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Abstract

Pretraining deep neural network architec-
tures with a language modeling objective has
brought large improvements for many natu-
ral language processing tasks. Exemplified by
BERT, a recently proposed such architecture,
we demonstrate that despite being trained on
huge amounts of data, deep language models
still struggle to understand rare words. To fix
this problem, we adapt Attentive Mimicking,
a method that was designed to explicitly learn
embeddings for rare words, to deep language
models. In order to make this possible, we
introduce one-token approximation, a proce-
dure that enables us to use Attentive Mimick-
ing even when the underlying language model
uses subword-based tokenization, i.e., it does
not assign embeddings to all words. To evalu-
ate our method, we create a novel dataset that
tests the ability of language models to capture
semantic properties of words without any task-
specific fine-tuning. Using this dataset, we
show that adding our adapted version of At-
tentive Mimicking to BERT does substantially
improve its understanding of rare words.

1 Introduction

Distributed representations of words are a key
component of many natural language processing
(NLP) systems. In particular, deep contextual-
ized representations learned using an unsupervised
language modeling objective (Peters et al., 2018)
have led to large performance gains for a variety
of NLP tasks. Very recently, several authors have
proposed to not only use language modeling for
feature extraction, but to fine-tune entire language
models for specific tasks (Radford et al., 2018a;
Howard and Ruder, 2018). Taking up this idea,
Devlin et al. (2018) introduced BERT, a bidirec-
tional language model based on a transformer ar-
chitecture (Vaswani et al., 2017) that has achieved
a new state-of-the-art for several NLP tasks.

Q: A lime is a .
A: lime, lemon, fruit
Q: A bicycle is a .
A: bicycle, motorcycle, bike

Q: A kumquat is a .
A: noun, horse, dog
Q: A unicycle is a .
A: structure, unit, chain

Table 1: Example queries and most probable outputs of
BERT for frequent (top) and rare words (bottom)

As demonstrated by Radford et al. (2018b),
it is possible for language models to solve a di-
verse set of tasks to some extent without any form
of task-specific fine-tuning. This can be achieved
by simply presenting the tasks in form of natural
language sentences that are to be completed by
the model. The very same idea can also be used
to test how well a language model understands
a given word: we can “ask” it for properties of
that word using natural language. For example,
a language model that understands the concept of
“guilt” should be able to correctly complete the
sentence “Guilt is the opposite of .” with the
word “innocence”.

The examples in Table 1 show that, according to
this measure, BERT is indeed able to understand
frequent words such as “lime” and “bicycle”: it
predicts, among others, that the former is a fruit
and the latter is the same as a bike. However, it
fails terribly for both “kumquat” and “unicycle”,
two less frequent words from the same domains.
This poor performance raises the question whether
deep language models generally struggle to under-
stand rare words and, if so, how this weakness can
be overcome.

To answer this question, we create a novel
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dataset consisting of natural language queries for
properties of words with varying frequencies. This
dataset consists of (i) natural language patterns
such as

<W> is a .

where <W> is a placeholder for a word to be inves-
tigated, and (ii) corresponding pairs of words and
targets obtained using semantic relations extracted
from WordNet (Miller, 1995).

Using this dataset, we then show that BERT
indeed fails to understand many rare words. To
overcome this limitation, we propose to apply At-
tentive Mimicking (Schick and Schütze, 2019b),
a method that allows us to explicitly learn high-
quality representations for rare words. A prereq-
uisite for using this method is to have high-quality
embeddings for as many words as possible, be-
cause it is trained to reproduce known word em-
beddings. However, many deep language mod-
els including BERT make use of byte-pair encod-
ing (Sennrich et al., 2015) or similar subword to-
kenization algorithms. Thus, many words are not
represented by a single token but by a sequence
thereof and, accordingly, do not have their own,
separate embeddings.

To solve this problem, we introduce one-token
approximation (OTA), a method that allows us to
approximately infer how the embeddings of arbi-
trary words would look like if they were repre-
sented by a single token. While we apply this
method only to BERT, it can easily be adapted for
other language modeling architectures.

In summary, our contributions are as follows:

• we introduce WordNet Language Model
Probing (WNLaMPro), a novel dataset that
aims to capture the ability of language mod-
els to understand specific words;

• using this dataset, we show that the ability
of BERT to understand words depends highly
on their frequency;

• we define one-token approximation (OTA),
an approach that allows us to obtain embed-
dings for multi-token words that behave sim-
ilar to the sequences of their token embed-
dings;

• we show that OTA enables us to apply Atten-
tive Mimicking (Schick and Schütze, 2019b)
to BERT, resulting in a substantially im-
proved understanding of rare words.

2 Related Work

Using language modeling as a task to obtain con-
textualized representations of words was first pro-
posed by Peters et al. (2018), who train a bidi-
rectional LSTM (Hochreiter and Schmidhuber,
1997) language model for this task and then feed
the so-obtained embeddings into task-specific ar-
chitectures. Several authors extend this idea by
transferring not only word embeddings, but entire
language modeling architectures to specific tasks
(Radford et al., 2018a; Howard and Ruder, 2018;
Devlin et al., 2018). Whereas the GPT model pro-
posed by Radford et al. (2018a) is strictly uni-
directional (i.e., it looks only at the left context to
predict the next word) and the ULMFiT method of
Howard and Ruder (2018) uses a shallow concate-
nation of two unidirectional models, Devlin et al.
(2018) design BERT as a deep bidirectional model
using a transformer architecture and a masked lan-
guage modeling task.

There are roughly two types of approaches
for explicitly learning high-quality embeddings
of rare words: surface-form-based approaches
and context-based approaches. The former use
subword information to infer a word’s meaning;
this includes n-grams (Wieting et al., 2016; Bo-
janowski et al., 2017; Salle and Villavicencio,
2018), morphemes (Lazaridou et al., 2013; Luong
et al., 2013) and characters (Pinter et al., 2017).
On the other hand, context-based approaches take
a look at the words surrounding a given rare word
to obtain a representation for it (e.g. Herbelot
and Baroni, 2017; Khodak et al., 2018). Re-
cently, Schick and Schütze (2019a) introduced the
form-context model, combining both approaches
by jointly using surface-form and context infor-
mation. The form-context model and its Attentive
Mimicking variant (Schick and Schütze, 2019b)
achieve a new state-of-the-art for hiqh-quality rep-
resentations of rare words.

Presenting tasks in the form of natural lan-
guage sentences was recently proposed by Mc-
Cann et al. (2018) as part of their Natural Lan-
guage Decathlon, for which they frame ten differ-
ent tasks as pairs of natural language questions and
answers. They train models on triplets of ques-
tions, contexts and answers in a supervised fash-
ion. An alternative, completely unsupervised ap-
proach proposed by Radford et al. (2018b) is to to
train a language model on a large corpus, present
text specialized for a particular task and then let



the model complete this text. They achieve good
performance on tasks such as reading comprehen-
sion, machine translation and question answering
– without any form of task-specific fine-tuning.

Several existing datasets were designed to an-
alyze the ability of word embeddings to capture
semantic relations between words. For example,
Baroni and Lenci (2011) introduce the BLESS
dataset based on five different semantic relations
– such as hyponymy and hypernymy –, compiled
from multiple sources. Weeds et al. (2014) also
create a dataset for semantic relations based on
hypernyms and hyponyms using WordNet (Miller,
1995). These datasets differ from WNLaMPro in
two important respects: (i) they focus on frequent
words by filtering out infrequent ones, whereas we
explicitly want to analyze rare words, and (ii) they
do not provide natural language patterns but either
directly evaluate (uncontextualized) word embed-
dings using a similarity measure such as cosine
distance or frame the task of identifying the rela-
tionship between two words as a supervised task.

3 Attentive Mimicking

Attentive Mimicking (AM) (Schick and Schütze,
2019b) is a method that, given a set of d-
dimensional high-quality embeddings for frequent
words, can be used to infer embeddings for infre-
quent words that are appropriate for the given em-
bedding space. AM is an extension of the form-
context model (Schick and Schütze, 2019a).

The key idea of the form-context model is to
compute two distinct embeddings per word, where
the first one exclusively uses the word’s surface-
form and the other the word’s contexts, i.e., sen-
tences in which the word was observed. Given a
word w and a set of contexts C, the surface-form
embedding vform

(w,C) ∈ Rd is obtained by averaging
over learned embeddings of all n-grams in w; the
context embedding vcontext

(w,C) ∈ Rd is the average
over the known embeddings of all context words.

The final representation v(w,C) of w is then
a weighted sum of form embeddings and trans-
formed context embeddings:

v(w,C) = α ·Avcontext
(w,C) + (1− α) · vform

(w,C)

where A is a d × d matrix and α is a function of
both embeddings, giving the model a chance to de-
cide when to rely on the word’s surface form and
when it is preferable to use its contexts. Specifi-

cally, Schick and Schütze (2019a) propose

α = σ(u>[vcontext
(w,C) ; vform

(w,C)] + b)

with u ∈ R2d, b ∈ R being learnable parameters
and σ denoting the sigmoid function.

While the form-context model treats all con-
texts equally, AM extends it with a self-attention
mechanism that is applied to all contexts, allowing
the model to distinguish informative contexts from
uninformative ones. The attention weight of each
context is determined based on the idea that given
a word w, two informative contexts C1 and C2

(i.e., contexts from which the meaning ofw can be
inferred) resemble each other more than two ran-
domly chosen contexts in whichw occurs. In other
words, if many contexts for a word w are similar
to each other, then it is reasonable to assume that
they are more informative with respect to w than
other contexts. Schick and Schütze (2019b) define
the similarity between two contexts as

s(C1, C2) =
(MvC1) · (MvC2)>√

d

with M ∈ Rd×d a learnable parameter and vC de-
noting the average of embeddings for all words in
a context C. The weight of a context is then de-
fined as

ρ(C) ∝
∑
C′∈C

s(C,C ′) .

Similar to earlier models (e.g. Pinter et al.,
2017), the model is trained through mimicking.
That is, we randomly sample words w and con-
texts C from a large corpus and, given w and C,
ask the model to mimic the original embedding of
w, i.e., to minimize the squared Euclidean distance
between the original embedding and v(w,C).

3.1 AM+CONTEXT

As we found in preliminary experiments that AM
focuses heavily on the word’s surface form – an
observation that is in line with results reported
by Schick and Schütze (2019a) –, in addition
to the default AM configuration of Schick and
Schütze (2019b), we investigate another configu-
ration AM+CONTEXT, which pushes the model to
put more emphasis on a word’s contexts.1 This
is achieved by (i) increasing the minimum num-
ber of sampled contexts for each training instance

1Our implementation is publicly available at https://
github.com/timoschick/form-context-model

https://github.com/timoschick/form-context-model
https://github.com/timoschick/form-context-model


from 1 to 8 and (ii) introducing n-gram dropout:
during training, we randomly remove 10% of all
surface-form n-grams for each training instance.

4 One-Token Approximation

As AM is trained through mimicking, it must be
given high-quality embeddings of many words to
learn how to make appropriate use of form and
context information. Unfortunately, as many deep
language models make use of subword-based tok-
enization, they assign embeddings to comparably
few words. To overcome this limitation, we de-
fine one-token approximation (OTA). OTA finds
an embedding for a multi-token word or phrase w
that is similar to the embedding that w would have
received if it had been a single token.

Let Σ denote the set of all characters and
T ⊂ Σ∗ the set of all tokens used by the lan-
guage model. Furthermore, let t : Σ∗ → T ∗ be
the tokenization function that splits each word
into a sequence of tokens and e : T → Rd the
model’s token embedding function, which we ex-
tend to sequences of tokens in the natural way as
e([t1, . . . , tn]) = [e(t1), . . . , e(tn)].

We assume that the language model internally
consists of lmax hidden layers and given a sequence
of token embeddings e = [e1, . . . , en], we denote
by hli(e) the contextualized representation of the
i-th input embedding ei at layer l. Given two ad-
ditional sequences of left and right embeddings `
and r, we define

h̃li(`, e, r) =

{
hli(`; e; r) if i ≤ |`|
hli+|e|(`; e; r) if i > |`|

That is, we “cut out” the sequence e and
h̃li(`, e, r) is then the embedding of the i-th input
at layer l, either from ` (if position i is before e)
or from r (if position i is after e).

To obtain an embedding for an arbitrary word
w ∈ Σ∗, we require a set of left and right con-
texts C ⊂ T ∗ × T ∗. Given one such con-
text c = (t`, tr), the key idea of OTA is to
search for the embedding v ∈ Rd whose in-
fluence on t` and tr is as similar as possi-
ble to the influence of w on both sequences.
That is, when we apply the language model
to the sequences s1 = [e(t`); e(t(w)); e(tr)] and
s2 = [e(t`); [v]; e(tr)], we want the contextual-
ized representations of t` and tr in s1 and s2 to
be as similar as possible.

Formally, we define the one-token approxima-
tion of w as

OTA(w) =

arg min
v∈Rn

∑
(t`,tr)∈C

d(e(t(w)), [v] | e(t`), e(tr))

where

d(e, ẽ | `, r) =

lmax∑
l=1

|`|+|r|∑
i=1

dli(e, ẽ | `, r)

dli(e, ẽ | `, r) = ‖h̃li(`, e, r)− h̃li(`, ẽ, r))‖2 .

d(e, ẽ | `, r) is differentiable with respect to ẽ,
so we can use gradient-based optimization to esti-
mate OTA(w). This idea resembles the approach
of Le and Mikolov (2014) to infer paragraph vec-
tors for sequences of arbitrary length.

With regards to the choice of contexts C, we de-
fine two variants, both of which do not require any
additional information: STATIC and RANDOM. For
the STATIC variant, C consists of a single context

(t`, tr) = ([CLS], .[SEP])

with [CLS] and [SEP] being BERT’s classifica-
tion and separation token, respectively.

As the meaning of a word can often better
be understood by looking at its interaction with
other words, in the RANDOM variant, each pair
(t`, tr) ∈ C is of the form

(t`, tr) = ([CLS] t`, tr .[SEP])

where t` and tr are uniformly sampled tokens
from T , with the restriction that each of them rep-
resents an actual word.

5 WordNet Language Model Probing

In order to assess the ability of language models to
understand words as a function of their frequency,
we introduce the WordNet Language Model Prob-
ing (WNLaMPro) dataset.2 This dataset consists
of two parts:

• a set of triplets (k, r, T ) where k is a key
word, r is a relation and T is a set of target
words;

• a set of patterns P (r) for each relation r,
where each pattern is a sequence of tokens
that contains exactly one key placeholder
<W> and one target placeholder .

2WNLaMPro is publicly available at https:
//github.com/timoschick/am-for-bert

https://github.com/timoschick/am-for-bert
https://github.com/timoschick/am-for-bert


Key Rel. Targets

new ANT old
general ANT specific
local ANT global

book HYP product, publication, . . .
basketball HYP game, ball, sport, . . .
lingonberry HYP fruit, bush, berry, . . .

samosa COH pizza, sandwich, salad, . . .
harmonium COH brass, flute, sax, . . .
immorality COH crime, evil, sin, fraud, . . .

simluation COR simulation
chepmistry COR chemistry
pinacle COR pinnacle

Table 2: Example entries from WNLaMPro

Rel. Patterns

ANT <W> is the opposite of .
<W> is not .
someone who is <W> is not .
something that is <W> is not .
“ <W> ” is the opposite of “ ” .

HYP <W> is a .
a <W> is a .
“ <W> ” refers to a .
<W> is a kind of .
a <W> is a kind of .

COH <W> and .
“ <W> ” and “ ” .

COR “ <W> ” is a misspelling of “ ” .
“ <W> ” . did you mean “ ” ?

Table 3: Patterns for all relations of WNLaMPro. The
indefinite article “a” used in the HYP patterns is re-
placed with “an” as appropriate.

The dataset contains four different kinds of re-
lations: ANTONYM (ANT), HYPERNYM (HYP),
COHYPONYM (COH) and CORRUPTION (COR).
Examples of dataset entries for all relations are
shown in Table 2; the set of patterns for each rela-
tion can be seen in Table 3.

For all but the last relation, we use WordNet
(Miller, 1995) to obtain triplets (k, r, T ). To this
end, we denote by V the vocabulary of all words
that occur at least once in the Westbury Wikipedia
Corpus (WWC) (Shaoul and Westbury, 2010) and
match the regular expression [a-z]*. The set
of all tokens in the BERT vocabulary is denoted
by T . For all triplets, we restrict the set of target
words to single-token words from T .

Antonyms For each adjective w ∈ V , we col-
lect all antonyms for its most frequent WordNet
sense in a set A and, if A ∩ T 6= ∅, add the tuple
(w, ANTONYM, A ∩ T ) to the dataset.

Subset Size Mean Targets

Rel. R M F R M F

ANT 41 59 266 1.0 1.0 1.0
HYP 1191 1785 4750 4.0 3.9 4.2
COH 1960 2740 6126 26.0 26.0 25.0
COR 2880 – – 1.0 – –

Table 4: The number of entries and mean number of
target words for the RARE (R), MEDIUM (M), and FRE-
QUENT (F) subsets of WNLaMPro.

Hypernyms For each noun w ∈ V , let H be
the set of all hypernyms for its two most frequent
senses. As direct hypernyms are sometimes highly
specific (e.g., the hypernym of “dog” is “canine”),
we include all hypernyms with a maximum path
distance to w of 3. To avoid the inclusion of very
general terms such as “object” or “unit”, we re-
strict H to hypernyms that have a minimum depth
of 6 in the WordNet hierarchy. If |H ∩T | ≥ 3, we
add (w, HYPERNYM, H ∩T ) to the dataset. How-
ever, if |H ∩ T | > 20, we keep only the 20 most
frequent target words.

Cohyponyms For each noun w ∈ V , we com-
pute its set of hypernyms H as described above
(but with a maximum path distance of 2), and de-
note by C the union of all hyponyms for each hy-
pernym in H with a maximum distance of 4. Let
C ′ = (C \ {w}) ∩ T . If |C ′| ≥ 10, we add the
corresponding tuple (w, COHYPONYM, C ′) to the
dataset. If |C ′| > 50, we keep only the 50 most
frequent target words.

Corruptions The purpose of this final relation
is to investigate a model’s ability to deal with
corruptions of the input that may, for example,
be the result of typing errors or errors in optical
character recognition. To obtain corrupted words,
we take a set of frequent words from V ∩ T and
randomly apply corruptions similar to the ones
used by Hill et al. (2016) and Lee et al. (2018),
but we apply them on a character level instead
of a word level. In concrete terms, given a word
w = c1 . . . cn, we create a corrupted version w̃
by either (i) inserting a random character c at a
random position i ∈ [0, n + 1], (ii) removing
a character at a random position i ∈ [1, n] or
(iii) switching the characters ci and ci+1 for a
random position i ∈ [0, n − 1]. We then add
(w̃, CORRUPTION, w) to the dataset.

We split the dataset into a development and a



test set. For each relation, we randomly se-
lect 10% of all entries to be included in the
development set; the remaining 90% form the
test set. We purposefully do not provide a
training set as WNLaMPro is meant to be used
without task-specific fine-tuning. We also de-
fine three subsets of WNLaMPro based on key
word counts in WWC: WNLaMPro-RARE, con-
taining all words that occur less than 10 times,
WNLaMPro-MEDIUM, containing all words that
occur 10 or more times, but less than 100 times,
and WNLaMPro-FREQUENT, containing all re-
maining words. Statistics about the sizes of these
subsets and the respective mean number of target
words per relation are listed in Table 4.

6 Experiments

6.1 One-Token Approximation

Before looking at WNLaMPro, we investigate the
ability of OTA to come up with high-quality ap-
proximations of word embeddings. To infer em-
beddings for multi-token words, we initialize the
OTA vector v as a zero vector (Other initialization
strategies we tried did not perform better). To op-
timize v, we use the Adam optimizer (Kingma and
Ba, 2015) with an initial learning rate of 10−3.

For deciding whether to use the STATIC or RAN-
DOM set of training contexts and for finding the
optimal number of iterations, we form a develop-
ment set by randomly selecting 1000 one-token
words from the BERT vocabulary. For each word
w in this set, we measure the quality of its ap-
proximation OTA(w) by comparing it to its BERT
embedding e(w), using cosine distance. For both
context variants, we search for the ideal number
of iterations in the range {100 · i | 1 ≤ i ≤ 50}.
Figure 1 shows that, given a sufficient number
of iterations, RANDOM consistently outperforms
STATIC. For the RANDOM variant, the average co-
sine distance reaches its minimum at 4000 itera-
tions. We therefore use RANDOM contexts with
4000 iterations in our experiments.

6.2 Evaluation of BERT on WNLaMPro

We first evaluate BERT – both BERTBASE and
BERTLARGE (Devlin et al., 2018)3 – on WNLaM-
Pro test to get an impression of (i) the model’s
general ability to understand the presented phrases

3We use the implementation of https://github.
com/huggingface/pytorch-pretrained-BERT
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Pro for BERTBASE, BERTLARGE and their OTA variants

and (ii) the difference in performance for rare and
frequent words.

To measure the performance of a language
model on WNLaMPro, we proceed as follows. Let
x = (k, r, T ) be a dataset entry, t ∈ T a target
word, p ∈ P (r) a pattern and p[k] the same pat-
tern where the key placeholder <W> is replaced by
k. Furthermore, let (a1, . . . , an) be the model’s re-
sponses (sorted in descending order by their prob-
ability) when it is asked to predict a replacement
word for the target placeholder in p[k]. Then there
is some j such that aj = t. We denote with

rank(p[k], t) = j

precisioni(p[k], T ) =
|{a1, . . . , ai} ∩ T |

i

the rank of t and precision at i when the model is

https://github.com/huggingface/pytorch-pretrained-BERT
https://github.com/huggingface/pytorch-pretrained-BERT


queried with p[k].4 We may then define:

rank(x) = min
p∈P (r)

min
t∈T

rank(p[k], t)

precisioni(x) = max
p∈P (r)

precisioni(p[k], T )

That is, for each triplet x, we compute the low-
est rank and highest precision of x that can be
achieved using any pattern. We do so because our
interest is not in testing the model’s ability to un-
derstand a given pattern, but its ability to under-
stand a given word: by letting the model choose
the best pattern for each word, we minimize the
probability that its response is of poor quality sim-
ply because it did not understand a given pattern.

For each of BERTBASE and BERTLARGE, we
also try a variant where all key words are re-
placed with their corresponding one-token approx-
imations. We do so to get an understanding of
how OTA performs for words consisting of mul-
tiple tokens. The mean reciprocal rank (MRR)
over the entire WNLaMPro can be seen in Fig-
ure 2 for both model configurations with and with-
out OTA. While BERTLARGE consistently outper-
forms BERTBASE, for both models the score de-
pends heavily on the word frequency: the MRR on
WNLaMPro-RARE is 32% and 36% of the MRR
on WNLaMPro-FREQUENT for the base and large
configurations, respectively. The OTA variants
perform slightly worse than the original models,
but the difference is only marginal, allowing us
to conclude that OTA is indeed able to infer sin-
gle embeddings of decent quality for multi-token
words.

The general trend that the understanding of a
word increases with its frequency becomes even
more obvious when looking at Figure 3, where the
distribution of ranks for the COHYPONYM subset
of WNLaMPro is shown as a function of WWC
word counts. As can be seen, for words that oc-
cur ≤ 256 (28) times in WWC, the most proba-
ble rank interval is [64, 128). With more observa-
tions, BERT’s understanding of words drastically
improves: more than 50% of all words with more
than 256 (28) observations achieve a rank of≤ 16.

6.3 Attentive Mimicking
We train two variants of Attentive Mimicking:
the default configuration of Schick and Schütze
(2019b) and the AM+CONTEXT configuration

4We only look at the first 100 system responses and set
rank(p[k], t) =∞ if t /∈ {a1, . . . , a100}.
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MRR

Model 5 Epochs 10 Epochs

AM 0.258 0.253
AM+CONTEXT 0.262 0.276

AM − OTA 0.219 0.220
AM − form 0.138 0.133
AM − context 0.227 0.225

Table 5: Results on WNLaMPro dev for various con-
figurations of AM

(§3.1) that puts more emphasis on contexts. To de-
cide which method to apply and to determine the
optimal number of training epochs, we use WN-
LaMPro dev. As evaluating AM on WNLaMPro
is a time-consuming operation, the only values we
try are 5 and 10 epochs; furthermore, we perform
hyperparameter optimization only for BERTBASE

and take the same parameters for BERTLARGE. As
proposed by Schick and Schütze (2019a), we train
AM on all words that occur at least 100 times
in WWC; for each such word that is represented
by multiple tokens in the BERT vocabulary, we
simply use its OTA as a target vector to be mim-
icked. Importantly, we train AM on contexts from
WWC (containing slightly less than 109 words),
whereas the original BERT model was trained on
the concatenation of BooksCorpus (Zhu et al.,
2015) (containing 0.8 · 109 words) and a much
larger version of Wikipedia (containing 2.5 · 109

words). As especially for rare words, each occur-
rence may be crucial for obtaining a high-quality
representation, this of course gives BERT a clear



RARE MEDIUM FREQUENT

Set Model MRR P@3 P@10 MRR P@3 P@10 MRR P@3 P@10

ANT

BERTBASE 0.149 0.065 0.025 0.089 0.044 0.021 0.390 0.170 0.061
BERTBASE + AM 0.449 0.167 0.075 0.511 0.176 0.064 0.482 0.195 0.074

BERTLARGE 0.234 0.083 0.044 0.218 0.088 0.036 0.541 0.209 0.081
BERTLARGE + AM 0.529 0.194 0.075 0.558 0.195 0.068 0.570 0.228 0.088

HYP

BERTBASE 0.276 0.122 0.066 0.327 0.151 0.077 0.416 0.204 0.109
BERTBASE + AM 0.300 0.135 0.074 0.343 0.158 0.081 0.377 0.181 0.096

BERTLARGE 0.284 0.128 0.065 0.350 0.169 0.086 0.462 0.226 0.117
BERTLARGE + AM 0.299 0.137 0.074 0.323 0.149 0.079 0.401 0.193 0.101

COH

BERTBASE 0.147 0.065 0.054 0.177 0.089 0.070 0.294 0.150 0.116
BERTBASE + AM 0.213 0.106 0.082 0.213 0.110 0.090 0.262 0.136 0.108

BERTLARGE 0.174 0.085 0.067 0.210 0.109 0.091 0.337 0.183 0.143
BERTLARGE + AM 0.227 0.110 0.087 0.216 0.106 0.089 0.292 0.153 0.121

COR

BERTBASE 0.020 0.007 0.004 – – – – – –
BERTBASE + AM 0.254 0.095 0.038 – – – – – –

BERTLARGE 0.062 0.022 0.012 – – – – – –
BERTLARGE + AM 0.261 0.095 0.038 – – – – – –

Table 6: Performance of both BERT models with and without AM for WNLaMPro test, subdivided by relation and
key word count

advantage over our proposed method.

To understand the influence of OTA on the per-
formance of AM, in addition to the two configura-
tions described above we also try a variant without
OTA. Of course, the training set for this variant
contains only one-token words. To see whether
we actually need both form and context informa-
tion, we additionally investigate the influence of
dropping the context and form parts of AM, re-
spectively.

Table 5 shows results for all model variants on
WNLaMPro dev. We can see that OTA is indeed
helpful for training the model, substantially im-
proving its score. Results for the model variants
using only form or context are in line with the
findings of Schick and Schütze (2019a): it is es-
sential for good performance to use both form and
context. Furthermore, the AM+CONTEXT variant
improves upon the default configuration of AM
and training it for 10 epochs performs better than
5 epochs. Based on these findings, we use only
the AM+CONTEXT variant trained for 10 epochs
in the following experiments.

A detailed comparison of BERT’s performance
with and without Attentive Mimicking can be seen
in Table 6, where the MRR as well as the pre-
cision at 3 and 10 are shown for each relation
and frequency. As can be seen, AM substantially
improves the score for rare words, regardless of
whether we use it in combination with BERTBASE

or BERTLARGE. This allows us to conclude that
indeed, AM does help BERT to get a better under-
standing of rare words. For the ANTONYM subset,
the embeddings obtained using AM even improve
scores for frequent words. The benefit of applying
AM for medium frequency words depends largely
on the model being used: for BERTLARGE, using
AM only brings a consistent improvement for the
ANTONYM relation, whereas for BERTBASE, using
AM is always helpful.

7 Conclusion

We have introduced WNLaMPro, a new dataset
that allows us to explicitly investigate the abil-
ity of deep contextualized language models to un-
derstand rare words. Using this dataset, we have
shown that BERT struggles with words if they
are too rare. To address this, we apply Attentive
Mimicking (AM) to deep contextualized word em-
beddings, even if they do not use embeddings on
the word level. To be able to do this, we intro-
duced OTA, an effective method to obtain “single-
token” embeddings for multi-token words. Using
this method, we showed that AM is able to sub-
stantially improve BERT’s understanding of rare
words.

Future work might investigate whether more
complex architectures than AM can bring further
benefit to deep language models; it would also be
interesting to see whether training AM on a larger



corpus – such as the one used for training BERT
by Devlin et al. (2018) – is beneficial. Further-
more, it would be interesting to see the impact of
integrating AM on downstream tasks and whether
our results can also be transferred to other contex-
tualized language models.
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