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A B S T R A C T

Macrophage migration inhibitory factor (MIF) is a chemokine-like protein and an important mediator in the
inflammatory response. Unlike most other pro-inflammatory cytokines, a number of cell types constitutively
express MIF and secretion occurs from preformed stores. MIF is an evolutionarily conserved protein that shows a
remarkable functional diversity, including specific binding to surface CD74 and chemokine receptors and the
presence of two intrinsic tautomerase and oxidoreductase activities. Several studies have shown that MIF is
subject to post-translational modification, particularly redox-dependent modification of the catalytic proline and
cysteine residues. In this review, we summarize and discuss MIF post-translational modifications and their effects
on the biological properties of this protein. We propose that the redox-sensitive residues in MIF will be modified
at sites of inflammation and that this will add further depth to the functional diversity of this intriguing cytokine.

1. Introduction

Identified in 1966, macrophage migration inhibitory factor (MIF)
was initially shown to inhibit the random migration of macrophages
upon its release from T lymphocytes during a delayed-type hy-
persensitivity response [1,2]. Today, MIF is widely recognized as a
critical upstream player in the innate immune response, where it trig-
gers and amplifies cytokine production by stimulating the production of
pro-inflammatory mediators, such as TNF-α, interferon-γ, interleukins
(IL-1β, IL-2, IL-6, IL-8), nitric oxide, prostaglandin E2 and tissue-de-
grading matrix metalloproteinases [3–6]. MIF also promotes in-
flammation by orchestrating leukocyte trafficking [7], inhibiting p53-
mediated apoptosis of inflammatory cells sustaining their survival span
[8,9], and by counter-regulating the immunosuppressive action of
glucocorticoids [10,11]. Furthermore, MIF exhibits tumor growth-pro-
moting properties [12,13].

Given its broad pro-inflammatory activities, it is not surprising that
MIF is implicated in acute and chronic inflammatory diseases such as
rheumatoid arthritis, asthma, diabetes, sepsis, cancer, atherosclerosis
and other cardiovascular diseases [8,14–22]. MIF is released from dif-
ferent immune cell types including monocytes, macrophages, neu-
trophils, T cells, B cells, dendritic cells, and eosinophils, but secretion
can also occur from certain endocrine, endothelial and epithelial cells

upon inflammatory stimulation or injury [23,24]. MIF consists of 114
amino acids and has a molecular mass of 12,345 Da, with a 90% se-
quence homology between human and murine MIF. The sequence of rat
and mouse MIF only differ in a single amino acid [25]. More recently, a
genetic homolog of MIF, termed D-dopachrome tautomerase (D-DT) or
MIF-2, was identified and found to play role in the inflammatory re-
sponse [26,27].

MIF binds to the chemokine receptors CXCR4 and CXCR2 [28,29] to
foster inflammatory and atherogenic monocyte/neutrophil and T cell
chemotaxis, respectively, and is therefore classified as a chemokine-like
function (CLF) or atypical (ACK) chemokine [30]. In light of the dis-
covery of MIF’s chemokine activity, it appears that the eponymous
‘migration-inhibitory effect’ represents a chemokinetic effect of MIF on
random leukocyte motility [30]. MIF also binds to the type II trans-
membrane protein CD74, which leads to intramembranous cleavage
(‘RIP’) and signaling and/or co-activation of CD44 [31–33], while
CD74/CXCR complexes also have been implicated in MIF signaling
responses in atherosclerosis [29]. Following receptor activation, MIF
facilitates cell proliferation, inhibition of apoptosis and migration of
immune cells via the ERK1/2 MAP kinase, Gαi and PI3K/AKT pathway
[29,32].

MIF is widely considered to act as a key-regulator in myocardial
ischemia/reperfusion injury, where MIF is released in two waves
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[34,35]. MIF release during the first wave in the early stage of ischemia
is thought to stem from the ischaemic myocardium and to adopt a
protective function [34,35]. On a molecular basis, MIF’s protective
activity is due to its ability to inhibit the apoptosis-inducing c-Jun N-
terminal kinase (JNK) pathway and to reduce oxidative stress to the
myocardium generated during ischemia/reperfusion [36,37]. Im-
portantly, MIF released from the ischaemic heart can induce AMPK
activation via binding to CD74, which promotes glucose uptake and
protects the heart during ischemia/reperfusion by metabolic pathways
[17,38]. The second MIF wave is that of pro-inflammatory MIF released
from activated infiltrating immune cells including monocytes [34].
Therefore, MIF can have multiple and sometimes opposing functions
depending on the cellular source and the time of release. The me-
chanisms for regulating MIF function and the mechanistic details of the
fine-tuning between cell types and phases are currently unclear.

MIF differs from other pro-inflammatory cytokines by being semi-
constitutively expressed and secreted into circulation rather than being
regulated by a surge in transcriptional activity in response to in-
flammatory stimuli [39–41]. MIF forms homo-trimer [42,43] and, un-
like other common known cytokines, has two evolutionarily conserved
catalytic activities – a tautomerase and a thiol-protein oxidoreductase
(TPOR) activity – that are carried out by two distinct catalytic centres
(Fig. 1). The TPOR activity of MIF is mediated through a conserved

CALC motif containing Cys-57 and Cys-60 [44] and has been shown to
catalyse the reduction of insulin and 2-hydroxyethyldisulfide (HED)
and to be involved in cellular redox protection [44–46]. The tauto-
merase activity is facilitated by the conserved N-terminal proline,
which acts as a catalytic nucleophile at physiological pH due to its
unusually low pKa of 5.6 [47].

The function of the tautomerase activity is unknown and a physio-
logical substrate has yet to be identified. However, the region encom-
passing the N-terminal proline is involved in receptor binding and it has
been shown that targeting the N-terminal proline with small molecule
inhibitors can inhibit some of the pro-inflammatory activities of MIF
[48–53]. Targeting the tautomerase active site is thus currently being
explored as an anti-inflammatory treatment avenue [53].

Apart from pharmacological electrophiles, the N-terminal proline
has been shown to react with physiological oxidants/electrophiles
generated by the neutrophil-derived enzyme myeloperoxidase [54].
Indeed, the inflammatory environment with an array of reactive oxygen
and nitrogen species being produced by phagocytic cells makes mod-
ifications of redox-sensitive proteins highly likely.

We hypothesize that these post-translational modifications play an
important role in the regulation of MIF.

Fig. 1. A) Amino acid sequence of MIF with residues targeted for post-translational modifications highlighted in colour. Note: the suggested cysteine-oxidized form is speculative and
lacks structural confirmation. B) Ribbon structure of the MIF trimer based in the PDB crystal structure 3DJH (1.25 Å resolution) [96] with the side chain susceptible to post-translational
modifications shown in coloured spheres: red – Pro-2, blue – Cys-57/Cys-60, green – Cys-81, purple – Ser-91, orange yellow – Ser-112/Thr-113. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)
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2. MIF post-translational modifications

To date, several studies have demonstrated that MIF can be mod-
ified both covalently and structurally, and suggested that modifications
can change MIF bioactivity. These modifications are discussed in detail
below and are summarized in Figs. 1 and 2 and Table 1. In highlighting
the variety of modifications, we recommend caution with regards to
terminology. Three groups have independently reported MIF oxidation
(Dickerhof [54], Thiele [55] and Kassaar [22]), but the modifications
occur at different sites in the protein and in response to different oxi-
dizing agents, and are likely to have different biological properties.
Therefore, it is too simplistic to describe something as ‘oxMIF’. More-
over, the suggested oxidized species reported by Thiele et al. lacks
structural characterization [55]. Detailed characterization of the oxi-
dation products is essential in preventing confusion and moving the

field forward. We recommend that investigators denote the target
amino acid and the biochemical nature of the modification, keeping in
mind that in any one sample there will be a heterogeneous population
of proteins with differing degrees of modification. Accordingly, the
species identified could for example be termed ‘proline-oxidized MIF’ or
‘cysteine-oxidized-MIF’.

3. Modification of the N-terminal proline

The removal of the N-terminal methionine, encoded for by the
translational initiator codon by methionine aminopeptidase (MetAP) is
often crucial for the function and stability of proteins. Posttranslational
removal of the N-terminal methionine in MIF results in an N-terminal
proline (Pro-2) in the mature protein [25,42], and occurs in almost
every cell type including recombinant E. coli expressing human MIF. In

Fig. 2. Post-translational modifications of MIF inside and outside the cell. Posttranslational removal of the N-terminal methionine in MIF results in an N-terminal proline (Pro-2) in
the mature protein. The N-terminal proline can be modified by neutrophil-derived oxidants, carbamylation and binding of electrophiles such as isothiocyanate (ITC). MIF can be
cysteinylated at Cys-60 and a conformational change can occur at the ß-sheet encompassing Cys-57/60. S-nitrosation and phosphorylation can modify Cys-81and Ser-91, respectively.

Table 1
Summary of post-translational modifications (PTMs) of MIF and their functional implications.

Site of modification Chemistry of modification Biological consequences References

Met-1 Cleavage of N-terminal methionine Unknown Weiser et al. [97]
Bernhagen et al. [39]

Cys-57/60 Conformational change of ß-sheet comprising Cys-
57 and Cys-60

Disease-related isoform of MIF in patients with septicemia, psoriasis,
asthma, ulcerative colitis, Crohn’s disease, Alzheimer’s

Thiele et al. [55]
Kassaar et al. [22]

Pro-2 Hypochlorous acid-mediated oxidation to a
proline-imine

Loss of tautomerase activity, retention of anti-apoptotic effect on
neutrophils

Dickerhof et al. [54]

Pro-2 Covalent binding of isothiocyanates and
epicatechin-quinone, carbamylation

Loss of tautomerase activity, conformational change, interference with
binding to CD74 receptor

Brown et al. [57]
Ouertatani-Sakouhi et al.
[56]
Dickerhof et al. [61]
Dickerhof et al. [54]

Cys-60 Cysteinylation at Cys-60 Important role in regulation especially of activated B and T cells Watarai et al. [77]
Nguyen et al. [90]

Cys-81 S-Nitrosation Increased oxidoreductase activity, increased cardioprotective
properties compared to unmodified MIF

Luedike et al. [86]
Pohl et al. [87]

Ser-112 and/or Thr-113 S-Glycosylation Decreased ability to activate ERK1/2 and AKT signaling Watarai et al. [77]
Ser-91 Phosphorylataion Diminishing activity of cysteinylated MIF Watarai et al. [77]
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this review, we will number amino acids according to the MIF cDNA
sequence, e.g. the N-terminal proline residue will be termed Pro-2.

3.1. Modification of the N-terminal proline by dietary electrophiles

While the N-terminal proline of MIF has been recognized for some
time as a site for the pharmacological targeting of MIF, in 2009 three
research groups simultaneously reported that dietary isothiocyanates
can covalently modify the N-terminal proline of MIF and inhibit tau-
tomerase activity (Reaction Scheme 1) [56–58].

Ouertatani-Sakouhi et al. demonstrated that benzyl isothiocyanate
did not affect trimerisation of MIF, but interferes with MIF binding to its
receptor CD74 [56]. Brown et al. showed that MIF plasma levels, as
detected by ELISA, were rapidly lowered in human volunteers ingesting
phenethyl isothiocyanate-rich watercress suggesting that binding of
isothiocyanates induces structural changes that affect its binding to
antibodies [57]. Indeed, subsequent crystal structures indicated con-
formational shifts at the N-terminal domain of MIF following iso-
thiocyanate binding [59,60].

Epicatechins, abundant flavonoids in green tea, chocolate and red
wine, were also found to inhibit MIF tautomerase activity [61]. Oxi-
dation of the o-diphenolic (catechol) moiety in epicatechin to an o-
quinone, and thus the generation of a potent electrophilic moiety was
essential for binding the N-terminal proline of MIF. The neutrophil-
derived myeloperoxidase (MPO) is able to efficiently oxidize the ca-

techol of epicatechins to a quinone [61,62], suggesting that this post-
translational modification of MIF may occur at inflammatory sites
where both MIF and MPO are present at high concentrations [63,64]. A
range of electrophilic lipids are also generated during inflammation
[65] and it would be of interest to examine their ability to react with

the N-terminal proline and modify MIF function.

3.2. Carbamylation of the N-terminal proline

The N-terminal proline of MIF has been shown to become carba-
mylated by the MPO/H2O2/thiocyanate system in vitro (Reaction
Scheme 2) [54]. Protein carbamylation was initially identified to be an
artefact introduced by denaturation-renaturation, but has since been

shown to modulate enzyme activity in different proteins [66,67]. Car-
bamylation was shown to occur in plasma during uraemia [68–71].
Urea is in equilibrium with cyanate, which can carbamylate lysine re-
sidues on proteins to form ε-carbamyllysine (homocitrulline). In 2007,
Wang et al. also reported that when MPO oxidizes thiocyanate to hy-
pothiocyanous acid, cyanate is produced as a by-product (Reaction
Scheme 2) [72]. MPO-deficient mice had reduced levels of protein
carbamylation at sites of inflammation compared to wildtype mice.
Wang et al. further proposed that systemic protein carbamylation might
contribute to the increased risk of smokers to develop atherosclerotic
coronary artery disease (CAD) due to elevated levels of plasma thio-
cyanates.

MIF is known to be involved in the formation of atherosclerotic
plaques [14], where MPO and carbamylated proteins have shown to co-
localize [72]. We therefore speculate that MIF will be carbamylated in
atherosclerotic plaques. The functional significance of MIF carbamyla-
tion is not yet clear.

3.3. Oxidation of the N-terminal proline by neutrophil-derived hypochlorous
acid

Neutrophil MPO uses hydrogen peroxide to oxidize chloride and
thiocyanate to hypochlorous acid and hypothiocyanous acid,

(Reaction Scheme 1)

(Reaction Scheme 2)
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respectively [73,74]. Hypochlorous acid reacts most rapidly with cy-
steine and methionine residues on proteins leading to the formation of
cysteine sulfonic acid and methionine sulfoxide [75]. Recently, it was
shown that MIF, which is abundant at inflammatory sites, is a target for
modifications by MPO-derived hypochlorous acid [54]. There was
evidence for methionine sulfoxide and cysteine sulfonic acid formation
upon exposure of MIF to hypochlorous acid and stimulated neutrophils
as shown by tandem mass spectrometry. Intriguingly, the N-terminal
proline became oxidized to a proline imine, a novel proline modifica-
tion of MIF.

The reaction with the proline was facilitated by its unusually low
pka rendering it a 1000-fold more reactive toward hypochlorous acid
than other amines such as N-acetyl lysine [76]. While proline imine
formation was associated with a loss of tautomerase activity, modified
MIF was still able to promote CXCL-8/IL8 production by peripheral
blood mononuclear cells and inhibit apoptosis of neutrophils [54].
However, pre-treatment with hypochlorous acid protected the protein
from becoming functionally inactivated by larger proline-modifying
electrophiles. Therefore, while a possible gain-of-function of the proline
imine modification remains to be uncovered, oxidation of MIF’s N-
terminal proline in the presence of activated neutrophils may play a
role in maintaining its pro-inflammatory actions during an in-
flammatory event.

4. Modification of cysteine residues

4.1. Cysteinylation of Cys-60

Watarai et al. found a protein that has the same gene structure as
MIF and called it glycosylation inhibiting factor (GIF) [77]. For the
purpose of this review, we refer to this protein as MIF, because there is
only a difference of one amino acid between MIF and GIF, and it has
been discussed that this difference could be due to a sequencing error in
the GIF sequence suggesting that MIF and GIF are identical proteins
[77]. When Watarai et al. purified MIF from supernatants of a human
suppressor T (Ts) hybridoma cell line and analyzed the protein by SDS/
PAGE, it showed a single band at 13 kDa. Mass spectrometry analysis,
however, revealed four different species with molecular mass of 12,345,
12,429, 12,467 and 12,551 Da. While 12,345 Da corresponds to the
molecular mass of MIF, the other three species indicated the presence of
post-translational modifications. To determine which amino acids had
been modified, MS analysis was performed on proteolytic digests of the
protein mixture. The increase of molecular mass of 80.0 Da was de-
monstrated to be a phosphorylation of Ser-91 and the additional
120.0 Da suggested cysteinylation of Cys-60.

To investigate the biological function of these modifications,
Watarai et al. carried out an immunosuppressive activity assay. They
immunized mice with dinitrophenyl - ovalbumin to elicit an IgE anti-
body response and found that treatment with cysteinylated MIF sup-
pressed the IgE antibody response, while a mixture of phosphorylated
MIF and unmodified MIF did not [77,78]. Previously, it was reported
that bioactive derivatives of recombinant human MIF, such as C57A/
N106S were able to bind receptors in T suppressor hybridomas and
activated T and B cells [79,80]. While cysteinylated MIF was able to
compete with C57A/N106S for binding of the receptor in a dose-de-
pendent manner, unmodified MIF was not able to do so, even at a 100-
fold excess. Collectively, these results indicate that cysteinylated MIF is
the bioactive isoform and unmodified or phosphorylated MIF are silent
isoforms.

To get a better insight into the conformational change occurring
upon cysteinylation of Cys-60, antibody-binding experiments were
performed. An antibody that recognized the peptide region Ala-58 —
Arg-74, HG3, was able to bind to cysteinylated MIF, but not unmodified
MIF [77]. Interestingly, the HG3 antibody was able to detect un-
modified MIF protein upon denaturation. This result indicates that the
antibody epitope is concealed in the native protein and can be

uncovered by cysteinylation or denaturation.
To further characterize the epitope sensitive to cysteinylation, they

designed HG3a and HG3b antibodies directed the β4 strand and α2
helix structures, respectively. Only the HG3b antibody was able to bind
to cysteinylated MIF suggesting that cysteinylation of Cys-60 leads to a
conformational change of the α2 helix region.

While it is yet to be determined whether cysteinylation of Cys-60 is
required for other biological functions of MIF, this study suggests that
the modification plays an important role in the regulation especially of
B and T cells. This leads to the question whether the MIF receptor
microenvironment in lymphocytes differs from that of other cell types,
e.g. due to the formation of specific receptor complexes or the asso-
ciation with certain proteoglycan structures.

4.2. S-Nitrosation of Cys-81

S-Nitrosation is a post-translational modification that forms an S-
nitrosothiol (SNO) on reactive cysteine residues. S-nitrosothiols are
thought to form following the oxidation of nitric oxide (·NO) to N2O3

and its reaction with cysteine thiolates or as a result of the re-
combination of ·NO and thiyl-radicals, metal-catalyzed pathways and
trans-nitrosation reactions with other nitrosothiols. S-nitrosation is
known to diversify the properties and mechanistic action of certain
proteins and can regulate their function [81–83]. Nitric oxide is found
to play an important role in the regulation of various biological pro-
cesses and was reported to be generated during ischemia in the heart
[84,85].

Luedike et al. found that MIF is significantly and selectively S-ni-
trosated at Cys-81 in vitro and in vivo [86]. As mentioned in the in-
troduction, MIF derived from the myocardium has a protective role
during ischemia/reperfusion. S-Nitrosated MIF occurred especially in
the heart and increased during myocardial ischemia/reperfusion. S-
Nitrosation of MIF was associated with an increased oxidoreductase
activity compared to unmodified MIF and decreased myocardial
apoptosis in mice after ischemia/reperfusion. Collectively, this mod-
ification enhanced the cardioprotective properties of MIF providing an
example for post-translational regulation of MIF in the setting of
ischemia/reperfusion. To support this, Pohl et al. showed that S-ni-
trosation of MIF occurs in the early phase of reperfusion and is able to
reduce oxidative stress [87]. The resulting intracellular accumulation of
MIF leads to a cardioprotective effect due to reduction of reactive
oxygen species. In addition, S-nitrosated MIF showed significantly
lower binding to JAB1/CSN5 compared to normal MIF, which sug-
gested that impaired binding is the cause of intracellular MIF accu-
mulation in the early phase of reperfusion [87].

4.3. Uncharacterised modification: ‘oxMIF’

Recently, three monoclonal human anti-MIF antibodies (BaxB01,
BaxG03, BaxM159) were reported to successfully inhibit pro-in-
flammatory activities of MIF in vitro and in vivo [88,89]. These anti-
bodies were specific for epitopes within the ß-barrel structure com-
prising the conserved CALC motif. The same group further reported that
these antibodies strictly bind to a conformational isoform of MIF, which
was termed ‘oxMIF’ as it could be generated ex vivo by adding oxidized
glutathione or L-cystine to recombinant MIF [21,55]. However, al-
though the authors concluded that ‘oxMIF’ was a redox-dependent
conformational isoform of MIF, conformational changes similar to that
of the oxidized state of MIF, could also be achieved by denaturing
agents, cross-linking with formaldehylde or the addition of 0.2% Pro-
cline300 [55].

Although, it seems plausible that glutathionylation or cysteinylation
occurs at the CALC motif in the presence of an excess of oxidized glu-
tathione or L-cystine, respectively, the authors reported that ‘oxMIF’
was not associated with post-translational modifications. In contrast
cysteinylation of Cys-60 was observed by Watarai et al. for full length
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MIF/GIF [77] and by Nguyen et al. for a Cys-60-containing MIF-derived
peptide [90]. However, if only one of the cysteine in the CALC motif
becomes modified by cysteinylation or glutathionylation, this may be
followed by thiol-disulfide exchange with the neighboring reduced
cysteine resulting in a disulfide bridge between Cys-57 and −60. More
work is needed to elucidate the biochemical nature underlying the
formation of this ‘oxMIF’ species.

Using the Bax159 mAb in an ELISA setting, ‘oxMIF’ was shown to be
elevated in plasma from patients with septicemia, psoriasis, asthma,
ulcerative colitis, and Crohn’s disease [55]. In plasma samples from
healthy donors, ‘oxMIF’ was not detected, although native MIF was
shown to be present. In a follow-up publication by Schinagl et al.,
‘oxMIF’ was identified as a cell surface and cytoplasmic tumor marker
that is highly present in ovarian and prostate cancer [21]. The nature of
surface anchoring of ‘oxMIF’ has remained unclear. Cancer cell lines
treated with anti-‘oxMIF’ mAbs and cytotoxic drugs showed a more
sensitized reaction to the drugs than cancer cells that were not treated
with anti-oxMIF mAbs.

In 2017, Kassaar et al. found an isoform of MIF with an altered
electrophoretic mobility compared to native MIF in brains with early
stages of Alzheimer’s disease [22]. Formation of this isoform also oc-
curred in vitro after prolonged incubation at 37 °C or in response to
hydrogen peroxide and S-nitrosoglutathione. The addition of reduced
glutathione or dithiothreitol (DTT) prevented the production of this
isoform and was therefore considered an oxidized MIF species. Inter-
estingly, the free thiol content of oxidized MIF as well as its oxidor-
eductase activity was unaltered. The tautomerase activity, on the other
hand, was significantly inhibited by this modification. The precise
chemical nature of this oxidative modification has also remained un-
clear.

Taken together, ‘oxMIF’ is a poorly defined name representing
oxidized MIF species that appear to occur in a disease-related manner
and that may represent a redox-dependent isoform of MIF (or several
isoforms), while anti-‘oxMIF’-mAbs ameliorate inflammatory conditions
as well as aid chemotherapy. Whether this isoform (or these isoforms) is
(are) generated intra- or extracellularly and the molecular basis of its
(their) formation is still unknown.

5. Redox-independent modifications

5.1. Glycosylation of Ser-112 and/or Thr-113

O-linked ß-N-acetylglucosamine (O-GlcNAc) is formed by the at-
tachment of ß-N-acetylglucosamine (GlcNAc) to specific serine or
threonine residues by O-GlcNAc transferase (OGT). O-GlcN-Acylation is
known to regulate the bioactivity, stability and protein-protein inter-
actions of certain proteins [91]. Zheng et al. demonstrated that extra-
cellular MIF can be O-GlcN-acylated at Ser-112 and/or Thr-113 [92].
Unmodified MIF was shown to induce activation of ERK1/2 and AKT by
binding its receptors CD74 and CXCR4, which could be blocked by
CXCR4 and CD74 neutralizing antibodies. In contrast, O-GlcNAc-MIF
was not able to induce phosphorylation of ERK and AKT in glioma cells,
but was able to block EGF-induced signaling and tumor cell invasion.
This study indicates that extracellular MIF has different receptor spe-
cificities and activities depending on its post-translational modification.
It was further shown that MIF purified from bacteria was not post-
translationally modified, but cellular MIF purified from 293T cells was
shown to be O-GlcN-acylated at Ser-112 and/or Thr-113. This leads to
the suggestion that the different post-translational modifications are
cell-dependent and could also explain the somewhat lower biological
activity of recombinant bacterial MIF compared to mammalian-derived
MIF in certain cell systems.

5.2. Phosphorylation of Ser-91

Watarai et al., who identified Cys-60 to be cysteinylated, also

showed that Ser-91 can be phosphorylated [77]. We have confirmed
this modification using in vitro phosphorylation in a cell-free system (H.
Fünfzig, H. Lue, J. Bernhagen, unpublished observations). Phosphory-
lated MIF could not be isolated separately, but a mixture of phos-
phorylated MIF (30%) and unmodified MIF did not show im-
munosuppressive effects in contrast to cysteinylated MIF, which was
shown to be bioactive in this context. When MIF modified at Ser-91 and
Cys-60 was treated with alkaline phosphatase to dephosphorylate Ser-
91, bioactivity was found to be enhanced. Therefore, phosphorylation
of Ser-91 might play a role in regulating the activity of cysteinylated
MIF, but this modification has not been studied further so far.

5.3. Glycation

Kassaar et al. recently identified a glycated MIF isoform present in
brains with early stage Alzheimer’s disease. Glycation is a post-trans-
lational modification of proteins, where sugar molecules, such as glu-
cose, bind to lysine and arginine residues or the N-terminal amine [93].
This non-enzymatic glycosylation can lead to functional and con-
formational changes [94]. Kassaar demonstrated that glucose was the
main trigger for MIF glycation in the Alzheimer’s disease brain. Gly-
cation inhibited MIF’s oxidoreductase and tautomerase activities and
glycated MIF had a reduced ability to induce ERK phosphorylation.
They also showed that in addition to glycation oxidation is occurring in
early stage of Alzheimer’s disease brains.

6. Conclusions

MIF has an intriguing N-terminal proline residue that acts as nu-
cleophile at physiological pH and is responsible for the intrinsic tau-
tomerase activity of this chemokine-like inflammatory protein toward
synthetic substrates. Because a physiological function has not yet been
identified for this enzymatic function, the nucleophilic proline has been
thought of as an evolutionary remnant. The tautomerase active site has,
however, proved to be a useful target for the development of inhibitors
that interfere with CD74 binding. Also, we recently found that Pro-2,
and thus indirectly the tautomerase cavity, contribute to the MIF-
CXCR4 binding interface [95]. The reactivity of this proline with oxi-
dants and electrophiles combined with the potential abundance of these
species at inflammatory sites leads us to speculate that the proline has
been conserved as a site for post-translational regulation. The disease
context, mechanisms and targets of proline-modified MIF are not yet
known and further studies are required to identify the extent and nature
of modifications of MIF isolated from inflammatory exudate. Another
issue to consider is that some MIF modifications may make the protein
undetectable by conventional assays, for example, monoclonal antibody
dependent-ELISAs due to a concealment of the epitope by modification.
The level of active MIF in biological samples may therefore be under-
estimated. Modification of the proline will also make these forms of MIF
insensitive to tautomerase-based inhibitors, a notion with intriguing
implications for drug discovery and optimization.

As progress is made in this field, it is likely that the number of
identified MIF post-translational modifications will increase and ter-
minology will become an important issue. Recently, the term ‘oxMIF’
was introduced to refer to a poorly characterized form of the protein
that was generated by adding oxidized thiols to recombinant MIF. This
is only one type of oxidation and there are clearly going to be a wide
variety of potential products formed following exposure to different
oxidizing species. Also, since several different residues are susceptible
to modifications, there will be considerable heterogeneity in a popu-
lation of MIF proteins. We recommend caution in the use of simple
abbreviations and encourage that the biochemical nature and biological
properties of the different MIF post-translational modifications are
characterized as extensively as possible.
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