent fibers.

Discussion

By modeling a single synaptic release site as a binary asymmetric channel with memory, we

were able to derive the information rate of synaptic release analytically. Such theoretical mod-

els rely on quantization, but the theoretical results are fully consistent with the numerical eval-

uation of experimentally motivated stochastic models of short-term depression [22, 42]. The

MRO model presented here is an extension of a two-state model of depression [24]. By incor-

porating multiple states, the MRO model can capture the gradual depression and recovery of

synapses more precisely.

In contrast to many other approaches, our calculations are not limited to synchronous

spike-evoked release, as they also treat asynchronous and spontaneous releases. Asynchronous

release can occur from tens of milliseconds to tens of seconds after the arrival of an action

potential. It depends on the intracellular concentration of calcium and is mediated by special-

ized calcium sensors with slow kinetics [3]. Spontaneous release, on the other hand, occurs in

the absence of an action potential by fluctuations in the resting concentration of calcium or

stochastic opening of calcium channels [4, 43]. It is presumed that spontaneous release is elic-

ited by the same calcium sensor as asynchronous release [44, 45]. Therefore, in this study, we

subsumed spontaneous vesicular release into the category of asynchronous release. In contrast,

the depression dynamics of synchronous release and asynchronous release (including sponta-

neous release) could well differ, as they depend on distinct calcium signaling pathways and dis-

tinct SNARE proteins as part of the synaptic release machinery [3, 4, 46–50]. To take these

structural and functional differences into account, we assigned distinct set of parameters to

depression dynamics of synchronous and asynchronous release.

Strikingly, we were able to show that synaptic depression can enhance information trans-

mission provided that synchronous spike-evoked release is depressed less (or recovers faster)

than the asynchronous release. On the other hand, if the depression dynamics for both syn-

chronous and asynchronous release are the same, then synaptic depression always decreases

the information rate of the release site, as we proved. Short-term plasticity differs widely in its

Table 4. Dopamine modulates information efficacy of corticostriatal synapses during short-term depression.

Dopamine (μM) RD (bps) RðEÞD (bps/E)

0 7.0 72.2

75 10.6 125.7

https://doi.org/10.1371/journal.pcbi.1006666.t004
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dynamics across synapses [51]. Our results, therefore, suggest that synapses fall into one of

three functional categories, based on the relative effects of depression on synchronous spike-

evoked release and asynchronous release (Fig 6C): depression can be deleterious, can improve

the energy-normalized information rate, or even improve the overall information rate.

We proved that the overall information rate is the linear sum of the information rates for

every release-history-dependent state, weighted by the stationary probability of being in that

state. The simplicity of this result is non-trivial; under short-term facilitation, for instance, it

can be shown that the information rate is no longer a statistical average over states.

Synaptic release is energetically expensive [26, 52, 53]. Indeed, it has been hypothesized that

synaptic mechanisms optimize the energy-information rate balance during neuronal transmis-

sion [15, 26, 54]. To study the energy-information trade-off at the release site, we calculated

the energy-normalized information rate analytically. Only the energy that is consumed by syn-

aptic release was taken into account, which ignored the energy expenditure needed for the

generation of action potentials, cellular homeostasis, or protein synthesis and transport.

In comparison to the information rate, the energy-normalized information rate of the

release site was much more robust to variations in the depression dynamics. Specifically, the

optimal presynaptic spike rate was invariant. The spike rate needed to achieve information

capacity, in contrast, was sensitive to the strength of depression, as stronger depression implied

lower input spike rates. Notably, the depression dynamics vary across synapses and release

sites, even in the same neuron [5]. Metaplasticity changes the depression characteristics of

the release site over different time scales [55, 56]. The prediction of our work is that the input

spike rate is uncoupled from synaptic metaplasticity: the input rate need not adapt to maintain

the optimal energy-information balance for release sites.

In [21, 57], it is shown that short-term depression can increase the rate of information

transmission, provided that the input spike process is correlated; if the incoming spike train is

Poisson, short-term depression reduces both the mutual information [21] and the Fisher infor-

mation [57]. In contrast to these studies, we show that by considering the other modes of

release (i.e. asynchronous and spontaneous release), short-term depression can enhance the

rate of information transmission in the synapse, even for Poisson inputs. Our results demon-

strate the importance of asynchronous and spontaneous release in synaptic information trans-

mission and indicate that the inclusion of the other modes of release can completely switch the

functional role of short-term depression. If the release mode of a synapse is confined to syn-

chronous spike-evoked release (i.e. q0 = 0), our analysis replicates the results of the previous

studies. However, for a synapse with significant asynchronous or spontaneous release, the

results in [21, 57] no longer necessarily hold, and our framework can be employed, instead, to

calculate synaptic information efficacy.

Our calculations presume that there is a single pool of vesicles for synchronous, asynchro-

nous, and spontaneous release. Data from several studies suggest that vesicles released syn-

chronously and asynchronously come from the same pool of vesicles [3, 27, 58, 59]. Whether

the same pool supplies vesicles for spontaneous release is a matter of considerable debate, as a

number of studies argue that spontaneous release uses a distinct pool of vesicles [59–61], while

others argue the opposite [62–64]. The existence of independent vesicle pools would change

synaptic information transfer; how such a scenario could still be incorporated into our mathe-

matical framework is explored in Section G of the S1 Text.

We employed our framework to study information efficacy of three types of synapses using

available experimental measurements. In hippocampal synapses, we showed that in contrast to

an earlier suggestion [27], asynchronous release fails to compensate for the depression of syn-

chronous release; both the mutual information rate and the energy-normalized rate of the syn-

apse decrease during short-term depression. This result holds true for the temporally encoded
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information in the spike train. This finding does not rule out that asynchronous release could

help sustain the synaptically transferred information about changes in the temporally coarse-

grained presynaptic firing rate; we only considered binary spike trains for which the timing of

each spike counts.

Measurements in the calyx of Held reveal distinct recovery time constants for synchronous

and asynchronous releases [31]. Our computational model of synaptic transmission permits

dissimilar depression dynamics, so we could use the calyx of Held as another test case. We

found that asynchronous release strongly affects the information efficacy of the calyx of Held

with or without synaptic depression. Moreover, we discovered that were synaptic depression

to change in strength in the calyx of Held, the energy-normalized information rate would not

be greatly upset, which opens up the possibility that energy use in the calyx of Held is regulated

through metaplasticity of short-term depression. We also studied the modulatory role of dopa-

mine in corticostriatal synapses of nucleus accumbens. Our analysis revealed that dopamine

increases the information rate of the synapses in nucleus accumbens by presynaptic inhibition

of asynchronous release.

We now list a few of the limitations of the model. Strictly speaking, the proposed model is

valid for a single synaptic release site. The number of release sites in a synapse varies between

one to hundreds, with most central nervous system synapses having one or two sites [65].

Some studies have addressed the information efficacy of the whole synapse by treating all the

release sites similarly [18, 66], neglecting the individual differences of the release sites [35]. It

should be possible to use parallel MRO models (with potentially distinct dynamics) to calculate

the information rate of the entire synapse.

We only considered constant-rate input spike trains here. However, synaptic depression

not only shapes the synaptic information channels, but directly implements temporal filtering,

making neurons more sensitive to changes in presynaptic rate rather than the steady-state rate

[1, 11, 12, 51, 67]. The input model can be generalized to heterogeneous Poisson processes to

account for the rate changes of the input in the presence or absence of a stimulus.

To completely resolve the puzzle of information transmission between two neurons,

we would still need to consider the feedback mechanisms of the synapse [68, 69], the non-lin-

earity of receptors at the postsynaptic neuron [1, 70, 71], and other short-term and long-term

dynamical mechanisms of the synapse [5, 72]. Filling in these gaps will yield a complete picture

of synaptic information transmission. We believe that the MRO model can serve as an elemen-

tal building block to develop more detailed models and aid in future research to complete the

full picture of synaptic information transmission.
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