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Abstract

The fitting of finite mixture models is an ill-defined estimation problem as com-
pletely different parameterizations can induce similar mixture distributions. This
leads to multiple modes in the likelihood which is a problem for frequentist max-
imum likelihood estimation, and complicates statistical inference of Markov chain
Monte Carlo draws in Bayesian estimation. For the analysis of the posterior density
of these draws a suitable separation into different modes is desirable. In addition, a
unique labelling of the component specific estimates is necessary to solve the label
switching problem. This paper presents and compares two approaches to achieve
these goals: relabelling under multimodality and constrained clustering. The algo-
rithmic details are discussed and their application is demonstrated on artificial and
real-world data.
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1 Introduction

The use of finite mixtures in applications has increased in popularity in the
last decades because maximum likelihood estimation has been facilitated by
the expectation-maximization (EM) algorithm [1] and Bayesian estimation of
finite mixture models has become feasible with the advent of Markov chain
Monte Carlo (MCMC) methods. Gibbs sampling is the most commonly used
approach and it is done by augmenting the data with the unobservable vari-
able of class membership similar to the EM algorithm [2]. For symmetric priors
and components from the same distributional family label switching [3] makes
it impossible to make component specific inference directly from the MCMC
draws. Different approaches have been proposed to determine suitable esti-
mates. These recent developments have led to several overviews on sampling
schemes for mixture models and handling label switching problems [4-6]. The
methods proposed include specification of an (artificial) ordering constraint
[2,7], fixing the membership of some observations [8], applying label-invariant
loss functions, cluster and relabelling algorithms [9-11] and relabelling with
respect to the maximum a posteriori (MAP) estimate [4].

All the proposed approaches and their illustrations focus on the case where
“no genuine multimodality” (see Section 2) of the posterior density is given,
i.e., it is assumed that the modes of the posterior density are identical up to a
permutation of the components. However, multiple genuine modes can occur
due to the fact that fitting finite mixtures to data is an ill-conditioned problem
and similar mixture distributions may result from different parameterizations,
e.g. due to unidentifiability of the mixture distribution. Finite mixture mod-
els do in fact not only suffer from trivial identifiability problems due to label
switching and empty or identical components, but also from generic identifia-
bility problems [6]. A generic identifiability problem for mixtures of regressions
is for example intra-component label switching which occurs if different com-
binations of the components between the covariate points determine the same
mixture distribution due to the violation of the coverage condition on the
covariate matrix [12]. Up to our knowledge, only Stephens [11] outlines an
approach where the possibility of multiple genuine modes of the posteriors is
taken into account, and component specific estimates for each of the modes
are determined.

In this paper a new method for determining a suitable labelling of the compo-
nents under genuine multimodality is proposed. It allows to make component
specific inference for each mode separately using constrained clustering [13,14].
The constraints ensure that the observations from the same MCMC draw are
assigned to different clusters. Several genuine modes in the posterior are mod-
eled by including more clusters than there are segments in the mixture. The
new approach is compared to the previously suggested one using the galaxy



dataset (which has previously been used to illustrate the problem of genuine
multimodality [11]), as well as a mixture of linear regression models.

2 Genuine multimodality

In the following we consider finite mixture models of form

S
h(yz|mw@) = ZTrSf(yikBi’OS)? (1)
s=1

where h is the mixture density, y; is the vector of responses, and a; an op-
tional vector of covariates for observation ¢, ¢ = 1,..., N. S is the number of
components, f the component density function (which is assumed to be from
the same distributional family for all components), 85 the component specific
parameters of density f and m the component weights. The component spe-
cific parameters are denoted by 95 = (75, 85) and © = (¥;)s—1,. s is the vector
of all parameters. It is assumed that © € €2, where €2 is the set of admissible
parameter vectors with

e <y <1, Vs=1,...,85,
e Y9 m,=1and
e O0,+460,Vs#twith s,t € {l,...,S}.

Please note that only the conditional density of y; given «x; is investigated. For
the distribution of &; we assume that it is component independent. In general a
dependency between variables &; and y; is assumed because otherwise variable
x; could be omitted and h(y;|©) could be analyzed.

The posterior density is given by

p(Olyi, x;) x h(yi|x:, ©)p(O),

where p(©) denotes the prior density. In the following the prior is assumed to
be symmetric with respect to the components. As improper priors can lead
to improper posteriors during Gibbs sampling due to empty components only
proper priors are considered.

The a-posteriori probabilities for each observation which can be used to either
classify the data or examine the overlap of the components are given by

st(yi|wi’ 95)
Sy o f (yili, 0r)

7;5(0) = 75(Olyi, x;) = s=1,...,85.



Let o5 = oZ5(f,€2) be the set of all finite mixture models with S components
and mixture densities given by Equation (1), i.e. the component density func-
tionis f and © € ). Due to label switching 75 induces a system of equivalence
classes = on () where two elements of () are in the same equivalence class if
there exists a permutation such that they are equal

01,02 € £ & v € Perm(S5) : ©; = v(O,).

Perm(S) denotes the set of all possible permutations of S objects. Let Q=
ident(£2) C €2 be the subset of parameterizations which contain only one per-
mutation of each possible set of component parameters (see also [12]). In the
following focus is given to competing parameterizations for the same model
which are not equivalent in the parameter space 2 of the equivalence classes
induced by label permutation. The presence of these genuine competing pa-
rameterizations is referred to as genuine multimodality:

Definition 1. The posterior density p of the parameters © €  is called
genuinely multimodal if it holds for the set of modes M of p that

10,0, € M : O # 1(0,) Vv € Perm(S).

A mode is defined as a local maximum in the probability density function. In
the case of a density function with constant values at a peak, all of the points
on this peak shall be considered a single mode (cf. [15, p.1646]).

The posterior density p is called not genuinely multimodal if the set of modes
M contains only parameterizations which are identical up to a suitable per-
mutation of the components. An equivalent definition where the admissible
parameter space 2 has been suitably restricted to € is given by

Definition 2. The posterior density p of the parameters © € Q is called not
genuinely multimodal if the set of modes M of p is a singleton.

3 Relabelling under genuine multimodality

Label switching complicates the detection of genuine multimodality of the
posterior. A straight forward procedure would be to first restrict the admissible
parameters space 0 to  where for each equivalence class induced by label
switching a single representative parameterization is selected. Then one could
analyze the resulting parameterizations in the parameter space Q. However, if
genuine multimodality is present, relabelling algorithms may fail completely
in selecting a suitable subspace €, because they assume that the different
modes result from permutations of the same parameterization. This implies



that these stepwise procedures will then fail to find both an allocation to
the different modes as well as a unique labelling of the components. It is
therefore preferable to pursue an approach where the mode allocations and
the relabelling of components are simultaneously determined.

An extension of the relabelling algorithm to genuine multimodality was pro-
posed by Stephens [11] using a decision theoretic approach. Assume we are
given B parameter vectors (MCMC draws, bootstrap replica, ...) which we
want to assign to M different genuine modes. With each mode we associate
a mode-specific action a,,,m = 1,..., M. We measure the loss (for a defini-
tion see for example [16]) for taking action a,, when the true parameter is ©
by Lo(an;0), see Section 5 for possible actions and loss functions. The label
invariant mode specific loss which takes all possible permutations of the true
parameter into account is given by

LM (6, 0) = min Lo(am;v(0)).

Assume we undertake each mode-specific action a,, with prior probability
&m, where &, > 0Vm and M ¢, = 1. Let a = (@m)m=1,..m and € =
(&m)m=1....m be the vectors of all mode-specific actions and action probabilities,
respectively. Then the pair (€, a) describes the overall action pattern given all
modes. Using a loss-minimizing strategy, the loss for selecting action (£, a)
given the true parameter vector © is given by

£((¢ a);©) =min {~log & + L (am; ©) }

The following outlines an algorithm for estimating (£, a) for B MCMC draws
where for each draw b the parameter vector is given by ©.

Algorithm 1. Starting with some initial values for the permutations v,
of the components for MCMC draw b and mode m (setting them all to the
identity permutation for example) and the mode assignments my, b=1,..., B
(using a random partition of the draws for example), iterate the following steps
until a fixed point is reached holding all other parameters fixed in each step:

Step 1: Determine & by

1 B
gm = 7Z]I{m =m}
Bb:l ’

where I is the indicator function.
Step 2: For m =1,..., M choose action a,, such that

B

a,, = arg rnainZ]I{mb:m}Eg(a; Vpm(©b)).
b=1



Step 3: Forb=1,...,Band m =1,..., M choose v, such that
Vpm = arg min Lo(am; v(0)).
Step 4: For b=1,..., B choose my such that
my, = arg H}%n [—log & + Lo(Am; Vm(00))] -

If in any step the minimum is not unique, a solution is randomly chosen,
except if for unchanged parameters the minimum is also attained. In this case
the unchanged parameters are retained.

The algorithm is guaranteed to converge as the objective function is decreased
in each step before a fixed point is reached and the number of possible com-
binations of the component permutations and assignments to the different
modes is finite.

Corollary 1. The objective function is decreased in each iteration until a
fixed point is reached.

Proof. The comparison of the values of the objective function from iteration
(n — 1) to iteration (n) is for all n > 2 given by

B M (n—1) (n—1). (n—1) Step 1
>3 Loy |~ log(60 ) + Lolal Vs, (00))] =
b=1m=1

B M r Step 2
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The superscripts (n — 1) and (n) denote in which iteration the parameters
were determined. For Step 1 the inequality condition applies due to the Gibbs
inequality and because Zle]l{m(n_l):m} = BEW. In the other steps the in-
equalities follow directly from t}ble minimizations made. If for all four steps
equality holds for the inequalities the parameters are the same for step (n)
and (n—1) and a fixed point is reached. Otherwise, the objective function has
been decreased from step (n — 1) to step (n). O

However, the optimum found may only be a local minimum. To increase the
chance of detecting the global optimum the algorithm is in general run re-



peatedly with different random initializations. Please note that a mode can
become empty during the iterations of the algorithm and the solution returned
will then have less modes than a priori specified.

The computational burden of Step 2 depends on the loss function. For some
loss functions the solution can be determined in closed form, while for others a
general purpose optimizer has to be used. The optimal ordering in Step 3 can
be determined quickly by solving a linear sum assignment problem (LSAP) if
the loss can be divided into a sum of component specific losses, i.e. the loss
Ly is of form

s
Lo(a;0) =} Li(a(s); ),
s=1
where a(s) is the component specific action taken.

The LSAP aims at finding a minimum cost assignment of S objects to K
persons given a cost matrix of dimension S x K under the constraint that not
more than one object is assigned to each person. This problem can be solved,
e.g., using a primal-dual algorithm such as the so-called Hungarian method
[17] which finds the optimum in time O(K?). For the relabelling algorithm a
special case of the LSAP has to be solved where S = K. The remaining two
steps (Step 1 and 4) are easily computed.

A heuristic method for determining the optimal number of modes is to inves-
tigate the improvement of the objective function for an increasing number of
modes. As long as the number of modes in the data is larger than the num-
ber of modes fitted with the relabelling algorithm a large improvement of the
objective function can be achieved by adding a mode. If the number of modes
fitted exceeds the number of modes in the data a true mode is randomly split
and only a slight improvement in the objective function can be observed. A
subjective decision on the number of modes can hence be based on a barplot
of the values of the objective function for different number of modes. Other
strategies for determining the number of clusters for clustering approaches
have been suggested and might also be useful in this context (see for example

[18] and [19]).

4 Constrained clustering

By extending the relabelling approach to multiple genuine modes a separate
action is determined for each mode. This has the disadvantage that compo-
nents which are identical in several different modes are not identified and
hence not relabelled using the combined information. An alternative approach
which overcomes this drawback is to use constrained clustering [13,14], where
the component specific estimates are used as input data. This first pools all



information from all modes, and then derives an appropriate assignment to
different genuine modes (if present).

Constrained clustering is the same as ordinary clustering except that the de-
rived partition of the data has to fulfill certain additional restrictions or con-
straints. Different possible constraints are for example must-link or cannot-link
constraints. Must-link constraints are imposed if it has to be ensured that cer-
tain data vectors are assigned to the same cluster. This is a valuable constraint
for example if individuals are clustered and repeated observations are avail-
able for them. Cannot-link constraints ensure that certain observations are
assigned to different clusters. These constraints are used in the case of de-
termining suitable labels for the components of each MCMC draw because
it has to be ensured that the component specific estimates of each draw are
assigned to different clusters. By combining the cluster assignments with the
information which estimates belong to the same MCMC draw, an assignment
to different modes is derived.

The input data Xpg is given by {xps : b = 1,...,B;s = 1,..., S}, where
Ty is either equal to 9 after suitable data pre-processing or the posterior
probabilities 75(0y) = (7:5(0p))i=1,.. n. If the parameters are used as input
data data pre-processing aims at determining a suitable weighting of the vari-
ables which is especially important in this case because the scales in general
differ. Standardization as a form of weighting assigns equal weights to each
of the variables. Often not all variables contribute equally to identifying the
cluster structure in the data and true clusters are masked by the presence of
irrelevant variables. Feature selection aims at determining the optimal subset
of variables for identifying the cluster structure in the data. Different methods
for this data pre-processing step have been proposed (see for example [20] and

21]).

The proposed constrained K-centroids clustering approach determines K cen-
troids Cx = {c1, ..., ¢t} by minimizing

B

Z Z d(c<xb,5)a xb,S)

b=1s=1

under the condition
c(xps) # c(zpy) Vs#ts,te{l,..., S5}, Vb=1,...,B,

where c¢(x) € Ck is the cluster centroid closest to x with respect to dissimi-
larity d(-,-).

A solution to this optimization problem can be found using the following
algorithm:



Algorithm 2. Start with a random set of initial centroids Cx = {c1, ..., cx},
e.g. by randomly choosing K unique vectors from the data. Then iterate the
following steps until a fixed point is reached:

Step A: Assign each vector of component specific estimates ;, s to the cluster
of the closest centroid:

c(xps) = argmind(c, ).
ceCik

Step B: If the constraint is violated for the estimates of one draw, i.e.

b, s, t: (s#t) A (c(wps) = c(zp1))

then find the best assignment to the clusters under the constraint.
This can again be made by solving an LSAP.
Step C: Update the set of centroids by minimizing the following functions

Vk:
¢ ;= arg min Z d(e, zp5),
¢ xb,seAk
where Ay is the set of points in cluster k, ie., Ay = {zps €

XB75|C(.T(,7S) = Ck}.

This algorithm has been implemented in R package flexclust [22], see [14] for
details on the LSAP in Step B.

The optimal solution of the constrained clustering approach if the number of
clusters K is equal to the number of segments S is equivalent to the solution
of the relabelling algorithm proposed by Stephens [11] if the loss used is given
by

Lo(a;0) =Y d(a(s), ds). (2)

Similar to the determination of the number of modes in the relabelling al-
gorithm the optimal number of clusters can be determined by examining a
barplot of the within cluster dissimilarities for different number of clusters.
This simple heuristic suggests to choose the number of clusters where an el-
bow in the curve can be observed.



5 Loss functions and dissimilarity measures

For the relabelling algorithm a suitable label-invariant loss function has to be
selected, while for the constrained clustering approach a dissimilarity measure
has to be chosen. Given a dissimilarity measure a corresponding loss func-
tion is induced (see Equation (2)). Different loss functions for the relabelling
algorithm have been proposed [10,11]. In this section the Kullback-Leibler
divergence (KL) [23] which has been previously proposed for the relabelling
algorithm as loss function is analyzed for suitability as dissimilarity measure
in the constrained clustering approach. For the KL divergence the a-posteriori
probabilities are used as input data. This is a sensible approach if cluster in-
ference shall be made and it has the advantage that it is independent of the
component specific model and can be used for arbitrary finite mixture models.

The Kullback-Leibler divergence measures the difference between a given “true”
probability measure p to an arbitrary probability measure ¢ and is given by

p(x)

o= [ (@) 0g p(x) ~ log a())d.

dki(q,p) = /p log

The KL divergence is a dissimilarity measure for probability measures or more
general for a set of objects of equal length with nonnegative elements. It is not
symmetric, but it can be interpreted as measuring the error made by replacing
a given probability measure p with q.

Numerical instabilities can occur if the probability measure has very small
values for certain points as the logarithm is converging to minus infinity for
values converging to zero. To avoid these problems slightly modified input
values are used in the following for the KL divergence. Values smaller than a
threshold e are replaced with €. This ensures that the logarithm is bounded.
In order to guarantee nonnegativity the resulting input values are rescaled to
be of equal length.

For the relabelling algorithm the mode-specific loss function can be taken as
the sum of the KL divergences between the a-posteriori probabilities of the
observations and the action a,,. This is given by

N S
1S @
LY(Q™0) = 33 7 (6) log ((m)) |
i=1 s=1 is
The action a™ is given by Q™ = (¢/%)i=1...N:s=1....s, where ¢" represents the

probability that observation i is assigned to group s for mode m. If it can be
assumed that the empirical distribution of the observations approximates the

10



unconditional mixture distribution induced by ©, it holds that

W E(Q70) ~ dia (@™, 1)) + 3 (O (1:(Q"). 1))

where f is the unconditional component specific density function f(-,-|0s), h
is the unconditional mixture density and II = (7;)s=1._s. The densities f; and
h and the parameter vector Il are all either induced by © or the action Q™.
The mode-specific actions (Step 2) are given in closed form by determining the
means of the correctly labelled a-posteriori probabilities over the B replica.

For the use of the KL divergence as dissimilarity measure for the constrained
clustering approach a partition into a sum of component-specific losses is easily
possible. Due to its asymmetry the order of the input arguments has to be
decided. The centroids are intuitively inserted as the first argument in the
objective function because the KL divergence then measures the loss for using
the centroid instead of the observation. This order of the input values also
has the advantage that the centroids can be determined in closed form by
averaging over the observations assigned to the respective clusters. To ensure
nonnegativity the component specific posteriors have to be rescaled to be of
equal length. This implies that the relative weight or size of the components
is neglected in measuring the dissimilarity, i.e. the component distributions
are more or less directly compared instead of the with 7, weighted component
distributions. This gives the following dissimilarity measure for the component
specific posteriors for the constrained clustering algorithm:

d(gr, 75(0)) = 74(O) ; ;((g)) log (J;f(g))) ’

where q, = (qix)i=1,..n is the k™ centroid with N, g;, = 1 Vk. Please note
that the transformation exploits the equality m,(6) = >, 7;,(©). This dis-
similarity measure is referred to as weighted KL divergence where the rescaled

posteriors are used as input.

Under the assumption that the empirical distribution approximates the un-
conditional mixture distribution it holds for the sum over all components that

]1[ Zl d(qk(s)7 Ts(@)) ~ Zl 7TdeL<fk:(s)(Q>7 fs<®))
— dxL(R(Q{(k(s))s}), h(O)).

Q = {aqr}r and h(Q{(k(s))s}) is the unconditional mixture density with
S components induced by selecting the S components given by k(s), s =
1,...,5, from (). This signifies that the sum over the component specific

11



dissimilarities is the same as the loss using the KL divergence between the
a-posteriori probabilities (see Equation (3)) except that the KL divergence
between the vector of the component weights is not taken into account. This
comparison indicates that the constrained clustering approach and the rela-
belling algorithm will in general lead to similar results especially if the com-
ponents are of similar size.

6 Illustration

Two examples are given for the application of the two proposed approaches.
First a mixture of three ¢t-distributions is fitted to the galaxy data set. The need
to account for genuine multimodality for this example was already previously
indicated [11]. The second example uses a finite mixture of Gaussian regression
models where the true underlying mixture distribution is not identifiable due
to intra-component label switching. The knowledge of the true underlying data
generating process allows to check if the algorithms are able to detect the two
a-priori known modes.

The KL divergence with the truncated posterior probabilities is used for the
relabelling algorithm and the weighted KL divergence with the truncated and
rescaled posterior probabilities is used for the constrained clustering method.
Truncation means that values smaller than ¢ = 1.5e-154 are replaced by e.
The data analysis is made with the statistical computing environment R [24].
jags (Just Another Gibbs Sampler) [25] is used as sampling engine.

6.1 Mizture of t-distributions using the Galary data set

The data set consists of velocities (in 10° km/s) of 82 galaxies from six well-
separated conic sections of an survey of the Corona Borealis area. The data
is assumed to come from a mixture of three t-distributions with 4 degrees of
freedom. Details of the priors and the corresponding Gibbs sampling steps are
given in [10]. The Gibbs sampler is run for 10000 iterations where the first
5000 draws are discarded as burn-in. Traces of the remaining draws for the
component specific means are given in Figure 1. It can be seen that the MCMC
draws cluster around a different mode for the iterations between 1000 and 2000
with a label switching between Component 1 and 3 for the iterations before
1000 and after 2000. Imposing an ordering constraint would eliminate the label
switching within a mode, but would not allow to automatically differentiate
between the two modes.

For the constrained clustering method the algorithm is started with 10 differ-

12
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ent random initializations (i.e. K distinct data points are randomly selected
as centroids) and the number of clusters is varied from 3 to 7. To select a
suitable number of clusters the sum of within cluster dissimilarities are plot-
ted against the number of clusters (see Figure 2 on the left). An elbow can
be observed where the turning point is for 4 clusters which suggests that this
is the optimal number of clusters. The constrained clustering approach was
hence able to detect that there are multiple genuine modes present, because
for unimodality the optimal number of clusters is equal to the number of com-
ponents of the mixture. In addition it can be concluded that the two modes
only differ with respect to one component while two components are stable. If
4 clusters are selected the resulting cluster assignments can be combined with
the information which observations are from the same MCMC draw in order
to determine a mode assignment. This gives 2 modes which contain 84.8%
and 15.2% of the MCMC draws respectively. The traces for each cluster and
the smaller mode are given in Figure 3 in the top panel labelled “Constrained
clustering”.

For the relabelling approach under genuine multimodality the algorithm is
again started with 10 different random initializations (i.e. the labels of the
components of each draw are randomly permuted and the draws are randomly
partitioned). The number of modes is varied from 1 to 4. In order to determine
the suitable number of modes the total loss is plotted against the number of
modes (see Figure 2 on the right). Please note that even though the algorithm
was initialized with 1 to 4 different modes the best solutions detected over
10 random initializations have only 1, 2, 3 and 2 different modes as modes
which become empty during the run of the algorithm are discarded. The plot
indicates that the suitable number of modes is 2. If 2 modes are selected they
contain 16.2% and 83.8% of the MCMC draws respectively. The traces for
each component and the smaller mode are given in Figure 3 in the bottom
panel labelled “Relabelling”.

The congruence between the cluster and mode assignments of the constrained
clustering and relabelling approaches is determined using the Rand index cor-
rected for chance [26] as an objective measure to assess the similarity between
the labellings. This gives a value of 0.95 for the mode assignments and the
cluster assignments are identical where the mode assignments correspond. A
further investigation of the draws which are assigned to different modes indi-
cates that the different mode assignments only occur because they are assigned
to the smaller mode for the constrained clustering approach and to the larger
for the relabelling approach. An investigation of the means indicates that the
solution of the constrained clustering approach is better in achieving a unique
labelling. However, to evaluate the performance of the algorithms by only com-
paring the mean values might be inappropriate because the clustering basis
were the posterior probabilities which do not only depend on the means but
are also highly influenced by the variances which are allowed to vary between

14



the components. The draws where the mode assignments differ are in fact
those which are hard to classify because they have a similar dissimilarity to
both modes due to the differences in variance.

6.2 Mizture of Gaussian regressions

The mixture regression example is given by

(y; ps(),0.1)

C»D\»—t

3
H(y|x,©) :Z

where p14(x) = x'B, and ¢(+; u, 0?) is the Gaussian distribution with mean g
and variance o2. The regressors are assumed to consist of an intercept, a con-
tinuous variable x; € [0, 1] and an interaction term between a binary variable
2o and x1. For simplicity of presentation no main effect of the binary variable
Zo is included, i.e., the coefficient is equal to 0 for all components. As Gaus-
sian mixture distributions are generically identifiable the means, variances and
component sizes are uniquely determined in each covariate point [27]. Due to
the specific structure of the covariate matrix, only the following three covari-
ate points are necessary to uniquely determine the marginal distributions in
each possible covariate point. Let the means p, for component s given the
covariate matrix X of the three points be given by

00 4 4 2
X=110], m=141, m2=121, 3 =12
11 2 4 2

As the ordering of the components in each point is not unique due to the
violation of the coverage condition [12], the two possible solutions for 3 :=

(/817 /627 /83) are:

Solution 1: 81" = (4,0,-2), B85 = (4,-2,2), B = (2,0,0),
Solution 2: 8% = (4,0, 0Y, 8% = (4,—2,0Y, B = (2,0,0)".

The omission of x5 in the regression clearly simplifies the example, because the
mixture with the same marginal distributions where the binary variable x5 is
also included in the regression and allowed to vary between the components,
has 6 different parameterizations.

In the following we use a sample with 100 observations from this mixture
distribution, where the x; values are equidistantly given in the interval [0, 1]
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Fig. 4. Raw output of the Gibbs sampler.

and both x5 values are observed for each x; value. We fit a finite mixture model
with 3 components to the sample using a Gibbs sampler with similar priors
and initial values as for the galaxy data. 55000 draws are simulated where the
first 5000 draws are discarded as burn-in and for the remaining 50000 draws
a thinning interval of 10 is used and only 5000 draws are recorded. The raw
output using the recorded draws of the Gibbs sampler is given in Figure 4.
The jumps in the traces clearly indicate that different modes of the posterior
are visited even though it might be hard to assess at a first glance if genuinely
different modes are visited.

For the constrained clustering approach 10 different random initializations are
performed and the number of clusters is varied from 3 to 7. The diagnostic
plot of the sum of within cluster dissimilarities against the number of clusters
suggests 5 clusters (see Figure 5 on the left). The combination of the infor-
mation which observations are from the same MCMC draw and the cluster
labels gives 4 different modes where the two largest modes contain 62.2% and
26.6% of the MCMC draws and all other modes less than 6%. To illustrate the
results the traces of the parameter 35 are given in Figure 6 on the top panel
separately for each cluster and only for the largest mode.

For the relabelling approach the algorithm is randomly initialized 10 times.
The number of modes is varied from 1 to 4 and the plot of the number of
modes versus the total loss suggests that the suitable number of modes is
2 (see Figure 5 on the right). If 2 modes are selected they contain 72.1%
and 27.9% of the MCMC draws respectively. The traces of the parameter [,
are given in Figure 6 separately for each component and only for the larger
mode. The figure indicates that because the relabelling algorithm had to assign
each draw to one of the two modes spurious draws are also included in the
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Fig. 5. Diagnostic plot for the number of clusters for the constrained clustering
approach left and for the number of modes for the relabelling algorithm right.
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Fig. 6. Trace plot of the parameter estimates for (o from the permuted MCMC
sample of the largest mode usint the constrained clustering algorithm with 5 clusters
(top panel) and the relabelling algorithm with 2 modes (bottom panel).

larger mode. This signifies that the parameter values for Component 2 are for
example not symmetrically clustering around a mean value. The constrained
clustering approach is performing better in this case because it was able to
eliminate spurious draws by assigning them to additional modes.

The congruence between the cluster and mode assignments of the constrained
clustering and relabelling approaches can also be determined using the Rand
index corrected for chance which are equal to 0.73 for the mode assignments
and 1 for the cluster assignments where the mode assignments correspond.
In this case the congruence between the mode assignments is relatively low
because the constrained clustering approach made a classification into more
different modes.
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Table 1

Mean estimates (standard deviations) for each component for the overall data after
relabelling with respect to an ordering constraint on ; (“Overall”), for the two
largest modes for the constrained clustering algorithm with 5 clusters (“Clustering”)
and for each mode of the relabelling algorithm and 2 modes (“Relabelling”).

Method Mode Size Comp. 061 Ba O3
Overall 1.00 1 1.94 (1.08) -0.06 (1.49) 0.64 (1.32)
2 3.65 (0.46) -0.41 (1.36) 0.00 (1.35)
3 4.03 (0.96) -1.28 (1.11) 0.79 (0.92)
Clustering 11010 0.62 1 3.85 (0.15)  0.19 (0.27) 0.17 (0.21)
2 2.00 (0.14) -0.16 (0.24) 0.58 (0.28)
3 3.73 (0.80) -2.05 (1.12)  0.60 (0.98)
01101 0.27 1 1.99 (0.14) -0.17 (0.25)  0.51 (0.28)
2 3.78 (0.20)  0.32 (0.31) -1.76 (0.42)
3 4.02 (0.15) -2.43 (0.42)  2.60 (0.38)
Relabelling 1 0.72 1 2.01 (0.14) -0.17 (0.23)  0.57 (0.27)
2 3.72 (0.98) -1.59 (1.90) 0.72 (1.47)
3 3.83 (0.16) 0.19 (0.27) 0.18 (0.22)
2 0.28 1 1.99 (0.14) -0.18 (0.25)  0.51 (0.28)
2 3.77 (0.20)  0.33 (0.31) -1.71 (0.50)
3 4.02 (0.15) -2.39 (0.49) 2.57 (0.45)

A comparison of the results derived using (1) an ordering constraint on [;
for the overall dataset without accounting for the presence of different modes,
(2) using the constrained clustering approach with 5 clusters and (3) the rela-
belling approach with 2 modes is given in Table 1. The mean values for each
component are given separately for each mode together with the standard de-
viations in round parentheses. Please note that for the constrained clustering
approach the component with the smallest intercept is estimated separately
for each mode even though the same cluster is contained in both modes.

Ignoring the presence of genuine multimodality and imposing an ordering con-
straint is not successful in revealing any of the true underlying parameteriza-
tions. The ordering constraint approach also suffers from the fact that each
parameter has theoretically the same value for at least two components. The
other two approaches are able to identify the two modes in the likelihood
which correspond to the two different parameterizations of the true underly-
ing mixture distribution. The constrained clustering approach classifies only
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88.8% of the draws to these two modes while the remaining draws are clas-
sified as spurious. The relabelling approach assigns each draw to one of the
modes and this leads to larger estimates for the standard deviations.

7 Conclusions

The difficulty in the estimation of finite mixture models often stems from the
fact that the likelihood or posterior densities are genuinely multimodal. For
MCMC sampling the label switching problem also has to be addressed before
component specific inference can be made for the posterior distribution. Most
methods proposed to solve the label switching problem do not account for
the possibility of genuine multimodality of the posterior density and are likely
to fail under genuine multimodality. It is therefore necessary to have tools
available which work under these conditions.

In this paper two approaches to determine simultaneously a mode assignment
as well as a unique labelling of the components for each mode are presented.
The two methods are equivalent under the assumption of no genuine multi-
modality and only differ in the way they extend the model to account for
the presence of different genuine modes. In the exemplary applications both
methods are shown to succeed in determining a suitable labelling. Both meth-
ods are only exploratory tools for the analysis of the MCMC draws, because
they require the data analyst to determine the suitable number of clusters or
modes. Diagnostic tools can assist in this decision, but the final decision can
be ambiguous, especially if one mode occurs only rarely.

The advantage of the constrained clustering approach if compared to the rela-
belling approach under genuine multimodality is that (1) it allows to eliminate
spurious draws and determine suitable labellings and mode assignments for
the remaining draws and (2) enables easy identification of components which
are part of several different modes. For illustrating the methods the KL diver-
gence was selected as loss and dissimilarity measure because it can be applied
for different kinds of mixture models such as model-based clustering or mix-
tures of generalized regression models. In the future we want to investigate
the performance of other measures which are not based on the a-posteriori
probabilities but directly use the parameter estimates. In addition it would
be interesting to also analyze the performance of the proposed methods for
applications where the genuinely different modes have different number of
components.

This paper focused on Bayesian estimation problems. However, similar prob-
lems arise in a frequentist setting if bootstrap methods are applied for model
diagnostics [28]. If the EM algorithm is randomly initialized for determining
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the maximum likelihood estimates of the bootstrap samples the solutions will
correspond to different modes of the likelihood which exist either due to la-
bel switching or are due to genuine multimodality. Both proposed methods
can also be used in this setting to determine a suitable labeling as well as a
separation into different modes (if needed) for the parameter estimates. Ad-
ditional methods for checking for the presence of genuine multimodality have
been proposed in this context, which allow to determine if it is necessary to
account for genuine multimodality [29].
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