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Abstract

MICRODOS]METRY.:AND THE THEORY OF STRAGGLING. Theoretical developments in micro-
dosimetry (the determination of the spatial distribution of energy deposition on a microscopic scale)
are described. It is pointed out that microdosimetric theory is equivalent to LET theory plus straggling
theory. The influence of each of the different random factors (varying LET, varying track length,
varying number of primary collisions and varying energy transferred in primary events) can be expressed
as a relative variance and these relative variances can be summed 1o give the relative "variance" of
the single-event spectrum, The track-length variation and the variation in the number of primary
events will often not be important, Although the LET variation may be quite important, it appears
that the energy spectrum of primary collisions will usually make the decisive contribution,

This paper describes studies following those concerned with the bio-
logical application of microdosimetry, with the mathematical scheme of
functions needed for this purpose, and with a first theoretical determi-
nation of some of these functions [1]. The previous theoretical calcu-
lations, based on Monte Carlo methods, were in good agreement with
the experimental data, However, new improvements in the experimental
technique made it desirable to develop accurate theoretical methods,
While more refined and, necessarily, more abstract computations are
applied, one should also attempt a clearer understanding of the different
factors involved. This paper therefore, outlines a general theoretical
investigation into the spectra of local energy density. The basis is Rossi's
concept of local energy distribution [2]; the work reported was done partly
in his laboratories at Columbia University.

This work is divided into two sections: First, the different random
factors which make up the distribution of local energy density are briefly
discussed. A formula is then given which comprises all these factors.
This formula is the basis for the numerical calculations and has been used
successfully in the past. It is, however, rather complicated and does
not give a simple idea as to the relative contributions of the different
factors to the shape of the local energy spectra. Because of this difficulty,
a relation of remarkable simplicity is presented which connects the
variance of the microdosimetry spectra with the variance of the individual
random factors. This relation leads to the second part and to a point
which is central to this paper. It turns out that, except for large volumes
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and very densely ionizing radiations, one factor dominates. This is the
wide range of energy loss in primary collisions. Its influence on the shape
of local energy density spectra is in many cases decisive. But even in
cases where it is not the dominant factor, it is still the one which presents
the most serious difficulties — difficulties as far as physical knowledge

" and mathematical evaluation are concerned. At the same time, this is
the factor which is most characteristic for the new aspects brought up by
microdosimetry. Fluctuations of energy deposition are, however, by no
means a new subject. It may be said that microdosimetry is LET theory
plus straggling theory.

While the connection between LET studies and microdosimetry is one

of the general topics discussed by this Panel, the alternative aspects —
microdosimetry and straggling — are stressed here.

(a) Interplay of different random factors

To elucidate the different random factors responsible for the local
energy density spectra, below is briefly described the chain of events
which takes place in the measurements of local energy density spectra;

A tissue-equivalent proportional counter is exposed to a dose D of
ionizing radiation. The number of passages of ionizing particles through
the counter is a random variable, Discussion is confined to the simple
case that one has to deal only with complete passages of the ionizing
particles through the sensitive volume. The ionizing particle is assumed
to lose only a small fraction of its kinetic energy in a passage. This loss
of energy occurs in statistically independent ''primary collisions''. The
expected number of primary collisions is proportional to the track length
and to the stopping power of the particle, Therefore, one has to know
the track length distribution as well as the LET distribution. For a given
track length and a given value of LET the number of primary collisions
is still a random variable. Not only is the number of primary events
a random variable, but also the size of these events varies, i.e. the
amount of energy transferred in a primary collision is distributed
statistically. Actually, the resulting 6-ray may have a range long enough
to leave the sensitive volume; for the time being, however, this is not
considered, but it is assumed that all energy is deposited locally. In
other words, all primary events are considered to be point events.
Corrections for the above simplification can be applied afterwards.

A certain amount of deposited energy will lead to a number of
ionizations which, in turn, is subject to statistical fluctuations (these may
be called "Fano fluctuations', since Fano gave the first theoretical
analysis of the problem [3]). The next step is that each of the electrons
freed in an ionization is accelerated towards the anode. At the end of
its path it generates a varying number of secondary ionizations which
in turn multiply and thus contribute to the pulse which corresponds to
the passage of the ionizing particle. Actually there are also some less
essential factors like amplifier noise or imperfect function of the
counter. These factors which, in principle, can be reduced by experi-
mental technique, need not be dealt with here.
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Actually, the discussion may also be restricted to the case of the
single-event spectra fa(Z), since from these spectra the distributions
f(Z;D)! for different doses D can be calculated (see formula (6)). To
arrive at a complete formula for the distribution of local energy density
the following questions have to be asked:

1. What is the distribution s(£) of track length £ in the critical volume?
In the special case of a sphere: s(£)= 2£/d2 (where d = diameter).

2. What is the distribution r(L) of LET? The distribution relative to
the track length is requested.

Factors 1 and 2 combine to make up the probability distribution t(E)
of the expected value E to be deposited in the passage. E is the energy
which would be laid down if there were no straggling.

3. What is the distribution p(v) of the number v of primary collisions
along the track? This number is distributed according to Poisson, since
the primary collisions are statistically independent. If §; is the mean
energy transferred in a primary collision,

-E/8,
plry=e -(E/8;)"! (1)

4. What is the distribution w(e) of energy e transferred in a primary
collision? This function is proportional to l/e2 for energies large com-
pared to the binding energy of the electrons. The shape at lower
energies is, however, quite important for the microdosimetry spectra.
It will be seen that the determination of the distribution w(e) and its
"number' and "energy'' mean 61 and &g is the central problem in the
theoretical deduction of the spectra of local energy density. It is also
decisive for all considerations on ''straggling', and it is here where
microdosimetry and the conventional straggling theories of Bohr (4],
Landau [5], Symon [6] and Vavilov [7] meet. These are the probability
distributions which determine the theoretical spectra. To continue, what
are the factors which are introduced by the experimental method?
5. How many ionizations are produced by the energy e? The expected
number of ionizations is e/W (W =32 eV). Actually there are fluctuations.
The simplest assumption would be that ) is distributed according to
Poisson. Theoretical considerations (Fano [3]) indicate that the distri-
bution ¢(X; e) is not Poissonian but of a variance approximately half of
the Poissonian. Not much is known beyond this., This random factor
will turn out to be of relatively minor importance.
6. What is the distribution y({, x) of pulse height { brought about by a
initial electrons? If (as preliminary experiments indicate for spherical
counters ) y({) is exponential, the distribution of pulse height brought
about by A initial electrons is:

-6 A1
Y iA)=e & /(x-1)! (2)

1 This is a preliminary notation as long as no definitive notation has been established in micro-
dosimetry. fa(Z)-dZ is the probability that an increment of local energy density between Z and Z +dZ
is produced by an absorption event. f(Z; D)+ dZ is the probability that a local energy density between
Z and Z +dZ results if the dose D is applied. The functions depend on the size of the critical volume
and on the radiation quality; they correspond to Rossi's (AZ) and X(Z).
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This factor is also rather unimportant, Moreover, a computer programme
has been developed for correction of the experimental spectra.

With these distributions the formula can, in principle, be constructed
for the local energy density spectra. There is a need, however, not only
for the elementary distributions, but also for higher order distributions.
While s(£), w(e), etc. are distributions for one event, it is also necessary
to know the distributions which result if several events occur. One ob-
tains these distributions by ''folding' the elementary ones. This operation,
which is also called 'convolution', poses the central mathematical
problem in straggling theory as well as in the computation of micro-
dosimetry spectra. In the past it has led to considerable difficulties and
has therefore attracted much interest. We have developed a computer
programme which solves this problem (see (b) of this paper). Thus, for
the moment, it may be assumed that the resulting distributions are known.
In the formulae, however, a mathematical symbol is needed for this
operation and its repeated application. For this purpose, a star is used.
If w(E) is the probability distribution of energy spent in a single collision,
the distribution of energy spent in two collisions is called w*2 (E). As
may be seen:

e
w*z(e)=w(e)* w(e) = \/‘w(e—x)-w(x)dx‘ (3)
0

More generally the n-th 'folding power'2 of w(E) is designated by
w*™(e). This is the distribution of energy spent in exactly n collisions:

e
w(e) =fvsf°‘("'1) (e-x)- w(x)dx,

0

[
or :f w ) (e_x)- w* (x)dx (4)
0

or, in general form, = W (e)* WP (e)

If this convention is applied also to the other distributions, one may
write the complete formula for the single event spectrum f,(Z):

£,(2) Z f HE) € (B/6, )/l w*” (e)-0(A e) Y*MZ)dE- de (5)
ulx E,e

? This analogy to multiplication is based on the fact that convolution reduces to mere multipli-
cation if one goes over to the characteristic functions of the distributions.
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Each term corresponds to one of the random factors. It may be
mentioned again that the last two terms (indicated by Greek letters) are
brought in by the experimental method, namely by the use of proportional
counters. For theoretical determination of the spectra of local energy
density these terms are to be dropped.

At this point the formula which allows deduction of the dose-
dependent spectra from the single event spectrum may be added:

" -DA, (D/Aq)Y
Hzy- ) o L) iy (6)

v=0

where A; = mean local energy density produced in one absorption event,

The formula is easily understood. The first, Poissonian, term
gives the probability for exactly v absorption events while fX" (Z) is the
distribution of Z under the condition that v absorption events take place.

A detailed discussion of these formulae is not necessary here (for
reference see [1]). They may just serve to show what kind of problems
one encounters. The mathematical problem is that of finding the
distributions which are generated by repeated folding from an initial
distribution. The solution of this problem is discussed in the next section.

An additional problem is that of determination of the LET distribution
and of the distribution w(e) of energy transfer in primary collisions. The
LET spectra are well discussed, and in many special cases they can
be given numerically. The distribution w(e), however, presents serious
difficulties. This is discussed at the end of the paper.

First, a relation is mentioned which enables comparison of the
influence of the different random factors. Specifically it brings out the
importance of the "straggling' term.

Each of the random factors: varying LET, varying track length,
varying number of primary collisions, and varying energy transferred
in primary events, has the effect of broadening the spectra of local
energy density. The variance of the local energy density spectra is a
convenient measure for the combined influence of the different factors.

A suitable dimensionless term is V =0%/Z?; we call it relative variance.
V is small if the fluctuations are small as compared to the mean. It is
well known that for distributions with V<1 (specifically for Gaussian
distributions) the variance due to different perturbations (''weak'' random
factors) simply adds. A similar fact is not to be expected for the spectra
falZ) of local energy density, where V > 1, i.e. where the fluctuations
are even bigger than the mean values. Surprisingly it turns out that,
nevertheless, a simple additive relation holds. One may take each indi-
vidual random factor, neglect all the others, and calculate the resulting
relative variance. If this is done for all different factors, all the re-
sulting terms may be simply summed up; thus one obtains the actual
value for the relative variance of f4(Z). There is just one cross term,
namely for LET and track length.
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There are certain limitations, since this relation strictly holds only
under simplifying assumptions, e.g. complete passages and treatment
of the primary collisions as point events. Still it is an excellent tool in
practical cases and gives the right order of magnitude for the contri-
bution of the different factors.

The main points can be explained by writing down the relation in its
most simple form without proof. It may be mentioned that it can
easily be extended to the dose-dependent spectra. In passing, it may also
be remarked that the whole concept is closely related to similar notions
in the analysis of dose-effect curves. There, in addition to physical
factors, biological parameters contribute to the variance of the curves,
but knowledge of the relative variance of the local energy density spectra
is sufficient to deduce a lower limit for the size of the sensitive area (1].

It can be shown that, for the relative variance V of the single-event
spectrum f,(Z), the following relation holds:

V= Veraek Vier ¥ Viraek Vier * Vsuaggiing T Ve Ty (N
LET L2, 16[eV]+ 32(eV]
8 4 S}

where A; is the mean energy laid down in an absorption event (i.e.
passage of an ionizing particle through the critical volume), 6, is the
"energy'' average of energy transferred in primary collision. For Vi,
the value 1/8 is inserted which corresponds to a spherical volume

62 depends on the type of radiation, but as a general rule it may be stated
that it is equal to several hundred eV. In the special case of 5.75 MeV

a -particles (see Rossi and Rosenzweig [16], and also (b) of this paper)
bg= 430 eV,

From this equation many observations can be deduced. To mention
a few: First, the last two terms, which are due to the Fano fluctuations
and to the statistics of electron avalanche formation, are always small
compared to the straggling term. Their combined contribution is
approximately 45 eV/A;, that is, 10% of the straggling contribution to the
variance (5% in terms of the curve width; thus these two factors are not
a very serious limitation of experiments in the gas phase. For solid state
detectors they are still less important, because there the mean energy
needed for an ionization is much smaller than 32 eV).

Second, it may be observed that the influence of the track-length
variation is not decisive as long as Aj is less than several keV. Thus,
for sparsely-ionizing radiation the shape of the counters is of minor
importance. One may expect to find similar results with spherical and
non-spherical counters.

Naturally, the LET term may be quite important. It will be of great
interest to calculate V values for LET distributions. Actually this is a
familiar problem. It is usual to compute two different averages of a

3 Usually VTrack is somewhat larger than 18 if the volume is not spherical. Perhaps it is
possible to prove this fact in general for non-spherical convex volumes.
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LET distribution, namelyID, the dose average (equal to mg/mi, where
mo and mj are the second and the first moment of the distribution), and
i’r, the track average (equal to mj). These two averages, however,
determine the relative variance of the LET distribution4:

2 T
o My -mj I-'D

Vier = —2" —_2_' -1 (8)
my Lp

A corresponding relation can be given for the single-event spectra
f,(Z) of local energy density:

(9)

<
"
4|t
1

where Yp and Yp are the dose and the number average of the event size.

Comparing the values V and Vg one can judge the relevance of the
LET distribution for the shape of a local energy distribution. The dif-
ference between V and Vigr is due to the other factors (like straggling
or track length distribution). If V and V| ,.rare not very different, the

local energy density spectrum is mainly determined by the LET
spectrum. This can be the case especially for neutron irradiation and
volumes which are small enough that most absorption events are due to
complete passages. In this case the mean energy A; transferred in an
absorption event equals several keV and the straggling term Vstraggling
=89 /A1 is very small, Therefore, it is quite justified that Cashwell,

in his theoretical determinations of the event spectra for neutron
radiation, has completely neglected the straggling effects.

Take a practical example: For 0.5um diam. and 5.7 MeV neutrons
the experimental data are ?D 61.8 keV/um and Yp =12,5 keV/um
(Biavati, Rossi, Boer [8]); this leads to V = 3. 95. Bewley (see his paper
in this report ) gives the values Lp = 87 keV/um and Lt= 20 keV/um for
6 MeV neutrons. The relative variance of the LET distribution is there-
fore V=3.35. Obviously, the LET distribution is the dominant factor for
the shape of the local energy density spectra. While the fine structure
of the LET distribution is, of course, washed out in the microdosimetry
spectra, the main shape is the same in both cases. The difference between
V and 9/8 Vigr (see formula (7)) is only 0.3. Of this difference 0.125 is
due to the track-length distribution in the spherical counter, and the rest
represents the straggling and the influence of the incomplete passages.

For ®Co vy-rays and a tissue-equivalent diameter of 1 um the
experimental values Yp = 1. 24 keV/um and Yp = 0. 262 keV /um are given
[10]; the corresponding relative variance is V=3.73, The spectrum which
has been computed theoretically [1] has a relative variance V=3.5, The

* This is the reason why both ' averages' have to be used in LET theory. LT is the true mean, while

in addition LD determines the variance of the LET distribution, o? -(LD LT) Lt.
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difference in the two values reflects a somewhat bigger tail of the experi-
mental curve at high local energy densities. This may either be due to
wall effects in the proportional counter or to the fact that in the compu-
tations 6 -rays with energy beyond 3.5 keV have been excluded. Most of
the variance of the %0Co y-spectra goes back to the straggling term,

The contribution of the track length spectrum is quite unimportant. it is
remarkable that, with its value of 0.125 (see formula (7)), it contributes
even less than Fano fluctuations and counter resolution (45eV /262 eV =0.17),
This means that, for this type of radiation, and for small volumes, it is
not essential that a well-defined spherical counter is used. This will
simplify future experiments, specifically those with ""wall-less' chambers.
The LET distribution cannot be neglected, but for a cut-off of 3.5 keV the
relative variance of the LET spectrum is smaller than one. Cormack [11]
gives T and L1 values for 80Co y-radiation for a cut-off of only

0.1 keV. In this case the relative variance of the LET spectrum is very
large. But as Cormack (see his paper in this report) remarks, much
higher cut-offs are relevant for the microdosimetry spectra. With a
higher cut-off the LET distributions become more narrow.

(b) Some further remarks concerning straggling

The spectrum w(E) of energy transferred in primary collisions
presents the most formidable difficulty in theoretical microdosimetry.
It is, therefore, justified to discuss this distribution separately. As soon
as w(E) and its folding powers w*"(E) are known, the other factors can
be included, and the complete event spectra may be calculated. Thus,
discussion may be reduced to the most simple case. An ionizing
particle traverses a thin layer of matter, and we ask for the distribution
of energy loss. In abstract form this distribution can be written down
quite easily:"

0

-Efs, —
f(E) = Z e (E/8,)" /v w*(E) (10)

v=0

where E is the mean energy loss and 61 is the mean of w(E). The actual
solution is, however, a highly complicated problem and it is the central
point of the theory of energy loss fluctuations. Before the different ways
to a solution are discussed, a few simple remarks are made below which
may illustrate the problem.

If an ionizing particle traverses a thin foil it may lose a small
fraction of its kinetic energy. This loss occurs in statistically independent
primary collisions according to Eq.(10). Assume that in all primary
collisions the energy 6y is laid down. Then obviously the relative
variance of the curve depends on the mean number of collisions. If the
mean number of collisions is large, the element of chance is reduced
and the curve becomes relatively narrow. In fact, one can show that,
in this case, the relative variance V =§1/E, i.e. V is inversely proportional
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to the mean number E/61 of collisions. From Eq.(7) it can be seen that
actually V= 6o/E. Thus V is indeed inversely proportional to the mean
number of collisions but its value is increased by a factor 6,/8; (which
is typically between 5 and 10). 61 and 63 are the two different ''mean"
values of w(E).

_ [E®-w(E)E

b1= JEWE)E and & = rg—rmE

(11)

Thus, the variance of the straggling curves is mainly determined by
the shape of w(E) and very little by the Poissonian fluctuations of the
number of primary events. Therefore any description by a pure Poisson
process (i.e. by equal primary events which are distributed according to
Poisson) is extremely unrealistic. If a comparison is to be made at all,
one must choose an event of size 69 (several hundred eV) and neither 61
(approximately 60 eV), which is the true mean collision energy, nor
W (32 eV), the mean energy per ionization. The latter assumptions would
lead to curves which are much too narrow. The relation:

V=6,/E (or o%=5,E) (12)

is practically quite important. If 63 is known, one can immediately.
deduce the variance of a straggling curve (and also the width, if the
curve is not very asymmetrical). Thus, experimental curves can
easily be checked. Conversely, experimental determination of the
variance of the energy loss leads directly to the value 65 and thus to
some information on the distribution w(E).

In experiments on energy loss fluctuations the results are usually
compared with the distributions derived by Vavilov [7]. In the non-
relativistic case these distributions are based on the assumption that
w(E) ~1/E2, The maximum energy Ep, of 6 -rays is equal to 4m/M-E
(where E is the kinetic energy of the ionizing particle and m/M the mass
ratio). To arrive at the right value of the stopping power the spectrum
is extended down to a minimum energy Emijn = I2/Emax . With these
assumptions one can deduce the theoretical value of 6, . This is im-
portant, because, in general, it should be the first step to check the
applicability of the Vavilov distributions by comparison of the experi-
mental and theoretical variance. From formula (11) it follows that:

b= BB /(2 1n(E /1) (13)

1
J’E-dE

(with E,,,>> Ein)-

Several factors are responsible for possible differences between
experimental values 65 = V-E and the theoretical 63 . As can be seen
from formula (7) the Fano fluctuations and the resolution of the pro-
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portional counter lead to an increase of about 45 eV for measurements

in the gas phase. While this is an error brought in by the experimental
method, the resonance collisions are responsible for a true increase

in 63 . The magnitude of this increase depends on the atomic composition
of the irradiated medium and on the velocity and mass of the incident
particle. There is, however, also a factor which decreases the experi-
mental value of the variance of the energy loss distribution. This is the
loss of 6 -rays. If the maximum range of 6 -rays is comparable with

the width of the critical gap or the thickness of the sensitive layer of a
solid state detector this factor cannot be neglected. The fact that the
deviations from the theoretical model may balance out to a certain extent.
makes it hard to judge the validity of the l/E2 relation in practical cases.
More refined analysis has to be used, then, and a few remarks are added
in this direction.

Until now exact computation of the energy loss distributions has been
possible in the special case w(E)~1/E?2 only (or in its relativistic modi-
fication). The classical formula is valid for a free electron gas, but it
is quite unrealistic for energies in the order of magnitude of the electron
binding energies. Thus the classical theory is restricted to cases where
Eax (the maximum 6 -ray energy) is very large compared to the binding
energies. Under these conditions the classical theory is well verified
by experimental results [12]. In all other cases corrections have to be
applied. These corrections take into account the increase in relative
variance of the curves brought about by the distant collisions; but one
has to use rather crude approximations, and cannot take into account
the exact shape of the spectrum w(E) at small en??'gies (for reference
see [12,13]). Therefore the theoretical distributigns are not applicable
to cases where the mean number of primary collisions is small; these,
however, are the cases of interest in radiobiological applications.

Even within their limits the conventional mathematical methods are
not completely satisfying. While Bohr and Landau have deduced the
solutions for special ranges of E only, Vavilov has found a general
analytical solution; this solution, however, is complicated enough that
it in turn has to be evaluated by a special computer programme (Seltzer
and Berger [13]). Direct numerical evaluation seems to be more useful
in some respects. If it is desired to work with realistic spectra w(E),
this method is the only way. In microdosimetry applications one is
forced to cut off the w(E) spectra at higher energies. This corresponds to
the loss of 6§ -rays which have a long enough range to leave the critical
volume. Because of this cut-off the shell corrections in w(E) are of still
greater importance. One practically has to deal with the distant col-
lisions alone, The corrections as well as the cut-off for energetic é -rays
are, of course, equally important in straggling experiments with thin
solid state detectors or narrow gas gaps. For these reasons a computer
programme has been developed for the solution of Eq.(10). This pro-
gramme works for arbitrary distributions w(E) and has no limitations as
to the range of E (or, in the usual terminology, the range of k). The
programme can also be used to compute the dose dependent local energy
distributions f(Z; D) from the single-event spectra fo(Z). This is due to
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the fact that Eqs (6) and (10) are of the same structure; they both des-
cribe a composite Poisson process,

This is not the first attempt towards a purely numerical solution of
Eq.(10). Williams treated this problem in 1929; naturally, his results
are rather crude, Monte Carlo methods have been applied repeatedly.
One and the same Monte Carlo Programme has been used [1] to calcu-
late energy loss distributions, single-event spectra f,(Z) and dose-
dependent spectra f(Z; D) of local energy density. Biavati [14] has
worked out a programme which attacks Eq.(6) in a straightforward way
to compute the distributions f(Z; D) from {4 (Z). While this programme
is much more exact than the Monte Carlo methods, it involves an ex-
tremely large number of computations and is therefore restricted to a
limited range of D. While this limitation is usually not too serious for
Eq.(6), it turns out to be prohibitive in the case of the straggling problem.
New methods had to be found to avoid the relative inaccuracy of the
Monte Carlo methods and still obtain a wide range of solutions for any
primary distribution.

For an understanding of one of the main points of the new programme
the following observation is necessary: on a linear scale of E the
straggling curves become successively broader with increasing mean
energy E. On a logarithmic scale the curves become more narrow with
increasing E. Both scales, therefore, present difficulties if they are
used in the numerical treatment. It turns out, however, that with a
square root scale of E the 'width' of the curves is independent of E. With
increasing E the curves even approximate constant shape., This follows
directly from relation (12). Thus the square root scale of E is the one
to be chosen for numerical calculations. It is also very illustrative for
presentation of the results. In Fig.1 the different ways of plotting are
compared. These are calculated energy loss distributions for 5.75 MeV
a -particles in water.

As a second central point of the programme it may be mentioned that it
is not at all necessary to compute all the successive convolutions w*"(E)
of the initial distribution. Instead, the energylossdistribution f(E) is
first computed for a mean energy loss which corresponds to one or less
primary collisions in the mean. For this purpose Poisson superposition
of the first eight ''folding powers'' of w(E) is quite sufficient. For
example:

£,(E) = i vl -w E) (14)

v=0

is the energy loss distribution which corresponds to one primary collision
in the mean. To obtain the energy loss curves for higher mean energies
one can start directly from f;(E), and need not go back to w(E) at all.

By a first convolution f; (E)*fy(E) one obtains the curve for E=2-61, by a
second convolution the curve for 4-461 and so on. By only 10 successive
convolutions an energy is arrived at which corresponds to 1024 primary
collisions. The computation times are therefore short. Of course, one
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is not limited to energies which correspond to integral numbers of
primary collisions. Poisson factors in Eq.(14) may be chosen with an
arbitrary mean,
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FIG.1. Energy loss distributions for 5.75 MeV o -particles in water, The mean energies are 1 keV, 4 keV,
° °
16 keV, and 32 keV. The corresponding distances in water are 1204, 500 A, 0.19 ym and 0.38 ym

The technical details of the computations are not gone into further
here. Instead, Fig.2 gives a more exact representation of the distri-
butions for 5,75 MeV a-particles. The distribution w(E) on which the
calculations are based is shown in Fig.4. This spectrum is a combi-
nation of the classical formula for higher energies and of the experimental
results of Rauth and Simpson [15] for very low energies. The shape of
the spectrum at intermediate energies has been chosen in such a way that
the right value for the stopping power results. Though this is only an
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estimate of w(E), it is certainly much more realistic than the idealized
relation w(E) ~1/E%. While the theoretical value of 62 is 400 eV (see
formula (13)), a value of 429 eV is obtained for the corrected spectrum.
The mean energy 6; transferred in a primary collision is 62.5 eV (the
theoretical value for 61 is only a few eV and has certainly no real
meaning). The curves in Fig. 2 correspond to mean energy losses of
63 eV, 250 eV, 1 keV, 4 keV and 16 keV. The value of the parameter
k of straggling theory is 0.0026, 0,011, 0,042, 0.17, and 0,67,
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T T
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FIG.2. Distributions of energy loss for 5.75 MeV o -particles in water. The corresponding distances in
water are 84, 30 &, 120 &, 500 A and 0.19 um

The curves deviate markedly from the Vavilov distributions for
small numbers of primary collisions. For higher mean energies they
nearly agree with the Vavilov distributions, especially if the latter are
corrected for glancing collisions (see Rossi and Rosenzweig
(16]).

The values of the track length in water which correspond to the
distributions in Fig,2 are 0.0008 um, 0.003 um,0.012 um, 0.05 um,
and 0.19 um. Since the maximum range of é§-rays for a 5.75-MeV
a-particle is 0.3 um, the distributions have to be corrected for the
escape of §-rays. Only with this correction can they be used as the
basis for the calculation of local energy density spectra in very small
volumes. Figure 3 serves to show the effect of a cut-off at high §-ray
energies. For these curves the spectrum w(E) (Fig. 4) is extended only
up to 1 keV,

A comparison of both figures shows that, for small mean energy
losses (small k), the curves coincide over a wide range. Only the tails
are different. However, for larger mean energy losses the difference
becomes very significant. The effective k of the curves in Fig. 3 is
approximately three times greater than the « value of the curves in Fig. 2.
In other words, the variance of the curves is very strongly affected by
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the cut-off. The value of 69 is decreased to 179 eV. While for low «
only the tail of the curves is altered, the change becomes decisive as
soon as the curves approach the Gaussian shape. This is, of course,
specifically important for radiobiological applications in the case of fast,
densely ionizing particles.
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FIG.3. Distributions of energy loss for 5.75 MeV a -particles in water. The curves correspond to the distri-
butions from Fig,.2, but all §-rays with energies beyond 1keV are excluded
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FIG.4. The spectrum w(E) of primary collisions has been used for the calculations. The dotted line indi-
cates the 1/E2-spectrum which is used for the classical theories

4

The present example is rather crude. In practical cases one has to
calculate escape probabilities for the different 6-rays. Then, instead of
applying a simple cut-off, one may change the high-energy end of the
distribution w(E) in a more appropriate manner.
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To arrive at a better knowledge of the distribution w(E) further ex-
periments, especially with rather slow particles, and with thin solid
state detectors, with foils, with gas gaps, or with wall-less proportional
counters, will be useful. In this connection the results of straggling
experiments, straggling theory, and microdosimetry will be of great
mutual interest,
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