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Cells from the mesenchymal lineage in the dental area, including but not limited to PDL fibroblasts, osteoblasts, and dental stem
cells, are exposed to mechanical stress in physiological (e.g., chewing) and nonphysiological/therapeutic (e.g., orthodontic tooth
movement) situations. Close and complex interaction of these different cell types results in the physiological and
nonphysiological adaptation of these tissues to mechanical stress. Currently, different in vitro loading models are used to
investigate the effect of different types of mechanical loading on the stress adaptation of these cell types. We performed a
systematic review according to the PRISMA guidelines to identify all studies in the field of dentistry with focus on
mechanobiology using in vitro loading models applying uniaxial static compressive force. Only studies reporting on cells from
the mesenchymal lineage were considered for inclusion. The results are summarized regarding gene expression in relation to
force duration and magnitude, and the most significant signaling pathways they take part in are identified using protein-protein
interaction networks.

1. Introduction

The aim of orthodontics is to move an abnormally positioned
tooth through the application of a continuous force on its
surface. This force stimulates bone remodelling in the sur-
rounding tissue, namely, the periodontal ligament (PDL)
and the alveolar bone, resulting in the bone removal in the
direction of the tooth movement and bone apposition in
the opposite direction (Figure 1). Thus, the underlying mech-
anism of orthodontic tooth movement (OTM) is the stimula-
tion of bone remodelling by the application of an orthodontic
force [1].

Histologically, the effects of orthodontic force on the
tooth and its surrounding tissues are now well understood

and the underlying stages in OTM are identified [2]. Human
periodontal ligament cells (hPDLCs) and human osteoblasts
(hOBs) are recognized as the cell types originating from the
mesenchymal lineage, which play the most dominant role
during OTM. Unlike hOBs, which represent well a character-
ized cell type, hPDLCs represent a mixed population of
mostly fibroblast-like cells [3]. Among them, mesenchymal
stem cells are of special importance as the source of progen-
itors responsible for the regeneration and remodulation of
not only PDL itself but also alveolar bone [4].

In order to better understand morphological changes
during OTM, it is important to elucidate molecular and cel-
lular signaling mechanisms between and within these cell
types. The complex in vivo structure of the tissues involved
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makes it impossible to investigate force sensing and cellular
communication of individual cells. Therefore, in vitromodels
using cells isolated from the PDL or from alveolar bone were
established and different types of forces mimicking those
found during OTM were applied [5]. These in vitro models
are used to answer open questions including but not limited
to how cells sense force, how they convert mechanical stress
into molecular signals, and how these molecular signals influ-
ence the specific response of these cells to that specific force.

On the basis of the most commonly used approaches to
apply mechanical stress on cells, present in vitro loadingmodels
can be classified into those using substrate deformation-based
approaches, hydrostatic pressure approach, centrifugation
approach, fluid flow approach, vibration approach, and
weight approach [6]. Also, there has been increasing interest
in moving from conventional monolayer, two-dimensional
(2D) in vitro loading models to three-dimensional (3D)
in vitro loading models.

Weight-based in vitro loading models have been success-
fully used over several years to investigate the effect of static,
compressive, unidirectional force on the cells. In models
using 2D cell cultures, cells are precultured in cell culture
dishes (e.g., 6-well plates). After reaching the desired con-
fluency, the cells are subjected to weight-based compression.
In most cases, a glass slide is laid on top of the cell monolayer.
Then, a weight is applied by positioning a glass cylinder filled
with lead granules on top of this slide. The glass slide is used to
secure even distribution of the force [7]. Increasing or reduc-
ing the number of granules in the glass cylinder adjusts the
level of compressive force (Figure 2(a)). The same type of
force is applied by slight modifications of this model: some
authors used a stack of glass slides of different heights (e.g.,
[8]) or glass discs of different thicknesses (e.g., [9]) replacing
the glass cylinder filled with lead granules. This in vitro load-
ing model can also be used to apply static compressive force
on 3D cell cultures. In this case, the same principle is used,

except that the cells are embedded in a 3D matrix that is then
compressed in the described manner (Figure 2(b)). Yang et al.
[6] coined the term “weight approach”-based (WAB) for this
in vitromodel. To refer to this specific setup, we will also use
WAB throughout this publication.

The primary aim of this review was to identify all articles
related to the field of orthodontics using either a 2D or 3D
WAB in vitro loading model and provide an overview of
the details of their use: the most commonly used loading
durations, force magnitudes, and scaffolds and their findings
regarding gene expression and substance secretion in
relation to force application. The secondary objective was
to discover most commonly examined genes and to identify
important pathways in OTM that most of the identified
genes from these studies are involved in, focusing especially
on hPDLCs.

2. Materials and Methods

To conduct this review, the “Preferred Reporting Items for Sys-
tematic Review and Meta-Analysis Protocols” (PRISMA-P)
2015 statement was consulted [10].

2.1. Defining the Eligibility Criteria. Inclusion criteria were
as follows:

(i) Studies in the field of dentistry that examined the
effect of mechanical stress on tooth surrounding
tissues

(ii) Application of the 2D or 3D WAB in vitro loading
model…

(iii) …on hPDLCs, hOBs, or all bone-like cell types/lines
of human or animal origin

(a) (b)

Figure 1: Bone remodelling during orthodontic tooth movement. (a) Initial displacement of the tooth due to stretching of the fibres within
the PDL on the tension side and compression on the opposite with the application of the orthodontic force. (b) Bone apposition on the tension
side and resorption on the compression side as the result of the long-term force application.
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(iv) Only studies written in English language, identified
on the PubMed database until 01.12.2017, were
taken into consideration

2.2. Literature Search and Study Selection Process. Separate
search strategies were created for studies using either the
2D or the 3D in vitro setup for mechanical cell loading
(Supplement 1). Searches were performed in the PubMed
database following these predefined search strategies.

After identification of relevant studies in the PubMed
database, the downloaded records from each search were
imported into the bibliographic software EndNote X8
(Clarivate Analytics, Philadelphia, Pennsylvania, USA).
All records were examined by two reviewers independently
(MJ and UB), according to predefined inclusion and exclu-
sion criteria (see above): first by title, then by abstract. If
the abstract was not available, the full text of the report
was obtained. Records that were obviously irrelevant were
excluded, and the full texts of all remaining records were
acquired. After the full-text assessment, the final list of
included articles was generated. Any disagreements during
this process were dissolved through discussion with
another review author (DD) until reaching a consensus.
The articles that did not meet all inclusion criteria after
full-text assessment were excluded from further examina-
tion. Additional relevant studies were further identified
through forward and backward reference chaining and
hand-search of specific journals. Study quality assessment
of the included studies was not performed, since the goal
of this article was to provide an overview of all findings
in the field only.

2.3. Data Extraction. The following information was
extracted from each study obtained in full length: author,
journal, year of publication, and used cell type. Force magni-
tude and duration, examined genes or substances, gene
expression, or substance secretion details were recorded only
if their response was directly connected to mechanical force
stimulus. Gene symbols were used in the tables whenever
possible. In case the identity or variant of a gene was doubtful
or not clear primer sequences were examined using Primer-
BLAST (URL: https://www.ncbi.nlm.nih.gov/tools/primer-
blast/) [11]. IfWestern blot, ELISA, or inhibition experiments
were reported, we tried to verify the antibodies and/or

inhibitor specificity to determine the exact protein species
(variant). Additionally, the method used for evaluation of
the gene/substance expression was recorded. Data regarding
the used scaffolds were collected for studies applying 3D
WAB in vitro setups.

The following tables were prepared to summarize the
findings: (1) studies applying the 2D WAB in vitro loading
model on human primary cells from the orofacial region
(i.e., hPDLCs, hOBs, and human oral bone marrow cells),
(2) studies applying the 2D WAB in vitro loading model on
human and nonhuman cells and cell lines not included in
the first table, and (3) studies applying the 3D WAB
in vitro loading model on human and nonhuman cells and
cell lines.

2.4. STRING Analysis. The examined genes and metabolites
using the 2D approach were summarized in two separate
lists: one for hPDLFs and one for hOBs and other human
bone-derived cell lines. Protein-protein interaction (PPI)
networks were generated for both lists separately using the
STRING database (10.5, URL: https://string-db.org/) [12].
From within STRING, the KEGG database [13] was queried
to identify the main pathways involved. Only pathways with
a false discovery rate below 1.00E−05 were considered.

3. Results

3.1. Study Selection Process. Figure 3 summarises the results
of both 2D and 3D searches using a flow chart according to
PRISMA. Separate searches were conducted for the studies
applying either the 2D or 3D (Supplement 1) WAB in vitro
loading models.

The search formula applied to identify 2D WAB in vitro
loading studies is shown in Supplement 1. Altogether, 2284
abstracts were identified in the PubMed database (Figure 3).

Additionally, 7 articles were identified through forward
and backward reference chaining and hand-search of specific
journals. After reading the titles and abstracts of all identified
studies, we excluded 2184. The remaining 107 articles were
then checked by full-text reading. Fifty-six of them meet
our inclusion criteria and were included for further analysis.
The remaining did not meet the inclusion criteria. Reasons
for their exclusion are listed in Supplement 1.

(a) (b)

Figure 2: Schematic illustration of the static 2D (a) and 3D (b) in vitro loading model based on the weight approach applied in the literature
(details are found in the text).
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The search formula applied to identify 3D WAB in vitro
loading studies is shown in Supplement 1. We identified a
total of 1038 articles in PubMed (Figure 3). Additional 4
articles were discovered through forward and backward
reference chaining and hand-search of specific journals. After
initial screening, we excluded 992 articles and proceeded with
full-text reading of the 50 articles. Finally, 17 of them meet
our inclusion criteria. The remaining articles were excluded
from further analysis. Reasons for their exclusion are
summarized in Supplement 1.

All studies fulfilling the inclusion criteria were organised
into three different supplementary tables: Supplement 2
summarises 2D WAB in vitro loading studies using human
primary cells from the orofacial region. In Supplement 3,
the two-dimensional WAB in vitro loading studies using
human nonorofacial-derived cells and animal cells and cell
lines are found. Supplement 4 summarises the 3D WAB
in vitro loading studies.

3.2. Force Durations and Force Magnitudes Used in
the Studies

3.2.1. 2D WAB In Vitro Loading Model. In these studies,
compression forces ranging from 0.25 g/cm2 to 5 g/cm2 were
applied on cells in 2D culture. The most commonly used
compressive force was 2 g/cm2, irrespectively which cell type
was used in the study. In most of the studies, the force was
applied for 24 h (Supplements 2 and 3).

3.2.2. 3D WAB In Vitro Loading Model. Force duration and
magnitude depended on the scaffold used (Supplement 4).
In most of the studies, scaffolds made from collagen gel and
the polylactic-co-glycolic acid (PLGA) were applied. One of

the studies [14] used a hydrophilically modified poly-L-
lactide (PLLA) matrix. Collagen gel scaffolds were used with
force magnitudes varying between 0.5 g/cm2 and 9.5 g/cm2;
the most commonly used force was 6 g/cm2. Force was
applied for 0.5 to 72h. Most commonly used force applica-
tion periods were 12 and 24h. Force levels between 5 and
35 g/cm2 were applied to cells embedded in PLGA scaffolds.
The most commonly applied force was 25 g/cm2. The dura-
tion of force application was from 3 to 72 h. The study using
the hydrophilically modulated PLLA matrix [14] applied
force magnitudes from 5 to 35 g/cm2. The duration of force
application varied between one day and 14 days.

3.3. Cell Types Used in the Studies

3.3.1. 2DWAB In Vitro Loading Model. Forty of these studies
used human primary cells isolated from the tooth surround-
ing tissues (Supplement 2): hPDLCs, hOBs, and human oro-
facial bone marrow-derived cells (hOBMC). The remaining
studies used other cells and cell lines from human and animal
sources: MG63, RAW264.7, ST-2, Saos-2, OCCM-30,
MC3T3-E1, C2C12, U2OS, rat-derived PDLCs, or bone
marrow-derived osteoblasts and the cementoblast cell line
HCEM-SV40 (Supplement 3).

3.3.2. 3D WAB In Vitro Loading Model. hPDLCs and human
gingival fibroblasts were used in 13 studies (Supplement 4).
The remaining two studies used cell types and lines from
the nonoral region or nonhuman origin (Supplement 4):
the murine cell line MC3T3-E1 and murine osteoblasts.

Taken together, the most commonly used cells were
hPDLCs. They were used in total 51 studies (2D: 38; 3D:
13) (Supplements 2 and 4). According to the isolation
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Figure 3: PRISMA flow diagram of the review process.
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method applied, we distinguished between the following
sources: “explant method” [15, 16] (2D: 18; 3D: 4), “enzyme
digestion method” [4] (2D: 9; 3D: 6), commercial sources
(2D: 3; 3D: 1), or “no detailed information of isolation avail-
able” (2D: 8; 3D: 2).

3.4. Genes and Substances Examined in the Studies. A com-
plete overview of genes and metabolites examined in 2D
and 3D WAB studies and details of their expression can be
found in Supplements 2 and 3 (2D) and Supplement 4 (3D).

In this review, special attention was paid to hPDLCs as
the most examined cell type among studies and their
prominent role in OTM. The most examined genes and
metabolites in relation to hPDLCs were TNF superfamily
member 11 (TNFSF11), TNF receptor superfamily member
11B (TNFRSF11B), prostaglandin-endoperoxide synthase 2
(PTGS2), and prostaglandin E2 (PGE2). In Table 1, details
regarding their expression/secretion, including the informa-
tion at which time points or force magnitudes the highest/
lowest value was reached, is summarized.

3.5. STRING Analysis and KEGG Pathways

3.5.1. Construction of Protein-Protein Interaction (PPI)
Network. In order to elucidate the molecular mechanisms
of OTM and the role of the hPDLCs and bone cells in this
process, we used STRING to construct PPI networks. Two
separate gene lists were compiled from those studies using
hPDLCs (“hPDLC list”; data from Supplement 3) and from
those using hOBs or human bone-cells and cell lines (“hOB
list”; data from Supplements 2 and 3). The hPDLC list con-
tained 48 different genes (Figure 4(a)) and the hOB list 51
different genes (Figure 4(b)).

Two separate PPI networks were obtained, based on the
interactions with a high level of confidence (>0.700)
(Figure 4). Nodes in the networks represent the proteins
produced by a single protein-coding gene locus; edges
represent protein-protein interaction. Based on the colour
of the edge, eight different interactions based on “gene
neighbourhood,” “gene fusion,” “cooccurrence,” “coexpres-
sion,” “experiments,” “databases,” and “text mining” can be
differentiated [12]. The top 10 nodes with the highest degree
of connections from each of the two gene lists are also
shown in Figure 4. PPI enrichment p values for each con-
structed network were calculated in STRING. These show
that both PPI networks had significantly more interactions
than expected and that the nodes are not random (PP
enrichment p value< 1.0E–16).

3.5.2. Identification of KEGG Pathways. According to our
STRING analysis, KEGG pathways relevant for OTM for
each set of genes are listed in Table 2.

4. Discussion

In vivo bone remodelling during OTM represents a complex
biological process, triggered by mechanical stimuli. OTM
involves numerous events, spatially and temporary orches-
trated and coordinated by different cell types, signaling fac-
tors, and networks [1]. Systematic breakdown and analysis

of individual components of this complex process is the key
for understanding its molecular background and a possible
way to accelerate and improve it. Therefore, a variety of
in vitro mechanical loading models have been established
[5, 6]. The in vitro loading model based on the weight
approach has been considered as the most appropriate load-
ing model for the stimulation of the orthodontic force on the
compressive site [6].

4.1. Characteristics of 2D and 3D WAB In Vitro
Loading Models

4.1.1. Conventional 2D WAB. In vitro loading model, initially
described by Kanai et al. [7], has been used for more than two
decades for studying the compression-induced osteoclasto-
genesis and is still considered as the gold standard. It repre-
sents a simple and effective method for application of static
compressive, unidirectional force to a cell monolayer.

The advantages of WAB in vitro loading model are the
following:

(i) It reduces the need for animal studies, which are
costly and time consuming.

(ii) It enables the analysis of specific cell types indepen-
dently or in cocultures with other cells of interest.

(iii) Human primary cells can be used for better approx-
imation to clinical situation.

From our point of view, the main disadvantage is its
missing impact of the natural surrounding environment.
There has been an increasing interest in the development of
the 3D cell culture WAB in vitro loading model during the
last years, in order to approximate the in vitro situation to
the in vivo situation.

4.1.2. 3D WAB In Vitro Loading Model. During the last years,
more studies have been using cells incorporated into biological
scaffolds instead of monolayer cultures. This is due to the
demand of mimicking an extracellular matrix, which is benefi-
cial for cell behaviour, instead of growing cells on artificial
plastic cell culture surface [46]. According to our data, three
types of scaffolds have been used so far in combination with
the 3D WAB in vitro loading model. The first identified
studies used collagen I scaffolds [26, 47, 48]. Although the col-
lagen gels are still widely used for this purpose, there is the
increasing interest in the development of scaffolds composed
of synthetic polymers. In 2011, Li et al. [33] introduced the
PLGA scaffolds that had a higher stiffness in comparison to
collagen gels and an elastic modulus very close to that of
human PDL. The only disadvantage was that cells growing
in PLGA displayed a disordered grow pattern that differs from
the one in natural PDL [33]. Liao et al. [14] went one step fur-
ther and introduced a hydrophilically modified PLLA matrix.
This matrix displayed several advantages: higher nutrient
and oxygen permeability and a better cell attachment, making
it more suitable for long-term force application [14].

4.2. Force Magnitude Used in the Studies. According to
Schwarz [49], optimal orthodontic force (OOF) in clinical
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GSK3B, HMGB1, HSP90AA1, HSPA4, HSPB1, IGF1,
IL17A, IL1B, IL6, JAG1, LGALS3BP, MMP13, MMP3,
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RUNX2, SPP1, TGFB1, TGFB3, TNF, TNFRSF11B,
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BMPR1B, BMPR2, Casp3, CHRD, CXCR1, FST,
GREM1, IBSP, IL11, IL11RA, IL1B, IL1R1, IL6,
IL6R, IL8, MKI67, MMP1, MMP13, MMP14, MMP2,
MMP3, NOG, PLAT, PLAU, PTGS2, RUNX2,
SERPINE1, SMAD1, SP7, SPP1, TIMP1, TIMP2,
TIMP3, TIMP4, TNF, TNFRSF11B, TNFRSF1A,
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(b)

Figure 4: Protein-protein interaction networks for the (a) “hPDLC list” and the (b) “hOB list”. The gene lists are shown in the lower left part
of each subfigure. Those genes with the highest number of interactions (“top 10”) are given in tables in the lower right part of each subfigure.
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Table 2: KEGG pathways relevant for OTM with false discovery rates below 1.00E− 05 derived from STRING analysis using the set of
examined genes from human periodontal ligament cells (“hPDLC list”; top panel) and human bone and bone-related cells and cell lines
(“hOB list”; bottom panel). “X”, gene involved in that specific pathway.

(a)

KEGG ID 4060 4668 4510 4620 4370 4062 4380 4010 4064

KEGG
name

Cytokine-
cytokine
receptor

interaction

TNF
signaling
pathway

Focal
adhesion

Toll-like
receptor
signaling
pathway

VEGF
signaling
pathway

Chemokine
signaling
pathway

Osteoclast
differentiation

MAPK
signaling
pathway

NF-kappa B
signaling
pathway

False
discovery
rate

2.62E–15 2.06E–12 3.90E–11 2.04E–09 9.47E–08 1.33E–07 2.29E–07 1.42E–06 1.86E–05

ADRB2

AKT1 X X X X X X X

ALPL

BGLAP

CBS

CCL2 X X X

CCL3 X X X

CCL5 X X X X

CCND1 X

CCR5 X X

CDH11

COL1A1 X

COL3A1 X

COL5A1 X

CSF1 X X X

CTNNB1 X

CTSB

CTSL

CXCL8
(= IL8)

X X X X

FGF2 X

GJA1

GSK3b X X

HMGB1

HSP90AA1

HSPA4

HSPB1 X X

IGF1 X

IL17A X

IL1B X X X X X X

IL6 X X X

JAG1 X

LGALS3BP

MMP13

MMP3 X

PIEZO1

PLA2G4A X X

POSTN

PTGS1

PTGS2 X X X
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Table 2: Continued.

KEGG ID 4060 4668 4510 4620 4370 4062 4380 4010 4064

KEGG
name

Cytokine-
cytokine
receptor

interaction

TNF
signaling
pathway

Focal
adhesion

Toll-like
receptor
signaling
pathway

VEGF
signaling
pathway

Chemokine
signaling
pathway

Osteoclast
differentiation

MAPK
signaling
pathway

NF-kappa B
signaling
pathway

False
discovery
rate

2.62E–15 2.06E–12 3.90E–11 2.04E–09 9.47E–08 1.33E–07 2.29E–07 1.42E–06 1.86E–05

PTK2 X X X

RUNX2

SPP1 X X

TGFB1 X X

TGFB3 X X X

TNF X X X X X X

TNFRSF11B X X

TNFSF11 X X X

VEGFA X X X

(b)

KEGG ID 4350 4060 4064 4390 4668 4210 4380 4620 4066

KEGG
name

TGF-beta
signaling
pathway

Cytokine-
cytokine
receptor

interaction

NF-kappa B
signaling
pathway

Hippo
signaling
pathway

TNF
signaling
pathway

Apoptosis
Osteoclast

differentiation

Toll-like
receptor
signaling
pathway

HIF-1
signaling
pathway

False
discovery
rate

8.33E–23 2.37E–21 8.32E–11 5.07E–09 1.01E–08 6.26E–08 1.02E–05 6.79E–05 7.16E–05

ACVR1 X X

ACVR2A X X

ACVR2B X X

ALPL

BAX X

BCL2 X X X

BGLAP

BMP2 X X X

BMP4 X X

BMP6 X X

BMP7 X X X

BMPR1A X X X

BMPR1B X X X

BMPR2 X X X

Casp3 X X

CHRD X

CXCR1 X

FST X

GREM1

IBSP

IL11 X

IL11RA

IL1b X X X X X X

IL1r1 X X X X
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orthodontics should be equal to capillary blood vessel pres-
sure (≈25 g/cm2) [49]. On a tissue level, OOF should
enable the desired clinical outcome without causing the
unwanted side effects, for example, root resorption. On
the cellular level, it should evoke best biologic cellular
response without inhibiting the cell proliferation signifi-
cantly [27]. Optimal orthodontic force in vitro varies
between different models. Estimation of OOF for each
in vitro model is of crucial importance for their successful
application in OTM simulation [20, 33].

In 2D cell culture WAB in vitro loading models, applied
forces varied between 0.2 and 5.0 g/cm2. Our data suggest
that 2.0 g/cm2 was the most commonly used force magnitude
in the studies so far. According to Kanzaki et al. [20], this
force magnitude proved to induce the best cellular response.
Few studies reported a decrease in cell viability in a force-

dependent manner, especially with the application of 4 g/cm2

force [20, 37, 50, 51].
In studies applying the 3D WAB in vitro loading models,

the force magnitude used was chosen depending on the stiff-
ness of the scaffold. Studies using collagen gel scaffolds most
commonly applied 6 g/cm2 force onto their in vitro models.
According to Araujo et al. [47], this force was corresponding
to the therapeutic orthodontic force, giving the best cellular
response. For PLGA scaffolds, the force magnitude showing
the best performance was 25 g/cm2 (range: 5–35 g/cm2). The
same range of forces were applied in the study of Liao et al.
[14] using a hydrophilically modified PLLA scaffold matrix.
This range also corresponds to the one used in clinical set-
tings, which indicates that these scaffolds are closest to the
mechanical properties of in vivo PDL [14, 33]. This qualifies
them also as a suitable model for investigation of light and

Table 2: Continued.

KEGG ID 4350 4060 4064 4390 4668 4210 4380 4620 4066

KEGG
name

TGF-beta
signaling
pathway

Cytokine-
cytokine
receptor

interaction

NF-kappa B
signaling
pathway

Hippo
signaling
pathway

TNF
signaling
pathway

Apoptosis
Osteoclast

differentiation

Toll-like
receptor
signaling
pathway

HIF-1
signaling
pathway

False
discovery
rate

8.33E–23 2.37E–21 8.32E–11 5.07E–09 1.01E–08 6.26E–08 1.02E–05 6.79E–05 7.16E–05

IL6 X X X X

IL6R X X

IL8 X X X X

MKI67

MMP1

MMP13

MMP14

MMP2

MMP3

NOG X

PLAT

PLAU X

PTGS2 X

RUNX2

SERPINE1 X X

SMAD1 X X

SP7

SPP1 X X

TIMP1 X

TIMP2

TIMP3

TIMP4

TNF X X X X X X X

TNFRSF11B X

TNFRSF1A X X X X

TNFSF11 X X

ZNF354C
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heavy forces, which are considered as a cause of orthodontic
treatment failure.

4.3. Duration of the Force Application. The length of the force
application in the studies rarely exceeded 72 h. In most of the
cases, force was applied up to 24 and 48h. Considering the
fact that the first 10 days are of crucial importance for
OTM ([52], p. 303), the duration of force application in
most of the conducted studies is insufficient to fully under-
stand the molecular background of OTM. Additionally, we
would like to point out that only a few studies observed cell
viability during the experiment. Most of them confirmed a
reduction of cell viability, not only due to the force level
but also depending on time [19, 50, 51]. We assume that
one of the limitations, especially in the 2D WAB in vitro
models, is compromised nutrient and oxygen supply in the
pressure area. To overcome especially the time limitation
of previous models, Liao et al. [14] introduced the hydrophi-
lically modified PLLA matrix as a new scaffold for 3D cul-
tures. They have shown that this scaffold can be used for
up to 14 days without affecting cell viability, claiming that
it provides good perfusion of the nutrients and oxygen over
longer periods of time [14]. Establishing an in vitro model
suitable for long-term force application (up to or more than
10 days) is beneficial for progress in this research field.

4.4. Role of PDL and hPDLCs in OTM. Due to lack of PDL,
ankylosed teeth and implants cannot undergo OTM, which
depict best PDL’s key role in transmitting the mechanical
stimulus and initiating the process of bone remodelling
[1, 53]. Beside its mechanotransduction properties, it also
contributes to tissue homoeostasis and repair, mostly due to
the presence of mesenchymal stem cells which are an impor-
tant part in the normal hPDLC population [4]. This portion
of hPDLCs is known to be present in a higher extent in
hPDLCs isolated with the “enzyme digestion method” [54],
commonly used among the studies in this review, especially
in the 3D group.

4.5. Most Examined Genes in the Studies That Used hPDLCs.
To explain the contribution of hPDLCs in OTM on the
molecular level, we summarised all data regarding the most
commonly examined genes and substances in this cell type
(Table 1). These were TNFSF11, PTGS2, and PGE2, known
as osteoclastogenesis inducers, and TNFRSF11B, known as
an osteoclastogenesis inhibitor.

TNFSF11 (also known as “RANKL”) [55] plays a crucial
role in bone resorption on the compression side during
OTM, inducing the osteoclast formation. TNFSF11 showed
an increased gene expression in all studies that used the 2D
WAB in vitro loading model (Table 1). In most of the studies
using this model, TNFSF11 gene expression, as well as pro-
tein secretion, was positively correlated with both force dura-
tion and magnitude reaching the maximum expression level
after 12–24 hours of force application. Studies using the 3D
WAB in vitro loading model also reported an increase in
the TNFSF11 secretion, most of them after 6 hours of force
application (Table 1). In cells grown in PLGA scaffolds, a
positive correlation between force magnitude and gene

expression but a negative correlation between force duration
and gene expression was noticed.

TNFRSF11B, also referred to as osteoprotegerin (OPG),
is TNFSF11’s antagonist that inhibits osteoclastogenesis
[55]. Most of the studies applying the 2D WAB in vitro
loading model reported no observed change in gene
expression (n = 8), with exception of two studies that
reported downregulation [40] or transitory downregulation
[8] (Table 1). Considering protein secretion, results were
contradictory. Most studies, however, reported a decrease
in protein secretion or did not report any change. Results
from studies using 3D WAB in vitro loading were also
contrary, depending on the scaffold used. In a study using
collagen gel scaffolds, an increase in TNFRSF11B gene
expression was observed [26]. In all studies applying PLGA
scaffolds, a decrease in TNFRSF11B secretion was positively
correlated with force magnitude and negatively correlated
with force duration [27, 28, 31, 33, 43]. With one exception
[28], a comparison of TNFSF11 and TNFRSF11B gene
expression in the aforementioned studies showed that a
rapid down/regulation of TNFRSF11B appears parallel to
a rapid upregulation of TNFSF11 in 3D WAB in vitro load-
ing. Since both genes represent antagonists in bone turnover
regulation, this was explained as a good representation of the
cyclic changes in the bone metabolism on the compression
side during OTM [31, 33]. It was also suggested that down-
regulation of TNFSF11 in later stages might have something
to do with other inducers for prolonged osteoclastogenesis
promotion [33].

Gene expression of PTGS2 was increased upon force
application in both 2D and 3D studies. In most of the 2D
WAB studies, PTGS2 showed a positive correlation between
the duration of the experiment and gene expression
(Table 1). In those studies, using the 3D WAB in vitro load-
ing model, PTGS2 seemed to be negatively correlated with
force duration and positively correlated with force magni-
tude. On the other hand, PTGS2 protein quantity was shown
to be in positive correlation with both duration and force
magnitude using Western blotting (Table 1). Since PTGS2
is involved in prostaglandin E2 metabolism, an upregulation
of PTGS2 gene expression (maximum at 24 to 48 h after force
application) is correlated with an upregulation of PGE2
secretion (maximum at 48 h after force application) in all
studies (Table 1).

Taken together, there seems to be some inconsistency
between studies using the 2D and the 3DWAB in vitro load-
ing model. The results within the 2D WAB group of studies
are quite similar and comparable. However, a noticeable
higher heterogeneity among those studies using the 3D
WAB in vitro loading model is recognizable. This heteroge-
neity can be related to the type of scaffolds used.

4.6. STRING PPI Analysis. We performed STRING PPI
analysis for two selected sets of genes (“hPDLC list” and
“hOB list”). PPI enrichment p values obtained from both
PPI networks (Figure 4) had significantly more interac-
tions than expected. This implicates that the genes exam-
ined in the studies were not chosen randomly. From our
point of view, this is not surprising, since most of the
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studies were selecting “the genes of interest” for their analy-
sis, all previously known or suspected to be involved in bone
metabolism. Just a few of the studies performed microarray
analysis in order to identify all genes responding to force
application [26, 32, 44, 48].

In addition, KEGG pathways relevant for OTM, identi-
fied for each set of genes in STRING analysis (Table 2),
can be useful source for discovering new genes that might
influence OTM.

5. Conclusions

In summary, the WAB in vitro loading model represents a
simple and very efficient way to investigate molecular events
during OTM. The purpose of this review was to provide an
overview of all used forms of theWAB in vitro loading model
(2D and 3D in combination with different scaffolds), present
all current findings, and point out at certain questions for
their further improvement.

3DWAB in vitro loading models have shown to be prom-
ising for use in future research by bringing a more real envi-
ronment in in vitro setups. However, unlike well-established
2D models that provide comparable results, 3D models show
inconsistency in results. Obviously, there is a need for further
improvement in order to establish standardised in vitro
models that will provide comparable results. Also, there is a
need to elucidate molecular events during longer periods of
force application. Therefore, the future goal is to establish
both 2D and 3D loading models that will allow us to conduct
long-term investigations. The study of Liao et al. [14] is a
good example for this, and there should be more research
in that direction.
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