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Abstract — The microdosimetric quantities energy imparted, lineal energy, and specific energy are defined with reference
to certain volumes but are quantified in terms of frequency distributions of possible values without regard to spatial
interrelations. Computer stimulations of the patterns of energy deposits seem, therefore, only loosely related to the
microdosimetric distributions. In a more general formulation one treats the specific energy and the related
microdosimetric quantities as point functions; one deals then with the spatial distribution of their random values and not
merely with the frequency of different values. A further extension of the formalism admits reference regions of vanishing
size; the inchoate distribution of energy deposits is then the limit case of specific energy. The definitions are related 10
Matheron’s concept of the regularisation of a spatial variable; this is a convolution process that permits a flexible
mathematical treatment. One resulting possibility is the definition of specific energy with reference not 1o the
conventional geometry of a sphere or a cylinder but to a disperse region of support. This extension prevides distributions
of specific energy that are relevant 1o diffusion or transport processes and it car help to free biophysical models from a
one-sided fixation on the concept of geometric targets. The formalism is applied also to the definition of the proximity

functions and the related spatial autocorrelation functions.

INTRODUCTION

Microdosimetry has been conceived primarily as a
tool to elucidate basic mechanisms of radiation
action"?!, But, in contrast to earlier expectations, it
has now found its most extensive application in
measurements for the specification of radiation
fields in therapy and in radiation protection,

Concepts of microdosimetry are, of course,
essential in any analysis of the action of ionising
radiation on the cell. Their employment has led to
important insights but not, as yet, to a quantitative
treatment of the primary cellular changes. In part
this may be a reflection of the still timited scope of
mechanistic  studies in radiation biology. The
advances of molecular biology are bound to change
the situation, and in radiation chemistry
microdosimetric data are already applied in
quantitative analyses (see e.g. Klots ei af'¥). But
even allowing for a gradual Eevelopmem, one can
not fail to note the continued reappearance of
models that remain unrelated to actual molecular or
cytogenetic processes. Such models, although they
contain clements of microdosimetry, tend to be
mere variations of target theory. They indicate an
unreflected use of microdosimetric concepts that
may have become sufficiently indurate to require a
critical reassessment.

SPECIFIC ENERGY AND INCHOATE
DISTRIBUTION

The major root of microdosimetry are measure-

ments, with spherical or c¢ylindrical proportional
counters, of energy imparted, specific energy, or
lineal energy. These quantitics measure energy
concentrations in certain assumed critical regions in
the cell. They are described by probability
distributions that involve — apart from the choice of
a reference region — no geometric notions. The
more recent aspects of micredosimetry, the
simulation of charged particle tracks and the
analysis of the resulting spatial patterns of energy,
are more closely related to geometric problems, as
they arise also in stereology, image analysis, and
stochastic geometry (see ¢.g. References 4-6).

The scparation of the different aspects is not
complete, since simulations are often used to
compute conventional distributions of specific
energy in assumed sphetical or cylindrical targets.
But this linkage remains tenuous and unsupported
by theory; the disregard for mathematical
considerations is, for example, exhibited when
extensive computations of energy imparted to
microscopic regions are still performed without
weighted  sampling”®. The divergence of
approaches results from the failure to recognise and
nse mathematical interrelations. But this failure, in
turn, may result from a certain narrowness of the
definition of basic quantities and concepts. it will be
seen that even slight modifications of the definitions
can close the seeming gap between the different
branches of microdosimetry.



A M. KELLERER

Current definitions

The various microdosimetric quantities®'" can all
be defined in terms of the energy deposits that occur
in single interactions.

Definition

The energy deposit, £, is the energy deposited in a

single interaction:

€ = Tip—Tow +Q

T, = the energy of the incident ionising particle
{exclusive of rest mass energy)

Tou = the sum of energies of all ionising partictes
emerging from the interaction (exclusive of
rest mass energics)

the changes of rest mass energy of the
atom and all particles involved in the
interaction (Q>0: decrease of rest mass;
Q<{0: increase of rest mass),

Q

It is usually permissible to disregard quantum
mechanical uncertainties of location and to
postulate that a collision takes place at a point; this
point is termed the transfer point.

The random configuration of transfer points, x;,
and the associated energy deposits, g, in a receptor
is termed the inchoate distribution of energy. One
may refer to the inchoate distribution produced by
the multiplicity of particles at a specified dose, or to
the inchoate distribution of a single particle track,
which is the configuration of energy deposits
produced by an ionising particle and its secondaries.

It will be sufficient for the subsequent
considerations to refer to the specific energy, z.
Other basic quantities, such as energy imparted, e,
or lineal energy, v, are closely related to z. The
present definition of specific energy will be
considered first, and modifications will then be
introduced that permit a more general formulation
of microdosimetry.

Definition
The specific energy, z, to a volume, S with mass m
is:

zZ= i E £,

m i
where the summation is performed over all energy
deposits, &, that are contained in S,

The spatial aspect of specific energy

Energy imparted, specific energy, or lineal energy
are related to a reference site, S, and they are
quantified in terms of probability distributions that
determine the relative frequencies of different
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values in a series of repeated ecxposures to a
specified dose or in a succession of energy deposition
events'®10), )

The notion of repeated observations at the same
location corresponds to measurements where a fixed
detector registers a series of values. A different but
largely equivaleat principle corresponds to
simulation studies; the distribution of random values
is then obtained by spatial sampling i.e. sampling at
different locations, of the same inchoate
distribution.

‘Spatial’ sampling is — under evident conditions
of stationarity — equivalent to ‘temporal’ sampling.
But it has implications that will be apparent from a
slightly reformulated definition of specific energy.

Definition
The specific energy, Z¢(x), at a point x is:

1

m

zy(x) = g {m = massof §)

yeS(x)
i

where the summation is petrformed over all energy
deposits, g, at transfer points, x;, that are
contained in the reference region, S, if it is
centred at x.

The meaning of the term ‘centred’ is clear for a
symmetrical S; in the more general case one can
specify any reference point of § as centre.
Frequently one postulates a2 spherical §, in other
cases a fixed directional ortentation of § needs to be
assumed. Simplified notations, such as z(x) or z,
may be utilised where the reference to the support,
S, or the location, x, is clear. When on¢ refers to a
spherical §, one may also use its radius, r, in the
notation z (x).

The formulation of specific energy as poins
funcrion may seem an undesirable compilication, but
it is essential in biophysical applications where
spatial integrals over functions of z(x) need to be
considered, whenever one deals with the interaction
of radiation products or lesions that are dependent
on local energy concentrations.

Figure 1 is a schematic representation of the
spattal distributions of specific encrgy that result
with an assumed inchoate distribution (left top
panel} for spherical reference regions of different
size. The diagrams make two essential points. The
first point is, that distributions of specific energy
nced not be understood mercly as probability
distributions that represent repeated measurements
at one location. They can equally be scen as spatial
random distributions. The connection to Lea's
concept of associate volume''!’ is evident. but there
is also a range of further implications.

The second important point is that the inchoate
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distribution is merely the limit of the spatial
distribution of specific energy as the reference
region is reduced to a point. The limit of a sphere of
radius zero leads, of course, to infinite values of the
specific energy, but in the sense of the distribution
theory which uses Dirac delta functions this is
admissible. Accordingly one can identify the
inchoate distribution with the specific energy
relative 1o a vanishing reference region and onie can
represent it as a sum of Dirac delta functions:

Zo(x) = —:)E £ 0{x—x)) (p = density of the medium)
i (1)

This e¢stablishes a conceptual link between the
patterns of energy deposition and the familiar
microdosimetric guantities. It permits, furthermore,
convenient formulations of a variety of relations that
are essential in microdosimetry.

AN EXTENDED INTERPRETATION OF
SPECIFIC ENERGY

These explanatory remarks can not deal with the
formal instruments of stochastic geometry'™, but
they can make them more accessible for use in
microdosimetry. For further guidance one can refer
to a treatment that has found applications in a
variety of fields, although it has originated from a
specific technical area, the geostatistical problems of
the spatial distribution of minerals. Matheron’s
imaginative and influential work!?'¥ contains a
multiplicity of results that could, by analogy, be
applied to microdosimetry. Brief reference will,
therefore, be made in the following to some of the
formalism and the terminology employed by
Matheron.

Figure 1. Schematic 2-dimensional diagrams of an inchoate

distribution (left top corner), and the distributions of

specific energy, z,(x), for a spherical support of increasing

radius, r. The value of the specific energy at a point is
represented by the scatter density,
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The generalised definition

Assume that the region S is centred at x=0. Its
indicator function is then:

1 if xe§
ix) =
0 ixES

The use of the indicator function permits a
convenient formulation of zg(x):

25(x) = | 7(s) (s =) d

(2}
1 v
Zol

v (V = volume of §)

where j(x) = j(—x) is the refiection of j(x), while the
star is the conventional symbol for a convolution.

To simplify notation one can use the scaled
function h(x) = j(x)/V, and one has then the
equation:

z{x) =zh  (V=volume of $) (3)
The relation shows that the specific energy is a
moving average over the inchoate distribution z,.
Matheron terms this average the regularisation of
z,(x) over the support 8.

The concept is valuable because it is readily
generalised. Instead of a ‘solid’ reference region one
can consider a ‘disperse’ support, i.€. one can use a
distance dependent rather than a constant weight
function in the definition of specific energy. This is
most readily explained by an example. For a
spherical support of radius r one has;

k forx=|x|=r
h(x) = (4
)  otherwise
The normalisation factor is k=1V = 3/dar’.

Because of the isotropy of § one can write the
weight function with scalar argument x=|x/.

A ‘solid’ reference region corresponds to the
assumption of a target that reacts to total energy
imparted, regardless of its location within the target.
This is an evident abstraction, and usually it is more
plausible that radiation products interact with
probabilities that are controlled by diffusion and
are, therefore, distance dependent. One can then
use the weight function:

h(x) = kexp(—x*/a%) (5)
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The normalisation factor is:
k = U 4nx® exp(—x¥ad)dx = a2~

Figure 2 represents the weight functions for the
two simple examples. The schematic diagrams of
Figure 3 compare the resulting patterns of specific
encrgy. Even these simplified diagrams suggest that
the patterns are essentially similar. 1t is, therefore, a
mere convenience, adopled for extraneous reasons,
that microdosimetric data are wsually employed to
derive ‘site’ sizes or ‘target’ diameters; the results
can equally — and usually with better justification
— be interpreted as effective diffusion or migration
distances that govern interaction processes in
celtular radiation action.

These observations pose the obvious question for
the equivalent values of the site radius, r, and the
diffusion distance, a. The question will be answered
in a later subsection in terms of the LET concept,
and it will necessitate future microdosimetric
computations, ¢.g. of the distribution functions of z

0.81

h(x) [

R J

H 0.5 1 1.5

X

Figurc 2. The weight functions, hix), for a spherical
support of radius 1 and a disperse support {according to
Eguation 5) with a=2/3,

SPHERICAL REGIONS OF SUPPORT
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Equation 4

4

|
|

DISPERSE REGIONS OF SUPPORT

Figure 3. Schematic 2-dimensional diagrams of specific

encrgy for spherical supports with increasing radius (top

panels), and for disperse supports (according to Equation
5) with increasing diffusion parameter {bottom panels).

or y that result from the altered function of support.
Before dealing with some of these matters one may,
however, note a few direct implications of the
generalised definition of microdosimetric quantities.

Some implications

The generalised definition of specific energy has
certain consequences that are apparent even without
a detailed examination and thar will be briefly
indicated.

Relaxation of response requirements for proportional
counters

There is no a priori reason 1o postulate a constant
function of support, and there is, accordingly. no
need to require uniform sensitivity for a
proportional counter. It is, instead, sufficient to
assess the weight function, h{x), or its directional
average, h(x), that corresponds to the sensitivity
distribution in the counter. One can then examine in
terms of computations, how the changed support
function influences the resulting distributions of z or
y. These considerations are of especial interest with
regard to recent developments that may permit
measurements on the nanometre scale!¥.

Need for a modified definition of y

A *disperse’ function of support as in Equation 5,
reaches out to infinity, and any parameter that
corresponds 1o a (frequency) average mean chord
length, I, must therefore be zero. A cut-off in x,
introduced in h(x} to avoid this difficuity, would not
remove the fact that the parameter is ill defined or
meaningless. The conventional definition of lineal
energy as encrgy imparted divided by 1 is, therefore,
inapplicable. One can, however, utilise a weighted
mean chord length in the definition of y, and this
would be a more meaningful choice even with
reference t0 a sphere or another solid reference
volume.

Assume that § 15 cenired at the ongin. A
generalised “chord length’, 1, for the specfied
‘impact parameter’ ¢ can then be defined as integral
over h{x)/k along a straight line with distance ¢ from
the origin. Assuming proper frequencies for all
impact parameters from 0 to « one finds then, for
the example of Equation 5, a frequency distribution
of 1 that is proportional to 1" and that can not be
normalised, since it extends from 1=0 to the
maximum value 4a/3. This implies, of course, that
the mean chord length i1s zero. The weighted
distribution of chord length, however, is constant
between |=0 and 4a/3, and the weighted mean chord
length is, accordingly, 2a/3. This value compares to
the weighted mean chord length 3r/2 for a spherical
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region of radius r.

The applicability of the weighted mean chord
length suggests its utilisation, instead of the
frequency average, in the definition of lineal energy
¥. This medification would decrease the values of y
for a spherical reference volume by the factor 8/9
and it would simplify the current LET
approximation ¥p = 98 Ly to ¥, = L.

Inapplicability of frequency averages

The frequency average of the chord length
distribution vanishes, as stated, for the disperse
support function. This is only one aspect of the more
principal difficulty that all frequency averages of
event sizes y, z, or € vanish in the case of an
unbounded support, and that they would remain
pootly defined or meaningless, even if some cut-off
were applied to x. The difficulty is a necessary
consequence of the assumption that the support has
no defined boundaries, and that radiation products
or radiation induced lesions have no defined
maximum interaction distance but exhibit, instead,
gradual dependences.

Frequency averages of event sizes and their
reciprocals, the mean event frequencies, can have
heuristic value. In biophysical applications and in
the parameterisation of microdosimetric spectra
they can, however, be gravely misleading, Their
restricted applicability must, therefore, be noted.

SPATIAL CORRELATION

The essential point in the more general
formulation of microdosimetry is the explicit
consideration of the spatial distribution of specific
energy. In the conventional treatment one
disregards this aspect, utilising only the probability
distribution of the relative frequency of different
values of specific energy. This restricted point of
view may have been the reason that comparatively
little use is being made of the fundamental relation
that links the dose averages of y or z to the proximity
functions which are basic measures of spatial
correlation.

A formalism that accounts explicitly for the
spatial aspect will lead more naturally to the use of
basic teols, such as the correlation functions. The
present discussion can, therefore, be helpful even
without a detailed consideration of these functions.
Brief explanatory sections will, nevertheless, be
added to indicate essentials.

The role of the distance distribution

A cellular radiation effect may require an
elementary lesion in each of two mass elements
separated by distance x. If a lesion is produced in
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one element, there will be a probability for a lesion
due 10 the same particle in the adjacent element that
is propertional to L in the LET approximation and
inversely proportional to the square of x. This
probability determines the ratio, /B, of coefficients
in the linear quadratic dose dependence.

In actuality one will deal with complex targets that
exhibit a distribution of distances between their
mass clements, and o/ff will then be proportional to
the mean of x 2.

The distance distribution, p(x), and the mean
value x™° can be computed readily for the sphere of
radius r:

3% %
p(X) =?— (l— E + "1-6—rT} O<x<2r

6
x"?= 9/4r2 ©)
o/ = Lp/2np x~2 = 0.0574 Lpyir?

{Gy.um’ keV™)

For a disperse region, as described by Equation 3,
one has:

- 1 : 22
p(x) m)x exp(—x-2a°)
x~ 2= Ua? )

a/p = 0.0255 L/a® (Gy.um> keV™)

One obtains, therefore, equality of the values offf
for a=2t/3. This answers the question posed
previously. If, for example, one infers in a
microdosimetric study spherical targets of 30 nm
diameter, one can equally — and usually with more
justification — speak of a diffusion process with
characteristic distance 10 nm. The observations will
not permit us to discriminate between the two
interpretations or an in-between situation; the
assumption of energy migration or diffusion
processes will usually be more meaningful than the
postulate of distinct target regions.

The argument is here given in terms of the LET
approximation and in terms of an assumed
distribution of target structures, but the
mathematical relations will remain largely
unchanged. even for different conditions that may
involve complex particle tracks and diffusion or
migration processes. The resulting formulae (see
e.g. References 15 and 16) contain integrals over the
distance distribution of the reference region, the
distance dependent interaction probability, and the
distance distribution of the radiation, the so-called
proximity function.
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The essential point in the present context is the
similarity of the distance distribution for the
spherical and the disperse reference region (see
Figure 4), which indicates that the two conditions
are substantially equivalent.

Definition of the proximity function and its relation
to the autocorrelation function

This concluding section deals first with the
definition of the proximity functions and it then vses
‘analogies to the definition of specific energy to
indicate in general terms the flexibilitty and some of
the potential of the mathematical formalism.

Current definitions

The proximity function of a radiation can be
defined in analogy to a formulatien in ICRU 36!%
which was restricted to ionising particles of specified
energy:

Definition
The integral proximity function,
particle track in a material is:

To(x), of a

Ty =2 (5 289/ 2 5

(x]kﬁx}

where i runs over all energy deposits of the track,
1

o

pix)

-pix)

x-

3

Figure 4. The point—pair distance distributions, p(x), for a

sphere with radius r=1 (solid line) and for a disperse

region, according to Equation 3§, with a=2/3 {broken line).

The lower panel represents the contribution, x%.p(x), of

the different distances to the *intra-track effect’ in the LET
approximation.
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and k runs over ali energy deposits in the track
with distance x; between the transfer points up
tox.

Definition

The integral proximity function, T{x), of a
radiation in a material is the weighted average of
T,(x) over all particle tracks:

T(x) = E, T,x)/E,

=3, g is the total cnergy imparted by a partlcle
tracﬁ The bars indicate expectation values, i.¢. the
average over all tracks.

Tp(x) is a stochastic function that assumes
different forms, even for a particle of specified
energy and type in a specified material. T(x), on the
other hand, depends only on the radiation and the
material. It is a continuous function except for the
discontinuity at x=0 which equals the weighted
average of the energy deposits:

T(0) = 552/ 7,

Sacrificing rigour, one can say that T(x) is the
expected energy imparted by the same particle track
10 a sphere of radius x centred at a “typical’ energy
deposit.

The derivative of T(x) is the differential proximity
function, 1(x), which i3 also a continuous function
except for the singularity at x=0. The function t{x)
is, apart from its normalisation, equal to the
probability disttibution of distances between energy
deposits in the particle tracks.

The definitions are here given for the (energy)
proximity function, t{x), of a radiation, but
analogous definitions apply to the (geometric)
proximity function, s(x), which is, again apart from
the normalisation, equal to the point—pair distance
distribution of the reference region, S. The
functions appeat in the fundamental relation for the
weighted mean event size of encrgy imparted:

[ t(x) s(x)

which has been used in microdosimetry® and has in

analogous form applications also in other areas!™'®,

Modified formulation in terms of specific energy

A modified formulation can use the notation z, for
the specific energy in a sphere of radius x. The
formulation is given without derivation, to serve
merely as an illustration for the applicability of the
notation.
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x2
x2

1

INCHOATE
DISTRIBUTION

AUTOCORRELATION FUNCTION

Figure 5. Schematic 2-dimensional diagram of an inchoate

distribution, Zy(x), and the corresponding directional

proximity function or autocorrelation function, t(x}. The
dots in the diagrams represent Dirac functions.

Definition
The integral proximity function, T(x), of a
radiation in a material is:

T(x) = m, (zo z,/D~-D)

zy- Z, is the expectation value of 2 - z,, while D
is the absorbed dose, and m, is the mass of a
spherical region of radius x.

Relation to the autocorrelation function

A brief concluding discussion will deal with the
autocorrelation function — or covariogramime in the
terminology of Matheron — of a spatial variable.
The variable z,(x) for a single particle track, will be
taken as example, but it can stand for any spatial
variable.

The autocorrelation function is:

t(x) = ¢ [ zo(s) Zols - x) ds (10)

=chy

The scaling factor, ¢, need not to be considered
here. The notation t(x) has been chosen in analogy
to t(x) since t(x) can be seen as a directional
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