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Abstract

Tcf4 is a transcription factor which regulates neurogenesis and neuronal migration in the

brain. In humans, loss of function of Tcf4 leads to the rare neurodevelopmental disorder Pitt-

Hopkins syndrome, which is characterized by intellectual disability, developmental delay

and autistic behavior. We analyzed the consequences of functional loss of Tcf4 on dendritic

spines in mature principal neurons. To this end, we crossed mice in which the DNA-binding

domain of the Tcf4 gene is flanked by LoxP sites to mice expressing tamoxifen-inducible cre

recombinase in a sparse subset of fluorescently labelled neurons (SlickV line). This resulted

in a mouse model with an inducible functional knockout of Tcf4 in a subset of cortical and

hippocampal neurons, in which we analyzed dendritic spines, which are the morphological

correlate of excitatory postsynapses. Heterozygous as well as homozygous loss of Tcf4 led

to a reduction in the number of dendritic spines in the cortex as well as in the hippocampus.

This was accompanied by morphological changes of dendritic spines. These results suggest

that Tcf4 is involved in synaptic plasticity in mature neurons, and functional loss of Tcf4 may

contribute to the neurological symptoms in Pitt-Hopkins syndrome.

Introduction

Tcf4 belongs to the basic-helix-loop-helix (bHLH) family of proteins, which act as transcrip-

tion factors. In the developing nervous system bHLH proteins regulate neurogenesis, and

migration of postmitotic neurons: Initially, cycling progenitor cells are committed to a neuro-

nal fate through activation of Notch signalling [1], while later proper localization of neurons is

established [2]. In the brain Tcf4 interacts with the class II bHLH transcription factors Math1,

HASH1, and neuroD2 [3]. Binding of the calcium sensor calmodulin to Tcf4 inhibits tran-

scriptional activation through interaction with the DNA binding domain [3].

Mutations or deletions of the human Tcf4 gene cause Pitt-Hopkins syndrome, a rare devel-

opmental disorder which is characterized by severe intellectual disability, developmental delay

and autistic behavior [4]. In mice, constitutive Tcf4 knockout disrupts normal brain develop-

ment [2]. In contrast, a gain of function in Tcf4 is associated with a higher risk in developing

schizophrenia [3, 5].
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A number of signaling cascades involved in brain development have been shown to play

important roles in synaptic function in adults. For instance, several proteins involved WNT

signaling, which plays important roles in cortical development [6–8], were shown to modulate

synaptic function in adults [9–12]. Similarly, proteins involved in CREB signaling, which play

a role in cerebellar development [13] affect synaptic transmission [14–16]. All three signaling

cascades (TCF4, CREB, WNT) have in common that they have been identified to mediate the

risk for schizophrenia in humans [3, 5, 17–19], thus highlighting a possible role in the mainte-

nance of synaptic function independently of their developmental functions. However, the syn-

aptic function of Tcf4 in the adult brain has not yet been examined.

In order to study the effects of Tcf4 on the regulation of adult synapses, we generated mice

with inducible knockout of Tcf4 in a sparse subset of fluorescently labelled neurons. These per-

mit visualization of dendritic spines to determine alterations in their number or shape [12, 20].

Functionally, dendritic spines are the morphological correlates of excitatory postsynapses,

where specialized synaptic proteins, such as scaffolding proteins and ion channels are clustered

[21, 22]. The structural shape of spines typically reflects specific functional properties. For

instance, increases in spine head size help accommodate larger numbers of neurotransmitter

receptors, while shortening and widening of spine necks decreases the electrical resistance of

the spine neck, thereby leading to larger excitatory postsynaptic potentials [23]. Thus, at den-

dritic spines neuronal information is received and integrated and the numbers and shapes of

spines reflect biological function [24].

Dendritic spines are typically classified based on their morphology into three groups [25–

27]: Mushroom spines possess a large head and thin, clearly discernible neck. Stubby spines

similarly possess a large head but lack a discernible neck. Thin spines are long and slender

and possess a smaller head than the previous two classes. These different shapes are thought

to cause functional differences. For example, mushroom and stubby spines with their large

heads, which provide a larger area for neurotransmitter receptors, are thought to be more sta-

ble than thin spines, which are thought to be more plastic [25–27].

Materials & methods

Transgenic mice

The animal research protocols were approved by the animal welfare committee of the Ludwig-

Maximilian-University Munich and the government of Upper Bavaria (Ref. Nr. 55.2-1-54-

2532-62-12).

Animals were sacrificed by transcardiac perfusion with phosphate-buffered saline (PBS) fol-

lowed by PBS containing 4% PFA (w/v) in deep ketamine/xylazine anesthesia.

SlickV mice, which coexpress a drug-inducible form of cre recombinase and the fluorescent

protein YFP in a subset of neurons [28], were crossed with floxed Tcf4 mice, in which of a 4.3

kb fragment of the Tcf4 gene containing the bHLH exon and 3’ exons, which are responsible

for DNA binding and dimerization, is flanked by LoxP sites [29]. In the resultant SlickV×Tc-
f4LoxP/LoxP mice, functional knockout of Tcf4 can be induced in a fluorescently labelled subset

of neurons in the hippocampus and cortex upon tamoxifen administration. All geneotypes

were treated with tamoxifen, applied by oral gavage (0.25 mg/g, tamoxifen dissolved in 95%

corn oil and 5% ethanol) once per day for five consecutive days at 10–11 weeks of age followed

by transcardiac perfusion 2 weeks after the treatment had concluded.

The mice were bred for research purposes in the animal facility of the Center for Neuropa-

thology, Ludwig—Maximilians—University, Munich, Germany.

Animals were group housed under pathogen-free conditions. All mice were kept at a 12/12

hr light/dark cycle with ad libitum access to food and water.
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Immunohistochemistry

Animals were sacrificed by transcardiac perfusion with phosphate-buffered saline (PBS) fol-

lowed by PBS containing 4% PFA (w/v) in deep ketamine/xylazine anesthesia. The brains were

removed and postfixed in PBS containing 4% PFA over night before cutting 50 μm thick coro-

nal sections on a vibratome (VT 1000S from Leica, Wetzlar, Germany).

Floating sections were permeabilized with 2% Triton X-100 in PBS over night at room tem-

perature, washed 3×10 min with PBS, followed by blocking with 3% Iblock in 0.1% Triton X-

100 in PBS for 2h at room temperature. Sections were incubated over night at 4˚C with 1:500

anti GFP Alexa 488 antibodies (A21311, Thermofisher) in PBS with 2% Triton-X 100. Sections

were finally washed 5×10 min with PBS before mounting them on glass coverslips with Vecta-

shield Hard Set fluorescence conserving media (Vector Laboratories).

Image acquisition and analysis

Images were acquired on a Zeiss LSM 780, using a 40× oil immersion objective. Figures show

maximum intensity projected images, while the analysis was performed in 3D. Spines were

counted in z-stacks by manually scrolling through the images. Spine densities refer to the

number of spines per dendrite length from which they protrude.

Because of the sparse labelling, dendrites from layer V pyramidal neurons in the somato-

sensory cortex, ranging from bregma -1.755 to -2.255 mm were considered. Dendrites from

CA1 neurons were imaged in the dorsal hippocampus at the same coordinates.

Spine number and morphology was determined by manually tracing dendrites in ZEN soft-

ware using drawing tools provided in the software and classified by eye based on morphologi-

cal criteria [30], followed by data extraction using the SpineMiner software [31]. All spinal

protrusions from the dendrite counted towards the total number of spines. However, morpho-

logical analyses were made on the three main spine classes (mushroom, stubby thin), while

filopodia were too rare to be considered for separate statistical analysis.

Morphology illustrations were made with IMARIS (Bitplane, Zürich, Switzerland).

The overview picture was taken with a Zeiss Axio Imager 2 fluorescence microcope with

Apotome.

Statistics

From each animal ten dendrites of approximately 35 μm length from each brain region were

analyzed to calculate dendritic spine densities and morphologies. The dendrites belonged to

3–5 neurons, so that, typically 2–4 dendritic segments per neuron were analyzed.

The results of each animal were averaged, and statistical tests were performed on the means

of the means, so that N corresponds to animals. A total of six animals per genotype were ana-

lyzed. Statistical analyses were performed in Prism 5.04 (GraphPad, La Jolla, CA, USA). When

results are stated, mean ± standard error of the mean is given. For multiple comparisons,

ANOVA with Tukey’s post hoc test was used. Data were assumed to be normally distributed

as, according to the central limit theorem, averages of averages tend towards a normal distribu-

tion. This was confirmed empirically using the Shapiro-Wilk normality test.

Results

In order to study dendritic spines in Tcf4 deficient mice, we crossed mice co-expressing

tamoxifen-inducible cre recombinase with YFP in a sparse subset of neurons under the Thy1
promoter (Slick-V line) [28] with Tcf4fl/fl mice (Fig 1A) [29], enabling us to visualize dendritic

spines of cortical and hippocampal pyramidal cells (Fig 1B). Tcf4 knockout was induced by
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Fig 1. Heterozygous and homozygous loss of TCF4 leads to dendritic spine density decrease in the adult brain. (A) Breeding scheme to obtain inducible

TCF4 knockout mice. SlickV mice co-express tamoxifen-inducible cre recombinase (CreERT2) with YFP under the Thy1 promoter. These animals were crossed

with Tcf4LoxP/LoxP mice, in which a gene fragment containing the bHLH sequence is flanked by LoxP sites. Administration of tamoxifen irreversibly removes

part of the Tcf4 sequence from YFP-expressing neurons resulting in a functional knock out. (B) Coronal section of the brain of a SlickV mouse, YFP stain. Note

the sparse labelling in the cortex and CA1 region. Dendritic spines were quantified in the whole cortex (Ctx; the box highlights a YFP expressing neuron in the
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tamoxifen administration to 10–11 weeks old animals for 5 days, resulting in the deletion of a

4.3 kb fragment of the Tcf4 gene containing the bHLH exon and 3’ exons, which are responsi-

ble for DNA binding and dimerization [29].

First, we quantified the number of dendritic spines of basal dendrites in YFP-labelled layer

V cortical neurons (Fig 1C): Dendrites of tamoxifen-treated wildtype controls showed average

spine densities of 1.01±0.02/μm (n = 6 mice). Loss of a single allele of Tcf4 (Tcf4 fl/+) caused a

significant reduction in spine density to 0.86±0.03/μm (n = 6 mice; p< 0.01, ANOVA with

Tukey’s multiple comparison test). Homozygous loss of Tcf4 (Tcf4 fl/fl) caused a similar reduc-

tion in dendritic spines, to 0.85±0.03/μm (n = 6 mice; p< 0.01 vs. control, ANOVA with

Tukey’s multiple comparison test; Fig 1D). We found similar results in CA1 hippocampal neu-

rons: In stratum oriens dendrites wildtype controls showed average spine densities of 1.77

±0.07/μm (n = 6 mice), which were reduced to 1.45±0.06/μm in Tcf4 heterozygous animals

(n = 6 mice; p< 0.01, ANOVA with Tukey’s multiple comparison test) and to 1.34±0.06/μm

in homozygous Tcf4 knockout (n = 6 mice; p< 0.001 vs. control, ANOVA with Tukey’s multi-

ple comparison test; Fig 1D). In stratum radiatum dendritic spine density was reduced from

1.83±0.07/μm in wildtype (n = 6 mice) to 1.6±0.06/μm (n = 6 mice) in heterozygous and to

1.56±0.07/μm in homozygous Tcf4 knockout (n = 6; p< 0.05 vs. control, ANOVA with

Tukey’s multiple comparison test; Fig 1D).

Since spine shape is intimately linked to function, we classed spines into three major mor-

phological groups, mushroom, stubby and thin [30] (Fig 2A). In cortical layer V pyramidal

cells, spine loss was carried mostly by a reduction in thin and stubby spines, while mushroom

spines were affected to a lesser degree (Fig 2B). In hippocampal CA1 neurons, both on apical

and basal dendrites, the overall reduction in spine was mostly caused by reductions in mush-

room spines, which were the most abundant group in CA1 neurons (Fig 2B).

Discussion

The number and shapes of dendritic spines are intimately linked to synaptic function. For

instance, learning tasks in experimental animals lead to increased turnover and formation

rates of dendritic spines. For instance, spines get formed and stabilized during motor learning

[32] and repetitive motor learning caused newly formed spines to appear in clusters [33].

Neurodegenerative diseases, on the other hand are typically characterized by loss of dendritic

spines [34], reflecting cognitive impairment and memory loss. Interestingly, however, reduced

turnover of dendritic spines also causes cognitive impairment. This is the case in fragile X syn-

drome, where dendritic spines numbers are increased [35]. Furthermore, alterations in den-

dritic spines also occur in psychiatric diseases such as schizophrenia or autism-spectrum

disorders, where alterations in spine density or turnover in the prefrontal cortex are thought to

underlie cognitive and behavioral symptoms [19].

In the present study, we inquired whether Tcf4 plays a role in the maintenance of dendritic

spines in adult animals, independently of its developmental functions. To achieve this, we gen-

erated a mouse line with inducible knockout of Tcf4 in a sparse subset of fluorescently labelled

neurons. Our results suggest that heterozygous loss of Tcf4 suffices to substantially alter both

spine density and morphology. These alterations may be the consequence of a disrupted

primary somatosensory area, trunk, layer V) and the CA1 area of the hippocampus in stratum oriens (SO) and stratum radiatum (SR). Scale bar, 1000 μm. (C)

Images of dendrites in the cortex, CA1 stratum oriens and CA1 stratum radiatum of WT, Tcf4fl/+ and Tcf4fl/fl animals. Scale bar, 10 μm. (D) After tamoxifen

administration Tcf4fl/+ and Tcf4fl/fl display decreased spine density in the cortex (left) and in stratum oriens of CA1 (middle) compared to WT; n = 6 mice; ��

p< 0.01; ���p< 0.001. In stratum radiatum of CA1 (right) Tcf4fl/fl display decreased spine density compared to WT; n = 6 mice �p< 0.05. P values are based on

ANOVA with Tukey’s multiple comparison test.

https://doi.org/10.1371/journal.pone.0199359.g001
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negative feedback loop: Under normal conditions, elevated intracellular calcium, which may

be the result of increased neuronal activity, inhibits the transcriptional activity of Tcf4 [36].

This may in turn dampen neuronal activity by removing or reshaping dendritic spines, in par-

ticular mushroom spines which, because of their large head surface, can generate stronger

postsynaptic signals [23, 26]. Knockout of Tcf4 may thus precipitate these dampening effects

even in the absence of increased neuronal activity.

The present results favor a postsynaptic, or cell-autonomous, role of Tcf4: In Slick-V mice,

only a small fraction of neurons, both in the hippocampus and cerebral cortex, express cre

(cf. Fig 1B). Therefore, the vast majority of presynaptic inputs into any given neuron are

expected to be made up from processes of neurons not expressing cre recombinase, thus

Fig 2. Heterozygous and homozygous loss of TCF4 affects the dendritic spine morphology in the adult brain. (A) Illustrative reconstructions of

dendritic spines depicting morphological classification and changes in the cortex, CA1 stratum oriens and CA1 stratum radiatum of WT, Tcf4fl/+ and

Tcf4fl/fl animals. Color coding of the spine classes: red, mushroom; green, stubby; blue, thin. Scale bar, 2 μm. (B) Quantification of spine morphology

after tamoxifen administration. In the cortex (left), Tcf4fl/+ and Tcf4fl/fl dendrites display decreased numbers of stubby spines (n = 6; � p< 0.05) while

only Tcf4fl/fl neurons lose thin spines (� p< 0.05). In CA1 stratum oriens (middle) and stratum radiatum (right) the spine density of mushroom spines

is affected in Tcf4fl/fl neurons (n = 6; � p< 0.05). P values are based on ANOVA with Tukey’s multiple comparison test.

https://doi.org/10.1371/journal.pone.0199359.g002
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always expressing wildtype Tcf4. The genotype of the fluorescent neurons, in contrast, matches

the induced alteration, i.e. wildtype, heterozygous loss of Tcf4 after tamoxifen administration

(Tcf4fl/+), or homozygous loss (Tcf4fl/fl), with spine densities clearly correlating with these

genotypes.

These results suggest that Tcf4 plays an important role in the control of synaptic plasticity,

in adult animals, independent of the developmental function of Tcf4. Mouse models of Pitt-

Hopkins syndrome, lacking functional Tcf4, typically show hyperactivity, reduced anxiety, and

deficient spatial and associative learning [37, 38]. A reduced number of cortical synapses in

humans was shown to correlate with decreased cognitive performance in the context of Alzhei-

mer’s disease [39, 40]. Similarly, in various animal models, spine numbers and turnover have

been shown to correlate with learning and memory and pathological alterations typically lead

to decreased cognitive performance [24, 41]. Thus, based on our findings, we hypothesize that

constitutive lack of functional Tcf4 causes cognitive and memory defects even in the absence

of its neurodevelopmental effects. Thus, the clinical effects of loss of Tcf4 in Pitt-Hopkins syn-

drome may, at least in part, also be mediated by the synaptic function of Tcf4.
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