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Objective: In CADASIL (Cerebral Autosomal Dominant Arteriopathy with Subcortical
Infarcts and Leukoencephalopathy), white matter hyperintensities (WMH) are considered
to result from hypoperfusion. We hypothesized that in fact the burden of WMH results
from the combination of several regional populations of WMH with different mechanisms
and clinical consequences.

Methods: To identify regional WMH populations, we used a 4-step approach. First,
we used an unsupervised principal component algorithm to determine, without a priori
knowledge, the main sources of variation of the global spatial pattern of WMH. Thereafter,
to determine whether these sources are likely to include relevant information regarding
regional populations of WMH, we tested their relationships with: (1) MRI markers of the
disease; (2) the clinical severity assessed by the Mattis Dementia Rating scale (MDRS)
(cognitive outcome) and the modified Rankin’s score (disability outcome). Finally, through
careful interpretation of all the results, we tried to identify different regional populations of
WMH.

Results: The unsupervised principal component algorithm identified 3 main sources of
variation of the global spatial pattern of WMH, which showed significant and sometime
inverse relationships with MRI markers and clinical scores. The models predicting clinical
severity based on these sources outperformed those evaluating WMH by their volume
(MDRS, coefficient of determination of 39.0 vs. 35.3%, p = 0.01; modified Rankin’s
score, 43.7 vs. 38.1%, p = 0.001). By carefully interpreting the visual aspect of these
sources as well as their relationships with MRI markers and clinical severity, we found
strong arguments supporting the existence of different regional populations of WMH.
For instance, in multivariate analyses, larger extents of WMH in anterior temporal poles
and superior frontal gyri were associated with better outcomes, while larger extents of
WMH in pyramidal tracts were associated with worse outcomes, which could not be
explained if WMH in these different areas shared the same mechanisms.
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Conclusion: The results of the present study support the hypothesis that the whole
extent of WMH results from a combination of different regional populations of WMH,
some of which are associated, for yet undetermined reasons, with milder forms of the

disease.

Keywords: cerebral small vessel disease, white matter changes, white matter hyperintensities, CADASIL, clinical

severity

INTRODUCTION

White matter hyperintensities (WMH) are a hallmark of cerebral
small vessel disease (SVD). While it is still widely considered that
they result from chronic hypoperfusion, other mechanisms are
likely involved (1, 2).

In CADASIL (Cerebral Autosomal Dominant Arteriopathy
with Subcortical Infarcts and Leukoencephalopathy), the most
frequent monogenic form of SVD, WMH are commonly seen
in anterior temporal poles and superior frontal gyri, which are
generally spared by WMH in age- and hypertension-related SVD
(3). We recently showed that the WMH observed in these areas in
CADASIL are characterized by far longer T1 and T2* relaxometry
values than WMH observed in the remaining white matter. This
large difference, tightly linked to the local water content (4),
suggests that WMH in anterior temporal poles and superior
frontal gyri might result from different mechanisms than WMH
observed in other brain regions.

In the present work, we hypothesized that the whole burden
of WMH observed on conventional MRI in CADASIL results
from the combination of different regional populations of WMH.
To test our hypothesis, we set up a specific imaging analysis
protocol to identify, without a priori knowledge, the main
sources of variation of the spatial pattern of WMH in a large
cohort of CADASIL patients (Figure 1). Thereafter, we aimed to
determine, through the careful visual inspection of these sources
and the interpretation of their relationships with the other MRI
markers of the disease and clinical scores, whether we could
identify different regional populations of WMH.

MATERIALS AND METHODS

Patients

Three hundred and one consecutive subjects (178 from Paris
and 123 from Munich), more than 18 years old, were recruited
in a cohort study of CADASIL patients at Lariboisiere (Paris)
or Ludwig-Maximilians-Universitit (Munich) hospitals between
October 2003 and April 2009. All participants harboured a typical
mutation of the NOTCH3 gene (5). At inclusion, all patients
underwent a thorough neuropsychological and behavioural
evaluation (5) as well as a standardized MRI evaluation.
For the present study, the 4 main clinical scores reported
in previous studies of our group (6-8) were considered for
analyses: global cognitive performances were assessed by the
Mattis dementia rating scale (MDRS) and mini mental state
examination (MMSE); executive functions were assessed by the
time to complete part B of Trail Making Test (TMTB), the most

sensitive test to executive dysfunction in CADASIL (9); and
disability was assessed by the modified Rankin’s scale (mRS). A
local ethics committee approved the study in both centres.

MRI

MRI scans were obtained on 1.5-T systems [General Electric
Medical Systems Signa (Paris and Munich) or Siemens
Magnetom Vision (Munich)]. 3DT1 sequences [Paris: repetition
time/echo time (TR/TE) = 9.1/2 ms, slice thickness = 0.8 mm,
no interslice gap, in-plane resolution = 1.02 x 1.02 mm?;
Munich: TR/TE = 11.4/4.4ms, slice thickness = 1.2mm,
no gap, in-plane resolution = 0.9 x 0.9mm?], FLAIR
[Paris: TR/TE/inversion time (TI) = 8402/161/2002 ms, slice

thickness = 5.5mm, no gap, in-plane resolution = 0.94
x 0.94mm?; Munich: TR/TE/TT = 4284/110/1428 ms, slice
thickness 5mm, no gap, in-plane resolution = 098 x

0.98 mm?] and T2*-weighted gradient echo imaging (Paris:
TR/TE = 500/15 ms, slice thickness = 5.5 mm, no gap, in-plane
resolution = 0.98 x 0.98 mm?; Munich: TR/TE = 1056/22 ms,
slice thickness = 5mm, no gap, in-plane resolution = 0.98
x 0.98 mm?) were performed. No major hardware or software
upgrade was made in either centre during the follow-up period.

Image Processing and Analysis

Masks of WMH and of lacunes were semi-automatically
determined and the number of microbleeds (MBy) recorded in
all subjects from FLAIR, 3D-T1 and T2* sequences respectively
using validated methods which were detailed previously (10), in
agreement with the STRIVE criteria (11). The volumes of WMH
and of lacunes (WMHy and LLy respectively) were obtained by
multiplying the numbers of voxels in the corresponding masks by
the voxel size of the corresponding sequence. Determination of
the global brain volume was performed as previously described
(12). The brain parenchymal fraction (BPF) was defined as the
ratio of brain tissue volume to that of intracranial cavity volume
to take into account inter subject variability in head size (13).
All masks of WMH were registered to the Montreal Neurological
Institute (MNI) template, first with a linear registration between
FLAIR and T1 images (FLIRT) and then with a non-linear
registration between T1 images and the MNI template (FNIRT)
(http://www.fmrib.ox.ac.uk/fsl).

Statistical Methods

For each patient, the whole burden of WMH can be described by
the voxels of the white matter in the MNI space corresponding
to WMH. This represents for each patient between a few
thousands to several hundreds of thousands of voxels. Hence,
the comparison of the shapes of WMH between patients, based
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40 y.o0. patient

the whole pattern of WMH, used in the present study, would likely detect it.

8100

50 y.o. patient

FIGURE 1 | Spatial burden of WMH and the hypothesis of different populations. The schematic represents 3 theoretical patients of increasing age, with on the (Top
Line) the masks of the whole burden of WMH overlaid on the same axial brain slice (in blue). We hypothesized that the whole burden of WMH results from the
combination of different populations of WMH that appear predominantly in certain areas. For instance, the red area on the (Bottom Line) represents a theoretical
region in which WMH (in orange) would have a specific mechanism inversely related to age. In this case, while the extent of WMH in the red area is inversely related to
age, the study of the whole extent of WMH (in blue on the Top Line) would not detect this aspect. By contrast, the unsupervised study of the sources of variation of

60 y.o. patient

on information at the voxel level would require billions of
computations and yield results at a the scale of the voxel, which
would be quite impossible to interpret.

Hence, we used a method to reduce the dimensionality
of the statistical problem to a few new variables. To do so,
we used a spatially regularized principal component analysis
(PCA) approach, adapted to the context of brain images (14),
which aim was to identify the main sources (i.e., principal
components corresponding to large scale combinations of
voxels) that would best describe most of the variations in the
shape of WMH among patients. The main principles of the
methods are explained in Supplementary Figure 1. The analysis
was performed without a priori knowledge of our hypothesis
regarding different populations of WMH.

The PCA algorithm performs the analyses in a repeated
manner. In turn, the algorithm identifies a principal component
(PC) which explains most of the variability in the shape of
WMH between patients. Then, the analysis is re-performed
on the remaining variability (the initial variability from which
is subtracted the variability explained by the last principal
components) to identify new components (Figures 1, 2). The
algorithm may find a very large number of PC, but the percentage
of variability of each PC decreases exponentially. Thus we defined
a priori, in line with the usual usage of PCA, a criterion to stop
looking for new PC. We chose to stop the addition of new PC as

soon as the relative improvement of the total explained variance
by the new PC was inferior to 5%.

Each PC is represented by a pattern (a combination of voxels
that can be represented visually on 3D meshes, see Figure 2).
All the patients are distributed along a given PC through their
corresponding PC values. For each PC, the position of a given
patient with respect to all the others from the cohort is given by
the PC value.

Thereafter, we tested the relationships between the different
PC values and: (1) MRI markers of CADASIL, namely BPF,
LLy, WMHy, and MBy, with systematic adjustment for age and
sex; (2) cognitive scores (MDRS, MMSE, TMTB) and disability
scale (mRS), with systematic adjustment for age, sex, level of
education, and MRI markers in agreement with the literature in
CADASIL (6, 7).

Finally, we compared with ANOVA the models predicting
clinical severity based on usual predictors such as age, sex, level
of education, BPE, LLy and MBy (reference model) to others
further including as a predictor WMH assessed either through
their whole volume or through PC values. We calculated for
each model the coefficient of determination (R?), a parameter
explaining the part of variance in the outcome explained by a
model. We used adjusted R? values in order to limit the risk of
systematic increase of explained variance with the addition of
more predictors.
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FIGURE 2 | Visual aspect of principal components and their relationships with other MRI markers and clinical scores. Each box depicts one principal component. The
Top of the box shows the component pattern (the combination of voxels that explains a part of the variability of WMH shape) and the Bottom the corresponding
component value. The component value describes the position of a given patient with respect to all the others for a given component pattern. For instance, PC1
represents the volume of WMH, and as such, patients with large extents of WMH will have large PC1 values and lie on the right of the colour shade, while those with
low extents will lie on the left of the colour shade. The links between the component values and the different MRI markers and clinical scores are also represented. For
instance patients with large extents of PC1, having large volumes of WMH, also have larger volumes of lacunes. MDRS, mattis dementia rating scale; MMSE, mini
mental state examination; TMTB, trail making test version B; mRS, modified Rankin’s Scale; BPF, parenchymal brain fraction; LLy;, volume of lacunes; WMHy,, volume
of white matter hyperintensities; MBy;, number of microbleeds; SFG, superior frontal gyrus; ATP, anterior temporal pole; PT, pyramidal tract; n.s., absence of
significant relationship between considered variables.

All statistical analyses were performed with the R software
(https://www.r-project.org). Coeflicients of determination were
calculated with the “relaimpo” package. Multiple imputations
were used to deal with missing data (<2% of outcomes).

RESULTS

The main clinical and radiological characteristics of the 301
patients are summarized Table 1.

Main Sources of Variation of the Spatial

Pattern of WMH

The PCA algorithm identified 3 principal components (PC)
before reaching the end criterion. The first PC (PC1) explained

19.9% of the variability in the spatial pattern of WMH,
further improved by 15% by PC2 and thereafter by 6% by
PC3. The patterns associated with the 3 first components are
visually represented as masks over whole brain meshes in
Figure 2.

The correlation coefficient between PC1 values and WMHy
was extremely high (0.95, p < 107!%), showing that PCl
represents a global quantitative reflect of the whole WMH
burden.

Thereafter, PC2 was characterized by inversely related clusters
of WMH. Indeed, compared to the pattern predicted in a
given patient from the value of PCl, the more negative
was the value of PC2, the more WMH voxels were present
in blue areas and absent in red areas, and vice-versa
(Figure 2).
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TABLE 1 | Clinical and MRI data of the 301 patients.

Mean SD Min Max
Age 50.6 11.2 23 78
Male sex (count - %) 134 (44.5%)
Level of education (count - %)* 0-3: 39 (13%); 4-6: 198 (66%); 7-9: 64 (21%)
MDRS 1338.7 17.6 35 144
MMSE 26.9 4.4 6 30
TMTB (time to complete, s) 166.5 164.5 24 975
mRS 0.94 1.29 0 5
BPF (%) 82.4 5.6 62.3 94.6
LLy (mm3) 351.7 646.2 0 5180.5
WMHy (mm?3) 95409.3 66614.9 659.2 414399.9
MBy 3.7 13.6 0 141

The clinical and MRI characteristics of the 301 patients of our cohort are summarized. MDRS, mattis dementia rating scale; MMSE, mini mental state examination; TMTB, trail making
test version B; mRS, modiified Rankin’s Scale; BPF, parenchymal brain fraction; LLy, volume of lacunes; WMH\,, volume of white matter hyperintensities; MBy, number of microbleeds.
*Reference levels of education: 0 = illiterate, 3 = incomplete secondary school (<9 years), 6 = secondary school (13 years), 7 = university (>16 years).

Finally, PC3 was also characterized by inversely related
clusters of WMH voxels. In line, compared to the pattern
predicted in a given patient from the values of PC1 and of
PC2, the more negative was the value of PC3, the more WMH
voxels were present in blue areas and absent from red areas, and
vice-versa.

A typical illustration of 2 patients with large extents of WMH
(corresponding to large PC1 values) but with distinct PC2 and
PC3 values are shown Figure 3. While the whole volume of
WMH is comparable, the spatial pattern of WMH is totally
different between the 2 patients.

Relationships Between the Principal
Component Values and Other MRI Markers
(Figure 2)

In addition to their strong correlation with WMHy, PC1 values
were positively and linearly related to LLy (estimate: 2.3 107>,
se. = 4.3 1079, p < 10~%) and to MBy (estimate = 4.0 1074,
s.e.=2.1107%, p = 0.04), but not to BPF.

The PC2 values were significantly associated with WMHy,
BPE and MBy, patients with negative values having larger
WMHy (estimate: —3.6 1077, s.e. = 5.0 10_8,p <107%), larger
BPF (estimate = —5.2 1073, s.e. = 7.1 10’4,p < 107%), and lower
numbers of MB (estimate = 6.9 1074, s.e. = 1.9 1074, p = 0.006).
By contrast, PC2 values were not significantly related to LLy.

In line, PC3 values were also significantly associated with
WMHy, BPF and MBy, patients with negative values having
larger WMHy (estimate: —2.8 1077, s.e. = 5.3 1078, p < 107%),
larger BPF (estimate = —2.9 1073, s.e. = 7.0 1074, p < 107%)
and lower numbers of MBy (estimate = 5.1 1074, s.e. = 2.0 1074,
p = 0.05). By contrast, PC3 values were not significantly related
to LLy.

When considering together the visual aspect of PC2 and
PC3 and their relationships with the different MRI markers, it
appeared that, independently of potential confounders including
the global volume of WMH, the presence of WMH voxels in
anterior temporal poles and superior frontal gyri was associated

with less severe clinical and MRI phenotypes, while the presence
of WMH voxels in pyramidal tracts and forceps minor was
associated with, by contrast, more severe forms of the disease (see
Supplementary Figure 2).

Relationships Between the 3 Principal

Components and the Clinical Status

We obtained models with significant abilities to predict the 4
clinical scores based on age, sex, level of education and the
different sets of MRI markers (Table 2). In all cases, the adjusted
R? of the corresponding models were high, above 30%. For the 4
clinical scores, the additional variance explained by the inclusion
of WMHy as a predictor was weak compared to the models
including only BPE, LLy, and MBy. As expected given the strong
correlation observed between PC1 values and WMHy, the yield
of PC1 values regarding the increase of R?> was close to that
of WMHy. Given the strong collinearity between WMHy and
PC1 values, we did not tested models including both variables as
predictors.

With the exception of TMTB, all models including PC2 and
PC3 values in addition to that of PCI explained significantly
better the clinical outcomes than models including PC1 values
or WMHYy only (Table 2). The variance explained by the values
of PC1, PC2, and PC3 appeared far larger than that of the volume
of lacunes in all cases, and close to that of BPF (data not shown).

DISCUSSION

The results of the present study support the hypothesis that the
whole burden of WMH in CADASIL is in fact the combination
of different regional populations of WMH, with different
mechanisms and clinical consequences.

Indeed, we showed that, independently of the global burden
of WMH, the extent of WMH in different brain regions strongly
varies among patients. In addition, across different brain regions,
we observed different and sometimes inverse relationships
between the local extent of WMH and other MRI markers and
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the same mechanisms that those of other WMH.

PC2
A
PC1
- B
[
[ N ]
[ J
® O ° =
® » PATIENT 1
AT
[
o © *
’.
° e : . ‘
® ® '. @ o P .1 In PATIENT 1, anterior temporal poles and subinsular
4 I® Qareas are spared (—»)
_-—OQ—OJ—G-Q. < "-‘ < — PC3
L) P : Woman of age 61, MDRS: 116, mRS: 0
® ® oy Number of lacunes: 14, number of MB: 3
[}
[ J [

In PATIENT 2, anterior temporal poles and superior frontal
gyri are sites of WMH (=)

Woman of age 72; MDRS: 144, mRS: 0
® Number of lacunes: 3, number of MB: 12

FIGURE 3 | Determination of WMH spatial pattern from the values of the different components. The 301 patients of the cohort are represented according to their PC2
and PC3 values (along the axes) and PC1 score (coded from dark to light blue). Two patients from the cohort with similar PC1 values corresponding to large WMHy,
(above 140 ml) are shown. These 2 patients clearly illustrate that while their whole extent of WMH is comparable, as illustrated on the middle slice at the level of the
centrum semi ovale, their spatial patterns are clearly different. PATIENT 2 shows large extents of WMH in anterior temporal poles and superior frontal gyri, in total
contrast with PATIENT 1 who does not. In our cohort, patients with extensive WMH in anterior temporal poles and superior frontal gyri were significantly less severe
than the others, independently of known predictors of disease severity, strongly supporting that WMH in anterior temporal poles and superior frontal gyri do not share

clinical severity. For instance, all being otherwise equal, larger
volumes of WMH in anterior temporal poles and superior frontal
gyri are associated with milder forms of the disease, while larger
volumes of WMH in pyramidal tracts or in the forceps minor are
associated with more severe forms. Finally, the models predicting
clinical scores from MRI data performed better when taking into
account WMH as a presumed combination of different regional
WMH populations rather than when estimating WMH as a
whole.

A complex aspect of the present study is the translation
between the mathematical objects (the principal components, the
sources of variation of the WMH pattern) and the presumably

different regional WMH populations. First, it is important to note
that our approach is completely different from those testing the
local relationships between WMH voxels and the clinical status.
These voxel-wise approaches, which allowed demonstrating the
importance of alterations in some structures such as the forceps
minor in CADASIL (8) and in sporadic SVD (15, 16), indeed rely
on the hypothesis that all WMH voxels share the same underlying
mechanisms and that their influence on the clinical severity only
depends on the structure they are lying on. By contrast, in the
present study, we tested the hypothesis that different populations
of WMH, with presumably different mechanisms and clinical
consequences, systematically appear in certain brain areas.
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TABLE 2 | Predictive abilities of the different clinical models evaluated by their coefficients of determination.

Predictors Outcomes

Age Sex Level of education BPF LLy MBy WMHy PCivalue PC2value PC3value MADRS MMSE TMTB mRS
35.3 31.4 40.9 38.1
34.5 32.2 1.4 39.7
36.4 32.3 M5 40.3
39.0 36.6 422 43.7

p-value (ANOVA) 0.01 0.0005 0.27  0.001

Values of the adjusted coefficients of determination (R2) expressed as percentages for the different models predicting the 4 clinical scores. Variables included in the different models are
indicated by coloured cells in the left part of the table. Models based on age, sex, level of education, BPF, LLy, MBy, and PC1 value and models further including PC2 and PC3 values
(with corresponding variables in dark green) were compared with ANOVA. P-values corresponding to a significant improvement in the model by further inclusion of PC2 and PC3 values
are shown in bold. Please note that given the strong collinearity between PC1 value and WMH,, they were not included together in the different models. MDRS, mattis dementia rating
scale; MMSE, mini mental state examination; TMTB, trail making test version B; mRS, modified Rankin’s Scale; BPF, parenchymal brain fraction;, LLy, volume of lacunes; MBy, number

of microbleeds; PC, principal component.

While our results strongly support the co-existence of
different regional WMH population, the interpretation of
principal components patterns in terms of regional WMH
populations is far from being trivial. Obviously, the blue
clusters in PC2 and PC3 in anterior temporal poles and
superior frontal gyri matches the pattern of WMH known
to be far more frequently observed in CADASIL than in
sporadic forms of SVD. Surprisingly, the presence of WMH
in these areas was independently associated with milder
radiological and clinical phenotypes. In line with recent results
showing a specific tissue composition of these WMH when
compared to those appearing in other brain areas, our results
support not only that these WMH have distinct underlying
mechanisms, but also that, for yet unknown reasons, they
may be protective against the effects of the disease. In
contrast, large parts of the red clusters of voxels in PC2
and PC3 matches the anatomy of the forceps minor and
pyramidal tracts, and were associated with more severe forms
of the disease, suggesting that they represent another WMH
population.

Altogether, our results suggest that the whole burden of
WMH in CADASIL results from the combination of at least
3 different regional WMH populations: one that progressively
spreads with age while following the pattern of PCI, the
evolution of which appears quite similar to that of WMH in
sporadic forms of SVD. Another, mostly observed in severe
patients, corresponding to further accumulation of WMH
voxels in pyramidal tracts and forceps minor. Given its strong
association with the volume of lacunes and brain atrophy,
a potential candidate mechanism underlying this population
might be secondary axonal degeneration. Finally, another WMH
population, possibly specific to CADASIL, characterized by
the accumulation of WMH voxels in anterior temporal poles
and superior gyri, and which, for yet unknown reasons,
are associated with milder forms of the disease. To note,
the presence of fluid filled cavities embedded within the
myelin sheath as observed in the CADASIL mouse model
(17) and distinct from lesions usually observed post-mortem
in sporadic SVD (18) might explain an increase of water
content without significant myelin or axonal damage (4).

Whether the presence of such myelin alterations could explain
milder clinical severity in some patients remains however
unknown.

Our study has several limitations. Whether patients having
large extents of WMH in anterior temporal poles and superior
frontal gyri actually develop with time milder forms of the disease
will remain questionable until confirmation by further studies
of long term follow-up data that are currently gathered. Also,
the understanding of white matter damage from conventional
MRI remains incomplete. Our approach relied on the delineation
of WMH, but it is now widely admitted that WMH locally
correspond to heterogeneous lesions and that white matter
damage is also present in the so called normal appearing white
matter (19). Similar approaches, not based on the study of
a proxy such as WMH, but rather on the identification of
quantitative MRI signatures of the different substrates of white
matter damage will help delineating the local severity of white
matter damage in patients suffering from SVD. Also, most
of the variations of the pattern of WMH remain uncaptured
by our algorithm. It is important to understand that given
the strong reduction in the dimensionality of the problem
when stepping from voxel analyses to principal component
analyses, it was expected that a large part of the variability
in WMH patterns would not be explained by this approach.
In addition to this methodological explanation, whether the
remaining unexplained variance is related to stochastic processes
involved in the occurrence of white matter damage or to
unidentified systematic sources of variations will require further
studies.

While WMH were so far considered to have limited
consequences in CADASIL (10), the results of the present
study suggest that this view might have been misleading
because different regional populations of WMH with
potentially distinct mechanisms and clinical consequences
were previously considered as a unique entity (6, 7, 10, 12).
The presence of WMH in anterior temporal poles and
superior frontal gyri might be associated with milder
forms of the disease, independent of all other determinants
of disease severity, for reasons that remain largely
undetermined.
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