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INFLUENCE OF STATISTICALLY DISTRIBUTED POINT DEFECTS ON LEED

INTENSITIES

Wolfgang Moritz

Institut f. Kristallographie u. Mineralogie
Universitat Miinchen, West Germany

In honour of Prof. Dr. H. Jagodzinski's 65th birthday

INTRODUCTION

Real surfaces as well as three-dimensional crystals
always have a certain number of defects which are usually
neglected in LEED studies. The reason is that defects often
are not easily visible in the diffraction picture. First,
there is the Jow resolution power of normal LEED instruments
which limilg Lhe correlation lengths directly visihble on the
fluorescent screen, and second, it is experimentally difficult
to distinguish between an elastic and inelastic background.
Because of the latter the density of defects distributed at
random, which cause an increase in the elastic background, can
only be qualitatively estimated from background measurements.
Furthermore, the measured I-V curves of the sharp spots agree
quite often rather well with calculated ones, even in cases
where it is known that the surface contains impurities or is
far from being perfectly flat, while the calculation is always
done on the assumption of a perfect crystal.

Therefore it is often concluded that LEED is not very
sensitive to surface defects, a conclusion which has already
been proven erroneous since the first difficulty - the limited
transfer width - can be overcome by an improvement of experi-
mental techniques and careful analysis of the angular profiles
of the incident and the diffracted beams [1-3]. In this case
the resolution can be considerably increased and LEED may well
be used in studying the distribution of various kinds of sur-
face defects as long as they produce a change in the beam
profiles. It has been shown previously that multiple scatter-

505



506 W. MORITZ

ing effects do not produce special features in the angular
distribution of diffracted beams [4]. Therefore the analysis
of beam profiles may be done in a kinematic or quasi-kinematic
way.

In case of a random distribution of point defects, such
as vacancies or adsorbed atoms, the situation is much more
difficult. There are still sharp spots visible in the dif-
fraction picture and an increase in background occurs. The
quantitative analysis of the background intensity is somewhat
uncertain and calculation of spot intensities involves a mul-
tiple scattering theory.

In kinematic theory only small changes in the beam in-
tensities caused by point defects are predicted, and this in-
fluence is independent of energy as well as diffraction con-
ditions. The diffraction intensity from a random distribution
of scatterers still placed at lattice sites is given by [5]

I(kK') ~ I<p>I" S(K-Kk-g) + {</Flz>~/(/’>/lf

The first term represents a sharp spot proportional to
the square of an average amplitude and is due to the fact that .
a fixed spacing exists for the mean position of each atom.
The second term is a uniform background proportional to the
mean square deviation of scattering amplitudes. The average
amplitude is given by

(f> =§Pnf"~

where p, are the a priori probabilities for the occurrence of
the different scatterers.

If only a small amount of impurities is present, the
average amplitude is only slightly changed compared to the
clean surface. In case of vacancies the intensity of all
beams is just a bit lowered. The I-V curves only get a dif-
ferent scaling but otherwise remain unchanged.

By multiple scattering the change in intensity of the
sharp spots will become energy-dependent and may be larger or
smaller than predicted by the kinematic theory. Of course, it
remains true that only sharp spots are visible beneath a uni-
form background. There are no additional spots produced by
multiple scattering and a diffuseness would be due to corre-
lations of defects, not to multiple scattering. A multiple
scattering calculation of the influence of point defects on
LEED intensities is of interest for two reasons. First,
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whether point defects can be detected and analyzed by LEED and
under what conditions this can be done, and second, to get a
ratio of errors made in the usual analysis by neglecting vacan-
cies and impurities.

MULTIPLE SCATTERING THEORY

As a result of multiple scattering the effective scatter-
ing amplitude of a certain atom, which describes the total flux
leaving the atom, is no longer related to the single poten-
tial only, but to its environment too. The problem has to be
solved selfconsistently. In the case of perfect crystals this
can be done exactly if there are not too many atoms in the
unit cell. Several computational methods have been developed,
the calculation can be done in k-space and in real space. The
latter is used here, following the t-matrix formulation des-
cribed by Beeby [6]. This method of calculation has the ad-
vantage that the t-matrices depend on the incoming wave only
and not on the outgoing waves. The same formalism has been
used in the description of scattering resulting from correlated
defects [7,8].

The presence of defects destroys the translation symmetry
of the surface, each atom in principal is surrounded by a dif-
ferent environment and accordingly the effective scattering
amplitude is different for each atom. An exact solution is
no longer available in practice, even though due to the strong
damping of the electron wave inside the crystal the distance
for multiple scattering processes is limited. 1t is there-
fore necessary to introduce averages to make the problem tract-
able. Averages of multiple scattering processes can be taken
in different, more or less restrictive ways, which will be
discussed below.

Once the effective scattering amplitudes are calculated,
regardless of approximation, the diffracted intensity is given
by the same formula as in the kinematic case.

Each scattering amplitude fn(EJE') now individually de-
pends on the incoming and outgoing waves k and k', and their
number, of course, is increased when different environments
can be distinguished.

Single site approximation

The most restrictive average is taken by a complete de-
coupling of a given site and its surrounding. Each atom is
represented by an average potential embedded in an average
uniform medium. This is a single site approximation since
correlations in the multiple scattering process are completely
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neglected. In band structure calculations of alloys it is
known as the average t-matrix approximation ATA) f9].

In case of vacancies or substitutional occupancy of lat-

tice sites the average atom in a layer or subplane is repre-
sented by a single t-matrix

KTy = <t) + <t) &<
<) = %10,,1‘

(1)

where {t> 1is the average single scattering matrix and p, are
the corresponding probabilities.

¢ 7645//77 d, L2(tm)

LLn

is a diagonal matrix describing a single scattering event,
and GSP is the interplanar propagator, 7( are the phase
shifts.

The average reflection and transmission matrices are then
obtained in the usual way [10]

1 8’7‘ ¢ N
- T Ny
< M‘J"J> KIA K, Z (- (Q“) e >e/"~«'{ = (2)
The set of linear equatlons (1) could also be easily ex-
tended to several layers, using exactly the same formalism as
for a perfect crystal. The average reflection and transmission
matrices may be added to an otherwise perfect crystal, using
a layer-doubling- or RFS-scheme.

The advantage of the average t-matrix approximation is,
that it easily applies to any of the existing LEED programs;
there is practically no additional effort. Furthermore, it
can be applied to any density of defects and to alloys as well.
The average t-matrix approximation should work well when mul-
tiple scattering effects are weak, however, it is known that
in most cases this cannot be supposed and one expects the
single site approximation to be not sufficient for most LEED
applications.

Site-dependent approximation

A far better approximation than the single site approxim-
ation can be done by dividing the environment of a point
defect into a near region and an outer region. Within a near
region, nearest, or next nearest neighbours, all multiple
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scattering processes are calculated exactly and only the outer
region is treated by an average t-matrix. That means, not a

single site but a whole cluster of atoms is surrounded by an
average medium.

The basic consideration for this approximation is the fact
that the most important contribution to the total scattering
amplitude is due to single scattering, and multiple scattering
within the immediate neighbourhood of an atom. The validity
of this assumption is demonstrated in Fig. (1), here the lat-
tice sum for interlayer scattering has been cut off at nearest
and next nearest neighbours. To reach convergence, of course,

Fe (100) (00)- beam (10)- beam

\
\
\
(!
\I
\
\
\

50 100 150 50 100 150  [eV]

Fig. 1  Calculated I-V spectra for Fe(100)
at normal incidence.
Solid line: full dynamical calculation
Broken line: only nearest and next
nearest neighbours are taken for inter-
planar scattering.

usually several hundred atoms have to be included, but as can

be seen, the curves with next nearest neighbours fit the exact
calculation rather well, though the rest of the plane is com-

pletely neglected. The approximation should be even better,

taking at least the single scattering amplitude for the rest
of the plane.

A site-dependent approximation may be useful also for
complicated ordered structures. It is not necessary to take
only the environment within one plane, several layers, of
course, complicate the calculation and it is completely un-
necessary for simple structures since then the interlayer
scattering can be done in reciprocal space, but for complicated
structures a great number of beams occur and a t-matrix cal-
culation with a restricted lattice sum will be easier.
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In general, for all different sites, that means, for all
possible different environments of an atom, an effective scat-
tering amplitude has to be calculated separately. It has also
the advantage that statistical correlations are easily intro-
duced [7] , the different configurations just have to be linked
with the appropriate probabilities and, since the t-matrices
do not depend on the diffracted wave, the beam profiles are
obtained too without further effort. 1In practice, however,
the problem becomes instantly unsolvable because of the number
of different configurations. There are special cases where
the size of the matrices to be inverted is reduced such that
a calculation is possible indeed. We are facing such a case
in one-dimensional disorder where the number of different sites
is greatly reduced. Another case is given by dilute point de-
fects where only one type of configuration remains. This
problem will be discussed here. A further application may be
possible for perfectly ordered crystals with large unit cells.
Here the number of different neighbourhoods may be less than
the number of atoms in the unit cell. For each configuration
the scattering amplitude can be calculated independently and
the computing time scale remains linear to the number of con-
figurations. As mentioned above, such an approximate solution
may be useful when applied to large unit cells where the number
of beams is too large to be handled in ordinary type computers.

In general the t-matrices for N atoms embedded in an
average medium are given by the following set of equations

g -ik(Ry=R,)
T, = ty* % t, G, (R,~Bml € [
i -(k(Ry-R)
+ 5 G(R-R) € (T
R (3)

The prime on the summation symbol indicates that only
those vectors R pointing to atoms of the average region are
included. The average matrix <T)> may be calculated indepen-
dently, using the average t-matrix approximation if this fa-
cilitates the calculation.

A cluster containing N atoms still affords the inversion
of an (N » n12) x (N + n12) matrix, where nj is the number of
phase shifts. Further reduction in size is necessary to make
the calculation possible.
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Fig. 2 Illustration of the site-~dependent
approximation. The nearest neigh-
bours of an adsorbed atom all get
different t-matrices, the atoms in
the outer region all get the same
averaged t-matrix.

How this can be done, using the symmetry of the crystal,
may be discussed in some detail for an adatom and its nearest
neighbours shown in Fig. (2). If the atom is adsorbed in the
fourfold site only two different scattering matrices remain
of a total of five, the others can be obtained by rotation
matrices. The scattering amplitude f(gﬁg') must be the same
for atoms 1 and 2 in Fig. (3§ if K and K' are both rotated
by /5 .

With

z ”m
flbk) = S5 5 =07 000 T Y e )
L’ - /

and

Y (#9)= 6, ™"
lm "

it follows immediately that

\

-1
T, =Dt,D
with I
('/’VIZ

‘DLL’ - € 5“/

a similar relation follows directly from the definition of the
propagator matrices



512 W. MORITZ

rouy Ll
G(P) = §4E/< (L) (ikl-1P1) Zﬁw,, (12,)

The set of eq. (3) can then be solved for two matrices
only. Using a short notation, eq. (3) reduces to

, - - - ]
T =t +t,69TD 4t 6025 e t,6" 005 4 t,677 + £, 6,<0)

£ $2_ . $3, S¢5 3 /
T, = 65.+t56 z, + I 6 2z ¢+ fg(r pzz_lp + tyé pJZI,D + z}é;.(t)

(4)
It should be noted that multiple scattering between ad-

atoms is neglected here, otherwise some additional terms would
occur, causing no principal difficulty.

Further reduction in computing time and core size can be
achieved by use of a symmetry relation for the propagator ma-
trices

tre'
G, (2)= (1) G, (F)

Since only 4 different values in the rotation matrix D
occur, eq. (4) can be solved easier than the general eq. (3),
but still 4 Gaussian elimimations are necessary.

There is only one solution necessary for the whole set of
incoming waves, since the phase-factors can be factorized in
the same way described by Tong and Van Hove [11].

If we assume a density of of adatoms with o small enough
that the probability for two neighbouring adatoms is negli-
gible, then the average reflection and transmission matrix for
the whole layer is

(Mt: §rte Z(_. “'a) {<Z>(1—4«)+

rgf) ikl K

1,4 (ky-Kyr) 4
K2 Th * ag 1 ds-zf gu' Z%’(ﬂkﬂ')
m
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The case of vacancies can be treated completely equivalent.
Here even next nearest neighbours can be included with the
same computational effort as for the adatoms.

RESULTS

Model calculations for two types of point defects, vacan-
cies, and adsorbed atoms, have been done for Fe(100), and for
vacancies only in the case of Au(100). A defect density of
5 % and 10 % of a monolayer has been taken, though at 10 %
correlated defects cannot be left off anymore, that means, the
probability for the occurrence of clusters containing two or
more vacancies or adatoms is much too high to be neglected.
However, one can assume that a full calculation would not give
a substantial change of the results.

All calculations were performed at normal incidence. Up
to 8 phase shifts were used, obtained from band structure po-
tentials [12]. Interlayer scattering was calculated by the
layer~doubling method including a maximum of 24 symmetrically
independent beams. The real part of the inner potential has

Fe (100) (10)-beam Au (100) (11)-beam

L SUA

Fe (100) (11)- beam Au (100) (10)-beam

Intensity (arbitrary units)
:/

1 I
50 100 150 50 100 leV]

Fig. 3 Influence of vacancies on I-V spectra
from Fe(100) and unreconstructed Au(100)
at normal incidence.
Solid line: perfect crystal
Broken line: 5 % vacancies in the top layer
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been set to zero and the imaginary part to 4 eV, independent
of energy. Bulk Debye temperatures have been taken for all
layers, 400 K for iron, 170 K for gold.

Fig. (3) shows the influence of 5 % vacancies in the top
layer. The average t-matrix approximation gives nearly the
same results as the calculation which includes nearest and next
nearest neighbours. The broken line in Fig. (3) refers to both
approximations. The kinematic calculation would have given a
general energy-independent lowering of intensities, the mul-
tiple scattering calculation shows some changes in the I-V
curves, as expected, but the influence is generally very small.
Results for other beams are similar, also the strongly scat-
tering material like gold does not produce larger effects.

As adatoms iron and nitrogen have been chosen and they
were put in the fourfold hollow site on top of the first layer.
For the iron atom the bulk distance has been assumed, and for
the nitrogen atom, somewhat arbitrary, a layer spacing of 0.7
has been taken. No changes in positions of the atoms around
the adatom or the vacancy have been considered.

Fe (100) (00)-beam Fe (100) A (10 )-beam

n

Intensity (arbitrary units)

T T T T T T
50 100 150 200 50 100 [eV]

Fig. 4 Influence of adatoms on I-V spectra
at normal incidence.
(see text for explanation)
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The onset of damping has been chosen differently for ad-
atoms and vacancies. In the case of adatoms the damping starts
in the plane of adatoms, and in the case of vacancies half a
layer distance in front of the top layer. The comparison with
the perfect crystal is always made by choosing the same damping
conditions.

In the upper left and upper right panel of Fig. (%) the
influence of 10 % of a monolayer iron on Fe(100) is shown;
the solid line is the calculation for the perfect crystal, the
broken line is the multiple scattering calculation for con-
figurations of nearest neighbours as shown in Fig. (2). 1In
the lower left panel of Fig. (%) the same comparison is made
for 10 % of a monolayer nitrogen added to Fe(100). As can be
seen,the influence of the weak scattering nitrogen is much
less than that of iron. The average t-matrix approximation
gives for adatoms some slightly different results than the site-~
dependent approximation. This comparison is made in the lower
right panel of Fig. (4). The broken line refers here to the
average t-matrix approximation.

DISCUSSION

The model calculations show only very small influences of
defects in the I-V profiles. The intensities for the vacancy
models are generally a bit lower compared to the perfect crys-
tal, as predicted by the kinematic theory. Occasionally there
are some small changes in relative peak hights as, for example,
in (10) beam from Au(100), where the peak of 100 eV is lowered,
while that at 85 eV is evenly enhanced. Such an effect is
purely to bhe attributed to multiple scattering origin.

The intensity from the adatom models is slightly higher
than that of the clean crystal,as actually expected, but also
here only small changes are visible. All features of the
curves are preserved, there is no change in peak positions and
the changes in relative peak heights would be undetectable
experimentally. Changing the first layer spacing by 2 % has
more influence on the I-V curves than 5 or 10 % impurities or
vacancies.

The question arises whether this result is representative
or not. For vacancies there are no differences between the
average t-matrix approximation and the explicit calculation
of scattering amplitudes for the neighbouring atoms. This in-
dicates that multiple scattering within a layer is minor at
least at normal incidence. For vacancies only nearest neigh-
bours within the plane have been assumed, and for adatoms only
nearest neighbours in the next layer. So, only an average for
the forward and backward scattering from the defect is accounted
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for, thus interferences in the multiple scattering series are
damped. A more detailed calculation with spherical clusters
around a defect may show some more effects. Also the importance
of intralayer scattering should increase at oblique incidence,
and point defects might be detectable under these diffraction
conditions. Possibly this is one of the reasons, why calcu-
lated I-V curves usually don't fit the experimental ones at
oblique incidence as well as at normal incidence.
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beam representation 19

beam expansion 24,30,33,34

Beeby matrix inversion 43-45,47,51
Bessel functions 98,102,104,123
Bloch-wave method 44

bond lengths 254

bond lengths, adsorbed atoms 551,552,554
bond length, H-W 234,244

bond order 551-557

bond order, relation of Pauling 551
bonding to unoccupied orbitals 554
Bravais lattice 43,44

Bragg chains 298,299,301

Brillouin function 202

Ca0O(100) 385-389

chain method 32,75,83-87,90,92,94,99,290
chain of atoms 99,102,106,107
chemical poisoning 307,311

classical action 135

classical deflection function 132,
150-152

classical trajectories 130

classical turning point 153

cluster of atoms 99

cluster of chains 99,108

coherence width 498,503,520-522

coincidence lattice 25

collection of LEED data 303,304

combination theorems 93,95,97,111,
119-121,124-128

combined-space method 23,43-45,47,51,54

complementary pivoting algorithm 429

complex systems 5

composite system 93,98,111,112

composite deflection function 140

confidence interval 248,249,259

constant momentum transfer averaging
(CMTA) 307.313-324,330,334,497

convergence of LEED spectra 410

CoO 387

coulomb scattering 353,354

crystal model 411

Cu(100) 59,60,159,160,215.216,218-223,
225,228,229,271-273,449-461

Cu(110) 157,165,167,454

Cu(l11) 385,395-398

cylindrical waves 85,93-95,98,99,101,108

cylindrical wave representation 84

damping of waves 217

Darwin terms 175

data base 250,290

data-base size 244,245

Debye temperatures 514,539,540

Debye temperature, bulk 316

Debye temperature, surface 219,225,
315-319,477

Debye-Waller factor 318

density matrices 176

detector aperture 522

diagonal-dominant approximation (DDA)
157,159,161-165,168-170

Dirac equation 175

Dirac peak 415

Dirac peaks (spikes) 426,429-435

disorder, one-dimensional 510

disorder scattering 261,271

5569
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distance measures 425
double scattering 265,266
dynamical theory 17,523,524,531,532
effective incident wave 158
elastic cross section 265,275,284
electron energy loss spectroscopy (EELS)
375
electron free path 426
electron mean free path 265,275,276,279
electron beam:
characteristics 451
detection 451
polar angle 451,452
retarding fields 451
electron wave packets 499
electron wave packets, incoherent
superposition 499
electron promotion for S,Cl 554
energy-dependent local-density exchange
potential 173,174,184,185
error curves 430,432-434
errors in LEED analysis due to point
defects 507
evanescent beams 147
Ewald methods 28
Ewald sphere 88,89
exchange-correlation potential 178,179
535-539
exchange potential, energy dependent 352
exchange-correlation coefficient «
536-550
expansion theorems 93,95,111,117,122,123
experimental uncertainties 261,267,
269-271,284
expected sites 552
fast Fourier transform 426
FCC(100)c(2x2)-X 552,553
FCC(100)(1x1)-X 553
FCC(100)c(2x2)-0O,H,Na,S,C1 553
FCC(100)(1x1)-O,H,Na,S,Cl1 553
FCC(111)(1x1) 554,555
FCC(111)(v3xv3)R30° 555
FCC(111)(2x2) 555
FCC(111)-H,Na,0,S,Cl 555,556
FCC(100)-X, general metallic valency
555,556
FCC(111)-X, general valency 556,557
FCC(100)p(2x2)-X 557
Fe(110) 509,513-515
features of LEED spectrum 411

INDEX

ferromagnetic surface 200
Feynman path-integral method 131,134
finite extent of data 263,264
finite source extension 522
forward scattering 59
Fourier deconvolution 426
free-space Green function 118
GaAs(110) 51,52,255,392
Gaunt coefficients 28,105,108,168
Gaussian 434
Gaussian function for J(6,E) 500-502
Gaussian width of J(6,E), b,
500-503
Gauss-Seidel-Aitken iteration 48
giant symmetric scatterer 59,60
glancing incidence 90,91
glide lines 64
goniometer for LEED 290-292,304
grating formula 502
grating of chains 99,109
grazing emergence 434
Green functions 43,46
hard wall 131
Heisenberg local spin model 202
high Miller-index surfaces 45
hybridization schemes 552,558
hybrid orbitals 558
ideal scaling 3,4
idcal scattering strength 1,(E)
499-501
impact parameters 132
incident beam:
energy spread 520,522
angular width 522,523,527,528
inelastic cross section 265,275-277
inelastic scattering 4,61
inner potential 180,201,204,315-319,330
374,375,382,392,395,420,426,435,438,
443,513,514,535-537,540,542,550
inner potential, energy dependence 317-
319,322,324,329,336,420,425,431,432
input parameters 19
instrument response 262,263,348
instrument response function 404,405,
498-502,519
instrumental transfer width 519
interlayer multiple scattering 157,169
interlayer scattering matrix 86
intensity asymmetry A, 176,177
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intensities:

adjustment of scales 365,370

data on equivalent beams (data
averaging) 450-456,461

data averaging 450,456-461

deconvolution of 501

errors from residual magnetic fields 451

errors from sample imperfection 452,
459

effects of alignment errors 454,455,
458

instrumental correction 498

influence of point defects 505-507,
513-516

integral spot values 520,522

need for fast measurement 463,464,
473,476,478

noise in 365-368,381

normalization of 412

reliability of data 449,450,461

smoothing of 365-369,381

spatial coherence effects 519-524,
529,533,534
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video recorder 465,473,479

intensity operator I 438-443

intensity space Q 438-440

interlayer contraction 187-193
(see lattice relaxation,interlayer
spacing, interlayer distance)

interlayer distance 234,237-245,251-253,
257

interlayer spacing 219,222-225,
227,229,277-280,282,290,296,
301,304,311,315,321,324,333-336,352,
368-371,374,375,380,455,456,460,461,
535-550

interlayer interference 530,531,533

InP(110) 385,392-394

ion-core scattering potential model 174,
177,178

ion-core scattering 183,234,245,250,251,
259

Ir(100)(1x5) 53,54

Ir(110)(1x2) 438,439

isointensity maps 290-304

kinematic approximation 523,528,530,531

TV computer measuring system 463-468, kinematic formalism 307,334,506,507,514,

478
intensity measurements:
angular distribution 497,498
data collection 483-486,491
defocusing of beam 406
diffuse background 479
energy spread in beam 406,407
errors in 401
Faraday cup 464,478
hard and software 468-472
influence nonradial magnetic fields
493,494
instrumental effects 401,404,405
instrumental broadening 497-499
magnetic shielding 493,494
photographic 464,478
reliability of 401
spot photometer 464,478
spot profiles 479
test for nonradial fields 494
time 472,473,478,479
TV camera 465,468,478,479
use as a fingerprint 483,488,491
use of partial spots 404,405
video digitizer 465
video frame 466-472

515
kinematic scattering 12,358,365,380
large-Z substrates 194
lattice sum, dynamic area 528
latlice summation 4,84,86,97,112,177
lattice sum, maximum distance R
526-528,531-533
layer approach 3
layer attenuation factor 316,319,322
layer-dependent magnetization 202-204
layer diffraction:
intensity 523
amplitude 524,533
weak isotropic scatterers 524-526
layer doubling method 44,71,72,76,77,79,
129,439,508
layer-KKR 83,84,86,87,90,92,218
layer reflection matrices 87,91,137
layer scattering matrix 70,157
layer transmission matrices 87,91,137
LEED analysis, accuracy 449,450,461
LEED analysis, sensitivity 449
LEED spectra, restoration problem
425-433
LEED spectra, error vector 427,428
LEED programs:

max
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CAVLEED 67-69,73,75-78

INDEX

262,275,276

CHANGE17,19,67,68,70,71,72,73,75-78 multiple beam interference 265

listed 68
portability 67-69
THIN 17,19
van Hove-Tong LEED package 67,68,
71-73,75-78
linear scaling 3,15
local spin density functional formalism
200,201
Lorentz factor 270
Lorentzian 430,431,433,435
low energy electron loss (LEELS) 235
matrix doubling 19,22,23,27,34,36
matrix inversion 63,65,87
matrix-splitting algorithm 71,79
maximum likelihood method 427
mean-value inequality 411
measured profile J(6,E) 499-501
medium energy electron diffraction
(MEED) 83,290,334
metric distance 409
metric distances R(f,g) 410-412,421,423
metric distances, modified 431,432
metrics:
Hausdorf distance R, 412,414,
417,420-423
Levy distance Ry 412-414,417,
420,421,423
modified 416,417
strong distance R 412
sensitivities 415-419,422
stability 423
weak integrated distance, R,
412,417-423
metric space 410
MgO(100) 84,88,89,165,166,387
minimum angle of resolution 503
Mo(001)(1x1) 535-548
models for surface structure:
constrained manifold 438
family of models M(p) 438
missing row model Ir(110) 438,439
paired rows model Ir(110) 438,439,443
molecular field theory (MFT) 202
molecules at surfaces 4,8
Mott scattering 181,345
muffin-tin model 85
muffin-tin potentials 218,275
muffin-tin zero, energy dependence of

multiple scattering 4,5,9,20,21,23,29,36
43,48,50,51,70,71,93-95,129,130,137,
141-145,217,218,265,284,341-344,358,
365,378,497,498,318,319,324,329,334
505-509,512-516,523,528,529,539

multiple scattering amplitude 142,146

multiple scattering, intralayer 334

multistaging procedure 93,98,112,147,149

Ni(100) 145,147,148,293,295,296,301,302,
403,473,474

Ni(100) (model surface) 276-283

Ni(100)(2x2)C

Ni(100)c(2x2)-CO 463,473,474

Ni(100)c(2x2)Na 554

Ni(100)c(2x2)-S 295,296,301,302

Ni(100)c(2x2)-Te 250,252,253

Ni(100)P4g-C 293,296,298-303

Ni(110) 145,147-149,199,200,202-207,209,
210,295

Ni(110)(2x1)-0 251-253

Ni(110)c(2x2)-CO 254,255,271-274

Ni(110)c(2x2)-S 251-253

Ni(111) 250,252,253

Ni(111)(2x2)2H 55

NiO(100) 387,393

no-reflection matching condition 217

non-structural parameters 215-217,229,
275-277,284,314,315,359

optical potential 145,387

optical potential, complex 217,218,225,
227

orthant in RN 428

p-basis 135

pair distribution function 263,264

parameter manifold P 438,440

Pauli approximation 175

peak height ratio 334-336

peak localization 425

PERT 17,19

periodic Green function 111,120,124,125,
127

perturbation series 143

phase function 152-154

phase shift program 72

phase shifts 27,29,30,85,129,158,159,
179,180,183,237,238,275,334,393,
537-539

photoelectron spectroscopy 250,254,255,
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259
photographic-vidicon system 309-311
plane wave representation 43,44,47,48 84
plane waves 93,98,99,101
plane of atoms 99,107
plane of molecules 112
point defects, dilute 510
point spread function 426-434
Poisson sum formula 132
polarized electron gun 181

polarized LEED (PLEED) 199,201,203,204,

209,275,339-342,345-348,350,352,354
polarization S 199,200,208,209
polarized electron source 345,346
potential, ion-core 334,335
potential scattering 131
program Product Language Interface PPLI
73
projection of position vectors 378,379
propagator 134,135
propagator matrices 511,512
pscudokinematic theory 301
Pt(111) 173,175,177,179-181,183-185,250,
252,253,336,337,370
Pt(111)-(2x2)C,H, 55
quadratic programming 426,428,429,434,
435
quantum scattering theory 136,137
quasidynamic approximation 290
quasidynamical method 528
quasi-relativistic approximation 183
r(reliability)-factors 215,216,219-221,
223-227,229,233,234,237,238,241-245,
247,255,257,261,262,267-283,289,307,
308,324-330,333,357-382,409,410,425,
431,437,440-442,444,461
r-factor:
ad hoc evaluation of 444
beam 364,371-374,382
confidence limits 441
contour plots 219-221
Euclidean L, Norm 441
functional fitting 380
geometry-dependent 359
globally sensitive 359,371,382
gradient technique 442,443
iso-plot 388
metric function 442,444,445
minima 357,370-374,377,378,380,382
model for errors 441
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normalization 362-365
Pendry 362,364,367,368,375,376
385-399,385,395,397-399,411
periodicity of minima 371-373
programs 72
sensitivity 442,443
single beam 456,458
tests of 366-371
triangle inequality 442
vector of residuals 441
weighting of 364,365
Zanazzi-Jona 361,363,366-368,375-377,
381,385,387-399,411,421,423,437,450,
453,455,460,,474,536,540-550
radial Dirac equation 179
Rayleigh criterion 264
reflection-transmission matrices,
average,508,512 .
registry variation 372,373
relativistic intensity corrections
173-175,181,182,194
relaxation 216,389-395,419-421,425,432,
557
reliability of LEED analys is 216
renormalized forward scattering (RFS) 12
19-23,44,48,59,61,67,68,72,76,79,88,
129,137,144,147,159,204,218,237,508,
531,532,539
resolving power 261,262,265,279
response function 261,270,271
restoration function f 426,427,429
restoration, piecewise 434
resolving power of LEED instrument 498
resolving power of LEED 501-503
resonance structures, ACH-R 552-554
reverse scattering 3
reverse scattering perturbation method
43,44,48-51,54,59,61,63,64,65,439
Rh(111) 368-375
Rh(111)v3xv3-CO 375-377,380
rotation diagrams 333-337
S-matrix 135
sample holder 308
scaling with number of beams, N 3
scattering amplitudes 130,131,141,142,
144,506,507,510,511,515
scattering matrices 7
scattering matrix 93-95,109
205,207
scattering matrix elements 85,87
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scattering potential 537,544
scattering potential, relativistic
corrections 536,543,547,548
scattering strength vs. energy curve 499
scattering vector 315,318
selective sensitivity 4
semiclassical scattering theory 129-131,
135-137,141,144,147,149
semi-metric 410,418
sensitivity:
of data 290
of LEED to defects 505
of structural conclusions 215,228,229
optimization 290
to lateral shift 161-163
to layer spacing 161,164
shells of atoms 6,10
Si(100) 53
Si(100)(2x1) 65
Si(100)(1x1)H 65
Si(111) 52,53
Si(111)(1x1) 460,461
Si(111)7X7 4
Si(111)(1x1)-(Te)
single layer scattering 3
single scattering 262-275
single-site approximation 507,508
site-dependent approximation 508-511
slab of planes 99,110
spherical harmonics 48,62,98,103,117,118
spherical polynomials 27
spherical waves 10,20,23,27,35,36,44,46,
47,85,93,95,98,99,103,524
spherical-wave representation 43,44,48,
84,85
spin-averaged relativistic phase shifts
173
spin-dependent Slater potential 201
spin-flip amplitude 342,343
spin fluctuation energy 201,202
spin-orbit coupling 173-175
spin-orbit interaction 339-342,345
spin-orbit potential 342
spin-orbit scattering 353,354
spin polarization analysis 173,174,183
spin polarization, P 341,342,345,348,350
spin polarization vector P 176,
177
spin-polarized LEED (SPLEED) 173-176,
178,179,181,184,194,335

INDEX

spin scattering asymmetry 340-353
spin scattering amplitude 342,343
SPLEED detector 181
stationary phase 132,135
step function 298
step probability function 402,404
steps 4,298-300,304,402
structural parameters 379
structural parameters, confidence limits
437
structural search strategies 357,378-382
structure constants 112
structure factors 62,64,99,107,108,177,
378
sufficiency of data base 234
superlattices 47
superposition of atomic charge densities
218
surface crystallography 289,290
surface-extended x-ray absorption fine
structure (SEXAFS) 250,257,259,265
surface imperfections 497,501
surface magnetism 340
surface magnetization 199,200
surface mesh 25
surface perfection 402
surface relaxation 389-395,419-421,425,
432
surface roughness 401-403
surface spin density 340
surface structure:
accuracy 247-249,261,262,267,
positive identification 248
precision 247-249
reliability 248,324
surface symmetry 165
symmetry 31,43,44,47
symmetrization 91
theoretical approximations 261,275,284
thermal lattice vibrations 180,217,218
thermal diffuse scattering 261,271,284
t-matrix 62,97,98,111,141
t-matrix, average 508-515
t-matrix elements 85
t-matrix formulation 507,510-512
Ti(0001) 161,162
Ti(0001)(1x1)-N 255
time reversal 177
time-reversal invariance 342
total elastically backscattered
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intensity 284

total metric T 410,411

transfer matrix 19,20,22,23,26,34,36,71

translation theorems 93,95-97,111,113,
115,117-119,123

transfer width 498,520-522,528

truncated free-atom potentials (TFA)
218,221

two-component formalism 176

valency M 552

valence shell lone pairs 554

vicinal surfaces 33

W(001) 55,173-175,179-181,183,186-193,
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234,235,333-337,339,340,344-353,
520,531-534,476,477,535,536,539
W(001)c(2x2) 234,463,464,475-477
W(001)v2xv2R45° 352-354,385,
390-392
W(001)c(1x1)-H 233-237,239-245
W(001)c(2x2)-H 352-354
wave equation 95
WKB approximation 131,132
X-matrix 158,159,168-170,296,523
x-ray crystallography 358,360,365
x-ray diffraction 4,265,270
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