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This article w i l l begin with some statements on the old topic of sur
vival curves and with some rather well-known arguments. Then an alter
native to the conventional treatment wi l l be given followed by some 
remarks on the different random factors governing the dose-effect 
relation. A complete analysis is not within the scope of this article 
but one detailed example may serve to bring out new aspects that 
have been somewhat neglected up to now. 

First, i t is necessary to examine the difficulties involved in the tradi
tional concepts. The sigmoidal survival curves that are observed i n ex
periments wi th mammalian cells, for example, could be represented 
by quite a number of different mathematical functions. For historical 
reasons only a few of these have really been used. The corresponding 
models go back to target theory but they have survived the classic 
framework of this theory. The formulas are now relics devoid of any 
concrete meaning. 

The usually applied characteristics of the shape of survival curves 
are connected with the two models most widely in use. First, there 
is the so-called mult ihit model. I t produces curves that "bend over", 
i.e., do not approximate a straight line in the semilogarithmic plot. 
These curves are conventionally represented by gamma distributions, or 

I . DEFICIENCIES OF THE CONVENTIONAL T R E A T M E N T 

353 
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in less mathematical language, by mul t ih i t curves. The order of these 
curves is called the hit number. I t is now known that this is not a real 
number of hits and that an experimental curve cannot usually be re
presented uniquely by a mult ihit curve or a superposition of mult ihi t 
curves. There are many and various ways of approximating a curve by 
gamma distributions. Specifically, i t can be shown that an arbitrary high 
mean hit number can be used for this superposition. I n fact, a higher 
mean hit number generally makes a more exact approximation possible. 
For these reasons, the " h i t number" is rarely used anymore. Somewhat 
heretically one might even suppose that there is a certain bias toward 
curves that do not bend over and which fit more easily into a formula. 
This is the case for dose-effect relations that at higher doses approximate 
exponential shape, and which are commonly treated according to the 
second of the conventional models. 

The classic multitarget model, a very special assumption, has lead 
to the definition of a "target number." Since, however, this is not a 
number of targets at all, i t is now called the extrapolation number. 

F 1 1 1 1 1 I : 

\ 

DOSE (rods) 

F I G . 1. Survival curves of synchronized Chinese hamster cells in Gx(o), S(x), and 
G 20d). (/). 
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Together wi th the final slope 1 /D0 this number allows an easy visualiza
tion of the dose-effect curve in a semilogarithmic plot. I f in addition one 
knows the initial slope and Z ) 3 7 , the dose for 37% survival, one has a set 
of numbers that could roughly replace the dose-effect curve. Thus i f 
nothing more is wanted than a shorthand representation of the survival 
curve, the extrapolation number and D 0 may well be used. 

However, a completely different problem arises i f one looks for 
characteristics that are representative in a mathematical sense and 
which are open to formal analysis. A few remarks may suffice to show 
the limitations of concepts such as extrapolation number and D0 in this 
respect. A n extrapolation number is defined only for dose-effect curves 
that in a semilogarithmic plot end in straight lines. Even i f experimental 
data suggest that this is the case, the extrapolation to doses not covered 
by experimental data must remain tentative. Figure 1 shows that the 
a pr ior i assumption of the existence of an extrapolation number may do 
violence to a curve; but if, for the moment, we forget this, the fact 
remains that the extrapolation number as well as D0 is representative of 
only that small fraction of the population that survives at highest doses. 
Even minor changes in the experimental technique can influence this 
small fraction, as shown in fig. 2. Thus, the characteristics of the curve 

I ι t ι ι ι—ι τ ι ι ι r g — » — r r — » 

0 5 0 0 1 0 0 0 1 5 0 0 

DOSE (rods) 

F I G . 2. Survival curve for H e L a cells (2). Medium unchanged ( · ) ; medium replaced 
seven days after plating ( • ) . 
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are completely altered, while the reaction of the main portion of the 
population remains unchanged. 

Sti l l another example may serve to show that η and D0 are not truly 
representative of a survival curve. Figure I gives curves for a synchro
nized population of Chinese hamster cells [as determined by Sinclair 
and Mor ton ( / ) ] . The left curve pertains to cells in a sensitive state 
(G1 and G 2 phase) while the other curve corresponds to cells in a less 
sensitive state (S phase). Naturally, the population is not perfectly 
synchronized. As Sinclair (3) remarks, the final part of the curve is 
determined by the least sensitive fraction. I f this is true, however, 
one may roughly correct the left curve and eliminate the contribution of 
the insensitive fraction belonging to the S phase. When this is done, one 
finds that the corrected curve is not at all characterized by the original 
extrapolation number and D0. On the contrary, these numbers refer 
entirely to the fraction of cells wi th which the experiment is not con
cerned. This is a serious limitation, and the conventional characteristics, 
useful as they may be in qualitative studies, are of little use in the more 
refined experiments on synchronized populations. I f one has to deal 
w i t h a superposition of different cell states, one should look for charac
teristics that are additive. 

I I . T H E M O M E N T S OF THE DOSE-EFFECT D I S T R I B U T I O N 

The present usage is—as we have seen—not satisfactory. Basic 
characteristics, however, are easily obtained i f one considers the fact 
that essentially the dose-effect relation is the distribution function of 
the inactivation dose. I t is highly surprising that this fact was never 
clearly stated. I f we recognize that the dose-effect relation is the distri
bution function of the inactivation dose, i t becomes clear that the 
mean and the standard deviation of the inactivation dose are basic 
characteristics. This is symbolized in Fig. 3. 

I f one assumes that all units of a population are identical and receive 
the same "local dose," and that no other stochastic factors are involved, 
one ought to find a well-defined critical dose threshold so that σ 2 = 0, 
i.e., the dose-effect curve should be a step function. This, however, is 
never the case. Whether at a certain dose a cell is inactivated or not 
depends on a number of different random factors. One of these factors 
is the variable sensitivity of the cell; another is the variable amount 
and distribution of absorbed energy; still another factor is the random 
interplay of the numerous functional components of the biological 
system with each other and with the exterior parameters. I n general it is 
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F I G . 3. Survival curve and its derivative for Chinese hamster cells in Gx and G 2 (7). 
The mean inactivation dose D and the standard deviation σ are marked. 

difficult to read the individual roles of these different factors from the 
mere shape of the curve. A l l random factors, however, have the effect of 
"broadening" the curve, and therefore the standard deviation of the 
inactivation dose is a convenient measure of the combined influence 
of the different random factors. 

I n mammalian cell culture technique one has to control a large number 
of factors; usually results are not exactly reproducible in different labo
ratories. Therefore a comparison is only possible on the basis of charac
teristics that are not too sensitive to small variations in the experimental 
setup. D and σ 2 fulfill this requirement, while the extrapolation number 
and D0 do not, as can be seen from Fig. 2. 

Mathematically, the standard deviation is defined in_ terms of the 
first two moments of the distribution function, D and D2 

with 

D = Γ D dN(D) 
J ο 

and 

Wl = f D2 dN(D) 
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I f a population is made up of fractions pi of cells in different states 
z, then the resulting moments are the weighted mean of the corre
sponding moments of the dose-effect curves for the pure states i 

D = ΣΡί χ A 

and 

5*= Σ Λ X Ä ? 

Thus the moments are additive. For σ an analogous relation does not 
hold. Therefore for actual calculations one should use the moments 
rather than the variance σ 2. This is important for studies on synchronized 
cell cultures. Still i t is a technical detail only, since from the mean D 
and the variance σ 2 one readily calculates the second moment 
D2 — D2 -\- σ2. Below we w i l l see that one may even modify the above 
proposal and, instead of the second moment or the variance, use a related 
dimensionless number to characterize the shape of the dose-effect curve. 

I I I . T w o F U N D A M E N T A L RELATIONS 

Naturally one may use higher moments to describe a dose-effect 
curve. I n addition to the mean and variance the skewness would be 
important. As already mentioned, our present concern is not the mere 
description of the survival curve; moreover, the experimental data are 
generally not precise enough to warrant exact determination of higher 
moments. While D and σ have simple practical meaning, other less 
fundamental characteristics may easily lead to complicated but useless 
models or formulas. We w i l l see that the most simple characteristics 
allow the most general interpretation. 

We have already mentioned the different random factors that are 
responsible for the variance of the inactivation dose. The main factors 
are: biological variability, the random nature of energy deposition, and 
finally, what we call the stochastic nature of vital processes, i.e., all 
random factors that play a role after the initial disturbance. 

The first and the second factor are extensively discussed in the 
literature, the arguments against target theory being based on the 
first aspect, while target theory itself has been focused on the second 
factor. The th ird point refers to the fact that the interplay of numerous 
components within a biological system and the influence of the exterior 
parameters usually prevent an exact predetermination of biological 
processes. 
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Later, an example w i l l be given which shows that biological stochastics 
may well influence the shape of the dose-effect curve. 

W i t h multicellular organisms biological variability is paramount, 
and with very small objects, like viruses or bacteria, inhomogeneity of 
energy deposition is the most important factor. I n many cases, however, 
the three different random factors cannot be separated; this is speci
fically true for mammalian cells irradiated with low L E T radiation. 
Accordingly, formal analysis alone can i n no case tell which of the three 
factors is responsible or mainly responsible for the variance of the 
inactivation dose. A very general interpretation of the mean and the 
variance of the inactivation dose is nevertheless possible. This can only 
be dealt wi th briefly here. First, a certain modification of the above 
proposal w i l l be made. 

Instead of the variance σ 2 of the inactivation dose a dimensionless 
number w i l l be used as a characteristic of the dose-effect curve. We 
choose the expression D2/a2 and call i t relative steepness S because its 
value indicates how nearly the dose-effect curve approximates a step 
function. As can be easily deduced, S = 1 for exponential dose-effect 
curves. For shoulder curves, S> 1, and S increases as the shoulder 
becomes more prominent. I n fact, for the special case of the target 
theory curves S equals the so-called hit number. I t is, however, a charac
teristic well defined for all kinds of dose-effect relations. The most 
surprising fact is that this very elementary characteristic permits an 
exact interpretation that is independent of any hypothetical model. I t can 
be shown that S is a lower l imi t for the mean number of interacting 
absorption events necessary to bring about the test effect. I f a survival 
curve has a relative steepness S = J D 2 / C T 2 , the mean number of statistically 
independent absorption events 1 that interact and bring about the test 
effect cannot be less than S. Only i f there were no other random factors 
at all except the statistical energy deposition could 5 be the actual 
number of interacting absorption events. I f a curve has relative steepness 
5 , and i f biological variability and biological stochastics play a role, 
the number of absorption events needed to bring about the test effect 
must be greater than S. A rigorous proof and a detailed discussion of 
this relation has been given elsewhere (4, 5). 

One can also show that D i n conjunction with S permits the deduction 
of a lower l imit for the diameter of the sensitive site in the cell. This 
is a direct application of Rossi's concept of local energy distributions; 
i t is also presented in full detail elsewhere (4} 5). For the case of mamma
lian cells irradiated in vitro w i th sparsely ionizing radiation, one finds 

1 Absorption event signifies energy deposition by a primary particle and/or its secon
daries. 
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that on the average more than four absorption events must interact 
over a distance of more than 1 micron to bring about the test effect. 
The actual value must be greater since, in addition to the inhomogeneity 
of energy deposition, other random factors play a role. 

Thus the values D and S allow quite definite statements on the most 
widely discussed random factor i n radiation effect. Whether one would 
call this a revival of target theory or, on the contrary, a refutation of 
target theory is a matter of taste. 

I V . B IOLOGICAL STOCHASTICS 

The above-mentioned relations give lower limits for the number 
of interacting absorption events and for the diameter of the sensitive 
site. Just how far these lower l imits lie below the actual values is an open 
question which can only be decided by further analysis of the role of the 
different random factors. 

There are three lines of investigation to be followed. For the analysis 
of the statistical fluctuations of energy deposition, microdosimetry 
w i l l be used. Biological variability, i.e., different sensitivity of the cells, 
w i l l be studied further in synchronized cell cultures. Determination of 
the moments of the dose-effect curves w i l l be a useful tool especially 
in these kinetic studies. The th i rd consideration is biological stochastics, 
i.e., the random fluctuations that occur in biological systems before, 
during, and after irradiation, and which cause a further uncertainty in 
the resulting effect. This last factor has been neglected up to now; 
therefore it w i l l at least be mentioned here. 

After irradiation, a highly complicated pattern of cell life and death 
is observed in the progeny of individual cells. This pattern is not yet 
well understood, but observations on pedigrees of irradiated cells are 
now being made in different laboratories. The considerations to be given 
here, though mathematically different, w i l l lie somewhat along the lines 
taken by T i l l et al. (6). A n explicit discussion is given elsewhere {4). 

The development of a cell clone is a series of successful and unsuc
cessful mitoses, i.e., a b i r th and death process. This may be symbolized 
by the graph shown i n Fig. 4. 

We start wi th one cell. Each successful mitosis is a step to the right, 
each death of a cell a step to the left. The probability for successful 
mitosis is called p, the probality for cell death q. I f the absorbing barrier 
η = 0 is reached, the process is terminated, and all cells are dead. 
This process is well known in probability theory. Historically one 
of the oldest problems, i t is called the "gambler's ruin problem." 
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1 I Η 1 
l - p ρ 

v-l ν v+l 

1 - ρ 

F I G . 4. Graph for the development of a cell clone according to the so-called ruin 
problem. 

The formula for the probability pK that a single cell wi l l grow into a 
group of at least Κ cells is given below Fig. 4 and is represented by the 
curves of Fig. 5. 

What does that mean for the dose-effect relation ? As an example, let 
us assume that the probability p decreases exponentially wi th dose 
and is constant after irradiation. One then obtains the dose-effect 
curves shown in Fig. 6. The experimental end point is the ability of the 
single cell to generate a group of at least Κ cells. Obviously the curves 
get more and more exponential i f Κ is decreased. Thus the shape of the 
survival curve may well be strongly influenced by the experimental end 
point. 

0 OS Ρ r 

F I G . 5. The probabi l i ty^ for formation of at least Κ cells as a function of the success 
probability p in a single mitosis. 
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N/N0 

0.001 

F I G . 6. Survival curves that result if p decreases exponentially with dose and if the 
formation of at least Κ cells is taken as the experimental end point. 

The above model is, of course, an oversimplification. The labilization 
of the cell that accounts for the decrease in p w i l l be transient and 
not constant after irradiation. Certainly the other random factors w i l l 
play a role, too. Thus it remains to be determined what fraction of the 
variance of the inactivation dose is brought about by the different random 
factors. Nevertheless, we w i l l give a practical example. 

Haefner (7) followed the pedigrees of yeast cells. He did not consider 
the above stochastic interpretation at all, but i f we take his results and 
compare them wi th the outcome of the theoretical model, we obtain 
rather good agreement as shown in Fig. 7. 

Four different classes of cell fates are distinguished. First, there are 
cells with no failures at all in the first four generations. Second, there 
are cells that produce a colony but have some dying cells among their 
progeny. T h i r d , there are cells wi th some successful mitoses which do 
not produce a colony. Fourth, there are cells that die after irradiation 
without any mitosis. Obviously the correspondence between theoretical 
and experimental curves is quite good, so that the simplified model 
given above may not be completely unrealistic. The main difference 
between the curves is that experimentally one finds only a few cells 
that die immediately after irradiation. This , however, is easily under
stood; even heavily damaged cells may undergo an abortive division. 

One should be very careful not to assume that this model is really 
adequate just because it leads to the right results. This would be to 
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(b) 

500 KXDO 

UV DOSE (ergs/mm-2) 

1500 

F I G . 7. UV-dose dependence of the frequencies of four cell classes distinguishable 
in an irradiated population of haploid yeast cells, (a) Experimental curves (7); (b) theoret
ical curves. 

repeat an old mistake in a new direction. I n fact, sigmoidal survival 
curves are neither pure mult ihi t curves, nor distribution functions of the 
sensitivity, nor direct records of the cells' stochastic behavior in a 
series of mitoses. They are a mixture of all three, and this is the main 
reason for the treatment proposed in this article. The preceding example 
may merely serve to show that this one factor, biological stochastics, 
must not be overlooked. 
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A last remark may illustrate the situation in mammalian cell culture 
studies. Here the difficulties are still quite obvious and one arrives 
at results that would seem to exclude each other. 

According to Elkind (5), two doses work independently on the cell 
i f separated by an interval of about 20 hours. I f dose D leads to sur
vival N(D)y this dose followed by a second dose of equal size yields 
survival N(D) χ N(D). I n other words, sublethal damage from the two 
doses i f separated by 20 hours does not interact to become lethal. 

This should not be the case according to the above considerations, 
as can be seen from Fig. 5 and 6. A simple special case should make 
this clear. After irradiation w i t h dose D one finds some cells that 
undergo division, while one of the daughter cells dies and the other 
one divides and goes on to form a colony. This is symbolized in Fig. 8a. 

α b c 

F I G . 8. Interaction of nonlethal damage. 

A n analogous case is shown in Fig. 8b. I f one assumes that two doses 
separated by 20 hours work independently, and that Fig. 8a represents 
the result of the first dose and Fig. 8b the result of the second dose, then 
the outcome would be Fig. 8c. The assumption is realistic; because of 
the mitotic delay induced by the first dose there may be no mitosis 
during the interval. I n this case, survival times survival yields failure; 
in contrast to Elkind's finding, sublethal damage adds up to lethal 
damage even i f separated by an interval of 20 hours. 

There are several possible explanations for this contradiction. Either 
Elkind's results are only approximately valid, or they pertain to experi
ments in which the random pattern of success and failure in the first 
few mitoses after irradiation is of little importance. Still another 
possibility may be that the interaction of "nonlethal" damage is just 
balanced by an opposite effect. Either by selection or by actual change 
in the biological state the first dose may render the surviving fraction 
more resistant to the second dose. This question must be answered by 
further observations on the development of single cell clones. 
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A P P E N D I X 

The determination of the moments of a distribution function is usually 
done numerically. A graphic procedure which is perhaps the easiest 
method wi l l be presented here. 

By partial integration one can deduce the following relations 

D = Γ D dN (D) = Γ N(D) dD 
J ο *ο 

and 

D2 = Cd2 dN (D) = Γ 2D χ N(D) dD 
J ο J ο 

Thus one does not really need to differentiate the survival curve N(D). 
One merely determines the area under i t i n the linear plot; this yields 
the mean inactivation dose D (area below N(D) in Fig. 9). 

0 0.5 1 1.5 
DOSE (krads) 

F I G . 9. Graphic determination of the moments of the survival curve N(D) (/). 

Then one multiplies the dose-effect curve by 2D. The area under this 
curve is equal to the second moment D2 (area below 2D χ N(D)) 
in Fig. 9). From D and D2 one readily obtains the variance σ 2 = D2 — D2 

and the relative steepness S = D2/o2. I n the example given in Fig. 9, 
one obtains D = 520 rads, σ = 270 rads, and S = 3.9. 

There is, incidentally, a certain connection between the extrapolation 
number η and the relative steepness S. A high value of one variable 
usually indicates a high value of the other. This is apparently what 
is meant i f one states that a high extrapolation number means a large 
shoulder. 
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The statement, however, is not strictly true; a large shoulder means 
a high extrapolation number while the opposite is not necessarily the 
case. An almost exponential curve may still have a high extrapolation 
number. I n terms of S one may state that a high value of S is always 
connected with a high value of ny while a high value of η may also occur 
with a small S. For sigmoidal curves (i.e., curves with no point of 
inflection in the semi-logarithmic plot) one deduces the relation 

S < (1 + l o g « ) 2 

As the proof of this relation is rather simple, it wi l l be omitted here. 
However, the relation itself is important insofar as i t shows that S is a 
measure for the shoulder while η is not, or only in a very restricted way. 
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