Original Articles

Increased Plasma Levels of a Rapid Inhibitor of Tissue Plasminogen Activator in Young Survivors of Myocardial Infarction 1557
ANDERS HAMSTEN, BJÖRN WIMAN, ULF DE FAIRE, and MARGARETA BLOMBACK

Replication of Epstein–Barr Virus within the Epithelial Cells of Oral “Hairy” Leukoplakia, an AIDS-Associated Lesion 1564
JOHN S. GREENSPAN, DEBORAH GREENSPAN, EVELYNE T. LENNETTE, DONALD I. ABRAMS, MARCUS A. CONANT, VIBEKE PETERSEN, and U. KARL FREENE

Stimulation of F-Cell Production in Patients with Sickle-Cell Anemia Treated with Cytarabine or Hydroxyurea 1571
ROBERT VEITH, RENZO GALANELLO, THALIA PAPAYANNOPOULOU, and GEORGE STAMATOYANNOPoulos

Long-Term Treatment of Acromegaly with the Somatostatin Analogue SMS 201-995 .. 1576
STEVEN W. J. LAMBERTS, PIET UITTERLINDEN, LOUIS VERSCHOOR, KRIJN J. VAN DONGEN, and EMILIO DEL POZO

Improved Neurologic Function after Long-Term Correction of Vitamin E Deficiency in Children with Chronic Cholestasis .. 1580
RONALD J. SOROL, MARY ANNE GUGGENHEIM, SUSAN T. IANNACCONE, PAUL E. BARKHAUS, CHRISTOPHER MILLER, ARNOLD SILVERMAN, WILLIAM F. BALISTRERI, and JAMES E. HEUBI

Special Article

The Prospects for and Pathways toward a Vaccine for AIDS 1586
DONALD P. FRANCIS and JOHN C. PETRICCIANI

Medical Intelligence

RONALD A. MALT

Case Records of the Massachusetts General Hospital

A 78-Year-Old Woman with Bilateral Renal Masses 1596
HOWARD M. POLLACK and ROBERT H. YOUNG

Editorial

A New Treatment for an Old Disease 1604
WILLIAM DAUGHADAY

Correspondence

The Fate of Anatoly Koryagin 1605
Infrequency of Isolation of HTLV-III Virus from Saliva in AIDS 1606
HTLV-III Exposure during Cardiopulmonary Resuscitation 1606
Prenatal Diagnosis of Hereditary Protein C Deficiency 1607
First-Trimester Diagnosis of Maple Syrup Urine Disease on Intact Chorionic Villi 1608
Acute Fatty Liver of Pregnancy 1608
Reduction of Temperature and Lithium Poisoning 1609
The Importance of Accurate and Precise Aluminum Levels 1609
Plasma Atrial Natriuretic Factor in Patients with Cirrhosis 1609
Radon Daughters and Lung Cancer 1610
Lymphomatous ALL with Abnormalities of the Short Arm of Chromosome 9 1611
Tales of the Ampulla of Vater: I 1612
A Plea for Full Information about Drug Administration 1612
The Cigarette Pack Expands 1612
Bearing the News 1613

Book Reviews 1613

Notices 1616

Correction

Association of Epstein–Barr Virus with Lethal Midline Granuloma 1616
PLASMA ATRIAL NATRIURETIC FACTOR
IN PATIENTS WITH CIRRHOSIS

To the Editor: Despite intensive study, mechanisms of disturbed renal sodium handling in patients with cirrhosis of the liver have not been completely elucidated. Evidence that hyperaldosteronism can-
not totally account for the retention of sodium and water in cirrhosis has prompted an increasing interest in other hormonal systems.\(^1\) Within the past several years the existence of a circulating natriuretic hormone\(^2\) has been proposed. The inability to measure and define this putative natriuretic hormone adequately, however, has impeded advances in investigating its role.\(^3\)

Recently, the atrial natriuretic factors have emerged as novel regulatory peptides with natriuretic, diuretic, and smooth-muscle-relaxant properties.\(^4\) We have demonstrated the occurrence of the alpha-human atrial natriuretic factor — the authentic 28-amino acid-residue portion of the precursor hormone in human plasma\(^5\) — and have observed elevated levels of atrial natriuretic factor in patients with hypertension\(^6\) and patients with congestive heart failure (Arendt RM, et al.: unpublished data). Here, we present data on plasma levels and the structure of atrial natriuretic factor in patients with cirrhosis.

Nineteen patients with cirrhosis were evaluated; ascites was not evident in nine, was moderate in five, and was tense in five. The patients with ascites received spironolactone (100 to 400 mg daily by mouth). Twenty patients with no evidence of cardiovascular, renal, pulmonary, or gastrointestinal diseases served as controls. Measurement and molecular-weight analysis of plasma atrial natriuretic factor were performed as previously described.\(^7\) Plasma levels of atrial natriuretic factor were significantly higher in the patients with cirrhosis than in controls (5.9 to 29.1 vs. 3.5 to 18.3 fmol per milliliter; median, 13.2 vs. 9.6 \(P<0.05\), two-tailed Mann-Whitney test). Concentrations in the patients with tense ascites ranged from 7.4 to 16.5 fmol per milliliter and did not differ from values in the other cirrhotic patients. After spironolactone was discontinued in the patients with ascites, atrial natriuretic factor increased by an average of 47 per cent.

It has been hypothesized that an inability to elaborate a natriuretic hormone adequately contributes to sodium retention in cirrhosis.\(^1\) However, plasma levels of atrial natriuretic factor in our cirrhotic patients were found to be even higher than normal. Moreover, the increase after discontinuation of spironolactone treatment does not indicate impaired release of atrial natriuretic factor in cirrhosis. This finding supports the opinion that the postulated natriuretic hormone found to be decreased in patients with cirrhosis is not identical with atrial natriuretic factor.\(^8\)

Despite normal or elevated plasma levels of atrial natriuretic factor, structural defects of this peptide could be responsible for diminished natriuresis in cirrhotic patients. Different processing of the precursor hormone\(^9\) might result in peptides with less diuretic and natriuretic effect. High-performance gel-permeation chromatography, however, has not revealed the existence of precursor hormones. Neither gamma-human atrial natriuretic factor — the N-terminal-extended fragment containing alpha-human atrial natriuretic factor — nor other precursors could be detected. Thus, we have found no evidence for absolute deficiency or abnormal processing of atrial natriuretic factor in cirrhosis.

ALEXANDER L. GERBES, M.D., REINER M. ARENDT, M.D., DETLEF RITTER, DIETER JÜNGST, M.D., JOSEF ZÄHRINGER, M.D., AND GUSTAV PAUMGARTNER, M.D.

8000 Munich 70, Klinikum Grosshadern University of Munich