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Abstract

Overconfidence is one of the most important biases in financial markets and commonly
associated with excessive trading and asset market bubbles. So far, most of the finance
literature takes overconfidence as a given, “static” personality trait. In this paper we
introduce a novel experimental design which allows us to track different measures of
overconfidence during an asset market bubble. The results show that overconfidence co-
moves with asset prices and points towards a feedback loop in which overconfidence adds
fuel to the flame of existing bubbles.
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1 Introduction

Traders are often overconfident about the precision of their knowledge (Moore et al.,

2016). Such bias is known as overprecision1 and has important consequences in financial

markets both at the individual and aggregate level. For example, overprecise traders

both under-perform due to excessive trade (Odean, 1999; Barber and Odean, 1999) and

under-diversify their portfolios (Goetzmann and Kumar, 2008), while markets populated

by more overprecise traders are more volatile and result in more inflated asset prices

(Scheinkman and Xiong, 2003; Michailova and Schmidt, 2016).

Yet, trader overprecision is not a “static” personality trait, but it changes endogenously

with past success and failure (Deaves et al., 2010; Hilary and Menzly, 2006; Merkle,

2017). Models of such success-driven overprecision, (e.g. Daniel and Hirshleifer, 2015;

Daniel et al., 1998; Gervais and Odean, 2001) imply a strong interdependency of trader

overprecision and asset prices dynamics: overprecise traders push up asset prices, while

rising asset prices in turn fuel traders’ overprecision.2 Therefore, endogenous overprecision

creates a feedback loop which can give rise to hump-shaped asset price dynamics (i.e.

short-term momentum and long-term reversal of asset prices), and thereby amplify stock

price volatility and trading volume and increase the probability of asset price bubbles.

In this paper we will use an experimental asset market à la Smith et al. (1988) (hence-

forth SSW) to study whether asset prices and traders overprecision co-move. To the best

of our knowledge, only two papers have studied the dynamics of overprecision in a context

of changing asset prices; Kirchler and Maciejovsky (2002) and Michailova and Schmidt

(2016). Both papers use SSW asset markets to test whether the subjects’ overprecision in

asset price beliefs changes over the course of a bubble-burst pattern. They find that, on

average, overprecision is larger in market episodes that are associated with higher asset

prices and lower in market episodes that are associated with lower asset prices. This im-

1Moore and Healy (2008) differentiate between three types of overconfidence: overestimation of one’s
true abilities, performance, or level of control (e.g. someone beliefs to have answered 10 questions of a
quiz correctly, but actually only got five correct); overplacement of one’s abilities or performance relative
to others (e.g. almost everyone beliefs to be an above-average driver); and overprecision as an excessive
faith in the quality of one’s judgment (e.g. stating that the Dow Jones will go up by 167.38 points in the
next two weeks).

2A related co-movement of asset prices and overprecision is postulated by (Tuckett and Taffler, 2008),
who argue that the overprecision of traders changes with the emotions and the excitement of significant
profit opportunities during asset price bubbles.
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plicit evidence suggests that asset prices and the overprecision of the subjects are indeed

interrelated. Yet, their design cannot rule out that such overprecision dynamics are driven

by factors other than asset price dynamics, such as, uncertainty about the asset market

(e.g., Hanaki et al., 2018), learning and experience (e.g., Griffin and Tversky, 1992), or

cognitive biases related to the market (e.g., wishful thinking) (e.g., Caplin and Leahy,

2019).

In contrast, we present a novel design that allows us to perfectly disentangle the effect

of asset prices on overconfidence from any confounding market factors. First, we provide

a new, and simple, way to measure individual overprecision by asking subjects about the

expected error of their beliefs. Second, we apply our new overprecision measure to a new

task which is completely unrelated to the asset market. This design gives us a “clean”

measure of overprecision free of any market biases or learning.

The findings are clear: overprecision co-moves with asset prices. When asset prices

go up, overprecision rises, and when asset prices go down, overprecision falls. Moreover,

larger changes in prices are met by larger changes in overprecision. Additionally, we

observe that, as predicted by the theory (e.g., Daniel et al., 1998; Gervais and Odean,

2001), becoming wealthy makes traders overprecise, yet, becoming overprecise does not

make traders wealthy. In fact, in line with ample theoretical and empirical evidence, we

observe that overprecision is negatively correlated with total profits. Finally, we confirm

the known result that high cognitive ability results in higher market performance.

2 Experimental Design

2.1 Asset Market

We employ a variant of the standard Smith et al. (1988) (henceforth: SSW) asset market

experiment. Each session consists of two consecutive asset markets with nine subjects

per market. The particular market design and parametrization is based on Haruvy et al.

(2007) and has subjects trading an asset for fifteen periods. At the beginning of each

market, subjects receive an endowment of assets and Talers (our experimental currency)

which they can use to trade.3 At the end of each period, each asset pays a random

3Three subjects received 112 Talers and three assets, three got two assets and 292 Talers, and the
remaining three traders got one asset and 472 Talers.
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dividend of either 0, 4, 14 or 30 Talers, each with equal probability. The dividend is

independent across periods. The balance of Talers and assets carries over from period

to period until the end of the market (period 15) at which point the asset pays its last

dividend and disappears. At the end of the experiment Talers are converted into euro at

a conversion rate of e 1 for every 100 Talers.

Because the market is finite and the expected dividend of the asset is the same at

every period, the fundamental value of the asset at period t can be easily calculated as

12 · (16 − t). Thus, the fundamental value of the asset is monotonically decreasing with

every period. To make calculations easier for our subjects, we provided them with a table

showing the fundamental value of the asset for each round.

Following Haruvy et al. (2007), the market utilizes call market rules; all subjects

simultaneously make a single buy and sell order at the beginning of each trading period.

Buy orders consist of the maximum price they are willing to pay, and the desired quantity.

Likewise, sell orders consist of a minimum selling price and the number of assets that they

are willing to sell.4 These buy and sell orders are aggregated into a supply and demand

curve which determine the market-clearing price.5 Those subjects who submitted buy

orders above the market clearing price buy assets, while those that submitted sell orders

below the market clearing price sell assets. In case of a tie, a “virtual” coin is flipped to

determine who will trade.

2.2 Overprecision

Most previous efforts to study overprecision in asset markets are based on eliciting con-

fidence intervals (e.g., Glaser and Weber, 2007; Kirchler and Maciejovsky, 2002). This

approach, however, is a problematic, as subjects do not seem to understand the concept of

confidence intervals and confidence intervals are hard to incentivize (Moore et al., 2016).

Therefore, we propose a new, and simple, way to measure the overprecision of our subjects

based on asking subjects the following two questions6:

4Subjects could not make bids that were higher than their asks. Likewise, bids and asks are subject
to their budget constrains and their current asset holdings.

5We follow the algorithm proposed by Palan (2018). The market-clearing price is defined as the
volume-maximizing price. Note that in cases where there is a continuum of market clearing prices, the
mean value of the continuum is used.

6These questions will be adjusted as necessary for the particular dimension of interest.
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1. Please give us your best estimate for . . .

2. How far away do you think your estimate is from the true answer?

A subject is said to be overprecise if the expected estimation error is smaller than

the true estimation error. Analogously, a subject is said to be underprecise if the ex-

pected estimation error is larger than the true estimation error. Unlike the elicitation of

confidence intervals and measures of subjective certainty, our approach is intuitive, and,

importantly, can accommodate any incentivization system.

We apply our new method to elicit overprecision along two separate dimensions; (i)

price-prediction overprecision which is the overprecision in asset price beliefs and (ii)

context-independent overprecision which completely unrelated to the market. While over-

precision in asset price beliefs may be confounded with other market biases (e.g., wishful

thinking) or the learning that is so prevalent in SSW asset markets, the goal of the context-

independent measure of overprecision is to have a “clean” measure of overprecision free of

any confounding factors. By completely isolating the measure of overprecision from the

market, we get a transparent measure through which we can clearly identify the effect of

asset price dynamics on the overprecision of subjects. Therefore, our main interest lies in

the context-independent measure of overprecision. Price-prediction overprecision, on the

other hand, will mainly serve as a control for our regression analysis.

Price-Prediction Overprecision

The advantage of call market rules is that each market round has a unique market-

clearing price. This allows us to elicit subjects’ price beliefs and their associated price-

prediction overprecision by asking the following two questions at the beginning of each

trading period:

1. Please give us your best estimate for the price of the asset in this period.

2. How far away do you think your price estimate is from the true answer?

To incentivize both questions, we follow Haruvy et al. (2007); subjects get paid e 0.25,

if their guess is within 10% of the realized price, e 0.10, if within 25%, e 0.05, if within

50%, and e 0 otherwise. Earnings from prices predictions are paid out on-the-go and can
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Figure 1: “Dot-Spot” Task

be used for asset purchases in subsequent rounds. We choose this incentivation scheme

over more sophisticated alternatives, such as the quadratic scoring rule (Brier, 1950) or

the binarized scoring rule (Hossain and Okui, 2013), as Haruvy et al. (2007) show that

this system is easy for subjects to understand and they find no evidence of any system-

atic bias in subjects answers. To avoid that subjects hedge between both the questions,

subjects are randomly paid according to one or the other question.

Context-Independent Overprecision

To elicit context-independent overprecision subjects take part in a task we call “Dot

Spot”. In this task, subjects are flashed for six seconds with a matrix of 20× 20 red and

blue dots like the one shown in Figure 1. Subjects are then asked to answer two questions:

1. Please estimate the total number of red dots in the Dot-Spot matrix.

2. How far away do you think is your estimate from the true answer?
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The incentivation scheme for these questions is analogous to the scheme for the price-

prediction overprecision, with the sole difference that outcomes from the Dot-Spot, and

thus the earnings, are not revealed and paid out until the completion of all markets.

We measure context-independent overprecision at three different “Dot-Spot breaks”

that will take place before the start of each market (Break 1), after trading period 6

(Break 2), and after trading period 13 (Break 3).7 In each of these breaks, subjects take

part in five consecutive rounds of the “Dot Spot” task. The unique Context-independent

measure of overprecision per subject per break is then determined by the median of all

five rounds.

To make breaks comparable, in each break three of the five matrices will be “similar.”

“Similar” matrices are generated using a uniform distribution with support between 45±5,

75 ± 5, or 325 ± 5 in each Dot-Spot break. The other two matrices will be drawn from

an uniform distribution with the support of 200 ± 125 red dots. The order of the five

matrices will be random within each break.

Importantly, while “similar” matrices have a similar number of dots, the disposition of

these dots is different. In other words, even though the number of dots is almost identical,

the distribution of the red and blue dots is unique.8

2.3 Control Treatment

In the control treatment, we generate asset markets where the price of the asset is both

exogenous and certain. Following Akiyama et al. (2017) and Hanaki et al. (2018), in each

market one human subject is paired to eight computerized traders which buy and sell at

fundamental value. Because of the call market rules, in all rounds, the market clearing

price will be equal to the (downward sloping) fundamental value of the asset. The goal of

the control treatment is to check whether there are any dynamics in overprecision (driven

by, e.g., the random choice of the dot-spot matrices or the mere repetition of dot-spot

tasks) in the absence of endogenous asset price dynamics.

7One of the reasons that we decided to use SSW markets is that we could ex-ante predict when it
would be best to “interrupt” the market to get a sample of overprecision at the top of the bubble and
after the bubble has exploded. Figure 2 shows that our predictions were pretty good and in 75% of our
cases we are able to measure overprecision almost at the top of the bubble, and immediately after its
crash.

8See Figure 4 in Appendix A, which shows two “similar” matrices with the exactly the same number

of red dots, but different pattern side-by-side.
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2.4 Personality traits

The experimental literature has shown that personality traits significantly affect the be-

havior of subjects in SSW markets (e.g., Bosch-Rosa et al., 2018; Eckel and Füllbrunn,

2015; Michailova and Schmidt, 2016). To control for personality traits in our data analysis,

once the two asset markets are over, subjects take part in several personality tests.

First, we elicit cognitive ability through CRT (Frederick, 2005), CRT2 (Thomson and

Oppenheimer, 2016) and eCRT (Toplak et al., 2014) questions, as cognitive ability has

been shown to correlate with performance in SSW markets (Noussair et al., 2016). We

then ask them about the number of questions they expected to have answered correctly

and their expected relative ranking amongst all subjects in the session. This gives us a

measure of overestimation and overplacement, respectively, which along overprecision are

the other two types of overconfidence commonly accepted in the literature (Moore and

Healy, 2008).

Additionally, we elicit the risk aversion of subjects using a Holt and Laury (2002)

multiple price list and the non-incentivized risk question from the German Socio Economic

Panel (“How likely are you to take risk on a scale of 0 (not risk taking at all) to 10 (very

prone to take risk)”), as risk aversion affects the size of bubbles in SSW markets (Eckel

and Füllbrunn, 2015).9 Finally, we ask subjects to answer the ten-item version of the

Big Five personality test suggested by Rammstedt and John (2007) as, in SSW markets,

extraversion and neuroticism affect the trading behavior of subjects (Oehler et al., 2018)

and the size and the length of asset price bubbles (Oehler et al., 2019).

3 Results

The experiment had thirteen sessions, twelve with our baseline design and one with a

downward price robustness check (see Section 2.3). A total of 117 subjects were recruited

through ORSEE (Greiner, 2015). All sessions lasted approximately two hours and fifteen

minutes and were run at the Experimental Economics Laboratory of the Technische Uni-

versität Berlin. The experiment was programmed and conducted using oTree (Chen et al.,

2016) and the Dot-Spot task used D3.js (Bostock et al., 2011). Subjects made on aver-

age e 26.20, and before the start of the experiment took part in a quiz that tested their

9For our regressions we will combine both risk measures into one single Risk Aversion measure. For
details see Appendix B.
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knowledge on the rules of the market, and several rounds of Dot-Spot with performance

feedback.

3.1 Asset Price Dynamics and Context-Independent Overprecision

In Figure 2 we plot the market clearing price (red, solid line) and the downward sloping

fundamental value (gray, solid line) for the first market of each session (for results ad

analysis of the second market see Appendix C). The vertical lines denote where the Dot-

Spot breaks take place and the blue dots show the price of the asset immediately before

the break.10 From Figure 2 it is apparent that most markets show an asset price bubble,

as is standard in SSW markets.

More interestingly, in eight of the twelve sessions we observe that the price immediately

before the second Dot-Spot break (p6) is larger than the price at the beginning of the

market (p0), and also larger than the price before the third Dot-Spot brake (p13), i.e.

p0 < p6 > p13. These sessions are the ones we are most interested in as such a price

dynamics allows us to study the full spectrum of a complete bubble-burst episode. We

call these sessions, Hump Shape sessions.

In sessions 9 to 12, p0 < p6 < p13, so we cannot study the effects that a bubble burst

has on the overprecision of subjects. Yet, we can still use these sessions to study whether

such sustained price increases raise the level of the subjects’ overprecision further. We

call these sessions, Increasing Price sessions. Finally, we call the computerized sessions

with monotonically decreasing prices Decreasing Price sessions.

In each Dot-Spot break subjects face five different matrices. We will define the the

context-independent overprecision of subject i for matrix j ∈ {1, 2, 3, 4, 5} in break b ∈

{1, 2, 3} as:11

DotOPijb = |RedGuessijb −RedTruejb| − ErrorGuessijb, (1)

where ErrorGuessijb is the expected error stated by the subject, RedGuessijb is the

guess of red dots made by the subject, and RedTruejb is the correct answer. There-

fore, when DotOPijb > 0, the larger DotOPijb the more overprecise a subject is, and

10Notice that the first Dot-Spot break took place before the market started, so we don’t have a price
before that market. Instead we put the blue dot at the first price realized in the market immediately
after the Dot-Spot task.

11To ease notation we ignore the fact that there are two markets in each session and drop this subindex.
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Figure 2: Equilibrium price (red line), fundamental value (solid black line), and Dot-Spot breaks (vertical
black lines) for Market 1 of all sessions. To have a better understanding of the price dynamics we place
blue dots at the equilibrium price immediately before the dot spot took place (i.e., p6 and p13). For the
first break we place the dot on top of the first realized price (p1)

when DotOPijb < 0, the smaller DotOPijb is, the more underprecise a subject is. When

DotOPijb = 0, then the subject is perfectly calibrated. To have a unique measure of

context-independent overprecision for each Dot-Spot break b, we take the median across

all DotOPijb for each subject. This aggregate measure is denoted MDotOPib and serves

as the measure of context-independent overprecision we will use for the rest of the paper.

In Figure 3 we present the MDotOPib for each break across price dynamic sub-groups

(from left to right, Decreasing Price, Hump Shape, Increasing Price). The figure clearly

shows that the overprecision of the median subject follows our hypothesized trajectory:

a) it is downward trending for Computerized sessions b) goes up and then down in Hump

Shape sessions, and c) it is upward trending for Increasing Price sessions.12

To test whether these differences across breaks are statistically significant, we perform

12We plot the individual session box plots for each session in Figure 5 of Appendix A.
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Figure 3: Box plots showing the median, 25th and 75th percentile of MDotOPib for each break within a
session.

a series of Wilcoxon signed-rank tests comparing MDotOPib of subjects across breaks for

the Hum -Shape and Increasing Price sessions. The p-values are summarized in Table 1.

Our interest lies in the Hump Shape sessions as they allow us to test a wider range of price

effects on overprecision. In this case we see how the differences between breaks are highly

significant; as prices climb, so does the context-independent overprecision. Interestingly,

the effect on overprecision is reversed when the bubble bursts and prices drop.

The results for the Increasing Price sessions show no differences between consecutive

breaks. Yet, the overall trend (between the first and the third break) is significant at the

5% level. This is intuitive, as the increasing price sessions have, on average, relatively

lower prices in the middle break and high prices in the latter. Additionally, the lower

number of observations means less power, and therefore the need of a bigger effect to

detect statistical differences.

A similar story can be told when comparing the breaks in the Decreasing Price sessions.
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While the differences across breaks are, yet again, not significant at the 5% level, the trend

of the measured overprecision in Figure 3, the low number of observations, and the results

for the other sub-groups make it reasonable to associate the fall of overprecision with the

fall in market prices.

Break 1 = Break 2 Break 2 = Break 3 Break 1 = Break 3

Hump-shaped p-value (N=72) 0.001 0.010 0.198

Increasing Price p-value (N=36) 0.587 0.299 0.030

Decreasing Price p-value (N=9) 0.314 0.440 0.085

Table 1: P -values resulting from Wilcoxon matched-pairs signed-ranks test comparing the equality of
matched pairs of observations across Dot-Spot task across different session sub-groups.

Result 1: Overprecision co-moves with asset prices and carries over to out-of-context

tasks.

Next, we want to quantify the effects that price dynamics have on the change in their

overprecision. To do so, we define the change in context-independent overprecision as:

∆MDotOPi(b,b′) = MDotOPib′ −MDotOPib, (2)

where b′ and b are different breaks in a market, and b′ > b. So, for example, ∆MDotOPi(1,2)

is the change in overprecision from the first to the second Dot-Spot break for individual

i.

In Table 2 we regress ∆MDotOP1,2 on the change in asset prices (Price-Difference)

and several personality measures.13 We divide the data into three different models: In the

first model we regress the change in overprecision between the first and second Dot-Spot

break (∆MDotOP1,2) on the difference in price for the first and sixth round (∆Price1 =

P6 − P1).
14 The second model regresses the change in overprecision between the second

and third Dot-Spot break (∆MDotOP2,3) on the difference in price between the 13th

and 6th period (∆Price2 = P13 − P6), while the third model compares the change in

13Notice that for ease of notation from now on we will drop the individual subject index i for
∆MDotOPb,b′

14Again, to ease notation we drop the session index for ∆Price1 as it follows that for each subject we
use the prices of her session.
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overprecision between the last and first break (∆MDotOP1,3) and their corresponding

price change (∆Price3 = P13 − P1).

Additionally, we introduce price-prediction overprecision POPitm which is the over-

precision of subject i when predicting the equilibrium price in period t of market m:

POPitm = |PriceGuessitm − PriceCorrectitm| − PriceErrorGuessitm. (3)

Analogous to Equation (1) PriceGuessitm is the guessed price of subject i for period

t in market m, while PriceCorrectitm is the correct price, and PriceErrorGuessitm the

subjects expected error from guessing the price. We then aggregate the price-prediction

overprecision for each subject between break to get APOPi,(b,b′),m, where b and b′ are the

different breaks in market m.

The results show that price difference across Dot-Spot breaks have significant effect

on the changes in the Context-independent measure of overprecision; across all three

breaks, the more prices increase, the more overprecise subjects become. On the other

hand, neither the accumulated price-prediction overprecision nor any of the other potential

explanatory variables seem to have any effect on changes on the change of the the context-

independent overperecision.

Result 2: The bigger the fluctuations in prices, the bigger the changes in overprecision.

3.2 The Impact of Past Performance on Overprecision

A potential driving factor of endogenous overprecision is past success and failure of fi-

nancial traders (e.g. Daniel et al., 1998; Deaves et al., 2010; Gervais and Odean, 2001).

Therefore, we study the effect that past performance has on the overprecision of our

experimental subjects. We proxy past performance by changes in the portfolios of the

subjects between periods 1, 6, and 13 (i.e. after the first and prior to the second and

third Dot-Spot break). The portfolio value of a subject i comprises her cash and her

marked-to-market assets holdings at the end of trading periods 1, 6, and 13. Hence, the

change in subjects i’s portfolio between breaks b′ > b is defined as as:

∆V aluei(b,b′) = pricet′ ∗ assetsi,t′ − pricet ∗ assetsi,t + cashi,t′ − cashi,t (4)

13



(1) (2) (3) (4) (5) (6)
∆MDotOP1,2 ∆MDotOP1,2 ∆MDotOP2,3 ∆MDotOP2,3 ∆MDotOP1,3 ∆MDotOP1,3

∆Price1 0.0480∗∗ 0.0500∗∗

(0.0190) (0.0198)

APOP1,2 -0.0188 -0.0178
(0.0138) (0.0139)

∆Price2 0.0341∗ 0.0409∗∗

(0.0161) (0.0175)

APOP2,3 0.0353 0.0386
(0.0293) (0.0255)

∆Price3 0.0220∗∗∗ 0.0207∗∗∗

(0.00644) (0.00652)

APOP1,3 0.0174 0.0179
(0.0114) (0.0117)

CRT 0.154 0.269 -0.370 -0.482 -0.329 -0.299
(0.460) (0.393) (0.587) (0.665) (0.575) (0.585)

Male -2.838 -0.822 -1.489 -3.075 -4.913 -4.611
(3.978) (3.827) (2.580) (2.252) (2.951) (2.960)

Risk Aversion -0.877 -1.058 -11.80 -12.24 -16.03∗ -15.42∗

(7.468) (8.087) (8.617) (9.511) (8.117) (7.982)

Constant 2.035 -10.87 7.804 20.10∗ 12.25 13.98
(5.588) (12.32) (6.017) (10.000) (6.947) (12.33)

N 117 117 117 117 117 117
adj. R2 0.012 0.043 0.060 0.085 0.115 0.086
Big Five No Yes No Yes No Yes

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 2: OLS of the change of context-independent measure of overprecision (∆MDotOPb,b′) on the
change in prices across breaks (∆Priceb), the individual level accumulated price-prediction overprecision
across breaks (APOPb,b′), and personality measures. All standard errors are clustered at the market
level.
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where pricet is the equilibrium price of the asset at round t in subject i’s session, and

assetsi,t and cashi,t are the number of assets and cash she is holding, respectively.

The results can be found in Table 3.15. In it, as in Table 2, we divide the data to study

the three different breaks. As expected, the results show that an increases (decreases) in

the value of portfolio induces an increase (decrease) of the context-independent overpre-

cision. Yet, this effect is not as strong as the effect that a pure change in prices has, and

is inexistent for the changes in portfolio between the first and third break.

(1) (2) (3) (4) (5) (6)
∆MDotOP1,2 ∆MDotOP1,2 ∆MDotOP2,3 ∆MDotOP2,3 ∆MDotOP1,3 ∆MDotOP1,3

∆V alue1,2 0.00994∗∗ 0.0103∗∗

(0.00420) (0.00402)

APOP1,2 -0.0177 -0.0152
(0.0138) (0.0141)

∆V alue2,3 0.00637∗ 0.00815∗

(0.00329) (0.00407)

APOP2,3 0.0327 0.0354
(0.0305) (0.0274)

∆V alue1,3 0.0000325 -0.000346
(0.00502) (0.00540)

APOP1,3 0.0240∗ 0.0240∗

(0.0121) (0.0125)

CRT -0.0900 0.0307 -0.317 -0.407 -0.360 -0.315
(0.446) (0.385) (0.562) (0.647) (0.563) (0.562)

Male -3.973 -1.984 -1.408 -2.906 -4.503 -4.147
(3.786) (3.598) (2.622) (2.348) (2.900) (2.996)

Risk Aversion -0.762 -0.721 -11.43 -11.71 -14.56 -13.72
(6.317) (7.070) (8.864) (9.852) (8.346) (8.277)

Constant 5.674 -8.482 5.295 17.29 11.72 13.52
(4.516) (11.54) (6.086) (11.02) (7.052) (13.45)

N 117 117 117 117 117 117
adj. R2 0.006 0.035 0.024 0.035 0.086 0.060
Big Five No Yes No Yes No Yes

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 3: OLS of the change of context-independent measure of overprecision (∆MDotOPb,b′) on the
change in portfolio value across breaks (∆V alueb), the individual level accumulated price-overprecision
across breaks (APOPb,b′), and personality measures. All standard errors are clustered at the market
level.

15Table 5 in the appendix shows the results of a similar exercise, but excluding for cash holdings.

15



Result 3: The change in value of subjects’ portfolio has a weak positive effect on the

overprecision of subjects. The bigger the change in value of the portfolio, the bigger the

change in overprecision.

3.3 The Impact of Overprecision on Market Performance

While wealthy traders become overprecise, overprecise traders not necessarily become

wealthy. In fact, theory predicts that trader overprecision is negatively correlated with

profits (e.g., Odean, 1998; Gervais and Odean, 2001). To test this hypothesis, we study

the effects that overprecision has on the market performance of our subjects. To do so we

regress the amount of money a subject made in the first market (Payoff i,1) on the context-

independent overprecision measured before the start of the market and the accumulated

price-prediction overprecision across the whole market (APOPi,m).
16

The results can be found in Table 4 and show a strong and negative effect of baseline

overprecision on market performance; the higher the (baseline) overprecision of a subject,

the poorer she does in the asset market. Surprisingly, the accumulated price-prediction

overprecision has no effect on her market returns. Such a result seems to support our ex-

perimental design in which, to avoid confounds, we use the context-independent measure

of overprecision to study the effects of prices on overconfidence. To study how changes in

overprecision affect performance, we also introduce an interaction effect between the base-

line context-independent-overprecision and the change of this overprecision between the

first two breaks. The result shows a modest interaction effect, suggesting that the higher

the baseline overprecision, the bigger are the losses explained by changes in overpreci-

sion. Finally, our results confirm the findings of Bosch-Rosa et al. (2018) and Noussair

et al. (2016), showing that CRT scores are a good predictor for performance in SSW asset

markets.

Result 4: The bigger the context-independent overprecision of a subject, the worse her

performance in the asset market.

16Payoff i,m is composed by the total amount of cash a subject ends the market. Such cash can come
from the initial endowment, trading, or the asset dividends, and does not include any payoffs from the
price belief elicitation nor the Dot-Spot tasks.
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(1) (2) (3)
Payoff Payoff Payoff

MDotOP1 -7.684∗∗ -7.500∗∗ -6.152∗∗∗

(3.048) (3.050) (1.707)

APOP1 0.0860 0.0488 -0.0436
(0.225) (0.249) (0.172)

CRT 28.94∗∗∗ 27.10∗∗ 27.53∗∗

(8.956) (11.15) (11.22)

Male 120.8∗ 114.0∗ 118.3∗

(62.69) (61.24) (64.27)

Risk Aversion 78.46 45.12 49.00
(96.73) (115.8) (110.3)

∆MDotOP1,2 -0.643
(2.131)

∆MDotOP1,2 x MDotOP1 -0.209∗

(0.0989)

Constant 364.2∗∗∗ 469.8 461.3
(91.40) (359.4) (345.8)

N 117 117 117
adj. R2 0.138 0.123 0.146
Big Five No Yes Yes

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 4: OLS of asset market performance on baseline context-independent overprecision, accumulated
price-prediction overprecision, and other personality traits. All standard errors are clustered at the
market level.
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4 Conclusion

Overconfidence is considered one of the most significant and pervasive cognitive biases

(Kahneman, 2011; Plous, 1993). It is a well documented phenomenon among experts and

professionals in business (e.g., Ben-David et al., 2013; Malmendier and Tate, 2005, 2008;

Malmendier et al., 2011) and financial markets (Glaser et al., 2013; Glaser and Weber,

2007; Menkhoff et al., 2013). In finances models especially, agents are assumed to be

too optimistic about the quality of their information (i.e., overprecise), which leads to

excessive trading, under-diversification, and inflated markets (Odean, 1999; Goetzmann

and Kumar, 2008; Scheinkman and Xiong, 2003).

Importantly, overprecision is a “dynamic” personality trait which changes endoge-

nously with past performance of traders (Deaves et al., 2010; Hilary and Menzly, 2006;

Merkle, 2017). The dynamic nature of overprecision implies a strong interdependency

between overprecision and asset price dynamics in which as asset prices go up, so does

the overprecision of traders (Daniel and Hirshleifer, 2015; Daniel et al., 1998; Gervais and

Odean, 2001). This creates a feedback loop which potentially amplifies the adverse effects

of overprecision on stock price volatility and trading volume and increases the probability

of asset price bubbles.

Against this background, in this paper we study whether prices and overprecision

indeed co-move in an experimental asset market. To do so we introduce a new way of

eliciting overprecision, and implement it in a novel experimental design which allows us

to disentangle the effect of prices on overprecision, free of any other potential confounds.

The results are clear: overprecision is dynamic and co-moves with prices. When prices

go up, so does overprecision, and when prices go down, overprecision follows. This holds

for markets with constant increases in price, constant decreases in price, and, crucially, for

markets in which bubbles fully develop, going from fast price increases to the final bust.

As is reflected in our results, the more prices increase, the more overprecision increases.

Furthermore, we confirm the predictions postulated by the theory that more overprecise

subjects have lower returns, and that changes in own portfolio are positively correlated

to subject overprecision. Hence, while wealth increases overprecision, overprecision does

not increase wealth. Finally, we also confirm known results such as the positive effects of

cognitive ability on market performance (Bosch-Rosa et al., 2018; Noussair et al., 2016).

18



References

Akiyama, E., N. Hanaki, and R. Ishikawa (2017). It is not just confusion! strategic

uncertainty in an experimental asset market. Cited on page 7.

Barber, B. M. and T. Odean (1999). The courage of misguided convictions. Financial

Analysts Journal 55 (6), 41–55. Cited on page 2.

Ben-David, I., J. R. Graham, and C. R. Harvey (2013). Managerial miscalibration. The

Quarterly Journal of Economics 128 (4), 1547–1584. Cited on page 18.

Bosch-Rosa, C., T. Meissner, and A. Bosch-Domènech (2018). Cognitive bubbles. Exper-

imental Economics 21 (1), 132–153. Cited on pages 8, 16, and 18.

Bostock, M., V. Ogievetsky, and J. Heer (2011). D
3: Data-driven documents. IEEE

Transactions on Visualization and Computer Graphics 17 (12), 2301–2309. Cited on

page 8.

Brier, G. W. (1950). Verification of forecasts expressed in terms of probability. Monthly

Weather Review 78 (1), 1–3. Cited on page 6.

Caplin, A. and J. V. Leahy (2019). Wishful Thinking. NBER Working Papers 25707,

National Bureau of Economic Research, Inc. Cited on page 3.

Chen, D. L., M. Schonger, and C. Wickens (2016). otree - an open-source platform

for laboratory, online, and field experiments. Journal of Behavioral and Experimental

Finance 9, 88–97. Cited on page 8.

Daniel, K. and D. Hirshleifer (2015). Overconfident Investors, Predictable Returns, and

Excessive Trading. Journal of Economic Perspectives 29 (4), 61–88. Cited on pages 2

and 18.

Daniel, K., D. Hirshleifer, and A. Subrahmanyam (1998). Investor Psychology and Secu-

rity Market Under- and Overreactions. Journal of Finance 53 (6), 1839–1885. Cited

on pages 2, 3, 13, and 18.

19
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A Extra Figures and Tables

Figure 4: Two matrices with 220 red dots each, but a different dot pattern.
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Figure 5: Box plots showing the median, 25th and 75th percentile of MDotOPib for each break within a
session
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(1) (2) (3) (4) (5) (6)
∆MDotOP1,2 ∆MDotOP1,2 ∆MDotOP2,3 ∆MDotOP2,3 ∆MDotOP1,3 ∆MDotOP1,3

∆assets1,2 0.0104∗ 0.0103∗

(0.00519) (0.00542)

APOP1,2 -0.0142 -0.0111
(0.0130) (0.0129)

∆assets2,3 0.0108∗∗ 0.0107∗∗∗

(0.00366) (0.00348)

APOP2,3 0.0400 0.0421
(0.0275) (0.0251)

∆assets1,3 0.00245 0.00303
(0.00336) (0.00386)

APOP1,3 0.0228∗ 0.0225∗

(0.0121) (0.0125)

CRT 0.0446 0.152 -0.124 -0.209 -0.315 -0.264
(0.450) (0.389) (0.558) (0.633) (0.558) (0.555)

Male -3.036 -1.126 -1.403 -2.806 -4.544 -4.259
(3.846) (3.443) (2.309) (1.998) (2.768) (2.758)

Risk Aversion -0.321 -0.400 -15.11 -14.83 -15.24∗ -14.61∗

(6.550) (7.264) (9.052) (9.647) (8.056) (8.124)

Constant 4.758 -6.913 6.918 18.89 11.66 14.20
(4.372) (9.870) (6.276) (10.65) (6.800) (12.52)

N 117 117 117 117 117 117
adj. R2 0.011 0.038 0.071 0.075 0.089 0.065
Big Five No Yes No Yes No Yes

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 5: OLS of the change of context-independent measure of overprecision (∆MDotOPb,b′) on
the change in book value of share across breaks (∆assetsb), the individual level accumulated price-
overprecision across breaks (APOPb,b′), and personality measures. All standard errors are clustered at
the market level.
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B Risk Aversion Measure

For our regression analysis in Tables 2, 5, and 4 we use a composite of the two risk

measures we get from subjects. The first measure is the switching point from lottery A to

the lottery B in a multiple price list like that in Figure 6, this gives us a value between 1

and 10 (HLi) in which the higher the value (i.e., the later the switching point), the more

risk averse a subject is. Subjects are (randomly) paid for their choice in one of the ten

lottery decisions they make.

The second measure of risk aversion we gather is non-incentivized and comes from the

German Socio Economic Panel. The question asks subjects: How likely are you to take

risk on a scale of 0 (not risk taking at all) to 10 (very prone to take risk). The measure

we get is a value between 0 and 10 (GSi) in which the higher it is, the less risk averse a

subject is.

To create the final risk aversion measure we use in our regressions we take three steps:

1. We divide each measure by 10 and 11 (hli = HLi/10 and gsi = GSi/10, respec-

tively), to normalize the measures.

2. We flip cardinal order of the second measure by subtracting each observation from

one (gs′i = 1 − gsi). This makes the measure go from less risk averse to more risk

averse.

3. We create a new measure which we call Risk Aversion (RAi) by giving each nor-

malized measure half of the weight (RAi = gs′i/2 + hli/2).
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Figure 6: Screenshot of the risk aversion multiple price list task.
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C Second Market

As is typical in SSW markets, once the market is repeated prices become much closer to

the fundamental value.17 This is clear in the left panel of Figure 7 where we see how most

sessions have prices that closely track the fundamental value. In fact, in Market 2 we see

no session that could be labeled as Increasing Price, as P13 < P6 across all sessions, while

we have three that are Decreasing Price, and nine that are Hump-Shaped.

In the right panel of Figure 7 we show the distribution of the MDotOPib for each of

the two types of price dynamics we find in Market 2. It is clear that there are no changes

in our measure of overprecision (MDotOPib) across breaks. This is confirmed in Table 6

where we see that there is no difference in overprecision across the different breaks.

Such a result seems to confirm our the thesis from Tuckett and Taffler (2008) in which

holding and selling assets in an unknown ambiguous environment leads to an integration

of emotional experiences to behavior. In other words, bubbles and overconfidence mostly

arise in markets for exotic/unknown assets. This is a common belief and has been used to

explain the Dot-Com bubble or the most recent crypto-currency craze. In the experimental

literature such an approach has received support from Hussam et al. (2008) who show

that experience eliminates bubbles if the environment is held constant.

Yet, we refrain from drawing any conclusions on this respect from our experimental

design, as our setup does not allow us to cleanly disentangle the effects of individual

learning from overprecision, excitement, and price dynamics. We leave this for future

research.

Break 1 = Break 2 Break 2 = Break 3 Break 1 = Break 3

Hump-shaped p-value (N=90) 0.904 0.923 0.913

Decreasing Price p-value (N=27) 0.643 0.138 0.138

Table 6: P -values resulting from Wilcoxon matched-pairs signed-ranks test comparing the equality of
matched pairs of observations across Dot-Spot task across different session sub-groups for Market 2.

17This convergence to fundamental values is generally assumed to be due to learning (Smith et al.,
1988; Dufwenberg et al., 2005; Hussam et al., 2008).
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Figure 7: Summary of the dynamics in Market 2.
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