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Abstract

The integration of different data sharing only a subset of variables will become even
more relevant in the future. With the aid of data fusion techniques, already existing
data can be exploited to carry out new statistical analyses, circumventing the expens-
ive collection of new data. This paper presents a new statistical matching method for
categorical data based on a conditional independence assumption. The method uses
undirected graphical models to visualize dependencies among variables, and obtains a
powerful factorization of their joint distribution. It is used to estimate the probability
components of the joint distribution despite the underlying identification problem.
We embed the problem of statistical matching into the theory of log-linear Markov
networks and show an exemplary application of this new method based on data of the
German General Social Survey. The results indicate that the joint distribution can be
reconstructed fairly well through the proposed statistical matching method.

Keywords: conditional independence, data fusion, log-linear model, Markov random field, prob-
abilistic graphical model, statistical matching

1 Introduction and description of the problem

Statistical matching, which terms the integration of already existing data, became increas-
ingly important in the last years. On the one hand, the collection of new data is expensive
and time-consuming. On the other hand, if data originate from long questionnaires, we
must be aware of the inaccuracy resulting from potential non-response. As already stated
by D’Orazio et al. (2006a) or Rässler (2002), these are strong arguments against the collec-
tion of new data but for performing secondary analysis of already available data sources.

However, we are confronted with a serious challenge in secondary analysis if we need
joint information about variables which have not been jointly observed. If we though have
data files which share some of their variables, i.e. the intersection of the variable sets is
not the empty set, we are able to integrate these files. See, for instance, Serafino and
Tonkin (2017) and Aluja-Banet et al. (2015), for applications of statistical matching in
the context of official statistics and epidemiology.

Figure 1 shows a schematic representation of the basic scope. In the following, we
will call the variables which are contained in a single data file only, the specific variables,
and the variables which are present in both files the common variables. Although we can

*
eva.endres@stat.uni-muenchen.de

�
augustin@stat.uni-muenchen.de

1



yi1 . . . yiq xi1 . . . xip zi1 . . . zir

�

xb1 . . . xbp zb1 . . . zbr

ya1 . . . yaq xa1 . . . xap data file A

data file B

joint information

nA

nB

A < B

Figure 1: Schematic representation of the statistical matching problem (see D’Orazio et al.,
2006a, p.5 (modified)).

justifiably assume that the observations of the specific variables are missing completely
at random (e.g. D’Orazio et al., 2006a, p. 6), we are not per se able to find an identi-
fiable model of all variables of interest based on the available data files without further
assumptions or information.

Statistical matching yields the solution for this issue. As previously mentioned, with
statistical matching we are able to extract joint information about variables which have
been collected in different surveys. Joint information can either be the joint probability
distribution (or any of its characteristics) or a complete (but synthetic) data file which
contains all variables of interest and reflects the structure of the true but unknown complete
file (e.g. D’Orazio et al., 2006a, p. 2). The former aim describes the so-called statistical
matching macro approach while the latter refers to the micro approach.

In the present paper, we embed the statistical matching task into the framework of
undirected probabilistic graphical models and use log-linear Markov networks (e.g. Koller
and Friedman, 2009) to obtain estimates for the components of the joint probability distri-
bution. Section 2 introduces the general framework and notations for statistical matching,
and discusses the central role of the conditional independence assumption. Section 3 re-
calls the basic concepts of log-linear Markov networks and links them with the problem of
categorical data integration. Section 4 shows the application of the new statistical match-
ing approach based on Markov networks for data of the German General Social Survey.
Finally, we give a summary and an outlook in Section 5.

2 Statistical matching

2.1 The basic framework

Statistical matching (or also called data fusion or data integration) refers to a data situ-
ation as displayed in Figure 1. Let A be a data file with nA categorical observations�x1, . . . , xp, y1, . . . , yq� of the variables in the sets X � rX1, . . . , Xpx and Y � rY1, . . . , Yqx,
and B a data file with nB categorical observations �x1, . . . , xp, z1, . . . , zr� of the variables
in the sets X and Z � rZ1, . . . , Zrx. The sets of possible realizations of the random
variables are denoted by X j , Yk, and Z` for Xj , Yk, and Z`, respectively, for j � 1, . . . , p,
k � 1, . . . , q, and ` � 1, . . . r.

If we treat the files A and B as a single data source A>B with n � nA � nB ob-
servations created from the union of A and B, statistical matching can be interpreted as
a missing data problem with a special missingness pattern. The gray areas in Figure 1
display the blocks of missing entries in the combined file A>B. As we can see from this
visualization, the special task of statistical matching arises from the fact that there is no
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single observation which gives us information on all variables X, Y , and Z. This leads
to a serious identification problem during the estimation of the parameters of the joint
distribution.

Regardless of which concrete approach we use to solve this identification problem,
we have to make one basic assumption: the observations in both files A and B have
to be independently and identically distributed following a joint probability distribution
π�x,y, z� �� P�X1 � x1, . . . , Xp � xp, Y1 � y1, . . . , Yq � yq, Z1 � z1 . . . , Zr � zr�. Since we
focus on categorical data, this joint distribution can be expressed by a multi-dimensional
probability table whose entries are our parameters of interest (under the constraint that
the sum over all entries equals 1).

For instance, D’Orazio et al. (2006a) describe different approaches, which can be split
into three different groups according to their basic concepts, how statistical matching can
be applied in practice:

1. The first group of approaches is based on the assumption of conditional independence
of the specific variables given the common variables.

2. The second type of approaches exploits potentially available auxiliary information.
This may be a third data file with joint observations on the specific variables or
even all variables of interest. In a parametric setting, it would furthermore be
conceivable that there exists information about certain parameters, for example,
from pilot studies.

3. The last group of approaches directly addresses the identification problem of statist-
ical matching. Instead of relying on additional assumptions or auxiliary information,
the uncertainty corresponding to the identification problem is respected and sets of
parameter estimates are obtained for the macro approach, or sets of complete syn-
thetic data files are created for the micro approach.

For examples of the second and third type of approaches see, for instance, Singh et al.
(1993), Di Zio and Vantaggi (2017), D’Orazio et al. (2006b), or Endres et al. (2018). As
mentioned above, we emphasize on approaches based on the conditional independence of
the specific variables given the common variables which is closely connected to the concept
of separation in the context of probabilistic graphical models. Some papers in which directed
acyclic graphs are examined for the statistical matching task have already been published.
For instance, Landes and Williamson (2016) show how to learn a Bayesian network which
coincides with the marginal distributions of the present data and whose corresponding joint
distribution has maximum entropy. Endres and Augustin (2016) introduce an approach on
how to learn a joint Bayesian network for the available (incomplete) data. Already existing
available structure learning algorithms are adapted to learn a joint directed acyclic graph
of X, Y , and Z on A>B. The network structure is the basis of subsequent parameter
estimation using an adapted version of the chain rule for Bayesian networks. Another
idea of intersecting the data integration problem with graphical models is described, for
instance, by Tsamardinos et al. (2012) and Janzing (2018). These data fusion approaches
aim at the detection of causal models which are consistent with the available data.

In this paper, we consider the case when there is no natural directionality regarding
the relationship between variables. In this situation, a Bayesian network which is based on
a directed acyclic graph is not the means of choice. However, there is a class of undirected
probabilistic graphical models which also has the potential to meet the aims of statistical
matching, namely Markov networks. They are closely related to Bayesian networks, yet
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they differ in a key aspect: Markov networks build on an undirected graph. To prepare
for the relationship between statistical matching and Markov networks, we take a closer
look at the concept of conditional independence in the following subsection.

2.2 The role of the conditional independence assumption

As mentioned above, due to the identification problem, the parameters of the joint dis-
tribution which concern the relationship between the specific variables Y and Z are not
directly estimable. This is where the assumption of the conditional independence of Y
and Z given X comes in. Applying the chain rule and the definition of conditional inde-
pendence, the probability distribution of �X,Y ,Z� is given by

π�x,y, z� � π�y¶z,x� � π�z¶x� � π�x�
� π�y¶x� � π�z¶x� � π�x�
�
π�x,y� � π�x, z�

π�x� . (1)

Looking at this factorization, we can easily see that π�x,y� is only dependent on Y and X
and thus is estimable on data file A, whereas π�x, z� can be estimated from the second file
B, and the third term π�x� is estimable on all n observations. Since we can legitimately
assume that we are in a MCAR (missing completely at random) situation (D’Orazio et al.,
2006a, p. 6), the blocks of missing entries of Y in B, and Z in A can be ignored within
the estimation-step and the available data A>B is representative for the (not available)
complete file (e.g. Pigott, 2001).

From this point we can build the bridge to probabilistic graphical models. The graph of
a probabilistic graphical models can be viewed as a map which visualizes (in)dependencies.
If all independencies which are represented by the graph are also present in the corres-
ponding probability distribution, the graph is said to be an independence map (I-map)
for this distribution (e.g. Pearl, 1988, p. 92). These I-maps lead to a factorization of
the probability distribution according to the cliques of the graph (e.g. Studený, 2010, p.
46). In Endres and Augustin (2016) we also build upon the factorization of probability
distributions but in the context of Bayesian networks which are based on directed acyclic
graphs (DAG). Since there are situations where variables interact but where there is no
natural direction of this connection, we consider the embedding of Markov networks into
the context of statistical matching in the present paper. We will explain it in detail in the
next section after a short revision of some necessary foundations of Markov networks.

3 Markov networks and statistical matching

3.1 Basic concepts and notations of log-linear Markov networks

As a start, we will briefly recall the definition of log-linear Markov networks and fix
our notations. See, for example, Koller and Friedman (2009) or Lauritzen (1996) for
detailed explanations of undirected graphical models. For reasons of readability, we only
consider one set of discrete random variables X � rX1, . . . , Xpx in this subsection and do
not explicitly refer to the statistical matching framework but describe log-linear Markov
networks for arbitrary situations. The concrete application of Markov networks for the
purpose of statistical matching will be described in the next subsection.

In the subsequent explanations, we refer to a certain variable which is an element of
X with the symbol Xj , j " r1, . . . , px, while certain subsets of X are characterized by
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an index set j N r1, . . . , px such that Xj �� rXj � Xj " X, j " jx. The corresponding
realizations x � �x1, . . . , xp� are analogously indexed and xj " Xj � r0, 1, . . . , dj � 1x
for every j " r1, . . . , px. Referring to the dj different categories of the j-th variable asr0, 1, . . . , dj � 1x does not imply any ordering.

A Markov network over the set of categorical variables X � rX1, . . . , Xpx is represented

by an undirected graph H � �V̊ ,E�. The symbol V̊ denotes the set of p vertices in the
graph, representing the p random variables in X. To preserve readability, we will set V̊ �

X̊ and thus H � �X̊,E�. The circle above a symbol refers to nodes where symbols without
circle refer to the corresponding random variables. With the symbol � indicating the
Cartesian product, E N X̊ � X̊ terms the set of pairwise (undirected) edges in the graph.
Interpreting H as independence graph, the pair �X̊i, X̊j� is not an element of E iff the
corresponding and non-adjacent variables Xi and Xj are conditionally independent given
X¯rXi, Xjx (pairwise Markov assumption). In the following, we assume that there exists a
(everywhere) positive probability mass distribution π�x� � P�X1 � x1, . . . , Xp � xp� that
factorizes over H, and thus the local, the pairwise and the global Markov assumptions
coincide (see, e.g. Koller and Friedman, 2009, p. 119). Consequently, the (in)dependencies
among the set of variables X are visualized by H and can be read off the graph. Two sets
of variables Xf and Xg are conditionally independent given Xh, written Xf áá Xg¶Xh ,

if there is no active path between any nodes X̊f " X̊f and X̊g " X̊g given X̊h in H, for

disjoint sets X̊f , X̊g, X̊h each of which is a subset of V . The node sets X̊f and X̊g are

then said to be separated by X̊h (see,e.g. Studený, 2010, p. 43).
Since we are dealing with categorical data which can be represented by multi-dimensional

contingency tables, we suggest to use the log-linear parameterization of Markov networks.
The corresponding joint probability is then given as

π�x� � expw =
CNX

uC�x�} , (2)

which is also known under the term log-linear expansion (of the multinomial distribution)
(e.g. Whittaker, 1990, p. 206). In this representation of a log-linear model, we sum over all
subsets C of X (i.e. over all elements of the power set P�X� of X) under the constraint
that uC�x� � 0 if xj � 0 for Xj " C. The sum within the curly brackets is equivalent
to a linear predictor of a regression model where the u-terms correspond to the regression
parameters. In the log-linear expansion of the multinomial distribution, these u-terms are
log-odds and can be interpreted as such. Some log-linear representations for selected cases
are shown in Appendix A.

Graphical models are a subset of the more general class of log-linear models (see, e.g.
Tutz, 2011, p. 346) which

1. include all lower-order terms of variables which appear together in a higher-order
term (hierarchical model) and

2. include the higher-order terms of variables whose pairwise terms are all also contained
in the model (graphical model).

A graphical log-linear model can be represented by an interaction graph which coincides
with the independence graph whenever there exists an interaction term for each clique in
the graph, and where the maximal cliques (e.g. Whittaker, 1990, p. 209) determine the
highest-order interaction terms. (The term maximal clique refers to a subset of V where
every pair of nodes is connected by an edge (e.g. Koller and Friedman, 2009, p. 35).) Thus,
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we are able to read the interaction terms off the undirected graph structure. The term
uC�x� equals zero if rX̊i, X̊jx N X̊ but �X̊i, X̊j� � E. The highest-order interaction terms
determine the generating class of the log-linear model (see, e.g. Lauritzen, 1996, p. 82).

There is also a close connection between the interpretation of such a log-linear model
and the separation in graphs. Whenever the sets of nodes X̊f and X̊g are separated by

another set X̊h in H, it holds that Xf áá Xg¶Xh in the corresponding distribution, and
all interaction terms over Xf and Xg are zero. It means that uC�x� � 0 if rXf , Xgx " C
for any Xf " Xf and Xg " Xg. Thus, the joint probability distribution factorizes to
the product of two functions m1 and m2. This factorization is usually referred to as
factorization criterion (e.g. Højsgaard et al., 2012, p. 11 and p. 32).

Since we are dealing with exclusively categorical data in this paper, we will in the
following apply a multinomial distribution. For decomposable graphical models, this leads
to closed-form maximum likelihood estimators. (In decomposable models, every cycle of
minimum length four has a shortcut (e.g. Tutz, 2011, p. 352).) Details can be found, for
instance, in Højsgaard et al. (2012, p. 31). For arbitrary graphical models, the maximum
likelihood estimators can be determined by iterative methods like, for instance, iterative
proportional fitting (see, e.g. Højsgaard et al., 2012, p. 35).

3.2 Utilizing Markov networks for statistical matching

As mentioned above, within the framework of statistical matching, the available obser-
vations in A>B are assumed to be i.i.d. realizations of a joint distribution π�x,y, z�
with missing (completely at random) values Y in B and Z in A. As consequence, we
can imagine that there exists a true underlying file with complete information on all vari-
ables X, Y , and Z. Furthermore, assuming that P factorizes over a Markov network,
there also exists a true underlying Markov network structure. In the following this true
network structure, denoted by HA>B

, is supposed to be known, or at least that the in-
formation in A and B is sufficient to estimate an error-free version ĤA>B

of the true
network structure. HA>B

is composed of a set of undirected edges E
A>B

and a set of

nodes V̊
A>B

� X̊ < Y̊ < Z̊ with cardinality p � q � r.
To meet the requirements for solving the statistical matching problem, we assume that

the specific variables Y and Z are conditionally independent given the common variables
X. In the graph of the corresponding Markov network, none of the pairs �Y̊k, Z̊`� is in
E

A>B
, k � 1, . . . , q, ` � 1, . . . , r. Hence, there exist no direct paths between any nodes

Y̊k " Y̊ and Z̊` " Z̊, i.e. the specific variables are separated by at least one X̊j " X̊.
This separation ensures that the parameters uC of the log-linear Markov model are zero
if rYk, Z`x " C.

To achieve an estimation equation extended for statistical matching purposes, we need
to incorporate the log-linear representation of Equation (2) into the factorization based
on the conditional independence assumption in Equation (1). Statistical matching by
log-linear Markov networks is then implemented by

π�x,y, z� � exp rlog π�x,y� � log π�x, z� � log π�x�x
� exp

~�������� =
C"P�X<Y �

uC�x,y� � =
C"P�X<Z�

uC�x, z� � =
C"P�X�

uC�x���������� (3)

under analogue constraints as for Equation (2). This means that a summand is zero
either if one of the corresponding realizations is zero (i.e. it equals the reference category)

or if the corresponding nodes are separated in HA>B
(i.e. the pairwise edges are not in
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E
A>B

). As it can easily been seen from the equation, none of the terms is simultaneously
dependent on the specific variables Y and Z. Thus, all terms are separately estimable on
different parts of the data, namely the first term can be estimated from A, the second from
B, and the third on A>B. This means that we now have an identifiable model for the
incomplete sample A>B, and have come up with a solution for the statistical matching
macro approach.

4 Illustrative application

To show the practical applicability of our statistical matching approach, we use data of
the German General Social Survey collected by GESIS – Leibniz Institute for the Social
Sciences (2016). After a registration, the data can be downloaded from www.doi.org/10.

4232/1.12209. All analyses are conducted by the statistical programming software R (R
Core Team, 2018, version 3.5.1). The R code for all analyses is available on request.

4.1 The German General Social Survey

The German General Social Survey is a cross-sectional study which has been carried out
every two years since 1980. It serves as data source to analyse attitudes and behaviors in
the German society. For our application, we use the data of the GGSS 2012 which focuses
amongst others on health-related topics. The data are composed of 3480 observations of
752 variables. For our illustration, we extract seven categorical variables, which we split
into common and specific variables:

common: the SEX and the AGE of the respondent, and whether the respondent is
EMPLOYED,

specific in A: the intensity of smoking (SMOKE) and how much ALCOHOL the re-
spondent drinks,

specific in B: how many times the respondent visited a DOCTOR in the past 12 months,
and how often the respondent exercises for at least 20 minutes (SPORT).

Since our focus is not on the missing data problem of the survey itself, we delete the
observations with missing entries for our purposes. This results in a data file with 1375
observations. To reduce structural zeros to a minimum, we also summarize some of the
categories. Finally, we have five binary variables and two variables with three categories
(age and smoke). The term structural zero usually refers to zero entries in the true
probability mass distribution. However, in our application, the true underlying probability
distribution of the considered (GGSS) population is unknown and we have to use the
(estimated) sample distribution as reference. Zero entries in this sample distribution are
no ‘true’ structural zeros, yet we call them so because this sample distribution serves as
our reference distribution. To mimic the situation of statistical matching, we randomly
split our data file into two files A and B as follows:

� file A has 688 observations of SEX, AGE, EMPLOYED, SMOKE, and ALCOHOL

� file B has 687 observations of SEX, AGE, EMPLOYED, DOCTOR, and SPORT.

An exemplary extract of this data situation is displayed in Table 1.
Using our notation, we consider the following sets of common and specific variables:

X � rSEX,AGE,EMPLOYEDx, Y � rSMOKE,ALCOHOLx, Z � rSPORT,DOCTORx.
The (aggregated) possible realizations for each variable are listed in Appendix C.1.
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EMPLOYED

AGE

SMOKE
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SEX
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SPORT

AGE
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Figure 2: Joint DAG based on A>B on the left side. Joint undirected graph based on
A>B on the right side, derived by moralization of the DAG.

4.2 Statistical matching of the GGSS data with log-linear Markov net-
works

4.2.1 The Markov network structure

The true network structure for the data of the German General Social Survey is unknown
and has to be learned from the data. In Endres and Augustin (2016), we introduced a
statistical matching technique which is based on Bayesian networks. Different parts of the
joint Bayesian network are learned on different parts of the data at hand and subsequently
combined. To obtain the structure of the joint Markov network on A>B, we also follow
this procedure and moralize the resulting DAG. Maybe this looks inconvenient at first,
but this procedure has the advantage that we end up with a decomposable graph. Thus,
closed-form ML-estimates for the probability components of the joint distribution of X,
Y , and Z are available. Of course, also other structure learning algorithm for Markov
networks can be adapted for this step. Figure 2 shows the joint DAG on the left side which
was estimated on A>B. On the right hand side, we see the moralized graph, i.e. the
structure of the joint Markov network on A>B. The estimation and moralization was
performed in R using the R-package bnlearn by Scutari (2010, version 4.3). Specifically,
the structure was learned with the aid of the score-based hill-climbing-algorithm which
was applied on 500 bootstrap samples and combined by model averaging.

4.2.2 Estimation of the parameters of the log-linear Markov network

According to the graph, we eliminate the entries of the powersets of X, X < Y , and
X < Z whose corresponding u-terms are equal to zero (i.e. the pairwise connections are
not element of the set of edges of the graph) and we obtain the following reduced sets P�
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containing the remaining relevant entries:

P��X� �ro, SEX,AGE,EMPLOYED, rSEX,AGEx, rAGE,EMPLOYEDxx
P��X < Y � �ro,SEX,AGE,EMPLOYED, SMOKE,ALCOHOL, rSEX,AGEx,

rAGE,EMPLOYEDx, rSEX, SMOKEx, rSEX,ALCOHOLx, rAGE,ALCOHOLx,
rSEX,AGE,ALCOHOLxx

P��X <Z� �ro,SEX,AGE,EMPLOYED, SPORT,DOCTOR, rSEX,AGEx,
rAGE,EMPLOYEDx, rSEX,SPORTx, rAGE,DOCTORxx.

Applying Equation (3) leads to the estimation equation

π̃�sex, age, employed, smoke, alcohol, sport,doctor�
� exp v log π̂

A�sex, age, employed, smoke, alcohol�
� log π̂

B�sex, age, employed, sport, doctor� � log π̂
A>B�sex, age, employed�|

� exp vuAo � uArSEXx�sex� � uArAGEx�age� � uArEMPLOYEDx�employed� � uArSMOKEx�smoke�
� u

A
rALCOHOLx�alcohol� � uArSEX,AGEx�sex, age� � uArAGE,EMPLOYEDx�age, employed�

� u
A
rSEX,SMOKEx�sex, smoke� � uArSEX,ALCOHOLx�sex, alcohol�

� u
A
rAGE,ALCOHOLx�age, alcohol� � uArSEX,AGE,ALCOHOLx�sex, age, alcohol�

� u
B
o � u

B
rSEXx�sex� � uBrAGEx�age� � uBrEMPLOYEDx�employed� � uBrSPORTx�sport�

� u
B
rDOCTORx�doctor� � uBrSEX,AGEx�sex, age� � uBrAGE,EMPLOYEDx�age, employed�

� u
B
rSEX,SPORTx�sex, sport� � uBrAGE,DOCTORx�age,doctor�

� u
A>B
o � u

A>B
rSEXx�sex� � uA>B

rAGEx�age� � uA>B
rEMPLOYEDx�employed�

� u
A>B
rSEX,AGEx�sex, age� � uA>B

rAGE,EMPLOYEDx�age, employed�|, (4)

where the superscripts indicate which data file is used to estimate the corresponding term.
To be able to distinguish between the true distributions π, the distributions estimated on
the complete GGSS sample π̂ are marked with a circumflex, and the synthetic distributions
π̃, estimated with the aid of statistical matching, are from now on marked with a tilde.

For the concrete implementation in R, we use a generalized Poisson regression model
with a log-link. With this regression model, we estimate the parameters of the log-linear
model and obtain the fitted values. A justification why this procedure is appropriate in
our context can be found in Appendix B. Furthermore, Appendices C.2 and C.3 contain
an interpretation of the u-terms and their actual estimates regarding to Equation 4.

4.2.3 Results

Following the recommendation by Rässler (2002), the performance of our new statistical
matching procedure is assessed by investigating the following quality levels:

1. the preservation of the marginal distributions,

2. the preservation of the association structure, and
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3. the preservation of the joint distribution.

As fourth quality level, Rässler (2002) proposed the preservation of the individual values.
It is accomplished if the synthetic values equal the true values. This quality level is not
considered in the following since, on the one hand, we have no information about the true
values but only on the sample values, and on the other hand, if the joint distribution is
well preserved the accordance of the synthetic values with the true values yields no further
statistical information.

The first quality level is investigated by computing the Jensen-Shannon divergence
(e.g. Lin, 1991) between the univariate marginal distributions π̂�xj�, π̂�yk�, and π̂�z`�,
estimated on the complete GGSS data sample and the (partly synthetic) univariate mar-
ginal distributions π̃�xj�, π̃�yk�, and π̃�z`� determined by statistical matching for every
j � 1, . . . , p; k � 1, . . . , q; ` � 1, . . . , r. The computation of the Jensen-Shannon divergence
is problematic if structural zeros appear in the sample distribution. To deal with these
cases, we set the structural zero to 10

-16
which is numerically almost zero. We have also

investigated the divergences between all multivariate marginals. The results are not shown
here in detail due to their scope, but they are available on request. In summary, the results
show that the Jensen-Shannon divergence from the matched distributions to the sample
distributions distribution is small (the maximal value is 0.0479) and it becomes larger the
more variables are included in the marginals.

The marginals π̃�xj�, π̃�yk�, and π̃�z`� are computed by summarizing over the corres-
ponding components of joint distribution π̃�x,y, z� which is estimated using Equation (4).
The estimates π̂�xj�, π̂�yk�, π̂�z`�, and π̂�x,y, z�, all computed on the complete GGSS
sample, serve as our references for subsequent comparisons since the true joint distribution
over the whole population for the GGSS data is of course unknown. The Jensen-Shannon
divergence (" �0; 1�) between the univariate marginals in the GGSS sample and the mar-
ginals determined by statistical matching is displayed in Table 2. The divergence is close
to zero for all univariate marginals which means that the sample distributions and the
statistically matched distributions are very similar. As expected, the smallest differences
can be observed between the marginals of the common variables. The largest differences
can be observed at the specific variables DOCTOR, SPORT, and SMOKE.

The second quality level is investigated by comparing the corrected contingency coeffi-
cient which is also known as Sakoda’s adjusted Pearson’s C (" �0, 1�). To obtain the values
for this association measure for the statistically matched file, we generate a complete syn-
thetic file from π̃ by multiplying the number of desired observations with the estimated
probability components of π̃. Subsequently, we use this synthetic data to compute the
corrected contingency coefficients for the statistically matched file. Figure 3 shows the
pairwise associations between all variables a) in the GGSS sample and b) the statistic-
ally matched data file. As expected, the associations are attenuated in the matched file.
Especially the associations of the variable SMOKE with most of the other variables are
strongly weakened. The largest difference between the corrected contingency table can be
observed between SMOKE and AGE. Although the association is reflected in the file A,
the statistical matching procedure was not able to reproduce this connection. The bivari-
ate associations between the other variables, however, seem to be well preserved. Further
analyses showed that the weakened associations with the variable SMOKE arise from
an error-prone estimation of the graph structure. Especially an additional edge between
SMOKE and AGE (which is present in the graph estimated on the complete GGSS sample)
markedly improves the results of statistical matching. Another edge between DOCTOR
and EMPLOYED improves the results even further. The resulting network structure and
the bivariate corrected contingency coefficients are shown in Appendix C.4.

10



a)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1AGE EMP
LOYE

D
SPO

RT
SMO

KE
SEX ALCO

HOL

DOCTOR

AGE

EMPLOYED

SPORT

SMOKE

SEX

0.38 0.29

0.66

0

0.01

0.02

0.21

0.3

0.13

0.05

0.08

0.03

0.1

0.13

0.28

0.2

0.29

0.18

0.07

0.26

0.41

b)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1AGE EMP
LOYE

D
SPO

RT
SMO

KE
SEX ALCO

HOL

DOCTOR

AGE

EMPLOYED

SPORT

SMOKE

SEX

0.38 0.18

0.67

0.01

0.01

0.01

0.02

0.01

0

0.04

0

0.03

0

0.19

0.3

0.09

0.3

0.13

0.06

0.08

0.4

Figure 3: Corrected contingency coefficient between pairs of variables on the complete
GGSS sample (on the left) and the matched synthetic file (on the right).

The joint distribution of X, Y , and Z contains 288 (� 2
5
�3

2
) probability components,

each of which was estimated on the complete GGSS sample. Figure 4 shows the estim-
ates for each probability component of π�x,y, z�. It suggests that statistical matching
has a tendency to overestimate small probabilities and underestimate large probabilities.
The Manhattan distance is 0.455, and 0.416 omitting the structural zeros in the sample
distribution. The Jensen-Shannon divergence is 0.073 if we set the structural zeros nu-
merically to zero (10

�16
), and 0.054 if we ignore them. All in all, the differences move in

a rather small range of values, which suggests that our method performs well, at least in
this application.

5 Concluding remarks

Within this paper, we presented a new macro approach for statistical matching, based
on the assumption of conditional independence of the specific variables given the common
variables. This assumption builds a natural bridge to probabilistic graphical models aiming
at a graphical representation of the dependencies among a set of variables, which can be
used to find a convenient factorization of the joint distribution. For the embedding of
statistical matching into the comprehensive theory of probabilistic graphical models, we
restrict the graph to a shape that reflects the conditional independence of the specific
variables given the common variables. Based on this graph, we estimate the factors that
together form the joint distribution with the aid of a log-linear Markov network. Starting
with this estimate of the joint distribution, the creation of a complete synthetic data
file (micro approach) can easily be realized by drawing samples from it. We showed the
applicability of our new approach using data of the German General Social Survey. Our
preliminary results have indicated that our approach provides promising results at least
for this data file. In particular, the small differences between the sample distribution and
the distribution estimated using our statistical matching approach are very positive as we
avoided overoptimism by deliberately not selecting the specific and common variables on
the basis of previous association analyses. Moreover, all edges were found by a structure
learning algorithm and no further substantively justified edges were artificially added. The
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Figure 4: Absolute difference between the sample distribution and the matched distri-
bution in the GGSS data example separately for all probability components of the joint
distribution. The black points are the estimates for the components of π̂�x,y, z� based
on the complete GGSS data. The lines indicate the absolute differences from the sample
estimates to the estimates obtained by statistical matching. The endpoints of the lines
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question raised by these results is whether the statistical matching with Markov networks
is equally successful with other data files. For this reason, further data files should be
matched with this method and the comparison with other matching methods shall also
be carried out. We recommend, as done here, the artificial matching of actually complete
data files, where blocks of records are removed by hand because otherwise the results
cannot be sufficiently evaluated. Another option would be to carry out simulation studies
which would also offer a possibility to investigate how the statistical matching approach
performs for situations where this particular conditional independence assumption does not
hold. Nevertheless, the simulation of categorical data following a pre-defined dependence
structure is associated with rather subtle issues that we have already listed and explained
in Endres et al. (2018, App. A). Moreover, more work will need to be done to detect the
influence of the structure learning algorithm on statistical matching and also under which
conditions a (slightly) misspecified graph structure still leads to sufficiently good statistical
matching results. Moreover, a generalization of this macro approach for continuous data
or mixed continuous and categorical data would be strongly desirable.
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A Log-linear expansions for selected cases

Since, up to our knowledge, it is hard to find some examples for log-linear expansions,
we provide some here, in the supporting information. We consider different situations
which can easily be extended to higher dimensions. For more information on log-linear
expansions we refer, for instance, to Whittaker (1990). Log-linear Markov networks are,
for example, described in Lauritzen (1996) or Koller and Friedman (2009).

A.1 One variable with three categories

Let X be a random variable with realizations x " r0, 1, 2x and let

x1 � v1 , if x � 1
0 , otherwise

and x2 � v1 , if x � 2
0 , otherwise

be dummy variables indicating these realizations. Then the distribution of X can be
written as

π�x� � π�0�1�x1�x2π�1�x1π�2�x2 .

Applying the logarithm yields

log π�x� � log π�0�ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ
uo

�x1 � log �π�1�
π�0�
ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ

ux1

�x2 � log �π�2�
π�0�
ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ

ux2

� uo � x1 � ux1
� x2 � ux2

.

The u-terms are here constants which we can rewrite as functions uX��� of x as follows

log π�x� � uo � uX1
�x1� � uX2

�x2�.
A.2 2 � 3-contingency table

Let X and Y be a random variable with realizations x " r0, 1x and y " r0, 1, 2x and let

y1 � v1 , if y � 1
0 , otherwise

and y2 � v1 , if y � 2
0 , otherwise

be dummy variables indicating these realizations. Then the joint distribution of �X,Y �
can be written as

π�x, y� � π�0, 0��1�x��1�y1�y2�π�1, 0�x�1�y1�y2�π�0, 1��1�x�y1π�1, 1�xy1π�0, 2��1�x�y2π�1, 2�xy2 .
Applying the logarithm yields

log π�x, y� � log π�0, 0�ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ
uo

�x � log �π�1, 0�
π�0, 0�
ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ
ux

�y1 � log �π�0, 1�
π�0, 0�
ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ
uy1

� y2 � log �π�0, 2�
π�0, 0�
ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ
uy2

�x � y1 � log �π�0, 0�π�1, 1�
π�1, 0�π�0, 1�
ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒ Ï

uxy1

�x � y2 � log �π�0, 0�π�1, 2�
π�1, 0�π�0, 2�
ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒ Ï

uxy2

� uo � x � ux � y1 � uy1 � y2 � uy2 � x � y1 � uxy1 � x � y2 � uxy2 .
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Table 1: Linear predictors of the log-linear model in dependence of the realizations of X
and Y .

x y log-linear model

0 0 uo
0 1 uo � uy1
0 2 uo � uy2
1 0 uo � ux
1 1 uo � ux � uy1 � uxy1
1 2 uo � ux � uy2 � uxy2

The u-terms are here constants which we can rewrite as functions u��� of the realizations
x and y as

log π�x, y� � uo � uX�x� � uY1
�y1� � uY2

�y2� � urX,Y1x�x, y1� � urX,Y2x�x, y2�
� uo � uX�x� � uY �y� � urX,Y x�x, y� (5)

with

uX�x� � v ux , x � 1
0 , x � 0,

uY �y� �
~��������
uy2 , y � 2
uy1 , y � 1
0 , y � 0,

urX,Y x�x, y� �
~��������������������

uxy2 , x � 1, y � 2
uxy1 , x � 1, y � 1
0 , x � 1, y � 0
0 , x � 0, y � 2
0 , x � 0, y � 1
0 , x � 0, y � 0.

Table 1 shows the linear predictor from the log-linear expansion of π�x, y� in dependence
of the realizations x and y of X and Y .

A.3 2 � 2 � 3-contingency table

Let X, Y and Z be a random variable with realizations x " r0, 1x, y " r0, 1x, and
z " r0, 1, 2x. Then the joint distribution of �X,Y, Z� can be written as

π�x, y, z� �π�0, 0, 0��1�x��1�y��1�z� � π�1, 0, 0�x�1�y��1�z� � π�0, 1, 0��1�x�y�1�z�
�π�0, 0, 1��1�x��1�y�z � π�1, 1, 0�xy�1�z� � π�1, 0, 1�x�1�y�z
�π�0, 1, 1��1�x�yz � π�1, 1, 1�xyz.
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Applying the logarithm and the assumption that Y and Z are conditionally independent
given X yields

log π�x, y, z� � log π�x � 0, y � 0� � x � log �π�x � 1, y � 0�
π�x � 0, y � 0�
 � y � log �π�x � 0, y � 1�

π�x � 0, y � 0�

� xy � log �π�x � 0, y � 0�π�x � 1, y � 1�

π�x � 1, y � 0�π�x � 0, y � 1�

� log π�x � 0, z � 0� � x � log �π�x � 1, z � 0�

π�x � 0, z � 0�
 � z � log �π�x � 0, z � 1�
π�x � 0, z � 0�


� xz � log �π�x � 0, z � 0�π�x � 1, z � 1�
π�x � 1, z � 0�π�x � 0, z � 1�


� log π�x � 0� � x � log �π�x � 1�
π�x � 0�


� uo � x � ux � y � uy � x � y � uxy � uo � x � ux � z � uz � x � z � uxz

� uo � x � ux

� uo � x � ux � y � uy � x � y � uxy � z � uz � x � z � uxz

The u-terms are here constants which we can rewrite as functions u��� of the realizations
x, y, and z as

log π�x, y, z� � uo � uX�x� � uY �y� � urX,Y x�x, y� � uo � uX�x� � uZ�z� � urX,Zx�x, z�
� uo � uX�x�
� uo � uX�x� � uY �y� � urX,Y x�x, y� � uZ�z� � urX,Zx�x, z�
� log�π�x, y�� � log�π�x, z�� � log�π�x��.

B Special features with the estimation in R

In the former sections, we aim at the estimation of the components of the joint probability
distribution of the common and the specific variables. For this purpose, we assume that
our data follows a multinomial distribution which can be expressed in terms of a log-linear
expansion. Thus, the components of Equation (4) can be interpreted as linear predictors
of multinomial regression models using a log-link and dummy coding. This also leads to
an appropriate log-odds interpretation of the u-terms. However, in R, we use the glm()-
function to fit a generalized Poisson regression model. This simplifies the maximization of
the likelihood and leads to identical estimates (see Baker, 1994). Furthermore, since the
log-linear model based on a Poisson-regression fits the expected cell counts of a multivariate
contingency table and we estimate all parameters on different parts of the data, we have
to rescale the results we obtain in R.

Let m�x,y, z� denote the expected cell counts according to a certain realization�x,y, z�, and m̂�x,y, z� the corresponding estimated values. Beginning with the con-
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ditional independence assumption (CIA), we obtain

π�x,y, z� CIA
�

π�x,y� � π�x, z�
π�x� �

m�x,y�
n �

m�x, z�
n

m�x�
n

�
m�x,y� �m�x, z�

n �m�x� �
m�x,y, z�

n .

However, since we are facing the statistical matching problem, we cannot estimate neither
π�x,y, z� nor m�x,y, z� on basis of all observations but only on basis of a subset of our
data. This leads to the problem that the estimated marginals of X differ on A and B,
more specifically m̂

A�x� j m̂B�x�. Thus, we have to take the basis of the estimates into
account:

π̂�x,y, z� CIA
�

π̂
A�x,y� � π̂B�x, z�

π̂A>B�x�
�

m̂
A�x,y�
nA

�
m̂

B�x, z�
nB

m̂
A>B�x�
n

�
n

nA � nB
�
m̂

A�x,y� � m̂B�x, z�
m̂A>B�x� .

In the Poisson regression, the response is connected to the linear predictor η, which is
a function of the covariates, by the log-link, i.e. log�m�x,y, z�� � η�x,y, z�. To estimate
the joint probability from the model equation, we have to multiply it with a factor that
rescales with the number of observations as follows:

π̂�x,y, z� � n
nA � nB

� exp tη̂A�x,y� � η̂B�x, z� � η̂A>B�x�z .
The superscripts symbolize which part of the data is used to estimate the corresponding
parameters.

Thus, to obtain the estimates for the components of the joint probability distribution
from the Poisson regression, the fitted values have to be multiplied by the correction factor

n
nA�nB

.

C Further material for the GGSS application

For the application, we use data from the GESIS – Leibniz Institute for the Social Sciences
(2016). Specifically, we use the data ZA4614 (data file Version 1.1.1) (GESIS – Leibniz
Institute for the Social Sciences, 2013). Since we do not want our results to be additionally
influenced by the missing data in the data, we remove the observations with missing entries
in advance. This guarantees that only the quality of the statistical matching is reflected
in the results.

C.1 Summary of possible realizations of the variables in the GGSS data

For the GGSS data, the true joint distribution is unknown and has to be estimated from
the data. However, most of the considered variables have a lot of categories which leads to
zeros in the estimation because we have much less observations than possible combinations
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in the categories. To reduce this zeros which are technically no structural zeros in the
true distribution but estimated zeros in the empirical distribution, we summary some of
the categories to obtain variables with two to three categories. The resulting possible
categories are the following, where first is the reference category:

sex " XSEX � rmale, femalex,
age " XAGE � r18 � 44 years, 45 � 59 years,' 60 yearsx,
employed " XEMPLOYED � remployed, unemployedx,
smoke " YSMOKE � rsmoker, formerly smoked, never smokedx,
alcohol " YALCOHOL � roccasionally or often, neverx,
sport " ZSPORT � roften, seldom or neverx,
doctor " ZDOCTOR � rsometimes or often, seldom or neverx.

C.2 Interpretation of the u-terms

As mentioned in the paper, the u-terms are interpretable as log-odds. In the following, we
will exemplary show for the variables SEX and AGE how the interpretation can be derived
from the estimation Equation (4). For better readability, the reference categories of all
other variables are coded as 0. The derivation of the interpretation of all other u-terms
works analogously.

C.2.1 uo

π�0, 0, 0, 0, 0, 0, 0� � exp�uo�
�uo � log�π�0, 0, 0, 0, 0, 0, 0��

C.2.2 urSEXx

π�female, 0, 0, 0, 0, 0, 0� � exp�uo � urSEXx�female��
�urSEXx�female� � log �π�female, 0, 0, 0, 0, 0, 0�

π�male, 0, 0, 0, 0, 0, 0� 

C.2.3 urAGEx

π�0, 45 � 59 years, 0, 0, 0, 0, 0� � exp�uo � urAGEx�45 � 59 years��
�urAGEx�45 � 59 years� � log �π�0, 45 � 59 years, 0, 0, 0, 0, 0�

π�0, 18 � 44 years, 0, 0, 0, 0, 0�


π�0,' 60 years, 0, 0, 0, 0, 0� � exp�uo � urAGEx�' 60 years��
�urAGEx�' 60 years� � log � π�0,' 60 years, 0, 0, 0, 0, 0�

π�0, 18 � 44 years, 0, 0, 0, 0, 0�

C.2.4 urSEX,AGEx

π�female, 45 � 59 years, 0, 0, 0, 0, 0� � exp�uo � urSEXx�female� � urAGEx�45 � 59 years�
�urSEX,AGEx�female, 45 � 59 years��
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�urSEX,AGEx�female, 45 � 59 years��
� log �π�female, 45 � 59 years, 0, 0, 0, 0, 0� � π�male, 18 � 44 years, 0, 0, 0, 0, 0�

π�female, 18 � 44 years, 0, 0, 0, 0, 0� � π�male, 45 � 59 years, 0, 0, 0, 0, 0�

C.3 Estimates for the u-terms

Based on Equation (4), we have computed all estimates for the incorporated u-terms.
They are displayed in the following tables, separated on the data used for estimation.

Table 2: Estimated coefficients û
A>B

concerning the common variables X, estimated on
A>B.

variable name(s) category û
A>B

o (intercept) 5.1896
EMPLOYED unemployed -0.6674

AGE 45 � 59 years -0.0973
AGE ' 60 years -1.5395
SEX female -0.0800

EMPLOYED : AGE unemployed : 45 � 59 years -0.6129
EMPLOYED : AGE unemployed : ' 60 years 2.3009

Table 3: Estimated coefficients û
A

concerning the common variables X and the specific
variables Y , estimated on A.

variable name(s) category û
A

o (intercept) 3.2315
SEX female -1.0673
AGE 45 � 59 years -0.2576
AGE ' 60 years -2.1091

ALCOHOL never -0.9116
SMOKE never smoked -0.1719
SMOKE smoker -0.0782

EMPLOYED unemployed -0.6397
SEX : AGE female : 45 � 59 years -0.1560
SEX : AGE female : ' 60 years -0.3784

SEX : ALCOHOL female : never 1.1629
AGE : ALCOHOL 45 � 59 years : never 0.2623
AGE : ALCOHOL ' 60 years : never 1.0845

SEX : SMOKE female : never smoked 0.9471
SEX : SMOKE female : smoker 0.1169

AGE : EMPLOYED 45 � 59 years : unemployed -0.7979
AGE : EMPLOYED ' 60 years : unemployed 2.2951

SEX : AGE : ALCOHOL female : 45 � 59 years : never 0.2749
SEX : AGE : ALCOHOL female : ' 60 years : never 0.0636
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Table 4: Estimated coefficients û
B

concerning the common variables X and the specific
variables Z, estimated on B.

variable name(s) category û
B

o (intercept) 2.5522
SEX female 0.2933

SPORT often 0.4878
EMPLOYED unemployed -0.6993

AGE 45 � 59 years 0.2209
AGE ' 60 years -0.8103

DOCTOR seldom or never 0.3646
SEX : SPORT female : often -0.5702

EMPLOYED : AGE unemployed : 45 � 59 years -0.4393
EMPLOYED : AGE unemployed : ' 60 years 2.3137

AGE : DOCTOR 45 � 59 years : seldom or never -0.5433
AGE : DOCTOR ' 60 years : seldom or never -1.4249

C.4 Results with two additional edges in the graph

We have also analyzed the statistical matching results after adding the following two
(substantively plausible) further edges in the Markov network: �AGE, SMOKE�, and�DOCTOR,EMPLOYED�. Figure 5 shows the resulting graph, and Figure 6 the bivari-
ate corrected contingency coefficients computed on basis of this network structure. The
results indicate that the structure learning algorithm has a considerable impact on the
statistical matching results. This effect should be examined in detail in future studies.
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Figure 5: Markov network with two additional edges in between the specific variables and
the common variables.
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Figure 6: Markov network with two additional edges in between the specific variables and
the common variables.
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