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An Assessment of Wall Effects in Microdosimetric Measurements1 

A L B R E C H T M . K E L L E R E R 
R a d i o l o g i c a l Research L a b o r a t o r y , C o l u m b i a University, 6 8 0 West 1 6 8 t h Street, 

N e w Y o r k , N e w Y o r k 1 0 0 8 2 

K E L L E R E R , A L B R E C H T , M . An Assessment of Wall Effects in Micro
dosimetric Measurements. R a d i a l . Res. 47, 377-386 (1971). 

Proportional counters with solid walls exhibit distortions of pulse height 
distributions due to the so-called wall effects. With heavy charged par-
ticles these wall effects mainly affect the indirect events of energy deposi-
tion, i.e., those events where the heavy charged particle does not actually 
enter the cavity but merely injects some delta rays into it. The percentage 
of absorbed dose due to these distorted pulses is calculated for charged par-
ticles of different energy and for neutron fields. For neutrons below 10 MeV 
the wall effects are generally small, and conventional proportional counters 
are applicable. 

I N T R O D U C T I O N 

[Microdosimetric measurements performed with tissue equivalent proportional 
counters exhibit inaccuracies due to the so-called wall effects. These wall effects 
have been discussed by Failla ( 1 ) and by Rossi (#); one can State in general that 
they distort the observed spectra of energy deposition and cause a certain shift of 
the spectra towards larger values. 

Proportional counters applied in microdosimetiy are commonly filled with gas 
of the same atomic composition as the surrounding walls. In a first approximation 
one can therefore assume that the collision cross sections for charged particles are 
the same in the gas and in the wall material. Under this assumption the particle 
tracks in the gas alone are equal to the tracks in the Condensed material except for a 
scaling factor inversely proportional to the ratio of the densities. 

Under suitable conditions one obtains a uniform radiation field throughout the 
counter. The fluence spectrum is then constant, and track segments of various 
shapes occur with the same relative frequency with in the cavity and the simulated 

1 Based on work performed under Contract AT-(30-1)-2740 for the U.S. Atomic Energy 
Commission. 
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region of the Condensed material. The only effect of the walls is that some track 
segments in the cavity occur simultaneously while in the simulated domain they are 
Statistical^' independent. This leads to the fact that a certain number of absorption 
events are eliminated, and some spurious larger events are induced. 

With the widening application of microdosimetric techniques to the determina-
tion of radiation quality so-called wall-less counters (2) have found special interest. 
Rossi and co-workers have developed various t y p e s of wall-less counters; and y-
spectra obtained with such instruments by Gross (#), as well as those obtained by 
Glass and Braby (4), exhibit characteristic differences to results obtained with con-
ventional equipment. It is, however, not easy to judge whether for any particular 
radiation and any particular size of the simulated tissue domain application of wall-
less counters is indicated, and, if so, what errors are involved if conventional 
counters are used. For this reason it is desirable to find a criterion which permits 
an approximate assessment of wall effects. The present paper deals with such a cri
terion for neutron fields and heavy charged particles. 

W A L L E F F E C T S W I T H H E A V Y C H A R G E D P A R T I C L E S 

In most microdosimetric measurements the simulated tissue regions are of a size 
not exceeding several micrometers. In such a region simultaneous occurrence of two 
charged particles individually set in motion by one and the same uncharged particle 
is unlikely; the tracks of the charged particles are in general too widely separated 
from each other. This is particularly true for neutron recoils. The collision cross sec-
tions for neutrons are nearly constant over a wide ränge of energies, and the typical 
mean free path for the neutron is of the order of magnitude of centimeters in tissue. 

Wall effects are therefore due to the simultaneous occurrence of track segments 
belonging to or originating from the same charged particle track. If all charged par
ticle tracks were straight lines, and if the radial extension of delta rays around the 
track core could be neglected there would be no wall effects in proportional counters. 

For heavy charged particles the first condition is very nearly fulfilled, if one ne-
glects nonelastic scattering of neutrons which is insignificant below 10 MeV and 
spallation which need not be considered below neutron energies of 100 MeV. The 
radial extension of the delta ray halo around the track of the heavy recoil particles 
is, however, in many cases comparable to the dimensions of the simulated tissue re
gion, and this is the main factor responsible for wall effects. 

The following discussion will, as far as neutron fields are concerned, be restricted 
to recoil protons because the extension of delta ray tracks is much less for the 
heavier recoils due to the smaller velocities of the heavier recoils. Wall effects due to 
the V-shaped particle tracks generated in nonelastic scattering and due to the stars 
of particle tracks generated in spallation are significant only at high energies. Some 
remarks on these contributions will be made at the end of the paper. 

When a microscopic tissue region is exposed to a field of heavy charged particles, 
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one can distinguish two kinds of events of energy deposition. The heavy charged 
particle itself can traverse or partly traverse the region; the energy deposition event 
will then be called a direct event. On the other hand, the heavy charged particle can 
pass outside the region but inject one or several delta rays into it; one may then 
speak of an i n d i r e c t event. Figure 1 gives a schematic representation of the two 
types of events in the practically important case of a spherical region. 

If the tissue region is simulated by a cavity the direct events are not signi&cantly 
changed as indicated in the scheme of Fig. 2a. There is a somewhat increased prob-
ability that delta rays leaving the region will reenter this region, and some delta rays 
created outside the cavity can enter it while in the actual Situation they would miss 
the region. But the energy involved in these wall effects represents a small fraction 
of the total energy involved in the direct event. One may therefore assume that the 
representation of direct events in a conventional counter is nearly correct. 

Indirect events, however, are not correctiy represented in a cavity. If a charged 
particle passes outside the reference region within a distance small enough that its 
delta rays can reach this cavity, then a much larger piece of its track is close to the 
region of interest than in the actual case of a microscopic tissue region. This fact 
which is schematically represented in Fig 2b reflects the fact that the radius of curva-
ture as seen from outside the cavity is much larger than the radius of curvature of 
the simulated region. 

The resulting effect is that for the cavity the indirect events are strongly dis-
torted; the average number of delta rays injected in an indirect event is far greater 

F I G . 1. Schematic representation of (a) direct and (b) indirect events in a homogeneous 
medium. 

F I G . 2. Schematic representation of (a) direct and (b) indirect events in a cavity. 
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than for the simulated region. On the other hand, the relative contribution of delta 
ray influx to the absorbed dose must be equal for a cavity and the corresponding 
tissue region. This follows from the fact that the fluence and fluence distribution is 
constant under the conditions of Fano's theorem (5). Thus the walls have the effect 
that most of the indirect events are suppressed. Their contribution is compensated 
by an increased delta-ray influx in the rest of the events. Experimental studies with 
wall-less counters by Gross et a l . (3) have indeed demonstrated a significant number 
of small indirect events unobserved with conventional counters. 

One concludes that conventional counters can be applied whenever the indirect 
events represent a negligible fraction of the absorbed dose, and it remains to be seen 
how this fraction depends on the nature of the radiation field and on the size of the 
simulated region. 

T H E F R A C T I O N O F E N E R G Y I N V O L V E D I N I N D I R E C T E V E N T S 

As a first step in the calculation one may derive the probability that energy depo
sition at a given distance x from the track core belongs to an indirect and not a di
rect event when one deals with a spherical region R of diameter d. 

Figure 3 can assist in visualizing the geometry for a Solution of this problem. The 
point P represents the location of energy deposition at distance x from the track 
core. The track core is depicted by the straight line L . The dotted circle of diameter 
d represents the spherical domain which comprises all those positions of the center 
of the region of interest R for which P lies inside R. The two broken lines symbolize 
the outline of a cylinder of diameter d around L. This cylinder contains all positions 
of the center of R for which L passes through R. The probability that the energ}' 
deposition represented by the point P belongs to an indirect event is determined 
by the fraction of the volume of the spherical domain in Fig. 3 which lies outside the 
cylinder. The determination of this fraction as a function of the ratio b = x / d is an 
elementary geometrical problem. The volume of overlap can be derived by inte-
grating it in pieces of cylindrical Shells whose axis goes through the point P and is 

parallel to the line L. This leads to the following integral for the fraction P(b) of the 
volume which does not overlap: 

P(b) 1 - - [ Wr^Jir) dr 0 < b < 1 
TT JO 

T 
d/2 

F I G . 3. Determination of the probability that energy deposition at a distance x from the 
track core is involved in an indirect event. 
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with 
7T for r < 1 - 2b 

(1) 

ZOO = \ 
for r < 2b - 1 

- i r 2 + 462 - 1 otherwise. cos 46r 

The integral has been evaluated numerically and the resulting probability P(b) 
for indirect events is plotted in Fig. 4. With this function and with a knowledge of 
the radial distribution of energy around the track core one can calculate the fraction 
p(cl) of energy—or absorbed dose—-which is due to indirect events in a spherical 
region of diameter d. 

Consider a heavy charged particle with kinetic energy E per nucleon. The dis
tribution of energy deposition in distance from the track core is d(x; E ) . The kinetic 
energy E of the particle is given as a parameter because the distribution refers to a 
track segment traversed at this particular energy. One then has the Solution: 

In the case of Irradiation with neutrons of a given energy E 0 one must integrate over 
all energies between 0 and E 0 . One may neglect all heavy recoils and merely con
sider protons since they have the highest velocity and therefore the most significant 
radial extension of delta rays. To a good approximation the initial energy of the 
recoil protons is distributed equally between 0 and E 0 . The fraction of energy depo
sition due to particles of kinetic energy between E and E + dE is therefore equal to 
2(1 — E / E o ) dEy and one obtains 

'0 
(2) 

'0 
(3) 

P(b) 

. 5 -

0 
C .5 

b = x/d 

F I G . 4. Probability that energy deposition at distance x from the track core belongs to an 
indirect event in a spherical region of diameter d. 
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with 

d ( x ) = 2 [ ° (1 - E / E o ) d ( x ; E ) clE (4) 

The numerical evaluation of these expressions is straightforward, but knowledge of 
the radial energy distribution d(x; E ) as a function of the kinetic energy E is limited. A 
theoretical evaluation of this function on the basis of available collision cross sec-
tions is difficult, not so much because the cross sections are poorly known, but be-
cause the calculations have to include such complicating factors as energy loss strag-
gling and directional straggling of the delta rays. Monte Carlo methods seem to be 
most promising in this respect but have not been performed at present. Several 
authors (6-8) have performed calculations under simplified assumptions. Wingate 
and Baum2 have obtained experimental results over a limited ränge of proton ener
gies. The results of the different authors are in approximate agreement with each 
other and with the experimental results. Figure 5a is derived from the experimental 
data (7). The curves represent sum distributions belonging to the differential dis-
tributions discussed above. D(x; E) is the fraction of the energy laid down at a dis
tance larger than x from the track core of a heavy particle of energy E per nucleon. 

D ( x ) 

x ( u m ) 

F I G . 5a. Fraction of absorbed dose delivered at a distance greater than x from the track 
core of a particle at energy E per nucleon. The curves are derived from data given in (7). 

F I G . 5b. Fraction of absorbed dose delivered at a distance greater than x from the track 
core for recoil protons generated by neutrons of energy E 0 . 

2 C . L . Wingate and J . W. Baum, Micro-radial distributions of dose and L E T r for alpha 
and proton beams. Doc. No. B N L 14767, Brookhaven (1970). 
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In terms of the sum distributions which are more convenient in the actual nu-
merical evaluation Eqs. (2)-(4) take the form: 

p(d) = f P ( x / d ) d D ( x ; E ) (5) 

and 

p(d) = [ P ( x / d ) d D ( x ) (6) 

with 

D(.r) = 2 [ ° (1 - E / E 0 ) B ( x ; E ) dE. (7) 

The solutions of Eq. (7), that is, the radial profiles of the track integrated over the 
total spectrum of proton recoils from monochromatic neutrons, are represented in 
Fig. 5b. 

R E S U L T S 

Figure 6a represents the fraction p(d) of absorbed dose contributed by indirect 
events in a spherical tissue region of diameter d. The parameter is the kinetic energy 
E per nucleon of the charged particle. Because these curves refer to Eq. (5), i.e., to a 
fixed energy, they are applicable under the conditions of the so-called track segment 
experiments. 

F I G . 6a. Fraction p(d) of absorbed dose due to indirect events in spherical tissue regions of 
diameter d. The curves refer to track segments of heavy particles with kinetic energy E per 
nucleon. 

F I G . 6b. Fraction p{d) of absorbed dose due to indirect events in spherical tissue regions of 
diameter d. The curves refer to the proton recoils of neutrons of energy E 0 . 
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Microdosimetric measurements with spherical wall-less counters as described by 
Gross (3) could be used to derive the quantity p(d) experimentally for different 
values of E . Comparison with the results given in Fig. 6a should then provide a 
check of the validity of the energy profiles represented in Fig. 5a. 

Figure 6b depicts the results for fields of monoenergetic neutrons, according to 
Eq. (3). The fraction p(d) of absorbed dose due to indirect events is given as a func
tion of the diameter d of the spherical tissue region. The parameter is the energy E 0 

of the neutrons. 
The calculations are based only on the proton recoils. The heavier recoils have 

very short delta rays and contribute almost nothing to the indirect events. They are 
therefore not involved in wall effects except in the case where several heavy charged 
particles start from the same point as in nonelastic neutron scattering or in spalla
tion processes. Spaliation plays no role in the energy ränge considered here and non
elastic scattering is significant only for energies above 10 MeV. An analysis of the 
wall effects due to the V-shaped tracks in nonelastic events has been outlined by 
Biavati.3 Monte Carlo calculations performed by Oldenburg and Booz (9) have veri-
fied that the effect is negligible for a neutron energ}̂  of 6.5 MeV Though the frac-
tional energy involved in these wall effects is small and the froquency mean and 
energy mean of the y -spectra are not significantJy affected, one should note that for 
neutron energies exceeding 10 MeV the tail end of the y distributions can be dis-
torted. This can be important in considerations involving the exact shape of the y -
distributions in the region of largest values of y . 

While wall effects due to the heavier recoils have some influence above 10 MeV, a 
correction of the curves for 20 and 30 MeV appears unwarranted in view of the un-
certainty of the input data represented in Fig. 5a. For the same reason it is unneces-
sary to refer the curves in Fig. 6 to the total dose delivered by heavy recoils instead 
of referring it to the proton contribution alone which is roughly 10-20 % less. 

The praclical applicability of the results is not strongly affected by the inaccuracy 
of the input data because p(d) varies slowly with d. If one wants to obtain a highly 
conservative estimate of the relative contribution of indirect events one can as-
sume that the energy profiles around the particle tracks have twice the radial exten
sion represented in Fig. 5. One must then read Fig. 6 at half the value of d. 

One concludes from the data of Fig. 6b that conventional tissue equivalent 
counters are quite suitable for most microdosimetric measurements in neutron fields. 
These counters do not properly represent the indirect events in which a proton does 
not actually pass through the sensitive volume but merely injects some of its delta 
rays. At an equivalent diameter of 1 ^m the contribution of indirect events to ab
sorbed dose varies between 3 to 8% for neutron energies between 10 and 30 MeV. 
For lower neutron energies the contributions are still smaller. 

3 B . J . Biavati, Frequency of multiple tracks in equivalent cavities of varying density. 
Annual Report on Research Project, Doc. No. NYO-2740-3, U.S. Atomic Energy Comm. 
(1966). 
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The application of conventional counters is particularly well justified in radiation 
protection applications. The wall effects consist of a Substitution of a number of 
small indirect events by a few larger events. The small errors incurred in the de-
terminal ion of quality factors are therefore conservative. 

One should note that neutron fields are never completely free of a 7-ray com-
ponent. Wall effects due to the 7-ray component are not covered in the preceding 
discussion. 

One must also notice that the fraction of energy involved in distorted pulses is 
just one of several possible criteria for the exten t of wall effects. The fractional 
number of pulses which are not properly represented in conventional counters can be 
considerably larger because the indirect pulses belong to the low end of the y-spec-
trum.4 Accordingly the frequency mean y F , of the ?/-spectra can be shifted appre-
ciably even in those cases where the energy mean y ^ is hardly affected. y D is the 
analogue of the dose mean L E T , L D , and therefore in many cases the relevant index 
of radiation quality. There are, however, radiobiological applications of micro
dosimetric data which involve event frequency rather than the distribution of energy 
involved in the energy deposition events. The most notable examples are effects of 
very heavy nuclei. For these particles the track core exhibits such a high L E T that 
most of its energy is wasted. The indirect events can then be of great importance, 
and the determination of ?/-spectra with wall-less proportional counters is essential. 

The preceding discussion has been concerned with the inaccuracies involved in 
the application of conventional proportional counters in microdosimetry. One may 
observe that the result can as well be used to judge the validity of the theoretical 
derivation of microdosimetric spectra according to the method developed by Caswell 
(11). This method is based 011 the fact that energy straggling and the radial extension 
of the tracks of neutron recoils can be neglected if the region of interest is large 
enough and if the energy of the recoils is moderate. 

Figure ()b indicates the error involved in the neglection of the finite radial exten
sion of the tracks. One concludes that, as far as this factor is concerned, the calcu
lations according to Caswell's method are as valid as are results obtained with con
ventional counters. For neutron energies up to a few MeV the method may be ap
plied even to regions considerably smaller than 1 /mm in diameter. 

Formulae for the influence of energy loss straggling on the microdosimetric dis
tributions have been given earlier ( 1 2 ) . One finds that the factor is significant in the 
same ränge of neutron energies and site diameters in which the radial extension of 
the tracks is critical. 

A C K N O W L E D G M FONTS 
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R E C E I V E D : January 25, 1971 
4 For a definition of microdosimetric quantities see ( 1 0 ) . 
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