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Ever since the first genome-wide association studies (GWAS) on coronary artery disease

(CAD), the Chr9p21 risk locus has emerged as a top signal in GWAS of atherosclerotic

cardiovascular disease, including stroke and peripheral artery disease. The CAD risk

SNPs on Chr9p21 lie within a stretch of 58 kilobases of non-protein-coding DNA,

containing the gene body of the long noncoding RNA (lncRNA) antisense non coding

RNA in the INK4 locus (ANRIL). How risk is affected by the Chr9p21 locus in molecular

detail is a matter of ongoing research. Here we will review recent advances in the

understanding that ANRIL serves as a key risk effector molecule of atherogenesis at

the locus. One focus of this review is the shift in understanding that genetic variation

at Chr9p21 not only affects the abundance of ANRIL, and in some cases expression

of the adjacent CDKN2A/B tumor suppressors, but also impacts ANRIL splicing, such

that 3′-5′-linked circular noncoding ANRIL RNA species are produced. We describe how

the balance of linear and circular ANRIL RNA, determined by the Chr9p21 genotype,

regulates molecular pathways and cellular functions involved in atherogenesis. We end

with an outlook on how manipulating circular ANRIL abundance may be exploited for

therapeutic purposes.

Keywords: lncRNA (long non-coding RNA), circRNA, GWAS (genome-wide association study), eQTL analysis,

transcription, splicing, tumor suppressor proteins, cardiovascular diseases

INTRODUCTION

Since publication of the first genome-wide association studies (GWAS) of coronary artery disease
(CAD) in 2007, Chr9p21 has emerged as themost significant risk locus associated with this frequent
disease (1–4). The region contains a number of strongly interlinked SNPs within a stretch of 58
kilobases (kb) of non-protein-coding DNA. Later, the same haplotype block has been associated
with other endpoints of atherosclerosis, such as stroke (5–11), peripheral artery disease (12–14),
and also with different types of aneurysms (2, 8, 15, 16). Due to the availability of large study
cohorts and the better resolution of genetic recombination in this region, it has now become
clear that associations with other phenotypes at Chr9p21 fall in distinct haplotype blocks not
overlapping with the CAD block (Figure 1A). Closely nearby, and proximal to the CAD locus,
GWAS found associations with cancer, such as melanoma, glioma, basal cell carcinoma, and acute
lymphoblastic leukemia [see (40) for review], and also with glaucoma, and diverse proliferative or
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inflammatory diseases, such as endometriosis of the reproductive
tract (41), periodontitis (42), and platelet reactivity (43). The
region located distally to the CAD region contains a distinct
haplotype block associated with type 2 diabetes (44, 45).

In the last 10 years, GWAS have been successfully used to
increase the number of genetic loci implicated in CAD risk
inheritance. The number of CAD risk loci in the genome rose
from 56 by 2013 (24, 46–52) to 80 by 2015 (53–56), to 243 by
2017 (17). Concerning the Chr9p21 locus in these studies, the
association rose steadily from p = 5.40 × 10−23 (rs4977575)
(57), over p = 4.68−101 (rs4977574) (17) to p = 8.8 × 10−223

(rs4977574) (58). In populations of European descent, the allele
frequency is very high (0.48), leading to the situation that
approximately one-fourth of people are homozygous for the
CAD risk alleles. CAD risk SNPs on Chr9p21 have recurrently
been shown to have one of the top-ranking effect sizes [allele-
specific odds ratio (OR) for CAD> 1.3] (3, 24). Despite the extent
of effects, the Chr9p21 risk is independent of classically known
CAD risk determinants, such as dyslipidemia, diabetes mellitus,
age, and sex.

The Chr9p21 region contains at least 5 genes, which are, in
part, tightly clustered and overlapping. These include the 3.8 kb
long ANRIL non-coding RNA, and the tumor suppressors
cyclin dependent kinase inhibitor CDKN2A/p16INK4A,
CDKN2A/p14ARF , CDKN2B/p15INK4B, and methylthioadenosine
phosphorylase (MTAP). ANRIL overlaps in antisense the full
length of the p15 gene body, while sharing a bidirectional
promoter with CDKN2A. Hence, it was also termed CDKN2B
antisense RNA (CDKN2B-AS1). Only recently, the picture got
even more complex: Advances in high-throughput sequencing
and adaptions in bioinformatics mapping of RNA reads to
reference genomes have revealed that thousands of genes in
our genome produce not only mature linear RNA but also
3′-5′ covalently linked circular RNAs (circRNAs) (59). So far,
two studies have shown that a number of circular ANRIL
(circANRIL) isoforms exist, comprised of different exons,
whereby a downstream exon is fused to an upstream exon by
the enzymatic activity of the spliceosome in a reaction termed
“backsplicing” [see (60, 61) for review]. Circularizing exons
in ANRIL stemmed mostly from middle parts of the lncRNA
(Figure 1A), which are in part also shared by the linear ANRIL
isoforms. CircANRIL was found not only in many different cell
lines, but also in many primary cell types, including vascular
smooth muscle cells (VSMCs) and macrophages, as well as in
heart and vascular tissue (22, 36).

A major focus in exploring how risk is effected by Chr9p21
has been on whether genetic variation affected expression of
genes at the locus in cis (Figure 1A) or whether it elicited
gene expression changes in trans. Top CAD-associated SNPs lie
within the distal parts of long linearANRIL isoforms (Figure 1A)
and several studies have shown that they co-localize with
sequences marked by chromatin modifications, RNA polymerase
II transcription patterns and DNA motifs characteristic of bona-
fide transcriptional enhancers (19, 35, 62–65). Using expression
quantitative trait locus (eQTL) analyses in patient samples,
several groups have by now investigated if the risk alleles
at the locus were associated with the expression of specific

target genes in cis (cis-eQTLs). Whereas studies investigating
ANRIL expression have mostly used quantitative PCRs (qPCRs)
targeting different exons from the lncRNA, expression of p14,
p15, p16, or MTAP has either been investigated using genome-
wide expression arrays or isoform-specific qPCRs. Here, we focus
on studies investigating eQTLs in atherosclerosis cohorts but do
not cover studies related to other phenotypes, such as cancer,
which are reviewed elsewhere (66).

CIS-eQTLs AT Chr9p21

ANRIL expression at Chr9p21 is complex and at least 20 linear
isoforms as well as multiple circular isoforms have been reported
[www.ensembl.org, (22, 36, 39)]. In principal, linear and circular
isoforms can be distinguished by the fact that the latter derive
from a backsplice event, where splicing of a downstream exon
(e.g., exon 7) to an upstream exon (e.g., to exon 5) can be
detected. Backsplicing of ex7-5 was the most common event
observed in our own study in peripheral blood monocytes (36).
Concordantly, Burd and colleagues have reported dominant
backsplice isoforms spanning ex14-4 in peripheral blood T
lymphocytes (22). In both studies, exon 1 and exons 17-20
were not contained in circularized ANRIL (Table 1). Thus, for
classification reasons, results from studies targeting these exons
will be referred to as proximal linear isoforms (containing the
firstANRIL exons) and long linear isoforms (containing the distal
exons 17-20) (Table 1). Since both linear and circularANRILmay
contain exons from themiddle portion of the lncRNA (e.g., exons
4-16), a clear distinction as to whether linear or circular isoforms
were investigated cannot be made in cases where these exons
were targeted by qPCRs which were non-specific for backsplice
junctions (Table 1).

As one of the first studies on Chr9p21, Jarinova et al. have
shown that ANRIL expression was induced by the CAD risk
SNP rs1333049 in peripheral blood monocytes (PBMCs). No
significant effects on CDKN2A or on CDKN2B were recorded
in that study (19). Over the years, comparable quantifications
of these genes followed in whole blood, peripheral blood T
lymphocytes, lymphoblastoid cells lines, aortic smooth muscle
cells (SMCs) and in different tissue samples that are known
to have a role in atherosclerosis. For example, vascular tissues
such as carotid atherosclerotic plaque samples, samples from
aorta, mammary artery, and from the heart ventricles have been
analyzed, but also tissues like subcutaneous or omental fat have
been used (Table 1). Of the 23 cis-eQTL studies conducted in the
Chr9p21 CAD region to date, 16 investigated different isoforms
of ANRIL, out of which 10 used assays targeting proximal ANRIL
exons, 8 used assays targeting the middle region, 6 used assays
targeting downstream linear ANRIL exons, and two investigated
backsplices contained in circANRIL (Table 1). Complicating a
clear-cut interpretation, in the different studies, different risk
genotypes were used to indicate risk haplotypes. The expression
of CDKN2A and of CDKN2B was investigated in 18 studies and
MTAP in 10 studies (Table 1).

Overall, 80% of the studies investigating ANRIL expression
found an association with the Chr9p21 genotype. Here, a trend
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FIGURE 1 | ANRIL and the CAD risk locus at Chr9p21. (A) Genomic mapping of SNPs identified in a region ± 300 kb around the top-ranking sentinel SNP rs4977574

based on data of the most recent large CAD GWAS (17). Chromosome ideogram and zoom-in onto RefSeq transcripts for ANRIL, CDKN2A, CDKN2B, and MTAP

(Continued)
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FIGURE 1 | (top), regional association plot of CAD risk alleles and graph of recombination rate in the locus (middle), scaled linkage disequilibrium heatmap (D′) as

derived from the 1000Genomes Project dataset (Phase3V5, CEU) (bottom). The threshold for significance of GWAS hits is indicated as horizontal dotted line (p <

5E-8). Dots for SNPs described in Table 1 are marked in yellow. The suspected core CAD risk region, corresponding to the distal region of ANRIL, has been defined

experimentally through multiple CAD GWAS and is highlighted in red. The physical genomic map and the haplotype map are connected by oblique lines. Note that not

all RNA transcripts and isoforms are depicted, and that type 2 diabetes (T2D, highlighted blue) and cancer risk regions (highlighted gray) are shown in simplified forms.

(B) Model how the genotype at Chr9p21 controls the balance of linear and circular ANRIL RNA expression and potential molecular mechanisms of the different ANRIL

isoforms. Linear ANRIL upregulation regulates gene expression in trans and pro-adhesive, pro-proliferative, anti-apoptotic cell functions. High levels of circANRIL

inhibit over-proliferation of vascular cells by controlling rRNA maturation through impairing PES1 function in the PeBoW complex.

toward higher expression of the proximal and distal exons
contained in linear ANRIL in patients carrying the CAD-risk
allele was observed (7 of 10 and 3 of 6 studies). In contrast,
circular ANRIL was downregulated in the two published studies
in patients carrying the Chr9p21 risk haplotype. No clear
tendency was observed when assays targeting the middle region
of ANRIL were used (Table 1). This is likely explained by the
fact that these assays target both, linear and circular, ANRIL
isoforms, which seem to be inversely regulated. With respect to
the tumor suppressor genes contained at the Chr9p21 locus, 78
and 67% of the studies failed to find an association of CDKN2A
and CDKN2B with Chr9p21, respectively. When reporting an
association, specifically CDKN2B was down-regulated in the
majority of studies (94%), yet its expression was not always
anticorrelating with ANRIL expression (19, 21, 22, 29). MTAP
expression was not associated with the Chr9p21 genotype in any
of the published studies. Overall, the picture emerges that circular
ANRIL and CDKN2B tend to be down-regulated in patients
carrying the risk allele, whereas linear ANRIL isoforms tend to
be inversely regulated (Figure 1B). It is currently unclear, why
expression of p15 or of p14 and p16 were in many cases positively
correlated with ANRIL (19, 21, 22, 27, 29, 32, 34, 65). Also,
MTAP, which was not associated with Chr9p21 (Table 1), was in
some conditions anticorrelating to ANRIL, but not in all cases
or contexts (20, 34, 67). SNPs in ANRIL can hypothetically affect
enhancers in both directions, either by disrupting transcription
factor binding sites in open chromatin (68) or by increasing
enhancer activity through yet unknown primary effects (24, 65).

In summary, many studies document cis-eQTLs for ANRIL
or, separately, for CDKN2B (35). Throughout, from the existing
data, it can be concluded that these effects are cell-type specific
and combinatorial. Of note, many studies have investigated only
very small cohorts and those, simultaneously testing both ANRIL
and CDKN2B in larger cohorts (>1000 samples) identified
much stronger effects of Chr9p21 on ANRIL than on CDKN2B
(13, 33, 36). This observation might be explained by the
haplotype block structure of the region, where effects of CAD
lead SNPs are located within ANRIL but bleed through due
to linkage disequilibrium, resulting in more subtle concomitant
effects on CDKN2B expression. Another possibility is that the
Chr9p21 genotype impacts transcription enhancers at the locus
which contact and activate gene promoters affecting CAD.
The consequences of such contacts would not be expected to
be captured through traditional non-allelic RNA expression
analysis. In fact, when allelic expression control through 3D-
enhancer looping was specifically measured in a separate study
in human coronary aortic SMCs (64), physical contacts of CAD

variant-containing enhancers in the locus and the promoters of
CDKN2A, CDKN2B, and ANRIL were corroborated.

Taken together, these data suggest that genetic variationwithin
the core 9p21 CAD region relates to differential expression
not only of ANRIL, but in specific cells or conditions, also of
the CDKN2A/B tumor suppressors encoded in the locus. While
either of these factors could potentially increase cell proliferation,
or lead to unscheduled senescence, or elicit out of context
inflammatory signaling, as far as based on work with cells in vitro,
no study in humans or in mouse models has been able to
decisively implicate a downstream effector pathway in vivo.

TRANS-eQTLs AT Chr9p21 AND
MOLECULAR FUNCTIONS OF ANRIL IN
TRANSCRIPTIONAL REGULATION

As opposed to cis effects, two eQTL studies have so far detected
modest and tissue-selective differential expression of dozens
of genes associated with Chr9p21 genotype with genome-wide
significance (19, 27). Affected genes were from a broad range of
classes (AVPR2, PEAK1, FBLN1, KALRN, DAZL, STAU2, HLA-
DQA1, BTNL8, PLEKHA6, TDGF1) in whole blood (19) and
different, non-overlapping gene sets linked to tissue wounding,
cell migration and inflammatory response, when analyzing heart
tissue, plaques, aortas, and arteries (27).

Other, and in part, larger studies in vascular tissue (20),
peripheral blood mononuclear cells (PBMC, n = 2280) (33) and
in blood monocytes (n = 1490) (23) reported no significant
expression association.

Though not directly comparable, another study showed that
in macrophages cultured in vitro under stress-bearing IFNγ and
LPS stimulation, the CAD risk genotype led to differential up-
and downregulation of target genes outside the Chr9p21 locus
and yet distinct from the previously mentioned studies (IL1B,
IL12B, CASP5, CCL8, MT1A, MT1E, MUCL1, TNIP3, VCAN,
ENPP2, NDP, CD163) (30). Also ANRIL knockdown in cultured
cell lines (69–72) and overexpression of linearANRIL affected the
expression of non-overlapping gene sets in the genome in trans
(33, 36).

How ANRIL exerts trans-regulation is not known, and
despite a study that showed a physical interaction of ANRIL
with promoters of target genes (33), this role is likely not a
classical function as enhancer RNA [eRNA (73)], because it
involved both up-and down-regulated genes, and was suggested
to involve sequence homology (33). In the case of ANRIL,
trans-regulation of target genes was ascribed to an ALU motif
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in both ANRIL and the target gene promoters (33). Similarly,
an independent study found that ANRIL did not only silence
its targets, but unexpectedly also upregulated target genes: For
example, proinflammatory interleukins IL6/8 were found to be
co-stimulated by ANRIL and YY1, a transcription-regulating
factor that bound to the ANRIL RNA, especially in the context
of TNFα/NFκB signaling (70). Therefore, opposite to what
could have been expected from the reported physical interaction
of ANRIL with proteins from the repressive Polycomb group
complexes (74), ANRIL might be an activator, at least for some
trans-regulated genes (33, 70) (see chapter 4 for details). Whether
circANRIL, beyond regulating rRNA maturation, is involved
in primary transcriptional control, alone or via impacting
linear ANRIL’s function, is not known (36). Nevertheless, it is
interesting to note that circANRIL isoforms linked to CAD are
produced from exons located in the middle of the ANRIL gene
(22, 36), and as such do not include the ALU motif, which
is important for gene trans-regulation by linear ANRIL and
is located more distally in the gene (33). Thus, variation in
ANRIL RNA at the molecular level (linear vs. circular) might
impose a fundamental alteration in ANRIL effector function,
while not offering any explanation per se on how linear ANRIL
regulates genes, as scaffold for promoter-activating complexes, or
as decoy/inhibitor of repressive chromatin-modifying complexes.
Conservatively speaking, it seems possible that Chr9p21 CAD
risk genotypes affects genomic expression both in cis and in trans,
and linear ANRIL RNA may be one, but not the sole, important
effector molecule for how the Chr9p21 locus transduces such
effects (Figure 1B).

CORRELATION OF CHR9P21 GENES WITH
ATHEROSCLEROSIS SEVERITY IN
HUMANS AND MOUSE MODELS

Another piece of evidence for a functional role of ANRIL
in determining CAD risk stems from correlation analysis
with disease features in patient cohorts. Aside of the genetic
association, ANRIL levels were often increased in CAD patients,
and not only in atherosclerotic plaque tissue, but also in
circulating PBMCs or whole blood. Here, linear ANRIL levels
were positively correlated with the severity of atherosclerosis (13,
29, 75) whereas circANRIL was anticorrelated (36) (Figure 1B).
Thus, while the genotype of Chr9p21 determines the production
of atherogenic (linear) over antiatherogenic ANRIL RNA species
(circular), CAD and peripheral artery disease-dependent changes
may additionally feed into ANRIL regulation. For CDKN2B,
two studies reported a correlation of the expression with
atherosclerosis severity (34, 76), where the direction of the
correlation (downregulation in plaques) was consistent from
what could be expected from the association results. But another
study reported increased p16INK4A levels to positively correlate
with inflammation markers in plaques instead of anticorrelation
(25). Together, results from association as well as correlation
analyses have etablished ANRIL lncRNA as prime candidate at
the Chr9p21 locus.

MOLECULAR FUNCTION OF ANRIL AND
CDKN2A/B IN ATHEROGENESIS

ANRIL belongs to the group of long non-coding RNAs and
as such has been suggested to act as a molecular scaffold of
chromatin-modifying complexes that control gene expression
through modifying histone tails. Specifically, ANRIL was found
to physically interact with the CBX7 protein inside the PRC1
Polycomb complex, one of the major gene repression complexes
in cells (74). Knockdown of members of this Polycomb
group complex led to increased expression of the CDKN2A
and CDKN2B tumor suppressors in the Chr9p21 locus. Also,
ongoing RNA polymerase II transcription was important for
the association of the Polycomb proteins with the locus,
indicative of the importance of RNA for recruitment. It was
concluded that ANRIL’s function may be, at least in part, to
repress the CDKN2A and CDKN2B tumor suppressors. As a
consequence increased ANRIL levels are thought to promote
overproliferation and to be incompatible with senescence onset,
a major function of CDKN2A/B. As described in chapter 2, other
work has shown that recruitment of the Polycomb complexes
may account also for how ANRIL regulates genes in trans on
a genome-wide level: Overexpression of linear ANRIL isoforms
in cultured cells was found to promote pro-atherogenic cell
functions, such as proliferation and reduced apoptosis, and to
trigger the differential expression of hundreds of genes, in this
case without affecting CDKN2A/B suppressors. Results from
that study therefore questioned whether ANRIL regulated these
tumor suppressor genes in cis at all (36, 77).

How does circular ANRIL, whose abundances is reduced in
CAD patients, fit into this model? Both in human peripheral
blood T-lymphocytes, as well as in PBMCs, whole blood and
endatherectomy plaque tissue, circANRIL isoforms were found
to be downregulated in samples from CAD patients carrying the
Chr9p21 risk allele (22, 36). In an initial model, it was suggested
that the production of circANRIL from central ANRIL exons
would shorten the linear ANRIL lncRNA and, thereby, impaired
linear ANRIL’s function in epigenetic control of target genes (22).
In a second study, a more primary role was found for circANRIL
that was, furthermore, independent of linear ANRIL (36). Here,
circANRIL was found to be 10-fold more abundant than linear
ANRIL. Mass-spectrometric analysis of proteins interacting with
circANRIL showed that it bound to PES1 protein, a member
of the evolutionarily conserved PeBoW complex. This complex
is essential for proper rRNA-processing, that is the excision
of RNA spacer elements from pre-ribosomal rRNA precursors.
CircANRIL inhibited the activity of the PeBoW complex, as
deduced from the accumulation of unsufficiently processed (and
non-functional) 26S and 32S pre-rRNA intermediates when
circANRIL was overexpressed (36). A deficit in rRNAmaturation
caused nucleolar stress and p53 activation, culminating in
inhibition of cell proliferation and in an increase in apoptosis.
Notably, the observed functions of circANRIL were inverse to
that of linear ANRIL and, as shown by genomic knockout of
linear ANRIL exons, independent from the presence of these
lncRNA isoforms. Thus, experimental evidence from expression
analysis in vivo and from genetic experiments both indicated
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that circANRIL was anti-atherogenic. Together, linear ANRIL
confers overproliferation, and circular ANRIL protects from
overproliferation, suggesting that the genotype of Chr9p21 is
important to determine the balance of linear and circular ANRIL
levels in SMCs and macrophages, and that a dominance of linear
ANRIL in this ratio, even when small, over decades skews for
CAD (36) (Figure 1B).

Whether suppressing linearANRIL or boosting circularization
is sufficient to protect from atherosclerotic cues in vivo is
matter of ongoing research. The fact that ANRIL RNA is
not conserved beyond primates complicates the functional in
vivo analysis of the Chr9p21 locus. So far, insight on how
CAD is controlled by Chr9p21 through genetic modeling
in mouse mutants is fragmented. The genetic elements of
Chr9p21 and their relative positioning are overall syntenically
conserved in mouse chromosome 4. So far, only one study
has investigated, if deletion of a 70 kb long portion of mouse
Chr4 corresponding to the CAD haplotype block in humans
had an effect on atherosclerosis in vivo (78). This region
contains a multi-exon lncRNA, AK148321, which is, however,
likely not corresponding to human ANRIL. Mutant mice (78)
developed tumors, reminiscent of tumorigenesis associated with
mutation in the Chr9p21 region. But despite some metabolic
changes in the mutant mice and enhanced platelet activation,
no significant change in atherosclerotic fatty lesion formation
was observed (78), putting in question the validity of this mouse
model for studying ANRIL-driven atherogenesis. On the other
hand, the mutants did develop more vascular aneurysms (79),
supporting that some aspects of CAD were indeed contained in
the noncoding mouse sequence.

Overall, the picture is not yet fully clear. While the genetic
data from mice support the importance of individual noncoding
genetic elements and of some of the protein-coding tumor
suppressors for regulation of atherosclerosis and other CAD
entities, whether the lncRNA encoded in the locus regulates CAD
mechanistically via epigenetically regulating the neighboring
tumor suppressors in cis has not been determined. Nevertheless,
mouse genetics remains an interesting research avenue to explore
some aspects of Chr9p21 biology, at least relating to aneurysm,
cancer, and glaucoma formation.

SUMMARY

Starting from a GWAS signal for CAD in a “gene desert”
on Chr9p21 in 2007, research in the last decade has firmly
established this region as strongest genetic factor of human
atherosclerosis and has contributed to a better understanding of
the underlying pathophysiology. The picture has emerged that

one of the major routes how this locus controls atherosclerosis
risk is through regulating the expression of the lncRNA ANRIL
in cis, where the risk allele leads to high levels of linear ANRIL
but decreases circular ANRIL expression. Linear ANRIL has
been established as molecular scaffold guiding epigenetic protein
complexes and promoting pro-atherogentic cells functions. On
the contrary, circularization shifts ANRIL’s function toward
controlling ribosomal RNA processing and controlling protein
translation thereby promoting athero-protection (Figure 1B).
The molecular mechanisms of how the ratio of linear and
circular ANRIL is controlled by the genotype at the locus are
currently not resolved and it will be important to determine
which gene regulatory elements within the ANRIL gene are
disturbed by causal CAD risk SNPs. Experimentally exploring
details of the molecular effector mechanisms for linear ANRIL
and for circular ANRIL will be paramount, but this task will
not be trivial because linear and circular ANRIL isoforms
always co-exist and in part share the same sequence. Not last,
more nuanced relations between Chr9p21 genotype and gene
expression output can be expected to be found in the future if,
for example, analyses were to take into account cell type-specific
and context (stress, inflammation, senescence)-specific effects,
aspect that whole tissue expression profiling is currently missing.
Additionally, although it is early days, measuring the levels of
circANRIL/linear ANRIL, might offer a prognostic value and
help improve CAD risk stratification or allow to better monitor
treatment response or disease recurrence.Yet, since circANRIL
levels are reduced in plaque tissue, and since circANRIL has been
found to be anti-atherogenic with or without co-existing linear
ANRIL, increasing circANRIL abundance in patients could also
be of therapeutic relevance. Expressing circANRIL levels in the
cells of the vasculature in CAD disease models might, therefore,
be a promising next step to exploit the accumulated knowledge
on the Chr9p21 CAD risk locus.

AUTHOR CONTRIBUTIONS

All authors listed have made a substantial, direct and intellectual
contribution to the work, and approved it for publication.

ACKNOWLEDGMENTS

We thank Bernd Northoff for bioinformatics analyses and his aid
in preparing the Figure. This work was in part funded by the
German Research Foundation (DFG) as part of the Collaborative
Research Center CRC1123 Atherosclerosis–Mechanisms and
Networks of Novel Therapeutic Targets (project B1) and by the
Leducq-foundation CADgenomics.

REFERENCES

1. McPherson R, Pertsemlidis A, Kavaslar N, Stewart A, Roberts R, Cox DR, et al.

A common allele on chromosome 9 associated with coronary heart disease.

Science (2007) 316:1488–91. doi: 10.1126/science.1142447

2. Helgadottir A, Thorleifsson G, Manolescu A, Gretarsdottir S, Blondal

T, Jonasdottir A, et al. A common variant on chromosome 9p21

affects the risk of myocardial infarction. Science (2007) 316:1491–3.

doi: 10.1126/science.1142842

3. Samani NJ, Erdmann J, Hall AS, Hengstenberg C, Mangino M, Mayer B, et al.

Genomewide association analysis of coronary artery disease. N Engl J Med.

(2007) 357:443–53. doi: 10.1056/NEJMoa072366

4. Wellcome Trust Case Control C. Genome-wide association

study of 14,000 cases of seven common diseases and 3,000

Frontiers in Cardiovascular Medicine | www.frontiersin.org 9 November 2018 | Volume 5 | Article 145

https://doi.org/10.1126/science.1142447
https://doi.org/10.1126/science.1142842
https://doi.org/10.1056/NEJMoa072366
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


Holdt and Teupser ANRIL lncRNA and Atherosclerosis Risk

shared controls. Nature (2007) 447:661–78. doi: 10.1038/nature

05911

5. Larson MG, Atwood LD, Benjamin EJ, Cupples LA, D’Agostino RBSr, Fox

CS, et al. Framingham Heart Study 100K project: genome-wide associations

for cardiovascular disease outcomes. BMC Med Genet. (2007) 8 Suppl 1:S5.

doi: 10.1186/1471-2350-8-S1-S5

6. Matarin M, Brown WM, Singleton A, Hardy JA, Meschia JF, Investigators

I. Whole genome analyses suggest ischemic stroke and heart disease share

an association with polymorphisms on chromosome 9p21. Stroke (2008)

39:1586–9. doi: 10.1161/STROKEAHA.107.502963

7. Wahlstrand B, Orho-Melander M, Delling L, Kjeldsen S, Narkiewicz K,

Almgren P, et al. The myocardial infarction associated CDKN2A/CDKN2B

locus on chromosome 9p21 is associated with stroke independently of

coronary events in patients with hypertension. J Hypertens. (2009) 27:769–73.

doi: 10.1097/HJH.0b013e328326f7eb

8. Helgadottir A, Thorleifsson G, Magnusson KP, Gretarsdottir S,

Steinthorsdottir V, Manolescu A, et al. The same sequence variant on

9p21 associates with myocardial infarction, abdominal aortic aneurysm and

intracranial aneurysm. Nat Genet. (2008) 40:217–24. doi: 10.1038/ng.72

9. Gschwendtner A, Bevan S, Cole JW, Plourde A, Matarin M, Ross-Adams H,

et al. Sequence variants on chromosome 9p21.3 confer risk for atherosclerotic

stroke. Ann Neurol. (2009) 65:531–9. doi: 10.1002/ana.21590

10. International Stroke Genetics C, Wellcome Trust Case Control C, Bellenguez

C, Bevan S, Gschwendtner A, Spencer CC, et al. Genome-wide association

study identifies a variant in HDAC9 associated with large vessel ischemic

stroke. Nat Genet. (2012) 44:328–33. doi: 10.1038/ng.1081

11. Dichgans M, Malik R, Konig IR, Rosand J, Clarke R, Gretarsdottir S,

et al. Shared genetic susceptibility to ischemic stroke and coronary artery

disease: a genome-wide analysis of common variants. Stroke (2014) 45:24–36.

doi: 10.1161/STROKEAHA.113.002707

12. Cluett C, McDermott MM, Guralnik J, Ferrucci L, Bandinelli S, Miljkovic I,

et al. The 9p21 myocardial infarction risk allele increases risk of peripheral

artery disease in older people. Circ Cardiovasc Genet. (2009) 2:347–53.

doi: 10.1161/CIRCGENETICS.108.825935

13. Holdt LM, Beutner F, Scholz M, Gielen S, Gabel G, Bergert H,

et al. ANRIL expression is associated with atherosclerosis risk at

chromosome 9p21. Arterioscler Thromb Vasc Biol. (2010) 30:620–7.

doi: 10.1161/ATVBAHA.109.196832

14. Murabito JM, White CC, Kavousi M, Sun YV, Feitosa MF, Nambi

V, et al. Association between chromosome 9p21 variants and the

ankle-brachial index identified by a meta-analysis of 21 genome-

wide association studies. Circ Cardiovasc Genet. (2012) 5:100–12.

doi: 10.1161/CIRCGENETICS.111.961292

15. Bilguvar K, Yasuno K, Niemela M, Ruigrok YM, von Und Zu Fraunberg M,

van Duijn CM, et al. Susceptibility loci for intracranial aneurysm in European

and Japanese populations. Nat Genet. (2008) 40:1472–7. doi: 10.1038/

ng.240

16. Yasuno K, Bilguvar K, Bijlenga P, Low SK, Krischek B, Auburger G, et al.

Genome-wide association study of intracranial aneurysm identifies three new

risk loci. Nat Genet. (2010) 42:420–5. doi: 10.1038/ng.563

17. Nelson CP, Goel A, Butterworth AS, Kanoni S, Webb TR, Marouli E, et al.

Association analyses based on false discovery rate implicate new loci for

coronary artery disease. Nat Genet. (2017) 49:1385–91. doi: 10.1038/ng.3913

18. Cheng J, Cai MY, Chen YN, Li ZC, Tang SS, Yang XL, et al. Variants

in ANRIL gene correlated with its expression contribute to myocardial

infarction risk. Oncotarget (2017) 8:12607–19. doi: 10.18632/oncotarget.

14721

19. Jarinova O, Stewart AF, Roberts R, Wells G, Lau P, Naing T, et al.

Functional analysis of the chromosome 9p21.3 coronary artery

disease risk locus. Arterioscler Thromb Vasc Biol. (2009) 29:1671–7.

doi: 10.1161/ATVBAHA.109.189522

20. Folkersen L, Kyriakou T, Goel A, Peden J, Malarstig A, Paulsson-Berne G, et al.

Relationship between CAD risk genotype in the chromosome 9p21 locus and

gene expression. Identification of eight new ANRIL splice variants. PLoS ONE

(2009) 4:e7677. doi: 10.1371/journal.pone.0007677

21. Cunnington MS, Santibanez Koref M, Mayosi BM, Burn J, Keavney B.

Chromosome 9p21 SNPs associated with multiple disease phenotypes

correlate with ANRIL expression. PLoS Genet. (2010) 6:e1000899.

doi: 10.1371/journal.pgen.1000899

22. Burd CE, Jeck WR, Liu Y, Sanoff HK, Wang Z, Sharpless NE. Expression

of linear and novel circular forms of an INK4/ARF-associated non-coding

RNA correlates with atherosclerosis risk. PLoS Genet. (2010) 6:e1001233.

doi: 10.1371/journal.pgen.1001233

23. Zeller T, Wild P, Szymczak S, Rotival M, Schillert A, Castagne R, et al.

Genetics and beyond–the transcriptome of human monocytes and disease

susceptibility. PLoS ONE (2010) 5:e10693. doi: 10.1371/journal.pone.0010693

24. Schunkert H, Konig IR, Kathiresan S, Reilly MP, Assimes TL, Holm H,

et al. Large-scale association analysis identifies 13 new susceptibility loci for

coronary artery disease. Nat Genet. (2011) 43:333–8. doi: 10.1038/ng.784

25. Holdt LM, Sass K, Gabel G, Bergert H, Thiery J, Teupser D. Expression of

Chr9p21 genes CDKN2B (p15(INK4b)), CDKN2A (p16(INK4a), p14(ARF))

and MTAP in human atherosclerotic plaque. Atherosclerosis (2011) 214:264–

70. doi: 10.1016/j.atherosclerosis.2010.06.029

26. Kim JB, Deluna A, Mungrue IN, Vu C, Pouldar D, Civelek M,

et al. Effect of 9p21.3 coronary artery disease locus neighboring

genes on atherosclerosis in mice. Circulation (2012) 126:1896–906.

doi: 10.1161/CIRCULATIONAHA.111.064881

27. Pilbrow AP, Folkersen L, Pearson JF, Brown CM, McNoe L, Wang NM, et al.

The chromosome 9p21.3 coronary heart disease risk allele is associated with

altered gene expression in normal heart and vascular tissues. PLoS ONE (2012)

7:e39574. doi: 10.1371/journal.pone.0039574

28. Zhuang J, Peng W, Li H, Wang W, Wei Y, Li W, et al. Methylation

of p15INK4b and expression of ANRIL on chromosome 9p21 are

associated with coronary artery disease. PLoS ONE (2012) 7:e47193.

doi: 10.1371/journal.pone.0047193

29. Congrains A, Kamide K, Oguro R, Yasuda O, Miyata K, Yamamoto E, et al.

Genetic variants at the 9p21 locus contribute to atherosclerosis through

modulation of ANRIL and CDKN2A/B. Atherosclerosis (2012) 220:449–55.

doi: 10.1016/j.atherosclerosis.2011.11.017

30. Zollbrecht C, Grassl M, Fenk S, Hocherl R, Hubauer U, Reinhard

W, et al. Expression pattern in human macrophages dependent on

9p21.3 coronary artery disease risk locus. Atherosclerosis (2013) 227:244–9.

doi: 10.1016/j.atherosclerosis.2012.12.030

31. Motterle A, Pu X, Wood H, Xiao Q, Gor S, Ng FL, et al. Functional

analyses of coronary artery disease associated variation on chromosome

9p21 in vascular smooth muscle cells. Hum Mol Genet. (2012) 21:4021–9.

doi: 10.1093/hmg/dds224

32. Johnson AD, Hwang SJ, Voorman A, Morrison A, Peloso GM, Hsu YH, et al.

Resequencing and clinical associations of the 9p21.3 region: a comprehensive

investigation in the Framingham heart study. Circulation (2013) 127:799–810.

doi: 10.1161/CIRCULATIONAHA.112.111559

33. Holdt LM, Hoffmann S, Sass K, Langenberger D, Scholz M, Krohn

K, et al. Alu elements in ANRIL non-coding RNA at chromosome

9p21 modulate atherogenic cell functions through trans-regulation of

gene networks. PLoS Genet. (2013) 9:e1003588. doi: 10.1371/journal.pgen.

1003588

34. Shanker J, Arvind P, Jambunathan S, Nair J, Kakkar V. Genetic analysis of the

9p21.3 CAD risk locus in Asian Indians. Thromb Haemost. (2014) 111:960–9.

doi: 10.1160/TH13-08-0706

35. Miller CL, Pjanic M, Wang T, Nguyen T, Cohain A, Lee JD, et al.

Integrative functional genomics identifies regulatory mechanisms at coronary

artery disease loci. Nat Commun. (2016) 7:12092. doi: 10.1038/ncomms

12092

36. Holdt LM, Stahringer A, Sass K, Pichler G, Kulak NA, Wilfert W,

et al. Circular non-coding RNA ANRIL modulates ribosomal RNA

maturation and atherosclerosis in humans. Nat Commun. (2016) 7:12429.

doi: 10.1038/ncomms12429

37. Franzen O, Ermel R, Cohain A, Akers NK, Di Narzo A, Talukdar

HA, et al. Cardiometabolic risk loci share downstream cis- and trans-

gene regulation across tissues and diseases. Science (2016) 353:827–30.

doi: 10.1126/science.aad6970

38. Liu Y, Sanoff HK, Cho H, Burd CE, Torrice C, Mohlke KL, et al. INK4/ARF

transcript expression is associated with chromosome 9p21 variants linked to

atherosclerosis. PLoS ONE (2009) 4:e5027. doi: 10.1371/journal.pone.0005027

Frontiers in Cardiovascular Medicine | www.frontiersin.org 10 November 2018 | Volume 5 | Article 145

https://doi.org/10.1038/nature05911
https://doi.org/10.1186/1471-2350-8-S1-S5
https://doi.org/10.1161/STROKEAHA.107.502963
https://doi.org/10.1097/HJH.0b013e328326f7eb
https://doi.org/10.1038/ng.72
https://doi.org/10.1002/ana.21590
https://doi.org/10.1038/ng.1081
https://doi.org/10.1161/STROKEAHA.113.002707
https://doi.org/10.1161/CIRCGENETICS.108.825935
https://doi.org/10.1161/ATVBAHA.109.196832
https://doi.org/10.1161/CIRCGENETICS.111.961292
https://doi.org/10.1038/ng.240
https://doi.org/10.1038/ng.563
https://doi.org/10.1038/ng.3913
https://doi.org/10.18632/oncotarget.14721
https://doi.org/10.1161/ATVBAHA.109.189522
https://doi.org/10.1371/journal.pone.0007677
https://doi.org/10.1371/journal.pgen.1000899
https://doi.org/10.1371/journal.pgen.1001233
https://doi.org/10.1371/journal.pone.0010693
https://doi.org/10.1038/ng.784
https://doi.org/10.1016/j.atherosclerosis.2010.06.029
https://doi.org/10.1161/CIRCULATIONAHA.111.064881
https://doi.org/10.1371/journal.pone.0039574
https://doi.org/10.1371/journal.pone.0047193
https://doi.org/10.1016/j.atherosclerosis.2011.11.017
https://doi.org/10.1016/j.atherosclerosis.2012.12.030
https://doi.org/10.1093/hmg/dds224
https://doi.org/10.1161/CIRCULATIONAHA.112.111559
https://doi.org/10.1371/journal.pgen.1003588
https://doi.org/10.1160/TH13-08-0706
https://doi.org/10.1038/ncomms12092
https://doi.org/10.1038/ncomms12429
https://doi.org/10.1126/science.aad6970
https://doi.org/10.1371/journal.pone.0005027
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


Holdt and Teupser ANRIL lncRNA and Atherosclerosis Risk

39. Sarkar D, Oghabian A, Bodiyabadu PK, JosephWR, Leung EY, Finlay GJ, et al.

Multiple isoforms of ANRIL inmelanoma cells: structural complexity suggests

variations in processing. Int J Mol Sci. 18:1378. doi: 10.3390/ijms18071378

40. Jeck WR, Siebold AP, Sharpless NE. Review: a meta-analysis of

GWAS and age-associated diseases. Aging Cell (2012) 11:727–31.

doi: 10.1111/j.1474-9726.2012.00871.x

41. Nakaoka H, Gurumurthy A, Hayano T, Ahmadloo S, Omer WH, Yoshihara

K, et al. Allelic imbalance in regulation of ANRIL through chromatin

interaction at 9p21 endometriosis risk locus. PLoS Genet. (2016) 12:e1005893.

doi: 10.1371/journal.pgen.1005893

42. Schaefer AS, Richter GM, Groessner-Schreiber B, Noack B, Nothnagel M,

El Mokhtari NE, et al. Identification of a shared genetic susceptibility locus

for coronary heart disease and periodontitis. PLoS Genet. (2009) 5:e1000378.

doi: 10.1371/journal.pgen.1000378

43. Musunuru K, Post WS, Herzog W, Shen H, O’Connell JR, McArdle

PF, et al. Association of single nucleotide polymorphisms on

chromosome 9p21.3 with platelet reactivity: a potential mechanism

for increased vascular disease. Circ Cardiovasc Genet. (2010) 3:445–53.

doi: 10.1161/CIRCGENETICS.109.923508

44. Scott LJ, Mohlke KL, Bonnycastle LL, Willer CJ, Li Y, Duren WL,

et al. A genome-wide association study of type 2 diabetes in Finns

detects multiple susceptibility variants. Science (2007) 316:1341–5.

doi: 10.1126/science.1142382

45. Diabetes Genetics Initiative of Broad Institute of Harvard and MIT, Mit

LU, Novartis Institutes of BioMedical R, Saxena R, Voight BF, Lyssenko V,

et al. Genome-wide association analysis identifies loci for type 2 diabetes and

triglyceride levels. Science (2007) 316:1331–6. doi: 10.1126/science.1142358

46. Erdmann J, Grosshennig A, Braund PS, Konig IR, Hengstenberg C, Hall AS,

et al. New susceptibility locus for coronary artery disease on chromosome

3q22.3. Nat Genet. (2009) 41:280–2. doi: 10.1038/ng.307

47. Myocardial Infarction Genetics C, Kathiresan S, Voight BF, Purcell S,

Musunuru K, Ardissino D, et al. Genome-wide association of early-onset

myocardial infarction with single nucleotide polymorphisms and copy

number variants. Nat Genet. (2009) 41:334–41. doi: 10.1038/ng.327

48. Tregouet DA, Konig IR, Erdmann J, Munteanu A, Braund PS, Hall AS, et al.

Genome-wide haplotype association study identifies the SLC22A3-LPAL2-

LPA gene cluster as a risk locus for coronary artery disease. Nat Genet. (2009)

41:283–5. doi: 10.1038/ng.314

49. Consortium IKC. Large-scale gene-centric analysis identifies novel

variants for coronary artery disease. PLoS Genet. (2011) 7:e1002260.

doi: 10.1371/journal.pgen.1002260

50. Wang Z, Jacobs KB, Yeager M, Hutchinson A, Sampson J, Chatterjee N, et al.

Improved imputation of common and uncommon SNPs with a new reference

set. Nat Genet. (2011) 44:6–7. doi: 10.1038/ng.1044

51. Consortium CAD, Deloukas P, Kanoni S, Willenborg C, Farrall M, Assimes

TL, et al. Large-scale association analysis identifies new risk loci for coronary

artery disease. Nat Genet. (2013) 45:25–33. doi: 10.1038/ng.2480

52. Nikpay M, Goel A, Won HH, Hall LM, Willenborg C, Kanoni S, et al. A

comprehensive 1,000 Genomes-based genome-wide associationmeta-analysis

of coronary artery disease.Nat Genet. (2015) 47:1121–30. doi: 10.1038/ng.3396

53. Myocardial Infarction G, Investigators CAEC, Stitziel NO, Stirrups KE,

Masca NG, Erdmann J, et al. Coding variation in ANGPTL4, LPL, and

SVEP1 and the risk of coronary disease. N Engl J Med. (2016) 374:1134–44.

doi: 10.1056/NEJMoa1507652

54. Nioi P, Sigurdsson A, Thorleifsson G, Helgason H, Agustsdottir AB, Norddahl

GL, et al. Variant ASGR1 associated with a reduced risk of coronary artery

disease. N Engl J Med. (2016) 374:2131–41. doi: 10.1056/NEJMoa1508419

55. Webb TR, Erdmann J, Stirrups KE, Stitziel NO, Masca NG, Jansen

H, et al. Systematic evaluation of pleiotropy identifies 6 further loci

associated with coronary artery disease. J Am Coll Cardiol. (2017) 69:823–36.

doi: 10.1016/j.jacc.2016.11.056

56. Howson JMM, Zhao W, Barnes DR, Ho WK, Young R, Paul DS, et al.

Fifteen new risk loci for coronary artery disease highlight arterial-wall-specific

mechanisms. Nat Genet. (2017) 49:1113–9. doi: 10.1038/ng.3874

57. Klarin D, Zhu QM, Emdin CA, Chaffin M, Horner S, McMillan BJ, et al.

Genetic analysis in UK Biobank links insulin resistance and transendothelial

migration pathways to coronary artery disease. Nat Genet. (2017) 49:1392–7.

doi: 10.1038/ng.3914

58. van der Harst P, Verweij N. Identification of 64 novel genetic loci provides an

expanded view on the genetic architecture of coronary artery disease. Circ Res.

(2018) 122:433–43. doi: 10.1161/CIRCRESAHA.117.312086

59. Salzman J, Gawad C, Wang PL, Lacayo N, Brown PO. Circular RNAs are the

predominant transcript isoform from hundreds of human genes in diverse cell

types. PLoS ONE (2012) 7:e30733. doi: 10.1371/journal.pone.0030733

60. Barrett SP, Salzman J. Circular RNAs: analysis, expression and potential

functions. Development (2016) 143:1838–47. doi: 10.1242/dev.128074

61. Holdt LM, Kohlmaier A, Teupser D. Molecular roles and function of

circular RNAs in eukaryotic cells. Cell Mol Life Sci. (2018) 75:1071–98.

doi: 10.1007/s00018-017-2688-5

62. Harismendy O, Notani D, Song X, Rahim NG, Tanasa B, Heintzman

N, et al. 9p21 DNA variants associated with coronary artery disease

impair interferon-gamma signalling response. Nature (2011) 470:264–8.

doi: 10.1038/nature09753

63. Mehta NN. Large-scale association analysis identifies 13 new susceptibility

loci for coronary artery disease. Circ Cardiovasc Genet. (2011) 4:327–9.

doi: 10.1161/CIRCGENETICS.111.960443

64. Mumbach MR, Satpathy AT, Boyle EA, Dai C, Gowen BG, Cho SW,

et al. Enhancer connectome in primary human cells identifies target

genes of disease-associated DNA elements. Nat Genet. (2017) 49:1602–12.

doi: 10.1038/ng.3963

65. Svensson PA, Wahlstrand B, Olsson M, Froguel P, Falchi M, Bergman

RN, et al. CDKN2B expression and subcutaneous adipose tissue

expandability: possible influence of the 9p21 atherosclerosis locus. Biochem

Biophys Res Commun. (2014) 446:1126–31. doi: 10.1016/j.bbrc.2014.

03.075

66. Li WQ, Pfeiffer RM, Hyland PL, Shi J, Gu F, Wang Z, et al. Genetic

polymorphisms in the 9p21 region associated with risk of multiple cancers.

Carcinogenesis (2014) 35:2698–705. doi: 10.1093/carcin/bgu203

67. Kong Y, Sharma RB, Ly S, Stamateris RE, Jesdale WM, Alonso LC.

CDKN2A/B T2D genome-wide association study risk SNPs impact locus

gene expression and proliferation in human islets. Diabetes (2018) 67:872–84.

doi: 10.2337/db17-1055

68. Almontashiri NA, Antoine D, Zhou X, Vilmundarson RO, Zhang SX,

Hao KN, et al. 9p21.3 coronary artery disease risk variants disrupt

TEAD transcription factor-dependent transforming growth factor beta

regulation of p16 expression in human aortic smooth muscle cells.

Circulation (2015) 132:1969–78. doi: 10.1161/CIRCULATIONAHA.114.

015023

69. Congrains A, Kamide K, Katsuya T, Yasuda O, Oguro R, Yamamoto K,

et al. CVD-associated non-coding RNA, ANRIL, modulates expression of

atherogenic pathways in VSMC. Biochem Biophys Res Commun. (2012)

419:612–6. doi: 10.1016/j.bbrc.2012.02.050

70. Zhou X, Han X, Wittfeldt A, Sun J, Liu C, Wang X, et al. Long non-

coding RNA ANRIL regulates inflammatory responses as a novel

component of NF-kappaB pathway. RNA Biol. (2016) 13:98–108.

doi: 10.1080/15476286.2015.1122164

71. Bochenek G, Hasler R, El Mokhtari NE, Konig IR, Loos BG, Jepsen S, et al.

The large non-coding RNA ANRIL, which is associated with atherosclerosis,

periodontitis and several forms of cancer, regulates ADIPOR1, VAMP3

and C11ORF10. Hum Mol Genet. (2013) 22:4516–27. doi: 10.1093/hmg/

ddt299

72. Bai Y, Nie S, Jiang G, Zhou Y, Zhou M, Zhao Y, et al. Regulation of

CARD8 expression by ANRIL and association of CARD8 single nucleotide

polymorphism rs2043211 (p.C10X) with ischemic stroke. Stroke (2014)

45:383–8. doi: 10.1161/STROKEAHA.113.003393

73. Lai F, Orom UA, Cesaroni M, Beringer M, Taatjes DJ, Blobel GA, et al.

Activating RNAs associate with Mediator to enhance chromatin architecture

and transcription. Nature (2013) 494:497–501. doi: 10.1038/nature

11884

74. Yap KL, Li S, Munoz-Cabello AM, Raguz S, Zeng L,Mujtaba S, et al. Molecular

interplay of the noncoding RNA ANRIL and methylated histone H3 lysine

27 by polycomb CBX7 in transcriptional silencing of INK4a. Mol Cell (2010)

38:662–74. doi: 10.1016/j.molcel.2010.03.021

75. Arslan S, Berkan O, Lalem T, Ozbilum N, Goksel S, Korkmaz O, et al.

Long non-coding RNAs in the atherosclerotic plaque. Atherosclerosis (2017)

266:176–81. doi: 10.1016/j.atherosclerosis.2017.10.012

Frontiers in Cardiovascular Medicine | www.frontiersin.org 11 November 2018 | Volume 5 | Article 145

https://doi.org/10.3390/ijms18071378
https://doi.org/10.1111/j.1474-9726.2012.00871.x
https://doi.org/10.1371/journal.pgen.1005893
https://doi.org/10.1371/journal.pgen.1000378
https://doi.org/10.1161/CIRCGENETICS.109.923508
https://doi.org/10.1126/science.1142382
https://doi.org/10.1126/science.1142358
https://doi.org/10.1038/ng.307
https://doi.org/10.1038/ng.327
https://doi.org/10.1038/ng.314
https://doi.org/10.1371/journal.pgen.1002260
https://doi.org/10.1038/ng.1044
https://doi.org/10.1038/ng.2480
https://doi.org/10.1038/ng.3396
https://doi.org/10.1056/NEJMoa1507652
https://doi.org/10.1056/NEJMoa1508419
https://doi.org/10.1016/j.jacc.2016.11.056
https://doi.org/10.1038/ng.3874
https://doi.org/10.1038/ng.3914
https://doi.org/10.1161/CIRCRESAHA.117.312086
https://doi.org/10.1371/journal.pone.0030733
https://doi.org/10.1242/dev.128074
https://doi.org/10.1007/s00018-017-2688-5
https://doi.org/10.1038/nature09753
https://doi.org/10.1161/CIRCGENETICS.111.960443
https://doi.org/10.1038/ng.3963
https://doi.org/10.1016/j.bbrc.2014.03.075
https://doi.org/10.1093/carcin/bgu203
https://doi.org/10.2337/db17-1055
https://doi.org/10.1161/CIRCULATIONAHA.114.015023
https://doi.org/10.1016/j.bbrc.2012.02.050
https://doi.org/10.1080/15476286.2015.1122164
https://doi.org/10.1093/hmg/ddt299
https://doi.org/10.1161/STROKEAHA.113.003393
https://doi.org/10.1038/nature11884
https://doi.org/10.1016/j.molcel.2010.03.021
https://doi.org/10.1016/j.atherosclerosis.2017.10.012
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


Holdt and Teupser ANRIL lncRNA and Atherosclerosis Risk

76. Kojima Y, Downing K, Kundu R, Miller C, Dewey F, Lancero H,

et al. Cyclin-dependent kinase inhibitor 2B regulates efferocytosis and

atherosclerosis. J Clin Invest. (2014) 124:1083–97. doi: 10.1172/JCI

70391

77. Sato K, Nakagawa H, Tajima A, Yoshida K, Inoue I. ANRIL is implicated in

the regulation of nucleus and potential transcriptional target of E2F1. Oncol

Rep. (2010) 24:701–7. doi: 10.3892/or_00000910

78. Visel A, Zhu Y, May D, Afzal V, Gong E, Attanasio C, et al.

Targeted deletion of the 9p21 non-coding coronary artery disease

risk interval in mice. Nature (2010) 464:409–12. doi: 10.1038/nature

08801

79. Loinard C, Basatemur G,Masters L, Baker L, Harrison J, Figg N, et al. Deletion

of chromosome 9p21 noncoding cardiovascular risk interval in mice alters

Smad2 signaling and promotes vascular aneurysm. Circ Cardiovasc Genet.

(2014) 7:799–805. doi: 10.1161/CIRCGENETICS.114.000696

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2018 Holdt and Teupser. This is an open-access article distributed

under the terms of the Creative Commons Attribution License (CC BY). The use,

distribution or reproduction in other forums is permitted, provided the original

author(s) and the copyright owner(s) are credited and that the original publication

in this journal is cited, in accordance with accepted academic practice. No use,

distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Cardiovascular Medicine | www.frontiersin.org 12 November 2018 | Volume 5 | Article 145

https://doi.org/10.1172/JCI70391
https://doi.org/10.3892/or_00000910
https://doi.org/10.1038/nature08801
https://doi.org/10.1161/CIRCGENETICS.114.000696
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles

	Long Noncoding RNA ANRIL: Lnc-ing Genetic Variation at the Chromosome 9p21 Locus to Molecular Mechanisms of Atherosclerosis
	Introduction
	Cis-eQTLs at Chr9p21
	Trans-eQTLs at Chr9p21 and Molecular Functions Of ANRIL in Transcriptional Regulation
	Correlation of Chr9p21 Genes With Atherosclerosis Severity in Humans And Mouse Models
	Molecular Function of ANRIL And CDKN2A/B in Atherogenesis
	Summary
	Author Contributions
	Acknowledgments
	References


