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RADIATION R E S E A R C H 47, 359-376 (1971) 

Considerations on the Random Traversal of Convex Bodies 
and Solutions for General Cylinders1 

A L B R E C H T M . K E L L E R E R 
Radiological Research Laboratory, Department of Radiology, College of Physicians d* Surgeons, 

C o l u m b i a University, New York, New Y o r k 

K E L L E R E R , ALBRECHT, M . Considerations on the Random Traversal 
of Convex Bodies and Solutions for General Cylinders. R a d i a l . Res. 
47, 359-376 (1971). 

The basic concepts applicable to the random traversal of convex bodies 
are discussed, and a set of theorems relevant to the problem is presented. 
Formulae are derived for the chord length distribution in cylinders of 
arbitrary convex cross section in a uniform isotropic field of straight 
random tracks. 

1. I N T R O D U C T I O N 

Chord length distributions resulting from the random intersection of convex 
bodies by straight lines have been discussed in such different fields as acoustics 
( 1 - 3 ) , reactor design ( 4 - 6 ) , ecology (7), and microscopy ( 8 , 9 ) . In radiation 
physics chord length distributions are needed for the evaluation of pulse height 
spectra obtained with proportional counters ( 1 0 , 1 1 ) ; the distributions are also 
relevant to various other problems of microdosimetry ( 1 2 , 1 3 ) , general dosimetry 
( 1 4 ) , and radiation shielding. 

For spheroids chord length distributions have been given in analytical ( 1 5 ) and 
in numerical (16) form. For circular cylinders the problem is more complicated 
and several different ways have been chosen to derive chord length distributions. 
Schwed and Ray (17) have attempted analytical Solutions. Wilson and Emery 
( 1 8 ) have applied mixed analytical and numerical methods. Birkhoff et a l . ( 1 9 ) 
have used Monte Carlo techniques; they have also given a useful survey of the 
topic and have pointed out that the results from the various methods are not in 
füll agreement. Little work has been done for cylinders of noncircular cross section. 
But Coleman (20) has obtained the Solution for a cube. 

1 Based on work performed under Contract AT-(30-1)-2470 for the U.S. Atomic Energy 
Commission. 
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In this paper a formula for chord length distributions in cylinders of arbitrary 
cross section will be given. The idea of the Solution is that the problem is reduced 
to one in two dimensions. The chord length distribution in the cylinder is expressed 
in terms of the chord length distribution for the cross section of the cylinder. 

Sections 2 and 3 contain considerations of general interest to problems involving 
the random traversal of convex bodies. Some of the theorems listed in section 3 
are used in the Solution for cylinders. 

2. C O N C K P T S 

An excellent outline of the problems arising in the random traversal of convex 
bodies is given by Kendall and Moran in "Geometrical Probability" ( 2 1 ) . Recently 
Kingman ( 3 , 2 2 ) and Coleman (20) have derived various results on random 
chords. Some of these results will be used in the following considerations. The 
original works should be used for reference, but the basic concepts will in brief 
and simple form be stated in the present paper. 

Coleman defines five different kinds of randomness of the secants of a convex 
body. Three of these are relevant in the present context: 

M e a n free p a t h randomness (^.-randomness). A chord of a convex body K is cle-
fined by a point in Euclidian space and a direction. The point and the direction 
are from independent uniform distributions. This randomness results if the convex 
body is exposed to a uniform, isotropic field of straight infinite tracks; it is the main 
object of the present paper. 

Surface radiator randomness (S-randomness). A chord of a convex body K is 
defined by a point on its surface and a direction. The point and the direction are 
from independent uniform distributions. S-randomness results if the surface is a 
uniform, isotropic radiation source. 

I n t e r i o r radiator randomness (/-randomness). A chord is defined by a point in the 
interior of K and a direction. The point and the direction are from independent 
uniform distributions. 

The distributions of chord length are different for the various types of ran­
domness. This difference and the use of the word randomness in an unspecified sense 
are the basis of some of the so-called paradoxes of probabilit.y ( 2 1 ) . In the follow­
ing, indices will be used to identify the different kinds of randomness. The ex-
pectation values will be labeled in the same way. For example/„(Z) is the probability 
density of chord length l under ^-randomness, while ZM and l * are the mean and the 
second moment of the distribution. 

Sum distributions will be symbolized by the capital letter corresponding to the 
small letter used for the differential distribution. For convenience and because 
this simplifies some of the formulae the sum distributions are summed from the 
tail of the distribution. Thus l \ ( l ) is the probability that the chord length exceeds 
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/ under /z-randomness:2 

l ' \ ( D = l U x ) d x . (1) 

Surface radiator randomness has been discussed in the context of radiation 
physics; specifically it has been shown that for a sphere of diameter d one obtains 
the constant density ( 2 3 ) : 

/*(/) = d~\ 0 < / ^ d, (2) 

while for /z-randomness one has 

1 , ( 1 ) = 2 l / d \ 0 < l ^ d. (3) 

AS-randomness will not be further discussed in this paper. It appears that there is 
no simple relation between the distributions f s ( l ) and/„(/) . It is an opcn question 
whether there exists a unique relation between f s ( l ) and/M(Z), and to what degree 
these distributions determine the shape of the body K . 

Kingman ( 3 ) has shown that /-randomness is closely related to ^-randomness: 

/ / ( / ) cc I U I ) . (4) 

From this relation one finds Ihat the mean chord length // under /-randomness 
always exceeds the mean chord length l ß under /z-randomness, 

l = J l / i ß = ( V ß + 1) (5 ) 

where Vß is the fractional variance of the d i s t r i b u t i o n : 

V . - S r - ^ - i . ( 6 ) 

For a sphere FM is equal to 0.12") as can readily be derived from relation (3). One 
may assume that all nonspherical convex bodies have a larger fractional variance 
of their chord length distribution. It seems, however, that a proof of this simple 
assertion lias yet to be found. 

One must note that interior radiator randomness is not what one obtains if the 
interior of a convex body K is a uniform source of straight particle tracks. The 
definition of /-randomness refers to füll straight lines while an actual radiation 
source produces tracks which, even if they are assumed to be infinite, represent 
only half lines. If one generalizes the concept of a chord so far as to include the 

2 The upper limit of Integration is given as * in all cases where the Integration extends 
to the maximal chord length. This is correct because the densities and the sum di.slribulions 
are zero for / > / m n x . One must, however, be careful to observe this condition in actual cases 
where the distributions may be given analytically. 
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segments of these half lines which are contained in the body K one may introduce 
the corresponding concept which shall be named i n t e r n a l source randomness and 
labeled by the small letter i. 

For z-randomness one obtains the density, 

MD - F , ( l ) / l ß , (7) 

where F ^ l ) is the sum d i s t r i b u t i o n of l under /x-randomness according to the formula: 

F*V) = [ M x ) dx. (8) 

Proof 
Relation (4) has already been derived by Kingman. Here its validity will be 

demonstrated again in a consideration which can then be varied to yield relation 
(7). 

M D is the chord length distribution if K is exposed to an isotropic field. Consider 
an infinitesimal sphere of cross section A a centered around a position distributed 
uniformly over the interior of K . The probability that a chord of length l intersects 
the infinitesimal sphere is l Aa/V, where V is the volume of the body K . If one 
samples the chords which intersect the infinitesimal sphere in all its possible posi-
tions one fulfills the conditions for /-randomness (see above), and one therefore 
obtains, 

M i ) <* y W ) « l U D , O ) 

or with proper normalization, 

M l ) = l M l ) / \ * M * ) dx = l M l ) / l > (10) 

In case of an internal source one counts the half tracks originating from the point 
of emissiori separately (z-randomness). In this case the probability that the chord 
of length l intersects the infinitesimal sphere is still l Aa/V, but the point of inter-
section on the chord must be considered. This point of intersection is distributed 
uniformly over the length of the chord. The chords of length l therefore give rise 
to an equidistribution of half segments s: 

M s ) = 0 < s ^ l (11) 

Integration over all chords occurring in /-randomness yields Eq. (7): 

M s ) = £° ljMD d l / l = F ß ( s ) / l ß . (12) 

From the preceding considerations it is apparent that the mean chord length for 
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an internal source is half the mean chord length under /-randomness and is there­
fore related to the first and second moment of the chord length distribution under 
M-randomness in the following way [see Eq. (o)]: 

l = 1/2 = /7/2/M = 7, . (13) 

The relation can also be derived by partial Integration from Eq. (12), and it can be 
generalized to 

j N + l 

l " = v ^ -1 (14) 

In section 4 results are given for chord length distributions in uniform, isotropic 
fields (/x-randomness). Relation (7) means that the results can also be applied 
to the case of interior sources. 

One should note that all considerations in this section, with exception of relations 
(2) ancl (3) which refer to a sphere, equally apply to three-dimensional and two-
dimensional Euclidian space. 

3. A U X I L I A R Y R E L A T I O N S 

This section contains theorems relevant to the problem of chord length distri­
butions. Some of the relations will be applied in section 4. Theorems 3.1-3.7 have 
been derived earlier ( 3 , 10, 2 0 ) . For convenience proofs and some applications are 
included here. 

3.1 DISTRIBUTION OF THE A N G L E OF INCIDENCE TO A SURFACE E L E M E N T 

Theorem 
If a surface element is exposed to an isotropic Held (/x-randomness) and if 6 

is the angle between the incident line and the normal of the surface element at the 
point of incidence, then 6 is distributed according to the density/M(0): 

f ß ( e ) de = 2 sin e cos e de, o ^ e < ~ , (15) 

while the sum distribution, i.e. the probability that the angle of incidence exceeds 
0, is 

? \ ( e ) = cos20. (16) 

Proof 
The distribution of 6 on a surface element in an isotropic uniform field does not 

depend on the orientation of this surface element. One may therefore consider the 
surface of a sphere. For a sphere one can, however, assume a unidirectional field 
instead of an isotropic field. This is schematically represented in Fig. 1. The total 
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F I G . 1. Determination of the distribution of angles of incidence to a surface element. 

cross section of the spliere of radius r is equal to vir. The disc whose protection in 
Fig. 1 is the line A B represents the cross section for angles of incidence equal to or 
less than 0. Its area is r V sin20, and the fraction of tracks incident on the sphere with 
angles exceeding 0 is therefore given by Eq. (16). By differentiation one obtains 
relation (15). 

As an example of the application of relation (16) one can derive the chord length 
distribution in an infinite slab of thickness h . This distribution will be used in section 
4. The chord length as a function of the angle of incidence is 

l = h/cosd. (17) 

Inserting this in (16) one has the sum distribution 

F \ ( l ) = h2/t, l ^ h , (18) 

and therefore the density 

f ß ( l ) = 2h*/f. (19) 

3.2 DISTRIBUTION OF T H E A N G L E OF INCIDENCE TO A L I N E E L E M E N T 

Theorem 
In 2-space the angle 0 of incidence to a line element in an isotropic field has the 

sum distribution 

F ß ( 0 ) = 1 - sin 0, 0 ^ 6 < TT/2, (20) 

and therefore the density3 

fß(0) = cos0. (21) 

The angle of incidence 0 is the angle between the random track and the normal to 
the line element. 

The proof can be omitted. It is analogous to the proof in 3.1. 
3 A frequeut source of confusion in cjnsiderations on chord length distributions is failure 

to distinguish between /u-randomness and <S-randomness. For a surface source in three di-
mensions the angle 6 of entrance into the body K is distributed according to the density: 
/.s(0) = sin 0; while the density in the two-dimensional case is constant: f a ( 6 ) = 2/TT. 
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One can use Eq. (20) to derive the chord length distribution in a circle, which 
will be used in section 4. For a circle of diameter d one has: 

l = d cos 0. (22) 

By Substitution in (20) and transition to the complementary probability in order 
to account for the inverse Variation of 0 with / one obtains the sum distribution 

F ß ( l ) = V i - W l ^ d, (23) 

and the density 

^ l ) = d v h i > - (24) 

Another example is an infinite strip of height h . In this case one has 

sin0 = V i - h*/P, (25) 

and therefore 

F ß ( l ) = 1 - y/Y^lfß, l ^ A, (26) 

and 

^ = r v f ^ - (27) 

3.3 TOTAL T R A C K L E N G T H IN A V O L U M E 

Theorem 
In a uniform field of fluence 4> the expected4 total track length per unit volume 

element is equal to ^. 

Proof 
The fluence is defined as the expectation value of the number of traversals of a 

sphere of unit cross section. The total track length per unit volume is a function of 
* only. In order to obtain the numerical relation one may consider a cylinder of unit 
cross section and height h and a uniform unidirectional field of fluence * parallel 
to the axis of the cylinder. The expected number of traversals is 3>, the expected 
total track length is $ h , and the expected total track length per unit volume is 
therefore 3>. 

4 Here and in the following subsections the term expected is used as an abbreviation for 
expectation value of. The term m e a n is not used in order to avoid confusiou with the mean of 
the chord length distributions. 
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3.4 N U M B E R OF TRAVERSALS THROUGH A SURFACE E L E M E N T 

Theorem 
In an isotropic uniform field of fluence $ the expected number of travers-

als through a unit surface element is $/2. The expected number of chords through a 
convex body of surface S is therefore aS'$/4. 

Proof 
As discussed in 3.1 one can consider a sphere exposed to a unidirectional field of 

fluence <f>. The expected number of chords is ?*Vf>. Each chord intersects the surface 
of the sphere twice. The expected number of intersections per unit surface element is 
therefore equal to $/2; the expected number of chords is equal to $£/4. 

3.5 TOTAL T R A C K LENGTH AND N U M B E R OF TRAVERSALS IN Two DIMENSIONS 

Theorem 
In two-dimensional space fluence 3> is defined as the expected number of traversals 

of a circle of unit diameter. The expected total track length per area element in an 
isotropic uniform field is <!>, the expected number of intersections with a unit line 
element is 2 $ / i r . 

The proof is analogous to the proof of 3.3 and 3.4. 

3.6 M E A N CHORD LENGTH IN T H R E E DIMENSIONS 

From 3.3 and 3.4 one obtains a relation which is sometimes called the Cauchy 
theorem. The relation, implicity deduced by Cauchy (24) in 1850, seems to have 
first been stated by Czuber ( 2 5 ) . 

Theorem 

If a convex body has the volume V and the surface S, then the mean chord length 
l ß is equal to 

Iß = 47/S. (28) 

Proof 
The theorem follows from the fact (see 3.3 and 3.4) that the mean chord length 

is equal to the total track length $ V in the body divided by the number S<£/4 of 
chords through the body. 

3.7 M E A N CHORD LENGTH IN Two DIMENSIONS 

Theorem 
For a two-dimensional convex figure of area A and circumference C one has 

l ß = t A / C . 
(29) 
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Proof 
This theorem which has also been implicitly deduced by Cauchy follows from the 

fact (see 3.5) that the mean chord length is equal to the total track length A $ in 
the figure divided by the number <£>C/TT of chords through the figure. 

From the proofs of 3.6 and 3.7 one concludes that, with the Interpretation of a 
tracksegmentasasimply connected piece of the track within the region, the Cauchy 
theorem is valid for a uniform isotropic field even if the random tracks are not 
straight (13). The generalization applies equally to two and three dimensions. One 
can furthermore show that the tracks may be branched; but they must not be closed 
curves. The present discussion will, however, be confined to straight random tracks. 
The generalization of the Cauchy theorem to the case of finite straight tracks is 
given in the following subsection. 

A similar simple relation exists for the fourth moment of the chord length dis­
tribution ( 2 1 , 2 6 ) . But the case is more complicated for the second and third mo­
ment, and such characteristics of the distribution as fractional variance or skewness 
must therefore be evaluated numerically in each particular case. 

3.8 M E A N SEGMENT LENGTH IN THE C A S E OF FINITE TRACKS 

The following theorem deals with the mean segment length which results in a 
convex body when exposed to random tracks of finite length. It can be considered 
as the generalized form of the Cauchy theorem. Al l considerations in this and the 
following section refer to /x-nindomness. The index p is therefore omitted. Through-
out this paper the letter F will be used for distributions referring to infinite random 
tracks, while P will be used for distributions which result if the random tracks are of 
finite length. 

Assume that the finite random tracks have an orientation. A random track is 
then defined by a starting point, a direction, and a length. The point and the direc­
tion are from independent uniform distributions, the length is distributed according 
to r ( u ) . This is the generalization of ^-randomness to finite tracks. r ( u ) is called 
the ränge distribution. 

If a convex body of mean chord length l = 4F/& is exposed to a uniform, iso­
tropic field of random tracks of mean ränge ü, then the resulting mean segment 
length s in the body is given by the relation 

The total track length in the body is V$ (see 3.3), and the number of end points 
plus starting points of tracks in the body is therefore 2V$/ü> the number of traversal 

Theorem 

(30) 

Proof 
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points on the surface of the body is S&/2 (see 3.4). Euch track segment has two 
t e r m i n a l points which are either starting points or end points of tracks, or traversal 
points. The mean segment length s is therefore equal to the total track length 
divided by half the number of terminal points: 

F* = (ü~l + S/47)" 1 . (31) 
&V/Ü + S&/4: 

One can readily show that Eq. (30) holds also in the two-dimensional case. 

3.9 CHORD LENGTH DISTRIBUTIONS IN THE C A S E OF FINITE RANDOM T R A C K S 

Theorem 
Assume that the convex body K has the sum distribution F ( l ) of chord length 

under /i-randomness and that it is exposed to an isotropic uniform field of straight 
random tracks whose length u has the sum distribution R ( u ) . Then the resulting 
sum distribution of segment length in K is 

P ( s ) = k (^F(s) ^ R ( x ) dx + R(s) ^ F ( x ) d x j . (32) 

The normalization constant has the value k = (ü + / ) _ I , where / is the mean 
chord length 4 F / S , ^ n d ^ i ' s the mean ränge of the tracks. 

In the special case where all random tracks are of a fixed length u, the formula 
reduces to 

p M = ( u - s ) F i s ) + 1^ F i x ) dx^j , 8 £u. (33) 

Note that the sum distributions are summed from the right, i.e., equal to the 
probability that the random variable exceeds a given value. 

Proof 
First an auxiliary relation has to be given: If two intervals of length u and l on a 

straight line overlap randomly, then the length s of the overlap has the sum dis­
tribution : 

H ( s ) = i u + l - 2 s ) / i u + Z), s ^ u, l (34) 

The relation follows from the geometrical consideration indicated in Fig. 2. The 
solid line represents the interval of length w, the dotted line those positions of the 
left border of the otlier interval which correspond to overlaps. The positions which 

s S 

A B C D 

F I G . 2. D e t e r m i n a t i o n o f t h e o v e r l a p p r o b a b i l i t y o f t w o i n t e r v a l s . 
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belong to an overlap greater than s are inside B C . The ratio of the interval length B C 
to A D is equal to H ( s ) . 

Assume a sphere S which is centered around the body K and has a diameter large 
as compared to the dimensions of K and the maximum length of the random tracks. 
Consider a track of length u inside S. The probability that the straight-line exten-
sion of the track intersects K is independent of u. If an intersection occurs the prob­
ability for a chord length l in K is proportional to f ( l ) . Given the values u and Z, 
the probability that the track itself intercepts K is proportional to u + Z. 

The resulting sum distribution of segment length is therefore 
«CO * 0 0 

P i s ) = k l / f ( l ) r ( u ) ( u + l ) H ( s ) d u d l 
J s J s 

/»CO /.CO 

= k / i u + l - 2 s ) f ( l ) r ( u ) d u d l (35) 

= k ( F ( S ) t t r ( u ) du - s R ( s ) ] + R ( s ) //(/) dl - sF(s)] 

By another partial Integration one obtains Eq. (32). The value of k results from the 
condition P(0) = 1. This ends the proof. 

By differentiation of Eq. (32) one obtains the probability density 

p(s) = k ( j ' i s ) [ s R i x ) dx + v i s ) j s F i x ) dx + 2 F i s ) R i s ) y (36) 

and in the special case of a fixed track length u, 

p i s ) = k ( f i s ) i u - s) + öis - u ) ^ F i x ) dx +2Fis)y s ^ u. (37) 

One can show that the three terms in Eqs. (36) and (37) correspond to those 
segments which Caswell (12) categorizes as crossers, insiders, and as Starters and 
Stoppers. 

In Eq. (32) the first term represents the contribution of the interior source 
(z-randomness) and the second term the random tracks originated outside K . If 
Eq. (32) is split up into the contribution of crossers, insiders, and Starters and 
stoppers it takes the form 

P i s ) = fc (F(S) ^ R ( x ) dx - js F ( x ) R i x ) dx 

/
co /»co 

F ( x ) dx - / F ( x ) R ( x ) dx (38) 

+ 2 F i x ) R i x ) dx 
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or in the case of a fixed track length u, 

P i s ) = k ( i u - s ) F ( s ) - ^ F ( x ) dx 

+ f F ( x ) dx (39) 

+ 2 ^ F i x ) d x j , s g u. 

These formulae are important for microdosimetric calculations where one deals 
with finite charged particle tracks incident on a sensitive volume of cylindrical or 
spherical shape. In the case of a sphere which has been treated by Caswell one has 
to insert the functions 

/ ( * ) = 2s/d2, F i s ) = 1 - s2/d\ f F i x ) dx = j d - s + ^ - 2 , 
(40) 

8 < d. 
For cylinders the corresponding functions will be derived in the next section. 
Theorems (32) and (33) have been derived here for 3-space. Going through the 

arguments in the proof one finds that they equally hold in 2-space. This will be 
used in section 4. 

4. S O L U T I O N F O R G E N E R A L C Y L I N D E R S 

This section deals with the derivation of chord length distributions for right 
cylinders in an isotropic, uniform field (/z-randomness). The principle underlying 
the Solution is to reduce the problem to one in two dimensions. Al l distributions and 
expectation values are understood to refer to ju-randomness, if not otherwise stated. 
The index p is therefore omitted. 

4.1 DERIVATION OF THE CHORD LENGTH DISTRIBUTIONS 

Assume that the cylinder has height h and an arbitraiy convex cross section, and 
consider the orthogonal projection of the random tracks and of the cross section 
of the cylinder onto a plane parallel to the faces of the cylinder. Figure 3 represents 
this projection. The heavy line segments are the projections of those segments of 
the random tracks which lie inside the infinite slab formed by the two planes through 
the faces of the cjdinder. The length u of the projection is related to the length v 
of the actual segment in the slab by 

v2 = h 2 + u2. (41) 
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F I G . 3. Projection of a cylinder exposed to random tracks. 

With this relation and Eq. (18) one obtains the sum distribution of the projection 
length: 

G ( U ) = h*/i? = 1/(1 + u / h 2 ) . (42) 

The projections are uniform and isotropic in the plane. The straight lines through 
these projections form the chord length distribution in 2-space, f ( t ) , in intercepting 
the cross section of the cylinder. The distribution f ( t ) is known for a circle and for a 
rectangle [see Eqs. (24) and (61)]; for more complicated convex figures it can be 
derived numerically. The mean chord length in the cross section is t. 

When the intervals u and t overlap, then the segment s of overlap is the projection 
of the actual chord in the cylinder. The problem thus reduces to a determination 
of the distribution of these segments. This problem has been solved in 3.9. For a 
fixed projection length u> one obtains the following sum distribution of segments s 
in the projection of the cylinder in accordance with Eq. (33): 

C ( s ) = y-J— ( ( u - s ) F ( s ) + f F ( x ) d x } , s£u. (43) 
t + u \ Js / 

The true chord length l in the cylinder is proportional to s: 

l = 8 V i + W/u*. (44) 

With this relation and with the abbreviation 

F * ( s ) = f F ( x ) dx - s F ( s ) , (45) 

one obtains the chord length distribution for a given angle of incidence of random 
tracks relative to the axis of the cylinder: 

c^ = i h (>* ( v r r m ) + F * ^ r r m ^ • 1 = ( 4 6 ) 

Except for a stretching by the factor y / l + h 2 / u 2 the distribution is equal to the 
distribution (43) which results when the cross section of the cylinder is exposed to 
random tracks of length u. 



372 K E L L E R K R 

Integration over the distribution of u yields the füll Solution. As in Eq. (35) and 
for the same reasons one has to include the weight factor ( l + u ) in the integral 

cco - - K f ( U F ( ^ 7 = ^ ) + p * ( v r n ^ ) ) ( 4 7 ' 
where the lower hmit a of Integration is 0 for l ^ h and ^ / l 2 — h 2 for l > h . The 
chord length distribution in the cylinder is designated by the letter C and not F 
because F is used for the 2-space chord length distribution of the cross section of 
the cylinder. With the Substitution 

1 hx 

and with G ( u ) from Eq. (42), 

G ( u ) = 1 - x2, (49) 

one obtains the general formula for the chord length distribution in right cylinders: 

C ( l ) = 2fc f * ( ^ = = F ( l x ) + x F * ( l x ) ^ d x , 

fO f o r i * A ( 5 0 ) 

a = [ V i - h 2 / l 2 for l > h . 

4.2 RESULTS 

In this section the result of 4.1 will be restated, and the formulae for the chord 
length density will be added. The auxiliary function/(0 will be given for the special 
cases of a circle and a Square. 

The chord length distribution in a right cylinder exposed to a uniform isotropic 
field of straight infinite tracks (/i-randomness) can be expressed in terms of the 
chord length distribution of the two-dimensional figure which is the cross section of 
the cylinder. 

Let / (0 and tbe the differential distribution and the mean value of chord length 
t for the cross section. The sum distribution of t is 

F(t) = J"f(x)dx, (51) 

and F * ( t ) is an auxiliary function: 

F * ( t ) = J F(x)äx-lF(l) = J x f ( x ) d x - 2 t F ( t ) . (52) 

Then the sum distribution of chord length in the cylinder, i.e., the probability that 
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(55) 

a chord exceeds length /, is given by the formula: 

C ( l ) = 2Ä: jT1 ( ^ = = F ( l x ) + x F ^ l x ^ d x . 0)3) 

// is the height of the cylinder. The lower limit a of the Integration is 0 for £ ^ h and 
V i — h 2 / l 2 for / > Ii. The normalization constant is 

k = r+ü = r ( A / C + A/2) ' ( ° 4 ) 

as follows from 3.7 and from Eq. (42). A is the area and C the perimeter of the 
cross section of the cylinder. By differentiation of Eq. (53) one obtains 

ein - - * ( ' ( - 7 f = 3 / < ' * ) + *''/(<*) - 2»*F ( i .o )& 

The probability density of chord length is therefore equal to 

HO = 2k ( Y ( - ^ = - x ' l ) f ( l x ) + 2 x i F ( l x ) ) d x 
' W 1 " *" ' (56) 

+ ^ f F U ) d*. 

where the second integral applies only to values l ^ h . 
Equations (53) and (56) are the formulae for chord length distributions of 

cylinders of arbitrary convex cross section. In the general case the chord length 
distribution f ( t ) for the cross section has to be evaluated numericalry. For circular 
and square cross sections one can, however, give/(£), F ( t ) , and F * ( t ) in analytical 
form. 

For a circle of diameter d one obtains aecording to Eqs. (23), (24) and (52), 

= d V T ^ l ' F ( i ) = v / l " ? / c P ( 5 7 ) 

f F ( x ) dx = \ arecos L - L V i - t2/d2 (58) 

t St F * ( t ) = - arecos - - - V i - P/d* . (59) 

All functions are zero for t > d. 
Coleman (20) has derived the chord length distribution f ( t ) for a rectangie One. 
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may note that one can obtain this function from Eq. (47 ) . This equation is valid in 
a space of arbitrary dimensions, and a rectangle can be considered as a cylinder in 
two dimensions. In the special case of a Square of side length c one inserts the dis­
tribution G ( u ) for an infinite strip of height c [see Eq. (26)] and a delta function 
8(t — c) for f ( t ) . Equation (47) with the Substitution (48) then takes the form: 

for t ^ c a = 0 

F ( t ) = k f (-/== + c - 2 t x ) dx b = \ - ^ 

L V V i - x2 ) a = V i - eye i o r c < f ^ ^ b = c/t 

1 ~ t/2c for t ^ c 

t/2c - V i - c 2 / f for c < t £ \/2c 

By differentiation one obtains the chord length density for the Square: 

' l / 2 c i o v t ^ c 

(60) 

tfyß 

? - ( 6 1 ) 
- l/2c for c < t £ \/2c 

Evaluation of the integrals in (53) and (56) for the special cases of circular or 
Square cross section, analysis of the moments of the distribution, and discussion of 
the limiting cases of very long and very flat cylinders will be the object of a forth-
coming paper. In general it is practical to evaluate the integrals numerically. Nu­
merical results for circular cylinders have already been given (27). 

In work with cylindrical proportional counters the case of a unidirectional radia­
tion field is of some interest. One must then use Eq. (46) instead of Eq. (53) . The 
value of u is equal to h tgß, where 6 is the angle between the field and the axis of 
the cylinder. In the general case of an anisotropic field one has to use Eq. (47) and 
the distribution G ( u ) which belongs to the angular distribution of the field. 

If one deals with finite tracks of a ränge distribution R ( u ) or of the fixed ränge u, 
one can first derive the chord length distribution C ( l ) for infinite tracks and then 
apply the theorem (32) or (33) . The distribution C takes the place of F in these 
equations. 

Finally one should notice that except for a normalization constant Eq. (53) gives 
the probability density of segments created in a cylinder by an internal source. This 
follows from the considerations given in section 2. 
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