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1 ABSTRACT

The development of a new protein drug typically starts with the design, expression and biophysical 

characterization of many different protein constructs. The initially high number of constructs is radically 

reduced to a few candidates that exhibit the desired biological and physicochemical properties. This 

process of protein expression and characterization to find the most promising molecules is both 

expensive and time-consuming. Consequently, many companies adopt and implement philosophies, e.g. 

platforms for protein expression and formulation, computational approaches, machine learning, to save 

resources and facilitate protein drug development. Inspired by this, we propose the use of interpretable 

artificial neuronal networks (ANNs) to predict biophysical properties of therapeutic monoclonal antibodies 

i.e. melting temperature Tm, aggregation onset temperature Tagg, interaction parameter kD as a function of 

pH and salt concentration from the amino acid composition. Our ANNs were trained with typical early-

stage screening datasets achieving high prediction accuracy. By only using the amino acid composition, 

we could keep the ANNs simple which allows for high general applicability, robustness and 

interpretability. Finally, we propose a novel “knowledge transfer” approach, which can be readily applied 

due to the simple algorithm design, to understand how our ANNs come to their conclusions.
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2 INTRODUCTION

Therapeutic proteins play a crucial role in the treatment for various diseases.1-3 Currently, there are over 

660 biologics with market approval worldwide. Due to the recent advances in protein engineering, it is 

nowadays possible to fine-tune desirable protein characteristics to find the optimal balance between 

efficacy, safety, stability and manufacturability. The development of a protein drug is an extremely 

complex process involving around 5000 critical steps4. During the whole development process, the 

stability of a protein drug is a major concern. The choice of the formulation can drastically affect the 

conformational, the colloidal and the chemical stability and all three have to be controlled in the final 

product.  The high number of formulation parameters and conditions to be screened requires a significant 

investment of resources and time. In addition, it has been shown that only 8% of the initially investigated 

new drug candidates reach license application.5 It is therefore of significant importance to efficiently use 

the limited resources and finally to improve the drug-candidate success rate. Nowadays, high-throughput 

methods are commonly used during the early stage of protein development to select promising 

candidates and their formulations that will be put forward to undergo forced degradation studies and real-

time stability tests.6-11 In this work, we applied Artificial Neural Networks (ANNs) to the most successful 

class of therapeutic proteins, the monoclonal antibodies (mAbs). ANNs are biologically inspired computer 

programs designed to simulate how an animal brain processes information, gathering knowledge by 

detecting the patterns and relationships through a trial and error procedure. There has been an increasing 

interest in ANNs lately since computers can now process complex shallow ANNs in minutes. The speed 

at which ANNs can be computed and the fact that big databases are readily available makes this 

approach very attractive. In recent years, this method has been applied in the pharmaceutical research 

area for different purposes.12-19 Supervised ANNs were used as an alternative to response surface 

methodology20 while unsupervised networks are an alternative to principal component analysis. Analysis 

of design of experiments is also possible by ANNs.21 The great advantage of ANNs over classical 

statistical modeling is that the former can solve highly non-linear problems often encountered in 

pharmaceutical processes. However, when the complexity of the ANNs is increased, results from ANNs 

become increasingly difficult to interpret. A further drawback of ANNs is that a sufficiently big data set is 

usually required for the learning process.

Combined, our ANNs models provide a tool that is capable of predicting important biophysical properties 

commonly measured in studying protein physical stability in high throughput, namely the (melting) 

temperature of unfolding, Tm, the diffusion interaction parameter, kD, and the onset temperature of 

aggregation, Tagg. These biophysical properties capture different characteristics which, taken together, 

define significant attributes that can be used to eliminate, or continue with, the development of a 

candidate. Tm values frequently correlate with the aggregation rate in accelerated stability studies. 22-24 kD 

is used to characterize nonspecific protein-protein interactions in diluted solutions and is a good indicator 

for the solution viscosity at high protein concentrations.25 Furthermore, the rate of aggregation upon 
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heating a protein solution is highly correlated to kD.26-27 Since the aggregation needs to be kept to a 

minimum level, Tagg is an important biophysical property. The majority of marketed antibodies have Tagg 

greater than 55°C.28 Even though the aforementioned properties alone will not always correlate with long 

term stability studies, their knowledge as a function of basic formulation conditions (i.e. pH and ionic 

strength) allows in a high-throughput way to assess the developability for protein drug candidates in high-

throughput and with minimal material consumption. Still, this approach is very labor and time intensive. 

Therefore in-silico approaches are of high interest, one of them being the use of ANNs.  More importantly, 

our trained models are based on amino acid composition only. This would allow selecting among 

thousands of mAbs sequences with good predicted physical stability. The selected protein could then be 

expressed and purified for going into the next step of the developability assessment. 

As pointed out by Ali Rahimi, a researcher in artificial intelligence at Google, machine learning has 

become a form of alchemy.29 Therefore our aim was to avoid black-box algorithms. We designed 

networks that are manageable, and give the user an understanding of their decision-making process. The 

number and complexity of inputs was reduced by the use of the amino acid composition only. This simple 

input layer allowed a simple network design which is, compared to complex networks, more general and 

robust, less prone to overfitting and easier to interpret.  As in most cases, we achieved accurate 

predictions, we confirmed that this design was suitable for our purpose. To interpret our models we 

design a novel “knowledge transfer” process which leads to interpretable ANNs. Additionally, Partial Least 

Squares Regression (PLS) was performed, and the results were compared with ANNs showing that only 

ANNs achieve accurate predictions.

3 MATERIAL AND METHODS

3.1 Protein and Sample preparation

Five IgG1, namely PPI-1, PPI-2, PPI-3, PPI-10, PPI-13 and one IgG2 named PPI-17, were selected 

based on the availability of the primary sequence, were provided by the PIPPI consortium 

(http://www.pippi.kemi.dtu.dk). The mAbs were dialyzed overnight using 10 kDa Slide-A-Lyzer™ 

cassettes (Thermo Fisher Scientific, Waltham, USA) against an excess of buffer containing 10 mM 

Histidine at pH 5.0, 5.5, 6.0, 6.5, 7.0, 7.5.  Similarly, a buffer containing 10 mM 

tris(hydroxymethyl)aminomethane (Tris) was used at pH 8.0 and 9.0.  Sodium chloride stock solutions 

were prepared in the respective buffers and diluted to a final concentration of 0, 70 and 140 mM. Protein 

concentration was measured on a Nanodrop 2000 (Thermo Fisher Scientific, Waltham, USA) using the 

respective extinction coefficients calculated from the primary sequence. Reagent chemicals were of 

analytical grade and were purchased from Sigma Aldrich (Steinheim, Germany) or VWR International 

(Darmstadt, Germany). Highly purified water (HPW, Purelab Plus, USF Elga, Germany) was used for the 

preparation of all buffers. Formulations including sodium chloride were prepared by mixing mAbs stock 

solution in the respective buffer with a stock solution of sodium chloride dissolved in the same buffer. 

http://www.pippi.kemi.dtu.dk
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Finally, the formulations were sterile filtered with 0.22 μm cellulose acetate filters from VWR International 

(Darmstadt, Germany). The mAbs’ difference in primary structures was investigated using identity and 

similarity scores as shown in Table S1. 

3.3 Dynamic light scattering

Dynamic light scattering was conducted on a DynaPro  Plate Reader II (Wyatt Technology, Santa 

Barbara, USA) to obtain the interaction diffusion parameter, kD, the onset temperature of aggregation, 

Tagg, and the apparent hydrodynamic radius, Rh. 4 μL of each sample per well were pipetted in triplicates 

into Aurora 1536 Lobase Assay Plates (Aurora Microplates, Whitefish, USA).  The samples were 

overlayed with Silicone oil and centrifuged at 2000 rpm for 1 minute. Data were processed by the 

DYNAMICS software V7.7 (Wyatt Technology, Santa Barbara, USA). From the relative autocorrelation 

function, the coefficient of self-diffusion, D, and the polydispersity index (PDI) were calculated. Rh, was 

calculated by means of the Stokes-Einstein equation. 

kD was determined using at least six different concentrations (from 1 to 10 mg/mL) in triplicates for each 

formulation. The samples were filtered using a Millex® 0.22 μm filter from Merk Millipore (Burlington, 

USA) and equilibrated at 25 °C for 10 minutes in the Plate reader. Each measurement included 20 

acquisitions, each for a duration of 5 s. kD was determined according to: 

𝐷 = 𝐷0(1 + 𝑘𝐷 ∙ 𝑐)

where D0 denotes the diffusion coefficient of an isolated scattering solute molecule in the solvent and c is 

the protein concentration. 

For the determination of Tagg, the filtered samples at 1 mg/mL were analyzed in duplicates. To achieve 

high throughput while keeping a suitable point density, 48 wells were filled, and a temperature ramp rate 

of 0.1°C/min from 25°C to 80°C was applied. One measurement included 3 acquisitions each with a 

duration of 3 s. Tagg was calculated by the DYNAMICS software V7.7 onset algorithm from the increase in 

Rh. 

3.5 Differential Scanning Fluorimetry with Intrinsic Protein Fluorescence Detection (nanoDSF)

Samples containing 1 mg/mL protein in the respective formulations were filled in standard nanoDSF 

capillaries (NanoTemper Technologies, Munich, Germany). Measurements were performed using the 

Prometheus NT.48 (NanoTemper Technologies, Munich, Germany) system that measures the intrinsic 

protein fluorescence intensity change at 330 and 350 nm (after excitation at 280 nm) as a function of 

temperature. A temperature ramp of 1°C/min was used from 20 to 95°C. The fluorescence intensity ratio 

(F350/F330) was plotted against the temperature, and the first apparent melting temperature (Tm) was 
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derived from the maximum of the first derivative of each measurement using the PR Control software 

V1.12 (NanoTemper Technologies, Munich, Germany). 

3.6 Artificial Neural Networks

Artificial Neural Networks have been extensively reviewed in the literature, and they have been used 

successfully in the pharmaceutical industry.12-21, 30-36 The various applications of ANNs relevant to the 

pharmaceutical field are classification or pattern recognition, prediction and modeling. Theoretical details 

can be found elsewhere.37 

The network’s fundamental parts are the neurons, also called nodes, and their connections. The diagram 

in Fig. 1 shows the model of a neuron. The neuron is an information-processing unit, which is constituted 

of a set of connection links characterized by their weight, wkn, a linear combiner, Σ, and an activation 

function, ψ. An externally applied bias, bk, is used to modify the net input received for each neuron in the 

network. An often used simplified description of the network is the architectural graph, depicted in Fig. 2.

ANNs solve problems by training, a trial and error process for optimizing the synaptic weight values. 

During the training, the squared error between the estimated and the experimental values is minimized by 

reinforcing the synaptic weights, wkn. ANNs have robust performance in dealing with noisy or incomplete 

data sets, the ability to generalize from input data and a high fault tolerance.38 

ANNs have a series of known limitations, namely overfitting, chance effects, overtraining, and difficult 

interpretability.39-41 The first three limitations were extensively reviewed in the literature and can be 

prevented using various methodologies. The interpretation of ANNs is not straightforward, and it is still an 

open field of research. Our primary goal was therefore to build an algorithm where it was possible to 

follow how the networks have come to a particular conclusion. To achieve this, we used the simplest input 

related to the mAbs giving an accurate prediction, namely the amino acid composition. In order to 

comprehend the artificial decision-making procedure a novel “knowledge transfer” process was designed, 

which is described in section 3.7.  

Our multilayer feed-forward back-propagation networks present one hidden layer, which is usually 

sufficient to provide adequate predictions even when continuous variables are adopted as units in the 

output layer. 43-45 Equation 1 (described by Carpenter44) was used to estimate the optimal number of 

neurons in the hidden layer:

Eqn. 01
 𝑁ℎ𝑖𝑑𝑑𝑒𝑛 =

(𝑁𝑠𝑎𝑚𝑝𝑙𝑒

𝛽 –𝑁𝑜𝑢𝑡𝑝𝑢𝑡)
(𝑁𝑖𝑛𝑝𝑢𝑡 +  𝑁𝑜𝑢𝑡𝑝𝑢𝑡 +  1)

where β, Nhidden, Noutput and Nsample are the determination parameter, the number of hidden units, the 

number of output units and the number of training data pairs, respectively. Overdetermined, 
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underdetermined and determined parameters will be reflected by β>1, β<1 and β=1, respectively. The β 

value to adopt depends on the degree of quality of the data set in terms of the degree of independency 

among other factors. Our dataset consisted of 144 instances (24 conditions per protein) for each 

biophysical parameter and seven neurons were estimated to provide a β of 1. In general terms, simpler 

models are more general and easier to interpret. Since our aim was to have the most general and easier 

to interpret model possible, we selected the minimum number of neurons, 5, which provided the same 

result as 7 neurons. In Table S2 the list of input parameters relative to each model is shown, while in Fig. 
S3 an exemplary scheme of the model’s architecture is presented. All the input parameters were 

normalized before the training phase by subtracting the mean and then dividing by the standard deviation. 

The learning rate was selected on a trial and error basis in such a way so as to keep the minimum 

distance between the actual and predicted value. The validation method is described in section 4.1. 

JMPpro® (SAS Institute Inc., Cary, USA), MATLAB® (MathWorks, Natick, USA) and Weka (Waikato 

University; New Zealand) were used to generate ANNs. These networks yielded highly similar results and 

JMPpro® v.13 was selected for its user-friendly interface and subsequently potentially easier 

implementation in a drug development department.47 

3.7 Knowledge transfer to explain ANN network results

In order to understand the decision-making process of our ANN models, a novel knowledge transfer 

process, implying response surface methodology (RSM), was applied by evaluating the weights of the 

trained network to transfer the acquired knowledge of ANNs to linear models. Parameters deemed 

important by the networks were selected, and the interpretation of ANNs was then assessed by RSM of 

the linear least square regression of these “leading parameters”. The scheme of this process, named 

“knowledge transfer”, is depicted in Fig. 3. 

None of the hidden nodes in the ANNs’ prediction formulas has a weight close to zero, which means that 

all nodes contribute to the final output. However, around 5% of the weights of the output layer presented 

values which were at least twice the average mean of all the network weights. From these 5%, we 

selected the input parameters from the activation functions whose coefficients were at least twice the 

average values. 

We assessed the full model using all the selected “leading parameters” from the networks, and then 

reduced the model to only the terms that were deemed statistically relevant. A curved response was 

allowed by assessing the quadratic term considering also two-way interactions. The reduced model was 

obtained using a backward stepwise regression. The F-statistic approach was used to perform the effect 

test considering a value of 0.05 or less as statistically significant. All the results were calculated using the 

statistical software JMP® v 13.0 (SAS Institute Inc., Cary, USA)47, and all the analysis details can be 

found in the software manual

4 RESULTS AND DISCUSSION
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A general flow diagram of our approach is shown in Fig. 4. At first, the power of our ANNs for prediction 

of the biophysical parameters Tm, Tagg and kD at different pH as well as salt concentration was evaluated. 

Only the number of each amino acid species of the proteins was used as protein-related input 

parameters. The primary sequence was not used as an input parameter, neither were other typical 

molecular descriptors included e.g. charge distribution, dipole moments or solvent exposure. However, 

we are currently working together with other members of the PIPPI consortium 

(http://www.pippi.kemi.dtu.dk) to create a publicly available protein formulation database.  Such a 

database may be used in the future to build on our findings and to generate more sophisticated deep 

learning models based on the amino acid sequence. We avoided the use of formulation dependent 

molecular descriptors (e.g. net charge) to reduce redundancy, as the formulation is always included as 

input. Moreover, it has been proven that even net charge cannot be accurately calculated.48 Further, we 

investigated a series of molecular indices which are only protein dependent, calculated by ProtDCal,49 

listed in Table SI 6. However, we could not find a subset of these indices that would yield an accuracy 

similar to the number of amino acids. As machine learning models describe correlation and not causation 

- highlighted by George E. P. Box: “Essentially, all models are wrong, but some are useful”50 - we 

selected the minimum number of input parameters to achieve high accuracy and interpretability. The 

number of amino acids can easily be described by only 20 input values, whereas thousands of inputs are 

necessary to describe the primary sequence (depending on the size of the molecule). This would 

drastically increase the complexity of the algorithms requiring a deep neural network with thousands to 

millions of data points, which are nowadays not publicly available. Such a complex approach makes the 

algorithm difficult to interpret and interpretability was one of our goals. As we managed to reach accurate 

predictions we found our model useful for its purpose:  an in-silico tool for the selection of mAbs with 

predicted high physical stability from a vast number of possible candidates, which is interpretable, which 

is independent from other calculations (e.g. solvent exposure), and which can output experimentally 

accessible biophysical properties in early stage (i.e. low volume, high throughput). An additional 

advantage of a simple design is that such models are usually more general and robust.  

In order to gain insight from the ANNs decision making procedure we introduce a novel knowledge 

transfer process (depicted in red in Fig. 4). As the outputs (e.g. Tm) of our models are easily accessible in 

early stage, once the selected candidates are expressed and purified, it is possible to continuously re-

train the network and to double check its validity. One disadvantage of such approach is that is suitable 

only to predict closely related protein structures to the one used for the training phase, e.g.  IgG1 and 

IgG2.  

4.1 Prediction of Tm, Tagg and the sign of kD
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The ability of the model to predict Tm, Tagg and kD from the numbers of each different amino acid in each 

mAb and the formulation conditions (i.e. pH and salt concentration) was cross-validated. Data from two 

mAbs were selected and held back in a validation set during the training phase. Applying the model to the 

validation data allows an unbiased comparison between the predicted and measured values. Thus, the 

estimation of the prediction error for potential new mAb samples is based on the results of the validation 

set. This validation method was deemed superior to the random data splitting. The latter yielded better 

fitting and prediction. However, the model would have experienced all the molecules during the training 

phase. Therefore, we discarded the random data splitting as our aim was to validate a model capable of 

predict biophysical parameters of unknown mAbs. Using this cross-validation strategy, a total of fifteen 

models were built, each of them based on a different training and validation set,  for each studied 

biophysical property. As the investigated mAbs presented different stability (i.e. different biophysical 

properties values) the point distribution varies depending on the validation mAbs. The models were 

characterised by the name of the withheld proteins (e.g., the model called PPI-1&2 is based on the 

validation data set of PPI-1 and PPI-2, and trained on the PPI-3, PPI-10 , PPI-13 and PPI-17 data).

In Fig. 5, the predicted Tm, Tagg and the sign of kD of the PPI-3&13 models are shown. Tm and the sign of 

kD were fitted to a very high degree of accuracy. The Tm model presented an R2 of 0.98 and a root mean 

squared error (RMSE) of around 0.8°C from the reference Tm while the sign of the kD model was classified 

with no false negative or false positives. The Tagg model presented an R2 of 0.94 but with a higher RMSE 

value of around 2°C. The higher error is probably due to the high throughput fashion of the screening, 

which stretched the limit of necessary high data density for the determination of the onset. In other words, 

the input data has higher uncertainty that is reflected in the prediction error. In Figs. S4-S5, the predicted 

data point from the Tm and Tagg models are presented.

The robustness of the ANNs regressions was evaluated based on R2, shown in Fig. 6 (A), and RMSE 

values of the training and validation set. The latter was in the range of ca. 1 to 3 °C from the reference 

Tagg or Tm, with no particular trend or direction with respect to the measured values. The robustness of the 

classification problem, the sign of kD, was evaluated on the misclassification rate, shown in Fig. 6 (B). 

Regarding the Tm models, we observe broad robustness without significant influence of the different 

training sets. The colloidal stability parameters, Tagg and sign of kD, appear to be more sensitive to the 

selected training sets. Two Tagg models show serious deviation in prediction both involving PPI-17 and/or 

PPI-10. These two proteins showed extreme aggregation during temperature ramps, compared to the 

other mAbs. Consequently, the ANNs can easily fit PPI-17 and PPI-10 data, but in order to predict their 

aggregation propensity, the network would require more data representative of this kind of aggregation 

behavior. 

The kD data consists for ca. 70% of negative values. This unbalanced data set is caused by the charge 

screening effect of the added salt that occurs in two-thirds of the formulations and therefore the number of 

positive values is not enough to solve an ANN regression problem. One such occurrence is shown in Fig. 
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7 for the PPI-13&3 model, where all the negative values are fit well, while the positive values are not well 

calculated and broadly distributed.  Despite this, the sign of kD was always predicted to a high degree of 

accuracy as shown in Fig. 6(B).
The studies on the robustness allowed us to conclude that well defined and simpler properties, such as 

the temperature of unfolding, are not greatly influenced by the training set. In contrast, the colloidal 

properties need more attention in the selection of the training set. 

4.2 ANN Knowledge Transfer

The scientific community has been investigating the problem of explaining machine learning decision 

models and a comprehensive survey of methods for explaining black box models has been redacted.51 In 

order to understand the thought process of our ANNs, a novel knowledge transfer process, depicted in 

Fig. 3, was applied. Fig. 8 shows the results from the RSM relative to Tm, Tagg, kD, while Table 1 

summarizes the effective test statistics which can be used as an indication of the relative impact of the 

parameters. Quadratic terms (e.g. Cys∙Cys) were assessed to model potential curvature in the response. 

These linear models allow to understand the logic of the relative ANNs model and to follow the reasoning 

of the outcomes, i.e. each leading amino acid has a specific role in the physical process related to the 

output parameters.

The Tm linear model is primarily affected by pH, salt concentration, and the number of tryptophan, 

cysteine and tyrosine residues. Therefore, the main protein related contributors to the unfolding process 

are two hydrophobic amino acids residues and cysteine. It is known that the unfolding process is mainly 

guided by hydrophobic interactions,52 while cysteine is involved in disulfide bonds, stabilizing the protein 

structure. Interestingly charged residues are of minor importance.

The Tagg linear model is mainly affected by pH, salt concentration, and the number of aspartic acid, 

glutamic acid and methionine residues. Therefore, the main protein related contributors to the 

aggregation process were charged amino acid residues and methionine. It is known that the oxidation of 

methionine is a critical pathway of aggregation under accelerated thermal stability stress53. Moreover, 

methionine oxidation is pactically pH independent54, which could partially explain the minor impact of pH 

on the models. However, during a temperature ramp, the time of stress is relatively short and hence, the 

oxidation of methionine should have a minor impact. Consequently, during a temperature ramp, charged 

amino acids have а higher impact on the linear model.

The kD linear model is affected by pH, salt concentration, and the number of glutamic acid, histidine, and 

tryptophan residues. Thus, both charged and hydrophobic amino acids are important. kD is used to 

evaluate pairwise protein-protein nonspecific interactions, which can be rationalized by means of the 

DLVO55,56 or proximity energy theory57. Both theories highlight the fact that protein-protein interactions 

depend heavily on hydrophobic and charged patches on the protein surface. Moreover, histidine plays a 

particular role in protein-protein interactions. This amino acid has a pKa of 6.0 i.e. histidine changes 
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charge state under relevant formulation pH conditions. Therefore histidine doping is a common method in 

engineering stable proteins58-62 and the presence of histidine residues can mediate structural transitions in 

binding or folding of the interacting proteins.63-65 

Taken together, our ANN knowledge transfer process allows us to interpret the factors behind the 

decision-making process of the ANN to when predicting Tm, Tagg the sign of kD. This process provided a 

global explanation of the black box through an interpretable and transparent model. By this, we build trust 

into our approach and are not left with a black box. As an agnostic process can explain unrelated 

algorithm only indifferently, our approach is not to be considered agnostic as it is tied to simple ANNs.

4.3 Prediction comparison with partial least square models

The main reason to apply ANNs comes from their prediction power using data sets with highly non-linear 

relationships. To demonstrate the necessity for a non-linear model, a linear regression analysis using the 

partial least square regression (PLS) method, was performed. PLS is probably the strongest competitor of 

ANNs in terms of robustness and predictive power and can be extremely powerful in fitting data and for 

this reason, it was compared to ANN. In fact, PLS was the only model we tested capable of fitting the 

dataset. As we aimed to develop an interpretable model, we tested also models usually considered 

readily interpretable (e.g. decision tree) without success. A detailed discussion about modeling 

alternatives can be found in an article by Frank and Friedmann.66 The optimal number of latent variables 

was selected based on the minimum of the RMSE of the cross-validation. The same cross-validation 

method was applied as in the ANNs in order to make the models comparable. In Fig. 9, the prediction for 

all the proteins is shown. The results demonstrate that PLS cannot be used for our dataset and we can 

conclude that  ANN is a far better methodology than PLS to construct models that predict the formulation 

behavior of unknown proteins under the conditions that we have used. 

5 CONCLUSIONS

ANNs represent an interesting alternative to the classical statistical methodologies when applied to highly 

non-linear data sets that are frequently encountered in the pharmaceutical industry. We successfully 

developed interpretable models for a set of mAbs to predict important biophysical properties as a function 

of pH and salt concentration. In the field of mAbs development, ANNs could be a highly valuable tool to 

predict important biophysical properties and to support development risk assessment. This approach 

would allow the selection of mAbs with good physicochemical properties already before expression in 

cells. The only information required for our approach is the amino acid composition of each mAb. Due to 

the accuracy of the predictions, there was no reason to increase the complexity of the model since it 

would hamper the interpretability and robustness. Thanks to our design a novel knowledge transfer 

process allows to understand the decision-making process of our algorithm. In contrast, PLS models did 

not work demonstrating that a non-linear algorithm is required to analyze a data set like the one used in 

our study. The knowledge gathered with simpler ANNs can be used to build even more impressive 
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systems in the future, to confirm the reliability of ANNs and finally to highlight which factors may impact 

protein stability most. 
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Figure 1. Model of a neuron. xn represent the inputs connected to the neuron, k, by the weights, 
wkn, which multiply the corresponding input signal. All the weighted signals are summed by a 
summing junction Σ. An external bias bk can be applied to Σ, to increase or lower the output 
signal. Finally, Σ is connected to an activation function, ψ(*), which limits the amplitude of a signal 
to the output, yk. Picture modified from: Neural networks: a comprehensive foundation, S. 
Haykin.45
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Figure 2. Signal-flow graph of a fully connected feedforward network with one hidden layer and 
one output layer. The signal-flow graph provides a neat description of the neural networks 
describing the links between the various nodes of the model. Picture adapted from: Neural 
networks: a comprehensive foundation, S. Haykin.45
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Figure 3. Scheme of the knowledge transfer procedure. On a trained network, where the arrow 
thickness represents the weight value (i.e. smaller arrow present lower weights), the input 
parameters with the higher impact, in red, are selected. These inputs are used for a least square 
linear regression where the RSM is applied considering only two-way interactions. From the 
analysis, leading parameters are selected and discussed to interpret the network decision-making 
process.
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Figure 4. Diagram describing the process applied to achieve an interpretable prediction by ANNs. 
The knowledge transfer process is highlighted in red. The model explanation (dashed green lines) 
is aimed at understanding the overall logic behind the black box. Once trained and validated the 
interpretable ANN can be applied to new mAb candidates, even before cell expression. This allows 
to predict important biophysical parameters (i.e. Tm, kD and Tagg) as a function of pH and salt 
concentration.



  

20

Figure 5. Results from PPI-13&3 models for the prediction of Tm, Tagg and the sign of kD are shown 
in graphs A, B and C respectively. Black dots and numbers represent the training set, while red 
dots and numbers represent the validation set. 
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Figure 6. ANN robustness study of ANNs. In graph A, the R2 values for the Tm and Tagg models are 
shown. In graph B, the misclassification rate (MR) of the sign of kD models are shown. Blue bars 
represent the validation set while red bars represent the validation set. The models were 
classified by the name of the proteins used for the validation.
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Figure 7. Correlation between experimentally determined and predicted kD values for the PPI-13&3 
model. 

R2=0.6
0RMSE=0.02
21
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Figure 8. Results of Tm, Tagg, kD linear models from the network knowledge transfer are shown 
respectively in graph A, B and C. The 3 graphs are generated by RSM using the selected leading 
parameter. The relative effect test is presented in Table 1.
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Figure 9. Results of the validation sets from the PLS model of Tm, Tagg and the sign of kD are 
shown respectively in graphs A, B and C. The graphs show that the models cannot accurately 
predict protein properties that were not involved in the training set.
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9 TABLES

Table 1. Effect tests results of the RSM applied to the linear least square regression from the 
knowledge transfer of ANNs’ models. In Fig. 6 the relative graphs are shown. Information on the 
inputs can be found in Table S6. The quadratic terms (e.g. Cys∙Cys) and the cross terms (e.g. 
pH∙Cys) from the RSM were selected by reducing the full model using a backward stepwise 
regression where a value of p<0.05 is deemed statistically significant. LogWorth is defined as -
log10(p-value).

Tm Tagg kD

Input LogWort
h

Input LogWort
h

Input LogWort
h

Trp 27.942 Glu 36.173 [NaCl] 11.608

pH 25.425 Met∙Me
t

26.675 Glu 9.529

pH∙Cys 13.701 Met 19.023 Trp 9.151

pH∙pH 13.256 Asp 6.996 His 8.828

Cys∙Cy
s

8.528 pH 6.084 pH 2.490

Cys 4.024 pH∙pH 4.881

Tyr∙Tyr 3.813 Asp∙Asp 4.199

Tyr 3.284 [NaCl] 2.474

[NaCl] 2.753
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10 SUPPORTIVE INFORMATION

Tables S1.  Identity and similarity scores, respectively in red and yellow cells, from the primary 
sequences of the heavy chains, light chains, and the complete mAb with the relative statistics. The 
similarity is considered as: GAVLI, FYW, CM, ST, KRH, DENQ, P, where the single letter represents the 
standard single letter amino acid code. The identity scores were calculate by the Sequence 
Manipulation Suite (Stothard P (2000) The Sequence Manipulation Suite: JavaScript programs for 
analyzing and formatting protein and DNA sequences. Biotechniques 28:1102-1104).

Score Legend: Similarity identity

Heavy Chain (HC)
PPI-1 100% 15.36% 88.69% 29.94% 17.29% 23.09%
PPI-2 8.46% 100% 16.70% 14.69% 25.16% 42.15%
PPI-3 86.25% 10.24% 100% 32.73% 17.73% 29.14%

PPI-10 18.04% 9.27% 27.39% 100% 16.03% 29.14%
PPI-13 7.98% 18.48% 8.86% 9.35% 100% 16.14%
PPI-17 15.47% 37.21% 23.76% 23.31% 11.21% 100%

PPI-1 PPI-2 PPI-3 PPI-10 PPI-13 PPI-17
Light chain (LC)

PPI-1 100% 11.73% 13.08% 13.55% 12.61% 11.62%
PPI-2 8.45% 100% 23.94% 23.00% 23.94% 24.88%
PPI-3 7.94% 18.30% 100% 94.39% 95.79% 48.59%

PPI-10 8.41% 18.43% 91.58% 100% 94.85% 44.85%
PPI-13 7.94% 18.77% 92.05% 93.92% 100% 45.79%
PPI-17 7.90% 16.43% 44.39% 38.78% 38.78% 100%

PPI-1 PPI-2 PPI-3 PPI-10 PPI-13 PPI-17
mAb

PPI-1 100% 14% 51% 22% 15% 17%
PPI-2 8.46% 100% 20% 19% 25% 34%
PPI-3 47.10% 14.27% 100% 64% 57% 39%

PPI-10 13.23% 13.85% 59.49% 100% 55% 37%
PPI-13 7.96% 18.63% 50.46% 51.64% 100% 31%
PPI-17 11.69% 26.82% 34.08% 31.05% 25.00% 100%

PPI-1 PPI-2 PPI-3 PPI-10 PPI-13 PPI-17

Statistic HC LC mAb HC LC mAb
Minimum 7.98% 7.90% 7.96% 15% 12% 14%
Maximum 86.25% 93.92% 59.49% 89% 96% 64%
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Mean 21.02% 34.14% 27.58% 28% 39% 28%
Std deviation 19% 31% 17% 18% 31% 16%

Variance 4% 10% 3% 4% 10% 3%

Table S2. List of the input parameters with corresponding statistics. Input considered as discrete 
are only listed and no statistics is applied. To the right it is highlighted if the input is implemented 
to predict the corresponding protein stability indicator.

Input parameters relative 
to the mAbs

Amino acid Code Minimum Maximum Standard 
deviation Variance Mean

Alanine Ala 64 80 5.62 31.56 69.33

Cysteine Cys 30 38 2.75 7.56 32.67

Aspartic acid Asp 52 62 3.54 12.56 54.33

Glutamic Acid Glu 58 68 3.77 14.22 62.67

Phenylalanine Phe 38 54 5.22 27.22 45.67

Glycine Gly 82 98 5.63 31.67 91.00

Histidine His 18 26 2.75 7.56 23.33

Isoleucine Ile 28 36 2.52 6.33 31.00

Lysine Lys 76 96 6.30 39.67 89.00

Glutamine Glu 88 108 6.26 39.22 97.67

Methionine Met 8 16 3.06 9.33 12.00

Asparagine Asn 44 52 2.69 7.22 48.33

Proline Pro 88 106 5.85 34.22 94.67

Glutammine Gln 54 66 4.23 17.89 59.67

Arginine Arg 30 50 6.43 41.33 38.00

Serine Ser 158 188 10.13 102.67 172.00

Threonine Thr 98 120 7.61 57.89 109.67

Valine Val 110 120 3.14 9.89 115.67

Tryptophan Trp 20 26 2.24 5.00 23.00

Tyrosine Tyr 52 64 4.27 18.22 58.67

Input parameters relative 
to the formulation List

pH 5, 5.5, 6, 6.5, 7, 7.5, 8, 9 - - - - -

[NaCl] (mM) 0, 70 , 140 - - - - -
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Figure S3. Exemplary picture of applied network architecture.  The brackets containing the input 
layer represent a complete connection of the input layer with the hidden one (i.e. each input is 
connected with all the neurons of the hidden layer).
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Figure S4. ANNs’ Tm models results of the 15 different training sets. 

Figure S5. ANNs’ Tagg models results of the 15 different training sets.
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Table SI 6. List of the molecular descriptor calculated by ProDCal. The description of the 
molecular indices can be found in the relative software manual.

ProtDCal ProtDCal 
dGc(F) wRWCO
dGw(F) wdHBd
Gs(F) wLCO
W(F) wCo
HBd wFLC
dGs wPsiH
dGw wPsiS
dGel wPSil
dGLJ Psi
dGtor wR2
Gs(U) wPjiH
Gw(U) wPhiS
W(U) wPhil
Mw Phi
Ap LnFD
Ecl wCLQ
HP wCTP
IP wSP
ISA WNc
Pa Ap
Pb dA
Pa dAnp
Pt WNLC
z1 wFLC
z2 wR2
z3 lnFD
dHf
Xi
L1-9
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