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Abstract

Diagnostic and prognostic evaluation of chronic lymphocytic leukemia (CLL) involves blood

cell counts, immunophenotyping, IgVH mutation status, and cytogenetic analyses. We gen-

erated B-cell associated gene-signatures (BAGS) based on six naturally occurring B-cell

subsets within normal bone marrow. Our hypothesis is that by segregating CLL according to

BAGS, we can identify subtypes with prognostic implications in support of pathogenetic

value of BAGS. Microarray-based gene-expression samples from eight independent CLL

cohorts (1,024 untreated patients) were BAGS-stratified into pre-BI, pre-BII, immature,

naïve, memory, or plasma cell subtypes; the majority falling within the memory (24.5–

45.8%) or naïve (14.5–32.3%) categories. For a subset of CLL patients (n = 296), time to

treatment (TTT) was shorter amongst early differentiation subtypes (pre-BI/pre-BII/imma-

ture) compared to late subtypes (memory/plasma cell, HR: 0.53 [0.35–0.78]). Particularly,

pre-BII subtype patients had the shortest TTT among all subtypes. Correlates derived for

BAGS subtype and IgVH mutation (n = 405) revealed an elevated mutation frequency in late

vs. early subtypes (71% vs. 45%, P < .001). Predictions for BAGS subtype resistance

towards rituximab and cyclophosphamide varied for rituximab, whereas all subtypes were

sensitive to cyclophosphamide. This study supports our hypothesis that BAGS-subtyping

may be of tangible prognostic and pathogenetic value for CLL patients.
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Introduction

Patients with chronic lymphocytic leukemia (CLL) experience a variable disease course. Some

demonstrate slow progression and survive for decades, while others rapidly succumb to che-

motherapy-resistant disease [1]. The prognostic assessment of CLL patients at diagnosis ordi-

narily employs the Rai [2] or Binet [3] clinical staging systems, together with assessments of

chromosomal and IgVH mutation status and, more recently, TP53, ZAP-70, and CD38 evalua-

tions. Risk scores implementing current available markers have been developed [4–5], while

advances in genomic technologies have facilitated new tools to address prognosis [6–8], and

revealing substantial genetic and epigenetic heterogeneity in CLL [9].

The precise cell-of-origin in CLL remains under debate [10–11] and any direct link to a

normal B-cell subset has proven difficult given that no single B-cell population shares the

unique CD5+, CD19+, CD20+, and CD23+ immunophenotype characteristic of CLL [6]. With

this in mind, we sought to identify differentiation patterns expressed in end-stage CLL cells,

using these to classify the disease into subtypes that resemble normal bone marrow (BM) B-

cell subsets. We anticipated that this more sophisticated segregation of CLL could be of prog-

nostic value, and would contribute to our understanding of CLL pathogenesis. As the first step

in achieving this aim, we recently generated B-cell associated gene signatures (BAGS) for the

different developmental stages of normal B-cells in blood, tonsils, thymus, and BM [12]. These

BAGS signatures serve as a reference material against which tumor derived samples can be

challenged. BAGS assignments can be made for clinical lymphoid and leukemic tumor sam-

ples [12–14] by statistical modeling. This enables us to classify B-cell malignancies in terms of

their cellular phenotype, which may, in turn, generate insights into clonal selection and

evolution.

Proof of this concept is supported by our identification of BAGS subtypes of prognostic rel-

evance in diffuse large B-cell lymphoma [14] and multiple myeloma [15]. In the present study,

we BAGS-categorized individual CLL patients in order to derive correlates for prognosis, and

determine the pathogenetic value of this novel classification system in CLL.

Methods

Collection and processing of normal tissue

Prior to study commencement, the Health Research Ethics Committee for the North Denmark

Region approved our study protocol (MSCNET, N-20080062MCH). Following informed writ-

ten consent, obtained in accordance with the Declaration of Helsinki, normal BM was col-

lected from the sternum of seven adult patients undergoing cardiac surgery as described in the

S1 Appendix, and elsewhere [12]. Fluorescence-activated cell sorting (FACS) was used to frac-

tionate mononuclear BM cells into six distinct normal B-cell subsets: pre-BI (BI), pre-BII

(BII), immature (IM), naïve (NA), memory (ME), and plasma cells (PC) (S1 Appendix and S1

Table). For gene expression profiling (GEP), mRNA from B-cell subsets were isolated and

hybridized to the Human Exon 1.0 ST (Exon) array platform [12]. A total of 38 CEL files con-

taining B-cell data were generated using the Affymetrix Command Console. The CEL files and

metadata were adjusted for compliance (with the requirements of Minimum Information
About a Microarray Experiment) [16], and then deposited in the NCBI Gene Expression Omni-

bus repository (accession code GSE68878). In the present study, these data are referred to as

the sternal BM B-cell data.

CLL data sets and study variables. We queried the NCBI Gene Expression Omnibus

repository (see S1 Appendix) for microarray-based gene expression CLL data collected using

the Exon and Affymetrix Human Genome U133 plus 2.0 (HG-U133plus2) arrays [17]. This
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led to the identification of eight CLL cohorts that included 1,024 untreated patients (S2 Table)

from whom appropriate consent permissions were obtained prior to data deposits. Clinical

data of varying degrees of completeness were available (S3 Table).

In brief, centers providing clinical cohorts were focused on the use of GEP data in exploring

new prognostic factors [18–19], scores [20], subnetworks [21], gene signatures [22], leukemia

classifications [23], pathway analysis [24], therapeutic predictions [22], and lastly, a clinical

drug trial [25].

Data for time from diagnosis to the initiation of treatment (TTT) were available and com-

bined for 296 patients in the Munich, IIDFCI (Dana Farber Cancer Institute, cohort II), and

UCSD cohorts (S3 Table), which allowed us to examine CLL followed by the watch-and-wait

approach. Data for overall survival were available for 108 patients in the Munich cohort,

although any analyses of these data were precluded by a lack of events within the relatively

short follow-up period.

BAGS and REGS classification. Sternal BM B-cell data were normalized using the robust

multichip average (RMA) [26] method available in the affy package in Bioconductor, with a

custom Chip Description File (CDF) used to remap probes into sets corresponding to Ensembl

gene IDs (Ensembl release 81) [17].

The BAGS classifier was generated from the sternal BM B-cell data by regularized multino-

mial regression [27] using subtype as the response and median centered gene expression as

explanatory variables. Regularization was performed by elastic net [28] where the optimal reg-

ularization parameters (alpha and lambda) were selected by cross-validation. To avoid patient-

specific signatures in the classifier, the cross-validation folds were patient-specific, containing

4 or 6 samples each. To enable use on other microarray platforms, only genes available on

HG-U133plus2, Affymetrix Human Genome U133 A, and Exon arrays were considered. To

compensate for cohort-wise technical batch effects and array differences when classifying the

patients, each clinical cohort was median centered and adjusted gene–wise to have the same

variance as the sternal BM B-cell data set. To validate the compatibility of the Exon array-

based classifier on other platforms, we BAGS-classified a validation data set comprising previ-

ously published (sorted) healthy B-cell subsets using the HG-U133plus2 array [12].

Post validation, CLL samples were classified according to their highest predicted probability

of a subtype match, while allowing 15% of samples (with the minimum probability threshold

for classification) within each cohort to remain unclassified.

Previously, resistance gene signatures (REGS) that predict the probability of resistance

towards rituximab (R) and cyclophosphamide (C) have been established following the same

approach as for the BAGS classifier, as described elsewhere [29–30]. REGS were generated by

combining in vitro drug screening and global gene expression analyses using a panel of human

B-cell cancer cell lines. To further characterize BAGS subtype properties, we estimated ex-
pected drug resistance based on global gene expression profiles. As a reference for malignant

samples, we also assessed the inherent resistance levels predicted for normal B-cell subsets.

Statistical analyses. Prognostic evaluation of smoldering “watch-and-wait” CLL was

performed by time to treatment (TTT), which denotes the time period from diagnosis to the

initiation of treatment or censoring. Cumulative incidences were computed for TTT and dif-

ferences between BAGS subtypes were tested in univariate and multivariate Cox proportional

hazard regression models. Cox models for which the complete case analysis included multiple

studies were adjusted for study effects, since differences in TTT between study cohorts were

observed, as illustrated in S1 Fig. Fisher’s exact test was used to test for differences in the distri-

bution of BAGS subtypes between the study cohorts, as well as between patients with mutated

IgVH (mIgVH) versus (vs.) unmutated IgVH (uIgVH). To increase statistical power and

emphasize trends in the TTT and IgVH analyses, the analyses were repeated after dividing the

B-cell phenotype assignment of CLL
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BAGS classifications into early (BI, BII, IM), NA, and late (ME, PC) subtype groups, based on

the normal pre- and postgerminal B-cell differentiation hierarchy. For drug resistance deter-

mined by the REGS classifier, an F-test was used to test for equal resistance probabilities across

subtypes. The significance level was set to 0.05 and effect estimates were provided with 95%

confidence intervals. All statistical analyses were performed using R version 3.3.2 [31].

Results

Generation of the BAGS classifier

The six distinct B-cell subsets from normal BM were first evaluated by hierarchical clustering

of gene expression using the membrane markers used for subset acquisition and sorting. This

approach resulted in clusters associated with specific B-cell subsets (Fig 1A). A principal com-

ponent analysis of the global gene expression discriminated distinct B-cell subsets as illustrated

in Fig 1B, which shows clustering of the BI and BII subsets. Similarly, the IM, NA, and ME

subsets were found to cluster together, with the PC subset grouped separately. Hence, the B-

cell subsets in question could be separated based on their overall gene expression profiles sup-

porting their use in generating the BAGS classifier.

The BAGS classifier was created by regularized multinomial regression and included a total

of 184 genes (S5 Table). Each B-cell subset showed a distinct gene expression signature com-

prising 27–54 genes. The signatures included 49 genes associated with specific B-cell functions,

108 genes with other biological functions, and 27 genes of unknown function. Classification of

sorted samples using the array validation data set achieved 100% accuracy (S4 Table), indicat-

ing the preservation of differentiation-specific signals across microarray platforms.

BAGS assignment of CLL samples

Each CLL patient sample was BAGS-classified to the normal B-cell subtype that it most resem-

bled according to probability scores (S2 Fig). In each cohort, 15% of samples with the lowest

probability scores remained unclassified, resulting in cohort-wise probability cut-offs ranging

from 0.38–0.50.

Assignment of CLL patients to one of six BAGS subtypes (BI, BII, IM, NA, ME, and PC)

resulted in frequencies of 10.0–18.2%, 0.0–6.2%, 0.0–10.5%, 14.5–32.3%, 24.5–45.8%, and 1.8–

5.5%, respectively (Table 1). Despite a statistically significant difference in the distribution of

BAGS subtypes across cohorts (P = 0.02), we consider distribution patterns to be comparable,

as shown in S3 Fig.

Prognostic impact of the assigned BAGS subtypes

The Munich, IIDFCI, and UCSD cohorts with available TTT data were combined (n = 296) and

used to assess the prognostic impact of subtyping according to BAGS. The median time to the

start of initial treatment was 4.91 years, with the median follow-up time calculated to be 5.45

years by the reverse Kaplan-Meier method. Patients assigned to the ME subtype had a signifi-

cantly longer TTT compared to the BII (HR: 3.67[1.82–7.38], P< 0.001) and borderline signifi-

cantly longer TTT compared to BI (HR: 1.61 [0.97–2.67]), as shown in Table 2 and Fig 2A.

In addition, by stratifying BAGS into early, NA, and late subtypes, a significantly longer

TTT was observed in the late vs. early group (Table 2 and Fig 2B), with respective 2-year

cumulative incidences of 23% [15%-30%] and 42% [30%-55%] (HR: 0.53[0.35–0.78],

P = 0.002). No statistically significant difference in TTT was observed between early and NA

subtypes, although the NA subgroup displayed a marginally longer TTT (HR: 0.66[0.41–1.05],

P = 0.08), suggesting that TTT reflects the hierarchy of B-cell differentiation.

B-cell phenotype assignment of CLL
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Fig 1. Quality assessment of the normal B-cell subsets. a) Unsupervised clustering of surface marker genes in the six normal B-cell subsets. Heat

map showing unsupervised hierarchical clustering of normal B-cell subsets based on their expression of the cell surface markers used for FACS. The

B-cell phenotype assignment of CLL
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BAGS classification exhibited an independent prognostic value for TTT regarding the ME

subtype compared to the BII subtype in a multivariate analysis adjusted for gender, IgVH sta-

tus, and cytogenetic status (S6 Table). Furthermore, BAGS retained significance with only

cytogenetic status in the model, but not with IgVH status alone.

BAGS subtypes and clinical variables

Having identified six BAGS subtypes of prognostic relevance, we then determined whether

any of these subtypes were associated with IgVH mutation status given that this is an impor-

tant prognostic marker in CLL. Specifically, uIgVH is associated with an increased risk vs.

patients with mIgVH [32][33]. We found that 135 (72%) and 10 (63%) of ME and PC subtypes,

respectively, were mIgVH positive, while 31 (47%), 5 (38%), and 15 (43%) of BI, BII, and IM

patients, respectively, were mIgVH positive (S4A Fig). Collectively, the frequency of mIgVH

was significantly higher among the late subtypes (145, (71%)) vs. early (51 (45%), P = < 0.001)

or NA subtypes (48, (55%), P = 0.01), as illustrated in S4B Fig. In addition to mIgVH, ZAP-70

status was negative in 65% of ME patients (Table 3), which fits with their (general) more favor-

able phenotype [34][35]. However, nine patients assigned to the ME subtype carried del17p

(11%), which is linked to a poorer outcome. Comparing the cytogenetic and IgVH status of

these ME patients, we found that six carried uIgVH. Despite, a high proportion of patients

aged< = 65 in the BII subgroup (90.1%), no significant differences were observed between

subtypes (Table 3). In line with the literature, males constituted the larger proportion of diag-

nosed patients (61%; Table 3), although the IM and PC patient group included more female

patients (58% and 59%; Table 3).

Predictive drug resistance in CLL subtypes

To further investigate the prognostic impact of BAGS, we pursued an indirect approach using

predicted resistance to R and C in the CLL samples. As a reference for malignant samples, we

also assessed the inherent resistance levels predicted for normal B-cell subsets.

color scale indicates relative gene expression: brown, low expression; blue, high expression. Color codes: pre-BI, purple; pre-BII, yellow; immature,

green; naïve, turquoise; memory, orange; and plasma cells, blue. (b) Principal component analysis of the global gene expression (in total 39,115 genes)

in normal B-cell subsets. 1st, 2nd, and 3rd principal components are shown and plotted against each other.

https://doi.org/10.1371/journal.pone.0193249.g001

Table 1. Subtype classification according to BAGS for CLL sample cohorts.

Cohort n BAGS Subtypes n (%)

Pre-BI Pre-BII Immature Naive Memory Plasma cell Unclassified

DUKE 68 12 (17.6) 1 (1.5) 5 (7.4) 13 (19.1) 23 (33.8) 3 (4.4) 11 (16.2)

IDFCI 124 15 (12.1) 4 (3.2) 13 (10.5) 21 (16.9) 49 (39.5) 3 (2.4) 19 (15.3)

IIDFCI 83 11 (13.3) 0 (0) 6 (7.2) 12 (14.5) 38 (45.8) 3 (3.6) 13 (15.7)

MUNICH 127 18 (14.2) 5 (3.9) 5 (3.9) 30 (23.6) 43 (33.9) 7 (5.5) 19 (15.0)

PADOVA 112 14 (12.5) 4 (3.6) 7 (6.2) 17 (15.2) 51 (45.5) 2 (1.8) 17 (15.2)

ROCHE 318 58 (18.2) 10 (3.1) 16 (5.0) 93 (29.2) 78 (24.5) 15 (4.7) 48 (15.1)

SAPIENZA 62 8 (12.9) 2 (3.2) 0 (0.0) 20 (32.3) 20 (32.3) 2 (3.2) 10 (16.1)

UCSD 130 13 (10.0) 8 (6.2) 8 (6.2) 33 (25.4) 42 (32.3) 6 (4.6) 20 (15.4)

Totala 1024 149 (14.6) 34 (3.3) 60 (5.9) 239 (23.3) 344 (33.6) 41 (4.0) 157 (15.3)

Rangeb 62–318 10.0–18.2 0.0–6.2 0.0–10.5 14.5–32.3 24.5–45.8 1.8–5.5 15.1–16.2

aThe total number and
bfrequency range for each subtype is listed. Tests for significantly different distributions across data sets were calculated using Fisher’s exact test (P = 0.02).

https://doi.org/10.1371/journal.pone.0193249.t001
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We observed a high probability of resistance to R in the normal BI, BII, and PC subsets,

whereas a low resistance probability was seen in the IM, NA, and ME subsets (P< .001) (Fig

3A). Variability in R resistance was observed across the CLL subtypes (P< .001) (Fig 3B), with

the IM and ME subtypes demonstrating the least probability of resistance. The BII subtype had

the highest probability of resistance, suggesting that this subtype not only exhibits a shorter

TTT compared to the other subtypes, but possibly also an inferior prognosis following therapy.

The probability of resistance to C was found to increase with differentiation stage in the nor-

mal B-cell subsets (P< .001), such that ME and PC showed the highest probabilities of resis-

tance (Fig 3C). However, for all CLL subtypes, a comparable sensitivity pattern to C, with no

substantial differences in predicted resistance level, was observed (Fig 3D).

Discussion

In the present study, FACS, GEP, and statistical modeling were combined to create a classifier

that could categorize CLL samples according to BAGS into pre-BI, pre-BII, immature, naïve,

memory, or plasma cell subtypes. We hypothesized that this subtyping would have prognostic

and thus biological implications in CLL. Subsequently we documented that CLL patients with

an early BAGS phenotype manifested significantly shorter TTT’s vs. CLL patients with late

BAGS phenotypes, with the pre-BII subtype appearing to be the least favorable.

Our concept is based on a phenotypic cell-of-origin approach, which has previously been

applied to diffuse large B-cell lymphoma based on GEP of normal tonsil B-cell subsets. It

remains an open question as to whether the phenotype of malignant cells in CLL authentically

reflects features of maturation steps, including direct precursors. Tumorigenesis is a multi-step

process and the first transforming events in CLL may arise in early differentiation stages, possi-

bly even in hematopoietic stem cells [36]. In the event of an initial genomic hit targeting a less

differentiated B-cell, the principal transcriptional program of each end-stage tumor still likely

reflects some aspects of normal B-cell phenotypes. Further, the high frequency of the NA and

ME subtypes found here agrees with previous studies. Klein et al. found that CLL generally

resembles memory B-cells more closely than either naïve B-cells, CD5+ B-cells, germinal center

Table 2. BAGS assignment and time to treatment.

Hazard ratio 95% CI P
BAGS subtype

Memory 1

Pre-BI 1.61 0.97 to 2.67 0.07

Pre-BII 3.67 1.82 to 7.38 < 0.001

Immature 1.67 0.89 to 3.12 0.11

Naïve 1.23 0.78 to 1.94 0.37

Plasma cell 0.80 0.32 to 2.01 0.64

Unclassified 1.17 0.73 to 1.90 0.51

BAGS subtype groupsa

Early 1

Naïve 0.66 0.41 to 1.05 0.078

Late 0.53 0.35 to 0.78 0.002

Unclassified 0.63 0.38 to 1.03 0.067

aBAGS assignments for individual BAGS subtypes and grouped as early (BI, BII), NA, or late (ME, PC) were

associated to outcome (time to treatment) using univariate Cox proportional hazards regression analysis. The

Munich, IIDFI, and UCSD cohorts were used (n = 296).

https://doi.org/10.1371/journal.pone.0193249.t002
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Fig 2. Analyses of the prognostic impact of subtyping according to BAGS on TTT in watch-and-wait CLL. Cumulative incidence

curves show years elapsed from the time of diagnostic GEP until the commencement of initial treatment. (a) All subtypes. (b) All

B-cell phenotype assignment of CLL
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centroblasts, or centrocytes [37]. Seifert et al. reported a higher similarity of CLL to naïve B-

cells and determined that the direct precursor of the CLL clone is an antigen-exposed CD5+ B-

cell, irrespective of IgVH mutation status, that results in the production of mono- or oligoclo-

nal B-cells [38].

Interestingly, we found that mIgVH was more frequent among late subtypes than early.

Somatic hypermutation occurs in the germinal center or similar structures, and it could be

argued that any CLL bearing mutated IgVH must have undergone antigenic selection and

therefore stems from a post-germinal subtype [32].

It is notable that the BAGS classifier for ME subtypes exhibited low CD38 (S5 Table) as this

marker is found down-regulated in normal mature B-cells.

Low CD38 correlates highly with a largely negative ZAP-70 status and mIgVH in CLL ME

patients, who also manifest a longer TTT compared to earlier subtypes.

Despite indications of a hierarchical pattern of association between BAGS and IgVH, sam-

ples with either mutation status (mutated/unmutated) were observed for each subtype. To that

end, the presence of early pregerminal subtypes may indicate a reversible phenotypic plasticity

[39–40] in CLL that we have yet to further explore.

Further supportive data are now required if we are to achieve a diagnostic phenotyping

capability that can support individualized therapy. These studies will necessarily involve a

range of technical, statistical, and clinical considerations, as detailed below.

subtypes divided as early (pre-), naïve, and late (post-germinal). Color codes as in Fig 1. Data from both the Munich, IIDFCI, and

UCSD cohort were used (n = 296).

https://doi.org/10.1371/journal.pone.0193249.g002

Table 3. Associations between BAGS subtypes and patient characteristics, based on available clinical data.

Pre-BI Pre-BII Immature Naïve Memory Plasma Cell Total

Age

< = 65 years 21 (13.8) 10 (6.6) 8 (5.3) 44 (28.9) 64 (42.1) 5 (3.3) 152

>65 years 19 (18.4) 1 (1.0) 4 (3.9) 23 (22.3) 50 (48.5) 6 (5.8) 103

Gender

Female 21 (12.4) 5 (3.0) 18 (10.7) 32 (18.9) 83 (49.1) 10 (5.9) 169

Male 45 (17.2) 10 (3.8) 13 (5.0) 68 (26.1) 118 (45.2) 7 (2.9) 261

Binet stage

A 4 (8.7) 1 (2.2) 4 (8.7) 14 (30.4) 18 (39.1) 5 (10.9) 46

B-C 7 (25.0) 1 (3.6) 0 (0.0) 12 (42.9) 7 (25.0) 1 (3.6) 28

Cytogenetic status

No marker 7 (15.6) 2 (4.4) 2 (4.4) 8 (17.8) 22 (48.9) 4 (8.9) 45

Del13q 16 (16.2) 3 (3.0) 4 (4.0) 26 (26.3) 44 (44.4) 6 (6.1) 99

Tri12 7 (25.0) 0 (0.0) 3 (10.7) 3 (10.7) 14 (50) 1 (3.6) 28

Del11q 4 (21.1) 0 (0.0) 2 (10.5) 9 (47.4) 4 (21.1) 0 (0.0) 19

Del17p 0 (0.0) 0 (0.0) 1 (8.3) 1 (8.3) 9 (75.0) 1 (8.3) 12

ZAP-70 status

Positive 24 (20.9) 3 (2.6) 14 (12.2) 22 (19.1) 48 (41.7) 4 (3.5) 115

Negative 20 (12.1) 5 (3.0) 15 (9.1) 32 (19.4) 89 (54.0) 4 (2.4) 165

IgVH status

uIgVH 35 (21.7) 8 (5.0) 20 (12.4) 39 (24.2) 53 (32.9) 6 (3.7) 161

mIgVH 31 (12.7) 5 (2.0) 15 (6.1) 48 (19.7) 135 (55.3) 10 (4.1) 244

Abbreviations: Del13q, deletion of 13q; Tri12, Trisomy; Del17p, deletion of 17p; Del11q, deletion of 11q; ZAP-70, zeta-chain-associated protein kinase 70; IgVH,

immunoglobulin variable region heavy chain; mIgVH, mutated IgVH; uIgVH, unmutated IgVH.

https://doi.org/10.1371/journal.pone.0193249.t003

B-cell phenotype assignment of CLL

PLOS ONE | https://doi.org/10.1371/journal.pone.0193249 March 7, 2018 9 / 15

https://doi.org/10.1371/journal.pone.0193249.g002
https://doi.org/10.1371/journal.pone.0193249.t003
https://doi.org/10.1371/journal.pone.0193249


Technical and statistical considerations

We used sternal BM tissue for the isolation and analysis of B-cell subset compartments. Nor-

mal B-cell subsets from BM were successfully sorted and prepared for microarray analyses as

previously described.13 Data quality was validated by hierarchical clustering with PCA allow-

ing us to generate six BAGS, one per major B-cell compartment in the BM.

Penalized multinomial logistic regression was used to assign each CLL sample to one of six

BAGS subtypes. BAGS assignments for 85% of CLL samples were achieved, with a reasonable

probability cut-off across the cohorts (ranging from 0.38 to 0.50). Our methodology included

cohort-based normalization, median centering, and scaling of gene-wise variance prior to

BAGS classification. Therefore, in its current form, "cohort-based" BAGS profiling cannot be

applied to individual patients as would be required in the clinical setting. However, in a recent

study, this caveat was overcome by inferring a one-by-one microarray normalization scheme,

which enabled the classification of individual samples generated on the HG-U133plus2 gene

array [41]. A similar approach is under consideration for the current study.

In this study, sorted samples hybridized to Exon arrays were used to generate BAGS, while

clinical samples were hybridized to the HG-U133plus2 array. It has been shown that these two

platforms have a similar ability to distinguish between differentially and non-differentially

expressed genes [42]. In addition, platform compatibility was validated by the 100% accuracy

Fig 3. Drug resistance to rituximab or cyclophosphamide. Box plots represent the estimated probability of resistance to (a) Rituximab in normal B-cell subsets, (b)

Rituximab in all CLL samples, (c) Cyclophosphamide in normal B-cell subsets and (d) Cyclophosphamide in all CLL samples. The global P-value for equal mean

resistance probability was< 0.001 in all four cases. Color codes as in Fig 1.

https://doi.org/10.1371/journal.pone.0193249.g003
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with which normal healthy (sorted) samples were categorized following hybridization to

HG-U133plus2 arrays, illustrating methodological robustness across platforms of the BAGS

classifier signature genes. We therefore found it acceptable to apply the exon array-based clas-

sifier to material hybridized to other array platforms.

Clinical considerations

This study included untreated patient samples from seven different centers with different

research goals. Clinical data were available for a limited number of participants (S3 Table),

although sufficient material was available to study the association of BAGS to TTT and IgVH

status. Our preference, to investigate the prognostic impact of BAGS on overall survival, was

precluded by insufficient patient data together with favorable CLL prognoses and therefore

few events. This endpoint warrants further future study in more suitable cohorts.

The investigated CLL cells in this study stem from peripheral blood (PB) draws, as CLL diag-

nosis in the clinical setting is based on routine samples from PB, with avoidance of invasive tests

such as BM and lymph node biopsies. It has previously been shown that CLL gene expression

differs between PB, BM, and lymph nodes [43]. Proliferation has been shown to predominantly

occur in secondary lymphoid organs where the microenvironment facilitates survival and dis-

ease progression [44], while circulating tumor cells in PB display a more resting phenotype [45].

It was of primary interest to utilize B-cell subsets from BM as it enabled investigation of early B-

cell subset signatures. However, it could be of further interest to investigate whether BAGS clas-

sifications differ according to the sampling site, a possibility that has not been pursued here.

The majority of included samples relied on purified CLL cells, while the Munich and

Sapienza cohorts were based on unpurified peripheral blood. However, the distribution of

BAGS subtypes was similar to the other cohorts (S3 Fig) and a sensitivity analysis of TTT,

where the Munich cohort was excluded, showed only minor changes in the cumulative inci-

dence trajectories (S5 Fig). Fewer statistically significant results were obtained in the sensitivity

analysis, which likely was due to reduced power caused by the lower sample number.

As a surrogate for post-treatment prognosis, REGS classifications were applied to the CLL

samples with respect to R and C. Standard first-line treatment of CLL comprises a combined

immune- and chemotherapeutic approach for patients without 17p- and/or inactivating TP53

mutations, often the FCR (fludarabine, cyclophosphamide, and rituximab) regimen [46–49].

The diverse resistance probabilities seen for R, of which the pre-BII subtypes were predicted to

be most resistant, suggests that BAGS classification data may be of some prognostic value

post-treatment. Fischer et al. found that among patients treated with FCR, long-term remis-

sion was most likely in patients with mIgVH [50]. This may also be achieved for patients with

different BAGS subtypes. For example, the ME subtypes (predominantly mIgVH) were also

predicted to be the least resistant to R. These findings should now be validated in studies of

post-treatment progression-free follow-up.

Here we have retrospectively studied CLL samples for phenotypic differences assigned by

normal BM B-cell subset gene signatures. The main finding was that BAGS classification dem-

onstrated a prognostic association with TTT. Critically, the classification included pre-germi-

nal subtypes, indicating a reversible phenotypic plasticity in leukemic B cells. Future

prospective studies will attempt to prove the concept by clinical end-points following treat-

ment, including prognosis and the prediction of therapeutic outcome.
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