Spatio-Temporal Organization in Nonequilibrium Systems

Contributions to the Dortmunder Dynamische Woche
June 1992

Edited by Stefan C. Müller and Theo Plessner

projekt verlag
Table of Contents

<table>
<thead>
<tr>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>BZ-waves propagation along a line of diffusion-jump</td>
<td>1-7</td>
</tr>
<tr>
<td>Agladze, K.I. and De Kepper, P.</td>
<td></td>
</tr>
<tr>
<td>Models of cytoplasmic motion</td>
<td>8-10</td>
</tr>
<tr>
<td>Alt, W.</td>
<td></td>
</tr>
<tr>
<td>Pattern formation and topological defects in nonlinear optics</td>
<td>11-12</td>
</tr>
<tr>
<td>Arecchi, F.T.</td>
<td></td>
</tr>
<tr>
<td>Wave phenomena in an excitable surface reaction</td>
<td>13-15</td>
</tr>
<tr>
<td>Bär, M., Eiswirth, M., Rotermund, H.H. and Ertl, G.</td>
<td></td>
</tr>
<tr>
<td>Dynamic instabilities in a coupled electrochemical and biochemical reaction system</td>
<td>16-18</td>
</tr>
<tr>
<td>Baier, G. and Urban, P.</td>
<td></td>
</tr>
<tr>
<td>Bifurcations and symmetries of spiral waves</td>
<td>19-20</td>
</tr>
<tr>
<td>Barkley, D.</td>
<td></td>
</tr>
<tr>
<td>Experiments on interacting electrochemical oscillators</td>
<td>21-24</td>
</tr>
<tr>
<td>Bell, J.C., Wang, Y., Jaeger, N.I. and Hudson, J.L.</td>
<td></td>
</tr>
<tr>
<td>Convection in gases at elevated pressures</td>
<td>25</td>
</tr>
<tr>
<td>Bodenschatz, E., Morris, S.W., de Bruyn, J.R., Cannell, D.S. and Ahlers, G.</td>
<td></td>
</tr>
<tr>
<td>Evolutionary consequences of spatial pattern formation</td>
<td>26-28</td>
</tr>
<tr>
<td>Boerlijst, M.C. and Hogeweg P.</td>
<td></td>
</tr>
<tr>
<td>Spatial structures in reaction-diffusion systems</td>
<td>29-31</td>
</tr>
<tr>
<td>Borckmans, P., De Wit, A. and Dewel, G.</td>
<td></td>
</tr>
<tr>
<td>Localized solutions of envelope and phase equations</td>
<td>32-33</td>
</tr>
<tr>
<td>Brand, H.R. and Deissler, R.J.</td>
<td></td>
</tr>
<tr>
<td>Spiral drift in a light-sensitive active medium with spatial gradient of excitability</td>
<td>34-36</td>
</tr>
<tr>
<td>Braune, M. and Engel, H.</td>
<td></td>
</tr>
<tr>
<td>Mathematical modeling of oscillations and waves of oxidation and reduction in the cerium and ferroin-catalyzed BZ-reaction</td>
<td>37-39</td>
</tr>
<tr>
<td>Buchholtz, F.</td>
<td></td>
</tr>
<tr>
<td>Pattern formation in populations of chemotactic bacteria</td>
<td>40</td>
</tr>
<tr>
<td>Budrene, E.O.</td>
<td></td>
</tr>
<tr>
<td>Transitions to tertiary and quarternary states of fluid flows</td>
<td>41-43</td>
</tr>
<tr>
<td>Busse, H.-G. and Clever, R.M.</td>
<td></td>
</tr>
</tbody>
</table>
Stochastic effects in nonlinear chemical systems
Careta, A. and Sagués, F.
44-45

Pattern formation in oscillators submitted to a parametric forcing close to the frequency cut-off
Coullet, P., Frisch, T. and Sonnino, G.
46-58

Spiral waves of excitation in isolated cardiac muscle
Davidenko, J.M., Pertsov, A.M., Salomonsz, R. Baxter, W.T. and Jalife, J.
59-62

Spiral waves in a small disk and on a small sphere
Davydov, V.A. and Zykov, V.S.
63-64

Cellular automaton modeling of pattern formation by filamentous fungi
Deutsch, A., Dress, A. and Rensing, L.
65-67

Oscillations and waves of cytosolic calcium: properties of a model based on calcium-induced calcium release
Dupont, G. and Goldbeter, A.
68-70

Symmetry breaking instability in a model of chemical reaction and molecular diffusion
Dutt, A.K.
71-74

Chemical pattern formation: An overview
Epstein, I.R.
75-77

Pattern formation in the oscillatory regime of the CO-oxidation on Pt(110)
Falcke, M. and Engel, H.
78-81

Period doublings, period three, chaos, and quasiperiodicity in the peroxidase - oxidase reaction: Experimental and theoretical studies
Geest, T., Larter, R., Steinmetz, C. and Olsen, L.F.
82-84

A cellular automaton model of excitable media
Gerhardt, M.
85-88

Developmental complexity and evolutionary order
Goodwin, B.
89

Theorist's view of a beautiful experiment: how many states of Rayleigh-Bénard turbulence?
Grossmann, S. and Lohse, D.
90-92
Dependence of the spatial and temporal dynamics on the acidity in the ferroin-catalyzed Belousov-Zhabotinsky reaction
93-95

Pattern formation in the early Drosophila embryo
Hoch, M. and Jäckle, H.
96-99

Instabilities in propagating reaction-diffusion fronts
Horváth, D., Petrov, V., Scott, S.K. and Showalter, K.
100-101

The role of "excess work" in nonequilibrium thermodynamic systems
Hunt, K.L.C., Hunt, P.M., Peng, B., Chu, X. and Ross, J.
102-104

Ginzburg-Landau parameters for reaction-diffusion systems
Hynne, F., Sørensen, P.G., Ipsen, M., Kristiansen, K.R. and Florian, M.
105-107

Transition from order to spatiotemporal turbulence in catalytic NO reduction
Imbihl, R.
108-110

Nonlinear forecasting as a tool to diagnose heart disease
Jørgensen, B.L., Junker, A., Mickley, H., Møller, M., Christiansen, E. and Olsen L.F.
111-112

Transient bimodality in turbulence 1-turbulence 2 transition in electrohydrodynamic convection in nematic liquid crystals
Kai, S., Andoh, M. and Yamaguchi, S.
113-116

Reactive dynamics in a multi-species lattice-gas automaton
Kapral, R., Lawniczak, A. and Masiar, P.
117-118

Scroll waves in myocardium
Keener, J.P. and Panfilov, A.V.
119-121

Excitation wave propagation through narrow pathways
Kogan, B.Y., Karplus, W.J. and Billett, B.S.
122-127

Coupled excitable cells
Kosek, K. and Marek, M.
128-131

Hyperchaos in a surface reaction
Kruel, Th.-M., Eiswirth, M., Schneider, F.W. and Ertl, G.
132-134

Intracellular calcium waves: propagation, annihilation and excitability
Lechleiter, J.D. and Clapham, D.
135-137
Scaling relations in thermal turbulence: global measurements and boundary layers estimate
Libchaber, A.

Patterns of temperature waves on electrically heated catalytic ribbons
Luss, D.

Reaction-diffusion patterns in heterogeneous media
Malchow, H. and Sattler, C.

Microtubules: Structure, dynamics, oscillations, and spatial patterns
Mandelkow, E., Marx, A., Trinczek, B. and Mankelkow, E.-M.

Pattern formation in neural activator-inhibitor networks
Markus, M. and Schepers, H.E.

Spatial long-range coherence in squid giant axons
Matsumoto, G.

Molecular evolution in traveling waves
McCaskill, J.S.

Complex biological pattern formation by linking several pattern forming reactions
Meinhardt, H.

A big chemical-wave: accelerating propagation and surface deformation induced by a spontaneous convection
Miike, H., Yamamoto, H. and Kai, S.

Diffusive coupling of spatio-temporal patterns in nonequilibrium systems
Mimura, M.

Spiral waves in the Oregonator model: A study of time-space correlations
Müller, K.H. and Plesser, Th.

Growth patterns in two-phase systems
Müller-Krumbhaar, H.

Formation of temporal patterns in the swimming behaviour of Halobacteria: Possible dynamical mechanisms
Naber, H.

Dynamics of spiral waves in the Belousov-Zhabotinsky reaction
Nagy-Ungvarai, Zs.
Unstable wave propagation in the Belousov-Zhabotinsky reaction

Reaction diffusion patterns in the catalytic CO oxidation on Pt(110) - Front propagation and spiral waves -

Measuring an accelerating propagation of a big wave by sequential image processing
Nomura, A., Miike, H. and Hashimoto, H.

Experiments at the boundary of two worlds: Reaction, diffusion, electric conduction and multicomponent convection in gel and fluid reactors
Noszticzius, Z., Farkas, H., Schubert, A., Swift, J., McCormic, W.D. and Swinney, H.L.

Turing instability in the CIMA reaction
Ouyang, Q. and Swinney, H.L.

Self-organized criticality in a semiconducting charge density wave compound
Parisi, J., Peinke, J., Dumas, J. and Kittel, A.

Asymptotics of spiral waves
Pelce, P. and Sun, J.

Turing-Hopf localized structures
Perraud, J.-J., Dulos, E., De Kepper, P., De Wit, A., Dewel, G. and Borckmans, P.

Electrohydrodynamic convection in nematics: The homeotropic case
Pesch, W., Hertrich, A. and Kramer, L.

Interaction of chemical waves with convective flows induced by density gradients: A comparison between experiments and computer simulations
Plesser, Th., Wilke, H. and Winters, K.H.

Scaling exponents, wrinkled graphs, and the high Reynolds number geometry of turbulence
Procaccia, I.

Spatio-temporal patterns in gas discharge systems
Purwins, H.-G. and Willebrand, H.

Self-trapping of travelling-wave pulses
Riecke, H.
Spiral turbulence in Taylor-Couette-flow
Roesner, K.G.
224-225

Chemical implementation of computers
Ross, J.
226-229

Induction of temporal patterns in the locomotor behavior of Halobacterium - an indication of nonlinear dynamics
Schimz, A. and Hildebrand, E.
230-232

Pattern formation in molecular evolution - A physicist's look at biology
Schuster, P.
233-234

Observation of defect dynamics in small system
Sepulchre, J.A. and Babloyantz, A.
235-237

Spatio-temporal patterns of on-going and evoked activity in cat visual cortex
Shoham, D., Ullman, S. and Grinvald, A.
238-240

Three-dimensional autowaves control cell motion in Dictyostelium slugs
Siegert, F., Steinbock, O., Weijer, C.J. and Müller, S.C.
241-243

Wave propagation and cell movement control morphogenesis of the cellular slime mould Dictyostelium discoideum
Siegert, F. and Weijer, C.J.
244-246

Spatio-temporal patterns in ionic diffusion chemical system
Snita, D., Dvorák, L. and Marek, M.
247-249

Pairs of pacemakers
Spoerel, U., Peuker, A. and Busse, H.-G.
250-253

Rotating vortex initiation in excitable media: pulse chemistry control
Starmer, C.F., Krinsky, V.I., Romashko, D.N., Aliev, R.R. and Stepanov, M.R.
254-256

Light-controlled spiral waves
Steinbock, O. and Müller, S.C.
257-259

Second control loop in the Belousov-Zhabotinsky reaction investigated at different acidities
Varga, M. and Försterling, H.-D.
260-262

Waves in a liquid, locally heated along a wire
Vince, J.M., Dubois, M. and Bergé, P.
263-265
Spontaneous nucleation in a reactive lattice gas automaton
Weimar, J.R.
266-269

Numerical experiments on filament motion
Winfree, A.T.
270-273

Hydrodynamic fluctuations in nematics
Winkler, B.L., Hörner, F., Richter, H. and Rehberg, I.
274-276

Artificial retina - photo image processing in the Belousov-Zhabotinsky reaction in gels
Yamaguchi, T., Ohmori, T. and Matumura-Inoue, T.
277-280

Dynamic mode of entrainment in coupled chemical oscillators
Yoshikawa, K.
281-283

Mechanism of stratification in a thin-layered excitable reaction-diffusion system with an oxygen gradient
Zhabotinsky, A.M., Kiyatkin, A.B. and Epstein, I.R.
284-286

Effects of disorder in convective systems
Zimmermann, W.
287-288

Kinematics of spiral wave with indistinct front
Zykov, V.S.
289-290
Three-Dimensional Autowaves Control Cell Motion in Dictyostelium Slugs

F. Siegert, O. Steinbock*, C.J. Weijer and S.C. Müller*,

Universität München, Zoologisches Institut
Luisenstr. 14, D-8000 München 2, Germany / Fax: +49-89-590-2450
+Max-Planck-Institut für Ernährungsphysiologie / Fax: +49-231-1206 389
Rheinlanddamm 201, D-4600 Dortmund 1, Germany / steinboc@mpi-dortmund.mpg.de

During the developmental cycle of Dictyostelium a slug forms as a migratory stage, in which the behavior of about 10^5 individual cells is coordinated to that of a single organism. The direction of chemotactic cell motion is controlled by propagating waves of excitation. Cell motion occurs in a direction opposite to the direction of signal propagation [1]. The anterior part of the slug (20% of all amoebae) consists of prestalk cells, which ultimately build the stalk of the fruiting body. The remainder is formed by prespore cells which differentiate to spores in the fruiting body.

According to recent analysis of cell motion, amoebae in the prespore zone move straight forward in the direction of slug migration, while cells in the prestalk zone move perpendicular to the direction of slug migration, that is they rotate around the slug axis [2]. We proposed that the underlying mode of signal propagation was caused by a change in excitability along the long axis of the slug. This hypothesis is based on the finding that during aggregation the cells that will become prestalk show high frequency oscillations in optical density when isolated, while cells that will become prespore show slow oscillations [2].

We were interested in the question whether a three-dimensional excitable system exhibits such behaviour we have performed computer simulations, based on previous simulations of wave propagation during the two-dimensional aggregation phase. For this purpose we calculated numerical solutions of an excitable reaction-diffusion system [3] in a cylinder:

$$\frac{\partial u}{\partial t} = D_u \Delta u + \frac{1}{\epsilon} u(1-u)\left(u - \frac{v + b}{a}\right), \quad \frac{\partial v}{\partial t} = u - v;$$

(diffusion coefficient D_u; parameters $a=0.4$, $\epsilon=1/150$, b controlling the excitability; time per iteration $dt=0.0103$). The propagator u and the controller species v are functions of
time and the three spatial coordinates. The variable \(u \) obeys nonlinear reaction kinetics and qualitatively models the extracellular cAMP concentration, while \(v \) represents the fraction of the cAMP-receptor in its active state. The difference in excitability between the prestalk and prespore region is modelled by a step function of parameter \(b \) along the symmetry axis of the cylinder (\(b_{\text{psti}}=0.01, b_{\text{psp}}=0.023 \)).

The initial condition is a scroll wave along the long axis of the slug having uniform excitability (\(b=0.01 \)). It rotates stably in the homogeneous system. When introducing the described change in excitability (after \(t=880 \) iterations), the scroll wave undergoes a complex transformation into a new pattern (Figure 1). While the wave rotation in the region of high excitability (prestalk region) remains stable during the entire calculation, the scroll wave in the region of low excitability (prespore region) increases its wave length and rotation period, and subsequently the whole structure becomes twisted in middle segments of the cylinder. The process of twisting and the higher frequency in the prestalk region causes a dramatic change of the pattern in the less excitable prespore zone: Planar wave fronts appear that are oriented perpendicular to the long axis of the cylinder. Detailed analyses show that the shape of these wave fronts is slightly convex, thus focussing cell motion and stabilizing the slug geometry. This spatial arrangement is stable over more than 30 periods of scroll wave rotation. The interface between the region of scroll wave rotation and planar wave propagation displays more complex dynamics and alternating phases of weak and strong twisting.

Figure 1 Three-dimensional representation of the variable \(v \) after 7800 iterations. Points having \(v<0.27 \) are plotted transparently.
The corresponding filament of wave rotation is oriented along the long axis of the slug in the prespore zone, but it becomes helical at the interface and bends away from the axis before ending at the cylinder boundary. Movies of the filament evolution reveal irregular changes in location and shape, but most of the time it stays attached to the boundary. Our calculations demonstrate that the observed pattern of chemotactic cell motion in Dictyostelium slugs can be explained readily by scroll waves of a chemotactic signal in the prestalk zone that decay into planar wave fronts in the prespore zone. This change in the pattern of wave propagation is caused by a step in excitability along the long axis of the slug. The simulations have furthermore shown that the filament of the scroll wave in the prestalk zone is a stable structure, a region of steady and low concentration of the excitation variable, conditions that most likely direct stalk formation by controlling expression of stalk specific genes.

References