The Eighth
International Congress of Radiation Research

Patron: H.R.H. The Duke of Edinburgh, K.G.

The Eighth International Congress of Radiation Research was organized by the Association of Radiation Research at the invitation of the International Association for Radiation Research. The Officers of the Congress were appointed by the Association for Radiation Research.

G. E. Adams, President
Sir Alastair Currie and Lord Dainton, Hon. Vice Presidents
E. M. Fielden, Secretary-General

ORGANIZING COMMITTEE: The Officers and
I. V. Chapman (Local Committee) J. A. Dennis
J. F. Fowler (Scientific Programme) N. E. Gillies
A. Tallentire (Fund Raising) J. H. Hendry
P. Wardman (Treasurer) J. L. Moore
D. K. Bewley Sir Oliver Scott
N. M. Bleehen

INTERNATIONAL ASSOCIATION FOR RADIATION RESEARCH
A. C. Upton (U.S.A.) — President

ASSOCIATION FOR RADIATION RESEARCH
A. Tallentire — Chairman
Contents

OPENING LECTURE: A Glance at 25 years of Radiation Research
J. W. Boag
1

1. RADIATION CHEMISTRY

1.1 **Track Effects in Radiation Chemistry (Symposium)**
Theoretical aspects of heavy-ion tracks in radiation chemistry
A. Mozumder and J. A. LaVerne
11

An overview of the oxidation of ferrous ions in the Fricke dosimeter by heavy ions
J. A. LaVerne and R. H. Schuler
17

Chemical aspects of high energy heavy ion tracks
A. Appleby
23

Biophysical aspects of track structure
G. Kraft and W. Kraft-Weyrather
29

1.2 **New Trends in Radiation Chemistry**
Congress Lecture: The Chemistry of Synchrotron Radiation
Y. Hatano
35

SYMPOSIUM: NEW TRENDS IN RADIATION CHEMISTRY I
GENERAL

Modern trends in experimental radiation chemistry
R. H. Schüler
42

New trends in radiation chemistry: aqueous radiation chemistry
K-D. Asmus
48

Some aspects of the radiation chemistry of ethanol and cyclic organic amides
G. A. Salmon
54

Gas phase pulse radiolysis
C. D. Jonah, A. Liu and W. A. Mulac
60

SYMPOSIUM: NEW TRENDS IN RADIATION CHEMISTRY II
PRIMARY/REACTIVE SPECIES

New trends in radiation chemistry II
N. V. Klassen
66

Excited states in hydrocarbons
S. Lipsky
72

Chemical reactivities of radical anions studied by pulse radiolysis
S. Takamuku
78
1.3 Redox Processes, Free Radicals and Oxygen Toxicity

SYMPOSIUM: RADIATION INDUCED REDOX PROCESSES

Mechanisms of electron transfer between radicals and molecules: The addition-elimination route (inner-sphere electron transfer)
S. Steenken 84

The radiolytic approach to the understanding of model photochemical systems for energy conversion and storage
Q. G. Mulazzani 90

Effects of energy, distance and orientation on electron transfer rates studied by pulse radiolysis in organic media
J. R. Miller 96

Congress Lecture: Radiation Chemistry in Microheterogeneous Systems
M. A. J. Rodgers and S. M. Hubig 102

SYMPOSIUM: FREE RADICALS AND OXYGEN TOXICITY

Radiobiology and the superoxide radical
I. Fridovich 109

Generation and reactivity of activated oxygen species — the influence of hyperthermic conditions
E. Lengfelder and R. M. Fink 116

Progress and trends in superoxide research
B. H. J. Bielski 122

The function of specific genes to enhance tolerance to oxygen
M. Morimyo 128

1.4 Peptides, Proteins, DNA and Cell Death

SYMPOSIUM: RADIATION EFFECTS IN PEPTIDES AND PROTEINS

Radical transformations in peptides and proteins
W. A. Prütz 134

Peptide irradiation products and crosslinking mechanisms
M. G. Sinic, L. R. Karam and M. F. Desrosiers 140

Radiation effects in histone octamer complexes and in isolated histones
W. Schnabel, L. Katsikas and K.-H. Deeg 146

Radiation-induced protein-DNA interactions
H. Schuessler 152

Congress Lecture: DNA strand break formation and biological consequences
D. Schulte-Frohlinde 158

Congress Lecture: Radiation chemical mechanisms of cell death
J. F. Ward 162

SYMPOSIUM: RADIATION DAMAGE IN DNA

The mechanism by which metal compounds cause site specific DNA damage
G. Czapski and S. Goldstein 169
Radiation damage of the nucleobases in DNA

C. von Sonntag

Direct effects of ionising radiation on DNA and related compounds

J. Cadet, A. Shaw, M. Berger, C. Decarroz, J. R. Wagner and J. van Lier

Radiation damage and biologically active DNA

M. V. M. Lafleur, J. Retel and H. Loman

1.5 **Industrial Applications of Radiation Chemistry**

SYMPOSIUM: RADIATION CHEMISTRY AND THE NUCLEAR INDUSTRY

Radiation chemistry in the nuclear industry

W. G. Burns

The radiation chemistry of water and aqueous solutions at elevated temperatures

K. Sehested and H. Christensen

The effect of radiolysis on the chemical forms of iodine species in relation to nuclear reactor accidents

K. Ishigure

Radiation-induced formation and dissolution of colloidal transition-metal oxides

G. V. Buxton, D. W. Cartmell and R. M. Sellers

SYMPOSIUM: A NEW LOOK AT THE RADIATION PRESERVATION OF FOOD

Food preservation by irradiation

G. Campbell-Platt

Public health aspects of food irradiation

E. H. Kampelmacher

The identification of irradiated foods

W. Bögl

Assessment of the wholesomeness of irradiated food

D. W. Thayer

2. **PHYSICS, BIOPHYSICAL MODELS AND MICRODOSIOMETRY**

2.1 **Physics**

Congress Lecture: Prospects and Problems of Fusion Power

W. M. Lomer

SYMPOSIUM: FUNDAMENTAL RADIATION PHYSICS

Introductory review: Physics of electron slowing-down processes

M. Inokuti

Time dependent degradation of energetic electrons in gaseous and condensed media

M. Dillon and M. Kimura

Experimental studies on the interactions of slow electrons with molecules in solid films

L. Sanche
Differential inelastic scattering cross sections for low energy (100 eV—few keV) electrons in solids

S. Tougaard

266

SYMPOSIUM: CHARGE TRAPPING AND MIGRATION OF ENERGY

Charge migration and localisation

J. M. Warman

272

Theoretical aspects of trapping and transfer of charge

W. M. Bartczak

278

Charge trapping and migration in liquids

Y. N. Molin

284

Charge trapping and migration in solids

M. C. R. Symons

290

2.2 Quantitative Models of Radiation Action

Kaplan Lecture: Target Theory, Linearity and Repair/Misrepair in Radiobiology

M. M. Elkind

296

SYMPOSIUM: BIOPHYSICAL MODELS OF RADIATION ACTION

Biophysical models of radiation action—Introductory review

D. T. Goodhead

306

The cellular consequences of binary misrepair and linear fixation of initial biophysical damage

S. B. Curtis

312

Pairwise lesion interaction — extension and confirmation of Lea’s model

D. Harder

318

A concept relating DNA repair, metabolic states and cell survival after irradiation

K. T. Wheeler

325

2.3 Microscopic Deposition of Radiation Energy

SYMPOSIUM: APPLICATIONS OF MICRODOSIMETRY

Applications of microdosimetry

J. Booz and L. E. Feinendegen

331

Microdosimetry: Recent trends and applications to radiation biology and radiation chemistry

A. M. Kellerer

338

Applications of microdosimetry in radiation protection

H. G. Menzel

345

Applications of microdosimetry in radiation therapy

A. Wambersie

351

SYMPOSIUM: EFFECTS OF INTERNAL AUGER EMITTERS

Effects of internal Auger emitters

D. Ackery and K. F. Baverstock

357

Local effects of Auger electron cascades

D. E. Charlton

363
Radiobiological effects of Auger emitters in vitro and in vivo
D. V. Rao and K. S. R. Sastry

3. CELLULAR AND DNA REPAIR

Congress Lecture: Aspects of DNA Damage, DNA Repair and Radiosensitivity: Responses of Mammalian Cells to Acute Doses of Radiation
J. T. Lett, A. B. Cox, R. Okayasu and M. D. Story

3.1 Inducible Repair of Damage Caused by Ionising and Non-ionising Radiation (Symposium)

recA-dependent repair of DNA gaps and double-strand breaks after UV irradiation
K. C. Smith, T-C. V. Wang and R. C. Sharma

Cellular functions required for UV and chemical mutagenesis in Escherichia coli
J. R. Battista, T. Nohmi, C. E. Donnelly and G. C. Walker

Inducible DNA repair of ultraviolet light damage in E. coli and related species
S. G. Sedgwick

Non-ionizing radiation and inducible responses in eucaryotes
R. M. Tyrrell and S. M. Keyse

3.2 Molecular Studies on DNA Repair in Mammalian Cells (Symposium)

Reversion and interspecies transfer of genes responsible for repair in xeroderma pigmentosum
J. E. Cleaver, D. Karentz, L. H. Lutze, A. N. Player and D. L. Mitchell

Homology of mammalian, Drosophila, yeast and E. coli repair genes
D. Bootsma, M. H. M. Koken, M. van Duin, A. Westerveld, A. Yasui, S. Prakesh and J. H. J. Hoeijmakers

DNA repair in tissue specific genes in cultured mouse cells
C. M. Haqq and C. A. Smith

3.3 Radiosensitive Human Cells (Symposium)

The radiosensitivity of cultured human cells
C. F. Arlett

Novel pattern of post-γ ray DNA replicative synthesis in cultured radioresistant fibroblasts from affected members of a cancer-prone family
M. C. Paterson and R. Mirzayans

The human genetic disorder ataxia-telangiectasia (A-T): New insights into the basis of radio-sensitivity
P. G. Debenham and J. Thacker

High sensitivity to radiation and chemicals in relation to cancer and mutation
H. Takebe, K. Tatsumi, A. Tachibana and C. Nishigori

3.4 Fractionation, Low-dose Rate and Repair Kinetics (Symposium)

Repair kinetics in normal tissues
H. D. Thames
The dose-rate effect and recovery in human tumour cells
G. G. Steel, A. M. Cassoni, J. M. Deacon, G. M. Duchesne,
A. Horwich, L. R. Kelland and J. H. Peacock 455

The influence of proliferative status on responses to fractionated and
low dose rate irradiation
J. S. Bedford 461

Chromosome break rejoining and cellular recovery from X-rays
M. N. Cornforth 468

4. ONCOGENESIS AND MUTAGENESIS 475

4.1 Cellular and Molecular Aspects of Oncogenesis
Congress Lecture: Genetic and Epigenetic Influences on Oncogene Activity
J. A. Wyke, J. Akroyd, A. Green, C. Poole and M. Welham 476

SYMPOSIUM: CELLULAR AND MOLECULAR ASPECTS OF ONCOGENESIS

Search for genes involved in thymic lymphomagenesis
M. Janowski, B. Borremans, R. Hooghe, J. Merregaert, P. Reddy,
J. Boniver and M. P. Defresne 482

Radiation-induced carcinogenesis in dogs
M. E. Frazier, T. M. Seed, L. L. Scott and G. L. Stiegler 488

Studies on radiation myeloid leukaemogenesis in the mouse
A. Silver, G. Breckon, W. K. Masson, D. Malowany and R. Cox 494

The action of chemical carcinogens and oncogenic retroviruses in
mouse skin tumour induction
A. Balmain, K. Brown, R. Bremner, M. Quintanilla and M. Archer 501

4.2 Oncogenic Transformation
Congress Lecture: Oncogenic Transformation by Radiation and Chemicals
E. J. Hall and T. K. Hei 507

SYMPOSIUM: CELL TRANSFORMATION BY RADIATION

Cell killing in radiation tumorigenesis
M. M. Elkind 513

Somatic mutation and cell differentiation in neoplastic transformation
E. Huberman and F. R. Collart 519

Mechanisms and modifications of radiation induced neoplastic
transformation
J. B. Little 526

In vivo activation of mouse oncogenes by radiation and chemicals
L. E. Diamond, E. W. Newcomb, L. E. McMorrow, J. Leon,
S. Sloan, J. Guerrero and A. Pellicer 532

4.3 Cellular and Molecular Aspects of Mutagenesis (Symposium)
LacI sequence changes and the mechanisms of UV mutagenesis in E. coli
C. W. Lawrence, J. E. LeClerc, J. R. Christensen, R. B. Christensen,
P. V. Tata and S. K. Banerjee 538

Radiation mutagenesis in bacteria and mammalian cells
J. Thacker 544
New methods of analysis of radiation mutagenesis in mammalian cells: Shuttle virus
C. F. M. Menck, M. R. James and A. Sarasin 550

Mechanisms of gamma ray mutagenesis inferred from changes in DNA base sequence
F. Hutchinson and K. R. Tindall 557

Ionizing radiation induced point mutations in mammalian cells
B. W. Glickman, E. A. Drobetsky, J. de Boer and A. J. Grosovsky 562

4.4 Application of Cytofluorimetry
Congress Lecture: Chromosome Abnormalities, Transformation and Reproductive Death in Mammalian Cells Studied with Different Radiations and Flow Karyometry
G. W. Barendsen 568

Congress Lecture: Analytical cytology applied to detection of induced cytogenetic abnormalities
J. W. Gray, J. Lucas, T. Straume and D. Pinkel 574

5. RADIATION EXPOSURE AND RISK 581

5.1 Radiation Exposure
Congress Lecture: Recent Reactor Accidents and Their Effects
L. B. Sztylik 582

Congress Lecture: Revisions in the Dosimetry of the A-Bomb Survivors at Hiroshima and Nagasaki and Their Consequences
W. K. Sinclair and D. L. Preston 588

Congress Lecture: Radiation Effects in Space
R. J. M. Fry 595

SYMPOSIUM: RADIATION LEVELS IN THE ENVIRONMENT

Introductory review: Radiation and the Environment
H. J. Dunster 601

The radiological impact of the Chernobyl accident in OECD member countries
O. Ilari 608

Radiation in the global environment
A. A. Cigna 614

Lung cancer risk from environmental exposure to radon daughters
W. Jacobi 620

5.2 Radiation Risks and Epidemiology (Symposium)
The status of the assessment of radiation risks to humans
W. J. Schull 627

Methods and models in the epidemiological assessment of radiation risks
C. E. Land 634

Probability of causation in radiation injury and its application
S. Jablon 640

5.3 Animal Studies and Extrapolation to Man (Symposium)
Some aspects of extrapolation of late effects studies to man
R. H. Mole 646
Consequences of prenatal irradiation in mice:
 Cancer and CNS damage as a basis for human risks
 S. Sasaki 652

The role of pathology in late effect studies
 W. Gössner, A. Luz and A. B. Murray 658

Experimental radiation carcinogenesis
 A. C. Upton 664

6. MODIFICATION OF RADIOSENSITIVITY, IN VITRO AND IN VIVO 671

6.1 Sulphhydryls and Radiation Response (Symposium)
 Molecular and cellular aspects of the role of thiols in radiation response
 B. D. Michael 672
 Role of glutathione and other thiols in cellular response to radiation and drugs
 J. E. Biaglow, M. E. Varnes, E. P. Clark and E. R. Epp 677
 Radiation response of human cells genetically deficient in glutathione
 M. R. Edgren 683
 Interactions of radioprotectors and oxygen in cultured mammalian cells
 K. D. Held 689

6.2 Oxygen and Radiation Responses

SYMPOSIUM: TISSUE OXYGENATION AND HYPOXIA

Tissue oxygenation and hypoxia in tumours
 D. G. Hirst 695

Determinants of spheroid oxygenation
 W. Mueller-Klieser 701

Tissue oxygenation of primary and xeno-transplanted human tumours
 P. Vaupel and F. Kallinowski 707

New trends in improving oxygen delivery to tumour tissues
 D. W. Siemann 713

SYMPOSIUM: MANIPULATION OF TISSUE OXYGENATION FOR THERAPEUTIC BENEFIT

Benefit Exploitation of bioreductive agents with vasoactive drugs
 J. M. Brown 719

Oxygen delivery and tumour response
 R. P. Hill and D. Stirling 725

Hypoxia-targetted chemotherapy: a role for vasoactive drugs
 D. J. Chaplin 731

Manipulation of tumour oxygenation by hydralazine increases the potency of bioreductive radiosensitizers and enhances the effect of melphalan in experimental tumours
 I. J. Stratford, J. Godden, N. Howells, P. Embling and G. E. Adams 737
6.3 **Chemical Modification of Radiation Response**
Congress Lecture: Recent Developments in Combinations of Radiotherapy and Chemotherapy
M. Tubiana 743

SYMPOSIUM: CHEMICAL MODIFICATION OF RADIATION RESPONSE

The non-hypoxic cell sensitizers: Their use in radiobiology and in radiotherapy
E. P. Malaise 750

Predictive assays for identifying tumours which might benefit from radiotherapy with sensitizers and/or protectors
J. D. Chapman, J. H. L. Matthews and R. C. Urtasun 756

Radiosensitization – the clinical position 1987
S. Dische 762

The influence of thiol modulation on the chemotherapy and radiation response
J. B. Mitchell, J. A. Cook and A. Russo 768

7. **IN VIVO RADIOBIOLOGY AND RADIOTHERAPY** 775

7.1 **In Vivo Radiobiology**

SYMPOSIUM: NEW DEVELOPMENTS IN INTERPRETATIONS OF NORMAL TISSUE RESPONSE

New developments in interpretations of normal tissue responses
J. H. Hendry 776

Radiosensitivity and kinetics of target cells in relation to tissue responses—as exemplified by the epidermis and the intestine
C. S. Potten 782

The role of the vasculature in normal tissue responses
J. W. Hopewell 789

The tissue rescuing unit
E. L. Travis 795

SYMPOSIUM: VASCULATURE-MEDIATED ASPECTS OF TUMOUR RESPONSE

Attacking tumour vasculature
J. Denekamp 801

Effectiveness of interventional radiology
K. Jonsson 807

Tumour blood flow response to hyperthermia and pharmacological agents
R. K. Jain 813

Angiogenesis and anti-angiogenesis
P. Twomey 819
Predictive assays of human tumour response – Introductory review
C. Streffer 825

Prediction of tumour radiation response from radiosensitivity of cultured biopsy specimens

Assessing radiation sensitivity of human tumour subpopulations by proliferating status, DNA content and monoclonal antibodies
P. C. Keng 837

Measurements of human tumour cell proliferation in vivo
N. J. McNally and G. D. Wilson 843

7.2 Radiotherapy, Low LET Radiation

Congress Lecture: Physical Advances in Radiation Therapy
M. Goitein 849

Congress Lecture: Biological Advances in Radiation Therapy
H. D. Suit 856

Congress Lecture: Antibody Directed Radioisotopes and Chemotherapy
K. D. Bagshawe 862

Congress Lecture: Dose Per Fraction, Overall Time and Volume Effects in Radiotherapy
H. R. Withers 869

SYMPOSIUM: TOTAL BODY AND TOTAL LYMPHOID IRRADIATION

Clinical application of immunological effects of TLI
E. van der Schueren, M. Waer, Y. Vanrenterghem, M. Vandeputte and P. Michielsen 875

Immune modulating effects of fractionated total lymphoid irradiation (TLI): Experimental Studies
M. Waer, E. van der Schueren and M. Vandeputte 880

Early blood cell kinetics after total body irradiation – Biological and clinical significance
J. Dutreix, Th. Girinski, D. Hubert, G. Socie and J. M. Cosset 885

Total lymphoid irradiation combined with total body irradiation preceding bone marrow transplantation for chronic myeloid leukaemia

7.3 Radiotherapy, High LET Radiation

Congress Lecture: Problems of Neutron Capture Therapy
Y. S. Ryabukhin 898

Congress Lecture: An Update of Fast Neutron Therapy Results
R. D. Errington and H. M. Warentius 904
Clinical results of charged particle radiotherapy

S. Pitluck and M. Reimers 910

Clinical results of proton beam radiotherapy in Boston

J. E. Munzenrider, M. Austin-Seymour, E. S. Gragoudas,
J. M. Seddon, L. J. Verhey, M. Goitein, R. Gentry, M. Urie,
D. Ruotolo, S. Birnbaum, K. Johnson, J. M. Sisterson,
P. McNulty, H. D. Suit and A. M. Koehler 916

Clinical results of proton radiotherapy in Japan

H. Tsunemoto, S. Morita, K. Kawachi, T. Kanai, K. Kawashima,
T. Hiraoka, S. Furukawa, T. Kitagawa and T. Inada 922

Clinical evaluation of Pimeson radiotherapy at TRIUMF

G. B. Goodman, R. Harrison, R. O. Kornelsen, G. K. Y. Lam
C. Ludgate, L. D. Skarsgard and F. J. Vernimmen 928

7.4 Diagnosis

Congress Lecture: Magnetic Resonance Measurements of Physiological
and Metabolic Factors

G. K. Radda 934

8. HYPER THERMIA 941

Clinical hyperthermia — an update

J. Overgaard 942

Physical and engineering aspects of hyperthermia

R. B. Roemer 948

Hyperthermic effects studied in vitro

W. C. Dewey 954

Hyperthermia in animals

S. B. Field and S. P. Hume 960

9. SUBJECT INDEX 967

10. AUTHOR INDEX 981
MICRODOSIMETRY
Recent Trends and Applications to Radiation Biology
and Radiation Chemistry

A.M. Kellerer
Institut für Med. Strahlenkunde, University of Würzburg

1. Historical Note

A quarter of a century ago microdosimetry had just been conceived by Harald H. Rossi and his colleagues (1,2), but it was still unnamed, and 1962, at the Second International Congress of Radiation Research - the first in this country - a symposium could well have been devoted to 'Stochastic Dosimetry and its Applications'. The topic would have been appropriate and the designation might have been equally fitting, since Otto Hug had noted, at about the same time, that the Greek word 'stochazein' had the two meanings of 'hitting a target' and 'making a guess' (3,4), two processes central to target theory and radiation biology (5,6,7).

That the different term 'microdosimetry' was chosen for the new branch of science, may not have been entirely the intention of its inventor. However it gave due regard to the remarkable fact that actual energy concentrations could henceforward be measured in microscopic regions which correspond to cellular or subcellular domains. Experimental microdosimetry developed explosively in these last twenty-five years. It was recognized that stochastic quantities can be more real and more relevant to radiation biophysics than their more tractable and more readily understood mean values. Surprising as it may have been at first, the ICRU has even ranked the stochastic microdosimetric variables among the fundamental radiation quantities (8).

In the pragmatic applications to radiation protection and to the clinical uses of ionizing radiations, microdosimetric concepts and techniques have found a number of important and lasting applications. Many of these applications are unspectacular, because they are natural. When it is proposed by a
liaison committee of ICRP and ICRU that the quality factor in radiation protection be linked to lineal energy, rather than LET, (9) no fundamental change from present practices is introduced. In fact it is merely suggested that measured quantities - often in unknown radiation fields - need not be artificially corrected to transform actual energy concentrations into values of a more abstract parameter. But this interpretation does not mean that LET can not serve useful purposes; in fact it can be shown that LET and lineal energy are interchangeable under certain conditions (10,11). Similarly, in medical physics microdosimetric measurements have become essential and even routine, because they are the most direct way to characterize the properties of the radiation field at different locations in a beam.

Microdosimetry may have been less successful where the aims and expectations were far more ambitious. To understand the reason for such failure, or seeming failure, may be crucial for the future development not only of microdosimetry, but of radiation biology in general.

It is, therefore, important to consider the established uses of microdosimetric data in radiation biology (section 2), but equally the more tentative applications towards the elucidation of molecular mechanisms of radiation action (section 3).

2. Established Uses of Microdosimetry

One of the simplest uses of microdosimetry has proved to be particularly important. Ionizing radiations impart energy to matter in finite portions, and on the scale of the cell and of subcellular structures these portions can be very substantial. At doses relevant to radiation protection one deals frequently with a situation, where most cells or cell nuclei receive no energy at all, while few cells which are traversed by a charged particle receive disproportionately large amounts of energy. The quality of the radiation, not the dose, determines then the fate of the affected cells; dose determines merely their number. Whether this condition prevails, can be ascertained on the basis of microdosimetric data. If it prevails, any dose-effect relation for cellular effects must be linear, a conclusion fundamental to risk assessment, and even a highly political issue in the past year. The dependences can be non-linear, if the fate of the cell is co-determined by energy deposition in the cytoplasm, by energy deposition in adjacent
cells, or, finally, by reactions of the irradiated tissue. Whether action on 'autonomous' cells - to use a phrase coined by Harald Rossi (12) - can be assumed or an extracellular effect of the exposure needs to be taken into account, is to be judged on the basis of microdosimetric data.

In experiments on the induction of mammary tumours in rats by 430 keV neutrons (13,14), which were thoroughly randomized studies, a dose dependence with negative curvature in the region of 1 to 16 mGy was found. This implied that the effect cannot be merely a matter of inducing individual cells which then have a small dose independent probability to cause a neoplasm. Microdosimetric data have identified the problem; tumour biology has not yet provided the answer.

Similar microdosimetric considerations have been important with the finding by Hill, Han, and Elkind of a striking reversed dose-rate effect for the transformation of mammalian cells by small doses of neutrons (15). It has been suggested that such a dose-rate effect is incompatible with the paucity of multiple events in the cell nucleus. Measured nuclear areas and microdosimetric data for event frequencies have then shown that event frequencies are indeed higher (16) than original believed, and that the effect might therefore be due to the induction of a repair system by one particle and its influence on a subsequent event. The molecular mechanisms remain unresolved, and it is puzzling why an analogous effect is not seen in the same cell system when it is exposed to α-particles (17). Even with α-particles there are still sufficient events that a dose-rate effect, on the basis of cellular mechanisms, is conceivable at a dose of 100 mGy.

A related example are the astonishing results by Wolff and his colleagues (18,19), that human lymphocytes are substantially less sensitive to ionizing radiations many hours after being exposed to the tiny dose of only 10 or even 5 mGy of gamma-rays. At this dose the mean number of charged particles in the cell nucleus is close to unity and it will, therefore, be of particular interest to seek analogous effects with densely ionizing radiations, and to assess the observations in terms of microdosimetric information on event frequencies in the nucleus or the cytoplasm.

Event frequencies in cellular or subcellular domains are important parameters. However, microdosimetry provides the full spectrum of events in a site. Various attempts have been made to utilize this information, and the diversity of approaches precludes their detailed consideration. In a certain over-
generalization, one may state that such attempts have failed, or are bound to fail, when they aim at correlating the reaction of the cell with 'cell dose' — presumably the specific energy in some subregion of the nucleus. One knows too little about the distribution of the sensitive DNA or DNA-membrane structures to make realistic models, but one knows that the distribution throughout the nucleus, and the distribution on the micrometer to the nanometer scale needs to be taken into account. The cell has no uniform gross-sensitive volume, nor does it carry one or a few spherical or cylindrical targets.

In a further slight overstatement one may say that microdosimetric arguments can merely exclude certain assumptions and thereby narrow down the range of possible models. But this negative function can be essential. Even wrong models — and every model is ultimately wrong — can serve a useful purpose, if they have sufficiently few parameters to be falsifiable. Dual action in its original formulation (20) was the postulate of a second order process dependent on the square of energy concentrations measured over regions of the order of a micrometer. It was a wrong model with a minimum of free parameters, and it did permit falsification through several intriguing experiments (21,22). In being partly disproved, it led to modified analyses which are less falsifiable, but may still be useful. They are closely linked to more recent trends of microdosimetry.

3. Recent Trends

Continued efforts have been made in microdosimetry to extend the measurements to submicroscopic regions of less than 50 nm or even to molecular dimensions. None of these efforts have been successful. However, a great change has been brought about by the advance of computational methods to simulate charged particle tracks (23). Some of the information may still be tentative and cross sections often pertain to gasses rather than condensed media. However, the remaining uncertainties may be of minor importance, since microdosimetric information is mainly used to compare the effects of different types of ionizing radiations and to correlate them with characteristic differences in the patterns of energy deposition; such differences depend little on the subtilities of track structure.
While there is adequate physics information, there is also a curious imbalance in pragmatic applications. In radiation chemistry it is still common to quantify energy concentrations in terms of 'blobs' and 'spurs', while microdosimetric functions show that one deals with a continuum of energy densities, not with distinct classes of events. Developments towards a more quantitative description (24) show that more use needs to be made of mathematical functions that describe the spatial correlation of energy transfers in charged particle tracks.

In the much less quantitative studies of radiobiology there is a strangely reversed situation. It is not uncommon that exact information from simulated tracks is applied to models which invoke thresholds of energy for the reaction of assumed spheres or cylinders - or pairs of such constructs. The exactitude of the physical description is then in marked contrast to the uncertainty of the radiobiological assumptions.

The use of relatively crude tools in the more exact investigations, and the application of precise data to the more qualitative studies may reflect the unavoidable imbalance of a developing field of study, but it indicates the need for more systematic and concise applications of microdosimetric data. Few steps have yet been done in the direction of a mathematical theory of the random patterns of energy deposition. But certain notions, such as the distributions of nearest neighbours among the energy transfers in charged particle tracks (23,25), are closely related to distributions and parameters familiar in the stochastic geometry of point sets (see e.g. (26)). Of even broader applicability is the proximity function. It is linked to M.J.Berger’s concept of the geometric reduction factor and it has been utilized in a general formulation of dual action that accounts for the steep spatial gradient of the interaction probabilities between lesions in the cell (27). The function is largely equivalent to the spatial auto-correlation function which has wide application in the analysis of any random process and spatial or temporal pattern; it also equals the point-pair distance density of a structure times its content. In stochastic geometry, the mathematical theory of random sets, a corresponding quantity is called covariance of a point process. It is of considerable interest that notions evolved in microdosimetry are closely parallel to a variety of concepts in other fields.

A fundamental relation in microdosimetry (see e.g. (28)) shows that the yield of a second order process is a simple integral over the proximity function of a radiation and the corresponding function that characterizes the irradiated structure or
substrate. This dependence and a modified formula apply to such
diverse mechanisms, as the reaction of two free radicals, the
combination of two adjacent DNA breaks in misrepair, or the far
more complex process of the fusion of two chromosome breaks.
The same theorem applies to all problems that arise when arbi-
trary structures are randomly superimposed (29). The relation
expresses the weighted average (and also the second moment) of
the intersection, \(u \), of two bodies \(T \) and \(S \) (of contents \(V_T \) and
\(V_S \)) under uniform isotropic randomness in terms of the point-
pair distance distributions \(p_T(x) \) and \(p_S(x) \) of the two bodies:

\[
\overline{u^2}/u = V_T V_S \int \frac{p_S(x) p_T(x)}{4\pi x^2} \, dx
\]

This fundamental relation, and similar results and their impli-
cations can not be elaborated in this brief discussion. But
their existence needs to be noted, if uses of microdosimetry
are sought which go beyond a merely descriptive correlation
between the patterns of energy deposition and the varying
degrees of effectiveness of different ionizing radiations.
Methods and concepts of stochastic geometry are bound to deter-
mine the further development of microdosimetry and its utiliza-
tion in radiobiological or radiochemical studies.

References

4) Hug, O., Kellerer, A.M., Stochastik der Strahlenwirkung,
6) Timofeeff-Ressowsky, N.V., Ivanov, V.I., Korogodin, V.J.,
 Die Anwendung des Trefferprinzips in der Strahlenbiologie,
 Fischer, Jena, 1972.