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Abstract
Count-based word alignment methods, such as
the IBM models or fast-align, struggle on very
small parallel corpora. We therefore present
an alternative approach based on cross-lingual
word embeddings (CLWEs), which are trained
on purely monolingual data. Our main con-
tribution is an unsupervised objective to adapt
CLWEs to parallel corpora. In experiments
on between 25 and 500 sentences, our method
outperforms fast-align. We also show that our
fine-tuning objective consistently improves a
CLWE-only baseline.

1 Introduction

Some parallel corpora, such as the Universal Dec-
laration of Human Rights, are too small to apply
count-based word alignment algorithms.

Sabet et al. (2016) show that integrating mono-
lingual word embeddings into IBM Model 1
(Brown et al., 1990) decreases word alignment er-
ror rate on a parallel corpus of 1000 sentences.
Pourdamghani et al. (2018) exploit monolingual
embedding similarity scores to create synthetic
training data for Statistical Machine Translation
(SMT), and report an increase in alignment F1.

Recent advances have made it possible to cre-
ate cross-lingual word embeddings (CLWEs) from
purely monolingual data (Zhang et al. (2017a),
Zhang et al. (2017b), Conneau et al. (2017),
Artetxe et al. (2018a)). We propose to leverage
such CLWEs for a similarity-based word align-
ment method, which works on corpora as small as
25 sentences. Like Sabet et al. (2016), our method
relies only on monolingual data (to train the em-
beddings) and on the small parallel corpus itself.

Our CLWE-only baseline aligns source and
target words in a parallel corpus if their CLWEs
have maximum cosine similarity. This approach is
independent from the size of the parallel corpus,
but has the following problems:

• Semantics may differ between the embedding
training domain and the parallel corpus.

• CLWEs sometimes fail to discriminate be-
tween words with similar contexts, e.g.,
antonyms.

We therefore propose to fine-tune the CLWEs
on the small parallel corpus using an unsuper-
vised embedding monogamy objective. To eval-
uate the proposed method, we simulate sparse
data settings using Europarl sentences and Bible
verses. Our method outperforms the count-based
fast-align model (Dyer et al., 2013) for corpus
sizes up to 500 (resp., 250) sentences. The
proposed fine-tuning method improves over the
CLWE-only baseline in terms of both precision
and recall.

a) b) c) d)

Figure 1: Schematic representation of the monogamy
objective. a) one-to-one (“monogamous”) alignment:
l(s, t) = 0, b) many-to-many alignment: l(s, t) = 1,
c) one-to-many alignment: l(s, t) = 1, d) minimiz-
ing l(s, t) means making the red nodes more similar
to each other, and less similar to the white nodes.

2 Method

2.1 CLWE-only baseline
Our CLWE-only baseline uses a cross-lingual em-
bedding space derived from purely monolingual
data (Artetxe et al., 2018a). Let D be our small
corpus, and let s (source) and t (target) be parallel
sentences from D. Let clwe(si) and clwe(tj) be
the embedding vectors of tokens si and tj . We
align si to argmaxtj∈t[cos(clwe(si), clwe(tj)].
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Any ties are broken by proximity to the diagonal
of the alignment matrix.

2.2 Fine-tuning method
Intuition. Assume that we have the following
sentence pair: aaa bbb xxx ||| 111 000 222. As-
sume further that we know from CLWEs that aaa
≈ 111 and bbb ≈ 222, but we lack informative
embeddings for 000 and xxx. We may hypothesize
that xxx ≈ 000, as they are the only tokens that
lack translations. We may also hypothesize that
xxx 6≈ 111, xxx 6≈ 222, as 111 and 222 already
have translations of their own.

In the following, we will refer to this principle
as embedding monogamy. We assume that in the
absence of evidence to the contrary, a source em-
bedding should have

• high similarity to one target embedding

• low similarity to other target embeddings1

This principle is related to the IBM Model (Brown
et al., 1990), where Expectation Maximization in-
creases p(f |e) if e and f co-occur in sentences
where f is not explained by other source words.

Embedding monogamy objective. We define
the probability of tj given si as:

p(tj |si, t) =
e

1
τ
cos(clwe(si),clwe(tj))∑

j′ e
1
τ
cos(clwe(si),clwe(tj′ ))

(1)

where τ is a temperature hyperparameter. This
definition is similar to the definition of translation
probability in Artetxe et al. (2018b) and Lample
et al. (2018). But while they normalize over the
vocabulary, we normalize over the target sentence.
As a consequence, the probability of tj depends
not only on si, but also on competitor tokens in t.

With these translation probabilities, we model
a two-step random walker Rs→t→s that starts at
si, steps to a random target word and then to si′ :
rs→t→s
ii′ =

∑len(t)
j=1 p(tj |si, t)p(si′ |tj , s). To max-

imize monogamy, we maximize the entries on the
diagonal of Rs→t→s, i.e., the probability of the
walker returning to its origin. To avoid penaliz-
ing long sentences, we minimize the negative log-
arithm to the base of the source sentence length:
l(s, t) = 1 − loglen(s)

∑len(s)
i=1 rs→t→s

ii . This loss
has the following properties:

1 Of course, this assumption is over-simplistic, as one-to-
n alignments exist (e.g., English not should be similar to both
French ne and pas).

• In a fully “monogamous” situation (see Fig-
ure 1 a), rs→t→s

ii → 1 =⇒ l(s, t)→ 0.

• In a situation where all source words are
equidistant from all target words (see Figure
1 b), rs→t→s

ii = 1
len(s) =⇒ l(s, t) = 1.

Reversing the roles of source and target results
in the following bidirectional loss: Lbi(s, t) =
1
2 [l(s, t) + l(t, s)]. Both terms are necessary, since
a given alignment may appear highly monoga-
mous from the perspective of one sentence but
not the other (especially when there are left-over
words due to a difference in length).

Adding position information. At this point, our
objective ignores word positions, which we know
to be useful from count-based methods (e.g., Dyer
et al. (2013)). Therefore, we add position embed-
dings inside the translation probability equation:

p(tj |si, t) =
e

1
τ
cos[clwe(si)+a(i),clwe(tj)+a(j)]∑

j′ e
1
τ
cos[clwe(si)+a(i),clwe(tj′ )+a(j′)]

where a(i) is a sinusoid embedding vector for
position i (Vaswani et al., 2017). As a result,
word pairs near the diagonal have higher round
trip probabilities initially. Since the monogamy
objective aims to strengthen strong links, simi-
lar position embeddings act as attractors for non-
positional embeddings. Note that we use only the
non-positional embeddings for alignment, as the
position prior is too strong at test time.

Alignment retention objective. In initial exper-
iments, we found that the monogamy objective in-
creases recall but risks losing precision, relative
to the CLWE-only baseline. Therefore, we add
an additional objective that aims to increase round
trip probability for alignments made by the base-
line, but does not influence unaligned words:

Lret(s, t) =
1

2
[lret(s, t) + lret(t, s)]

lret(s, t) = −log

∑
i,j p(tj |si, t)p(si|tj , s)mst

ij∑
i,j m

st
ij

mst
ij = I[(si, tj) ∈ align0]

where align0 is the intersection of the s-to-t and t-
to-s alignments made with the initial CLWEs (see
Section 2.1). Our final loss function is: L(D) =
1
|D|

∑
(s,t)∈D[Lbi(s, t) + αLret(s, t)].



Figure 2: Alignment precision, recall and F1 as a func-
tion of corpus size.

3 Evaluation

We evaluate our model on subsets of different
sizes from the English-German Europarl gold
alignments2 and French-English Bible gold align-
ments (Melamed, 1998)3. We initialize CLWEs
with the unsupervised algorithm of Artetxe et al.
(2018a) on monolingual FastText embeddings
(Bojanowski et al., 2017)4. Fine-tuning is done
in keras, using the adam optimizer (Kingma and
Ba, 2014). We set α = 1.0 and τ = 0.001, and
apply 50% dropout to the embeddings.

We use fast-align (Dyer et al., 2013) as a count-
based baseline, since it outperformed the IBM
models in initial experiments. We symmetrize
alignments by either intersection or the grow-diag-
final-and (GDFA) heuristic (Koehn et al., 2007).
We train fast-align and our fine-tuning method for
500 iterations.

4 Discussion

4.1 Corpus size

The performance of fast-align is highly dependent
on corpus size, which is not surprising, seeing that
it has to infer word semantics from the small cor-
pus alone. The CLWE-only baseline on the other
hand is independent from corpus size, resulting in
decent performance even on 25 parallel sentences.
Importantly, the positive effect of our fine-tuning
method seems to be robust to corpus size, as we
see improvements in F1 for all sizes.

2www-i6.informatik.rwth-aachen.de/
goldAlignment/

3nlp.cs.nyu.edu/blinker/. We consider links
with inter-annotator agreement as sure, others as possible.

4fasttext.cc, top-200000 words per language

4.2 Benefits of fine-tuning

We find that the proposed fine-tuning method has
a positive effect on alignment precision and recall,
relative to the CLWE-only baseline. We assess
some sentence pairs qualitatively to find reasons
for this improvement:

Resolution of ambiguities. Word embeddings
sometimes fail to differentiate between words with
similar contexts, such as antonyms. In Figure
3 (top), our fine-tuning method resolves such an
ambiguity: Here, the initial CLWE of answer is
slightly more similar to German frage (= question)
than to the true translation antwort. Since frage al-
ready has a round trip partner, the monogamy ob-
jective pushes answer away from frage, resulting
in the addition of a correct alignment between an-
swer and antwort.

In-domain word translations. Since word em-
beddings are trained on general-purpose corpora,
CLWEs can fail to reflect domain-specific word
translations. One such example is the transla-
tion of lord as French éternel (≈ “eternal one”)
in Figure 3 (bottom). While the translation
is common in this particular Bible version, the
CLWEs do not reflect it well (cos(lord, éternel) <
cos(wicked, éternel)). Through fine-tuning, and
due to their frequent coocurrence in the small cor-
pus, the similarity between éternel and lord in-
creases enough for a successful alignment.

5 Use case: Aligning the UDHR

In practice, our method would not be applied to
English-German or English-French, as there is no
lack of parallel data for these language pairs. For
a more realistic use case, we align the 50 articles
of the Universal Declaration of Human Rights5 in
Macedonian and Afrikaans. While we do not have
gold alignments for an evaluation, a preliminary
qualitative analysis suggests that our method finds
a reasonable semantic word alignment, while fast-
align mainly predicts the diagonal (see Figure 4
for examples).

6 Related Work

Embeddings for word alignment. Sabet et al.
(2016) reformulate the IBM 1 model to predict
the probability of monolingual target embedding
vectors. They report improvements in AER for

5https://unicode.org/udhr/

www-i6.informatik.rwth-aachen.de/goldAlignment/
www-i6.informatik.rwth-aachen.de/goldAlignment/
nlp.cs.nyu.edu/blinker/
fasttext.cc


Figure 3: Similarity matrices before (left) and after (right) fine-tuning. Red dots: our alignment (intersection).
White squares: sure gold alignments. Empty white squares: possible gold alignments.

English-French on parallel corpora between 1K
and 40K sentences, as well as improvements in
precision on words with frequency ≤ 20.

Pourdamghani et al. (2018) exploit similar-
ity scores from monolingual embeddings to cre-
ate synthetic training data for an SMT sys-
tem. They report improvements for English-
Chinese, English-Arabic and English-Farsi align-
ment (∆F1 = 0.2%, 0.5%, 1.7%). Their small-
est parallel corpus has 500K sentences, while we
align a few dozen to hundred sentences.

Two-step round trip objective. Our use of two-
step round trips is inspired by Haeusser et al.
(2017). They optimize domain adaptation using a
random walker that steps from image representa-
tions with known labels to image representations
with unknown labels and back. While their tar-
get is a uniform distribution over images with the
same label as the image of origin, ours is to have
maximum probability mass on the word of origin.

Low resource CLWEs. Our approach relies on
the availability of high-quality CLWEs. Wada
and Iwata (2018) report that in settings with lit-

tle monolingual data (< 1M sentences), mapping
approaches like Artetxe et al. (2018a) are not ro-
bust. Instead, they propose to learn CLWEs from a
language model trained on the union of two small
monolingual corpora. Their work is orthogonal
to our fine-tuning method, since we make no as-
sumptions about how the CLWEs are created.

7 Conclusion

We have presented a similarity-based method to
produce word alignments for very small paral-
lel corpora, using monolingual data and the cor-
pus itself. Our CLWE-only baseline uses an un-
supervised mapping of monolingual embeddings
(Artetxe et al., 2018a). Our main contribution is
an unsupervised embedding monogamy objec-
tive, which adapts CLWEs to the small parallel
corpus. Our model outperforms count-based fast-
align (Dyer et al., 2013) on parallel corpora up to
500 (resp., 250) sentences.

We expect that our method will be useful in low-
resource settings, e.g., when aligning the Univer-
sal Declaration of Human Rights.



Figure 4: Articles 14(1) and 26(3) from the UDHR. Similarity matrices before (left) and after (right) fine-tuning.
Red dots: our alignment (intersection). Red boxes: fast-align (intersection). White squares: sure gold alignments.
Empty white squares: possible gold alignments (by the authors).
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