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HIF-1α colocalised with CD68+ macrophages, with no expres-
sion observed in renal parenchymal cells (figure 4D). In patients 
with AAV without crescentic histology (n=3), no protein 

expression of TKT or HIF-1α was observed (data not shown). 
To determine if PPP expression correlated with macrophage-re-
lated cytokine production, the PPP score from the glomerular 

Figure 2  Comparison of differences in glomerular gene expression (log2 mRNA levels) among selected metabolic isozymes in patients with 
nephrotic syndrome, antineutrophil cytoplasmic antibody-associated vasculitis and healthy donors in the discovery cohort. *p<0.05; **p<0.01; 
***p<0.005; ****p<0.001, NS, not significant.

Figure 3  Pentose phosphate pathway (PPP) gene expression is differentially regulated in a variety of glomerulonephritis and is associated 
with impaired kidney function. PPP gene expression differences among groups collected within the discovery cohort in the glomerular (A) and 
tubulointerstitial (B) compartments. Comparison of PPP gene expression within the glomerular compartment in the discovery cohort between patients 
with antineutrophil cytoplasmic antibody-associated vasculitis (AAV) or systemic lupus erythematosus (SLE) categorised by glucocorticoid use at 
the time of biopsy (C). Validation of PPP gene expression differences within the glomerular compartment in the validation cohort (D). Correlation 
between PPP expression and glomerular filtration rate in the glomerular (E) and tubulointerstitial (F) compartments in the discovery cohort. 
*p<0.05; **p<0.01; ***p<0.005; ****p<0.001, NS, not significant. FSGS, focal segmental glomerulosclerosis; MCD, minimal change disease; MGN, 
membranous glomerulonephritis.
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compartment was correlated with a TNF activation score. There 
was strong, positive correlation (r=0.70, p<0.01) between the 
PPP and TNF activation scores, with the highest values observed 
in patients with AAV compared with NS and LD (figure 4E).

Discussion
Under conditions of cellular homeostasis, the TCA cycle serves 
as the most efficient source of energy production in humans. 
However, under conditions of cellular stress, including inflam-
matory microenvironments, glucose can become a preferred 
metabolic substrate. This study demonstrated concordant 
alterations of the renal transcriptome consistent with meta-
bolic reprogramming across different forms of glomeru-
lonpehritis. Gene expression profiling of renal tissue from 
the glomerular compartment revealed downregulation of 
pathways of cellular homeostasis, including the TCA cycle, 
glutaminolysis and fatty acid oxidation, and upregulation of 
pathways of glucose metabolism, including the PPP. Significant 
upregulation of HIF-1α-related gene transcripts and colocali-
sation of HIF-1α and CD68 by tissue immunofluorescence in 
the glomeruli of patients with AAV suggests that this transcrip-
tion factor plays a critical role in the regulation of glycolytic 
pathways in glomerulonephritis.16 33

Activation of the PPP in both the glomerular and tubu-
lointerstitial compartments in a discovery and validation 
cohort was the most striking finding in this study. Increased 
expression of enzymes of the PPP was demonstrated in NSs 
compared with healthy living donors with the highest levels 

of PPP expression seen in inflammatory kidney diseases. In 
patients with NS, increased expression of the PPP in the tubu-
lointerstitial compartment was significantly associated with 
reduced kidney function and increased intensity of tubuloint-
erstitial fibrosis. Although renal disease in AAV is typically 
defined by glomerular involvement, similar alterations of PPP 
enzyme transcription were observed in renal biopsies from 
patients with AAV in both the glomerular and tubulointerstitial 
compartments. Global alterations of the renal transcriptome 
across different anatomic compartments are therefore associ-
ated with renal disease in AAV. Similar levels of PPP expres-
sion in kidney biopsies from patients with AAV or SLE indicate 
that alterations of metabolic pathways might be shared across 
different forms of glomerulonephritis.

Several lines of evidence suggest that monocyte/macrophages 
are likely a major contributor to PPP expression in these diseases. 
Increased PPP expression was observed in the NS subtypes 
where inflammatory features on histology are most pronounced, 
including MGN and FSGS compared with MCD. Computational 
analyses showed that PPP expression strongly correlated with 
monocyte/macrophage surface markers, especially in patients 
with AAV, and protein expression of PPP enzymes colocalised 
to macrophages within the glomerular compartment by tissue 
immunofluorescence. One function of the PPP is to generate 
NADPH and maintain redox balance, which may be particularly 
important to cellular survival in activated macrophages under-
going oxidative burst. Another function of the PPP is to generate 
nucleic acid precursors. Production of biomass through the PPP 

Figure 4  Myeloid cells are likely a major source of activated pentose phosphate pathway (PPP) gene expression. Subset prediction from enrichment 
correlation (SPEC) predicts that renal tubule and monocyte/macrophages are the likely source of PPP in the discovery cohort with the intensity of 
the red bar indicates degree of confidence in the bar plot correlation of cell types and PPP expression (A). The monocyte/macrophage enrichment 
score correlates with the PPP enrichment score in antineutrophil cytoplasmic antibody-associated vasculitis (AAV), while the tubule enrichment 
score correlates with the PPP enrichment score in healthy living donor and nephrotic syndrome samples (B). Transketolase (TKT), a key regulatory 
enzyme within the PPP, correlates with CD14, a marker for monocyte/macrophages in the glomerular compartment in the discovery cohort (C). Tissue 
immunofluorescence demonstrates localisation of TKT and HIF-1α within monocytes/macrophages (CD14) in the glomerular compartment (D). The 
PPP gene expression score is strongly associated with increased expression of a tumour necrosis factor (TNF) activation score within the glomerular 
compartment (E).
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could facilitate generation of the necessary messenger RNA 
and protein to enable effector functions. Activation of the PPP 
is known to induce pro-inflammatory cytokine production in 
macrophages,5 and in this study, strong correlation was observed 
between PPP expression and TNF activation within the glomer-
ular compartment, particularly in AAV.

In addition to regulation of important metabolic pathways, 
differential expression of key, regulatory metabolic isozymes 
was observed across the conditions studied. These findings 
may inform future functional studies of metabolic pathways in 
renal disease. PFKFB3, which was upregulated in both NSs and 
AAV, has been specifically associated with the Warburg effect 
in tumour cells because its activity increases the rate of glycol-
ysis.34 Among glucose transporters, which facilitate glucose 
passage across plasma membranes, there was upregulation of 
GLUT3 and downregulation of GLUT2 in both NS and AAV. 
GLUT3 is the highest affinity glucose receptor and therefore 
may play a key role in facilitating glucose metabolism in these 
conditions.35 Hexokinases regulate the first step in glycolysis, 
and significant increased expression of HK3 was observed 
in patients with AAV. HK3 is the predominant hexokinase in 
myeloid cells and is upregulated in peripheral blood samples 
from patients with AAV in a prior transcriptomic study.36 37 
The functions of HK3 are poorly characterised, making it an 
attractive candidate for future functional studies.

This study has some important potential limitations to 
consider. Concomitant use of glucocorticoids can affect gene 
expression and information about glucocorticoid dose at the 
time of biopsy was not available; however, no significant differ-
ence between PPP scores were observed when adjusting for 
glucocorticoid use as a categorical variable. Detailed patholog-
ical descriptions from renal biopsies in the ECRB cohort was 
not available across the cohort, precluding comparison of the 
renal transcriptome with histological characteristics of disease. 
Urinary metabolites were not studied; however, alterations of 
glycolysis-related transcripts in animal models of diabetes have 
predicted changes in glycolytic metabolites in renal cortex and 
urine.38 Finally, subgroup comparisons were limited by small 
sample sizes.

Distinct alterations in cellular metabolism were observed in 
the renal transcriptome from patients with different forms of 
glomerulonephritis, including NSs and systemic inflammatory 
diseases such as AAV and SLE. Global patterns of gene expres-
sion are indicative of increased utilisation of glucose and 
decreased oxidative phosphorylation, especially in patients 
with inflammatory kidney diseases. Metabolic reprogram-
ming of cells within affected renal tissue may constitute a 
form of shared molecular pathology across different types of 
glomerulonephritis. The strong correlations between markers 
of glycolysis, macrophage-related markers and inflammatory 
cytokines observed in this study further suggest that altered 
immunometabolism may also play a role in the pathophysi-
ology across a spectrum of kidney diseases. Validation of these 
findings in prospective, observational cohorts with assessment 
of potential associations between metabolic gene expression 
signature, detained renal histology and long-term clinical 
outcomes is warranted. Modulation of glucose metabolism 
could offer novel approaches to the treatment of these rare 
syndromes.
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