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Multiplexed profiling of GPCR 
activities by combining split TEV 
assays and EXT-based barcoded 
readouts
Sabrina Galinski   1, Sven P. Wichert1,2, Moritz J. Rossner1 & Michael C. Wehr   1

G protein-coupled receptors (GPCRs) are the largest class of cell surface receptors and are implicated 
in the physiological regulation of many biological processes. The high diversity of GPCRs and their 
physiological functions make them primary targets for therapeutic drugs. For the generation of novel 
compounds, however, selectivity towards a given target is a critical issue in drug development as 
structural similarities between members of GPCR subfamilies exist. Therefore, the activities of multiple 
GPCRs that are both closely and distantly related to assess compound selectivity need to be tested 
simultaneously. Here, we present a cell-based multiplexed GPCR activity assay, termed GPCRprofiler, 
which uses a β-arrestin recruitment strategy and combines split TEV protein-protein interaction and 
EXT-based barcode technologies. This approach enables simultaneous measurements of receptor 
activities of multiple GPCR-ligand combinations by applying massively parallelized reporter assays. 
In proof-of-principle experiments covering 19 different GPCRs, both the specificity of endogenous 
agonists and the polypharmacological effects of two known antipsychotics on GPCR activities were 
demonstrated. Technically, normalization of barcode reporters across individual assays allows 
quantitative pharmacological assays in a parallelized manner. In summary, the GPCRprofiler technique 
constitutes a flexible and scalable approach, which enables simultaneous profiling of compound actions 
on multiple receptor activities in living cells.

G protein-coupled receptors (GPCRs) are the largest and most investigated class of cell surface receptors trans-
mitting the signal of numerous extracellular stimuli into the cell. Once a ligand binds to and activates a GPCR, 
heterotrimeric G proteins are activated. In turn, the G protein subunits dissociate to interact with effector proteins 
to initiate downstream signaling1–3. Prolonged receptor activation is determined by phosphorylation by one of 
several G protein-coupled receptor kinases (GRKs). The phosphorylation in turn promotes the binding of pro-
teins of the β-arrestin family. The binding of β-arrestin sterically obstructs G protein coupling and triggers the 
desensitization and internalization of the GPCR4,5. Besides their function of GPCR desensitization, β-arrestins 
are also capable to act as adaptor initiating distinct signal transduction pathways6–8. Abnormal GPCR activities 
and consecutively deregulated signalling pathways also impact on the pathophysiology of various diseases, such 
as metabolic disorders, immune diseases, neurodegenerative diseases, and psychiatric disorders like schizophre-
nia and bipolar disorder9,10. As GPCRs have critical roles in the pathophysiology of many diseases, GPCRs are 
key drug targets. Hence, GPCRs are currently targeted by 33% of all marketed drugs, making them the largest 
druggable class of receptors11. Within the drug development process it is key to test the selectivity of a compound 
towards its destined target GPCR among various subfamilies12. To do this, the activities of multiple relevant 
GPCRs, i.e. the target GPCR as well as closely and distantly related GPCRs, must be monitored upon compound 
treatment.

For the analysis of GPCR activities and downstream signalling effects, a large number of tools were developed 
over the last decades utilizing several steps of the GPCR signalling cascade. Various biochemical and biophysical 
approaches based on the recruitment of G-proteins have been developed13–16. In addition, activities of GPCRs can 
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also be monitored by the regulated recruitment of β-arrestin using genetically encoded biosensors. For exam-
ple, GFP-tagged β-arrestin translocation upon receptor stimulation can be tracked by fluorescence imaging17. 
Recruitment of β-arrestin may also be measured using protein-protein interaction assays that utilize biolumines-
cence resonance energy transfer (BRET)18, fluorescence resonance energy transfer (FRET)19 or complementation 
strategies based on β-galactosidase20 or luciferase fragments21. Likewise, we have previously developed a similar 
β-arrestin2 recruitment GPCR activation assay based on TEV (tobacco etch virus) protease complementation. 
Notably, this proximity assay uses the artificial GAL4/UAS system and transcription-coupled reporters as read-
out, such as firefly luciferase22,23, and thus allows integration of molecular barcodes for multiplexed assays24. 
In this vein, we have previously amended the split TEV system to monitor receptor tyrosine kinase receptor 
activation in a truly multiplexed fashion by replacing the luciferase reporter gene with RNA-based molecular 
barcode reporters termed expressed tags (EXTs), which were analysed with custom-made microarrays25,26. GPCR 
activities may also be monitored using a β-arrestin2 induced proximity assay that is based on a full length TEV 
protease fused to β-arrestin2, which has been termed Tango27. Upon GPCR activation, the TEV protease cleaves 
off a transcription factor linked to the same GPCR to activate a reporter gene using the GAL4/UAS system27. This 
approach has been employed to develop a platform for parallelization of individual GPCR activation assays cov-
ering a large collection of the human GPCRome termed PRESTO-Tango28. Although PRESTO-Tango has been 
successfully applied to address the human druggable GPCRome, it still relies on individual assays performed in 
micro-well plates28. Here, we present a profiling tool termed GPCRprofiler that uses β-arrestin2 recruitment and 
combines split TEV-based GPCR activation assays with EXT molecular barcode reporters, which are quantified 
by next-generation sequencing. By introducing internal and external calibrators, we can simultaneously perform 
dose-response analyses of 19 GPCRs using pools of single readouts. Thus, our approach substantially reduces 
time and costs and has the potential to be scaled up to the GPCRome level.

Results
Combining GPCR split TEV assays and EXT-based barcode readout for multiplexed assays.  
GPCR split TEV assays allow monitoring ligand-dependent GPCR activities using the stimulation-dependent 
interaction of β-arrestin2 and a candidate GPCR. The split TEV technique is based on the complementation of 
two inactive fragments of the TEV protease (NTEV and CTEV) to reconstitute the functional protease due to 
an occurred protein-protein interaction22, in this case a GPCR and β-arrestin2. To do this, the NTEV fragment 
and the artificial transcription factor GAL4-VP16 (GV) were fused to the C-terminal end of a candidate GPCR, 
separated by a TEV cleavage site (tevS) (Fig. 1a,b). To improve the stability of the interaction between a given 
GPCR and the arrestin, a short sequence from the C-terminal end of the human arginine vasopressin receptor 2 
(AVPR2) (abbreviated V2R) was introduced between a candidate GPCR and NTEV17,27. V2R contains multiple 
phosphorylation sites for GRKs. These sites provide, when phosphorylated, enhanced binding of β-arrestin. The 
CTEV fragment was fused to human truncated β-arrestin2 lacking the entire C-terminal tail (ARBB2 lacking 
amino acids 383–410) (Fig. 1a). This truncation exhibits stronger stimulation-dependent receptor desensitiza-
tion and therefore enhances the assay sensitivity compared with wild type β-arrestin23,29. The CTEV fragment 
carries the stabilizing point mutation S219P30 and is truncated after amino acid 221 to remove the auto-inhibitory 
C-terminal tail31,32.

After ligand-dependent GPCR activation, β-arrestin is recruited to the receptor leading to the reconstitution 
of the TEV protease causing the release and translocation of GV into the nucleus, where GV binds and activates 
a transcriptional reporter (Fig. 1b). To simultaneously monitor receptor activation of multiple GPCRs within one 
experiment, we generated 85 EXT reporters that are amenable to multiplexed assays (Supplementary Tables S1 
and S2). EXTs are RNA reporters harbouring unique barcode sequences, which replace standard reporter proteins 
and can be analysed in a pooled experimental setting25. EXT reporters are placed upstream of the firefly luciferase 
gene and their expression is under the control of a CMV minimal promoter and clustered GAL4-responsive 
upstream activating sequence (UAS) elements (Fig. 1a,b). Because the reporters are designed to drive the expres-
sion of EXT barcodes and firefly luciferase, they can be used in multiplexed EXT assays or in single luciferase 
assays.

In a first test, we investigated the functionality of single GPCR split TEV assays coupled to an EXT readout and 
compared its performance to standard luciferase readings. By monitoring only one GPCR per assay, we compared 
adrenergic receptor ADRA2B and serotonin receptor HTR2A activity in independent single luciferase and single 
EXT assays using dose-response analyses (Fig. 1c–h). For these assays, cells were transiently transfected with 
GPCR split TEV components and reporters, which were allowed to express for 20 h. Following to a starvation 
period of 18 h, cells were stimulated with agonists for 6 h and lysed for subsequent luciferase assays or EXT-based 
next-generation sequencing analysis (Supplementary Fig. S1a). For antagonistic assays, compounds were added 
1 h before agonist to ensure proper incubation (Supplementary Fig. S1b). For clarity, varying experimental con-
ditions, such as plate formats, for applied assay formats are summarized in Supplementary Table S3. Epinephrine 
stimulation resulted in similarly comparable dose-dependent activation of ADRA2B with EC50 values of 0.4 µM 
in luciferase and 0.6 µM in EXT-based assay (Fig. 1c,f). Stimulation of HTR2A with serotonin resulted in a 
dose-dependent activation in luciferase and EXT-based assays, with EC50 values of 0.7 µM and 1.5 µM, respec-
tively (Fig. 1d,g). Likewise, an inhibition using the antagonist asenapine in the presence of serotonin caused a 
dose-dependent decrease in activity, with an IC50 of 0.8 nM in luciferase and 3.8 nM with EXT-based readouts 
(Fig. 1e,h). We thus conclude that EXT-based readouts deliver highly similar response profiles compared to the 
luciferase standard.

Design of multiplexed GPCR profiling assays.  The general experimental setup of multiplexed GPCR 
profiling assays is composed of separate in-solution transfections of single GPCR split TEV components 
(GPCR-V2R-NTEV-tevS-GV and β-arrestin2delta-CTEV) and EXT reporters. Three unique EXT reporters were 
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assigned to each GPCR (assay EXTs) (Supplementary Table S1). In parallel, two to six control EXT reporters were 
transfected separately at the same concentration without any GPCR, and served as internal calibrators (iCals). 
Two hours after transfection, all cell populations were pooled, mixed, and evenly divided into fractions for plat-
ing onto assay dishes (Fig. 2a). The cells were cultured and stimulated under identical conditions for agonist or 

Figure 1.  Constructs and assay principle to profile GPCR activities using luciferase and barcode reporters. (a) 
Modular design of split TEV and reporter constructs. GPCR-V2R-NTEV-tevS-GV constructs are composed 
of the GPCR fused to the C-terminal domain of the arginine vasopressin receptor 2 (V2R) followed by the 
N-terminal TEV protease fragment (NTEV, aa 1–118), the TEV cleavage site (tevS) and the GAL4-VP16 
transcription factor (GV). β-arrestin2delta-CTEV constructs harbours the truncated human β-arrestin2 
(ARRB2delta383, aa 1–383) fused to the C-terminal TEV protease fragment (CTEV, aa 119–221). Both fusion 
proteins are expressed under the control of a cytomegalovirus promoter (CMV). UAS-EXT reporter constructs 
are composed of 10-fold clustered upstream activating sequence elements (UAS), a CMV minimal promoter 
followed by unique EXT barcode sequences and the firefly luciferase reporter gene. EXT sequences are flanked 
by primer binding sequences (Dec1 and Dec2). See Supplementary Table S1 for details on human GPCRs and 
EXT assignment. See Supplementary Table S2 for EXT barcodes. (b) Schematic representation of GPCR split 
TEV assays. The ligand-dependent receptor activation results in the recruitment of β-arrestin to the GPCR (1) 
and the reconstitution of the protease activity (2). TevS is cleaved (indicated by the scissors) (3) and the released 
GV translocates to the nucleus to activate the transcription of EXT barcode reporters and the firefly luciferase 
gene by binding to UAS elements (4). (c–h) Dose-response curves of the ADRA2B adrenergic receptor and 
HTR2A serotonin receptor in luciferase-based (c–e) and EXT-based (f–h) split TEV assay. ADRA2B-V2R-
NTEV-tevS-GV and HTR2A-V2R-NTEV-tevS-GV plasmids were transfected into β-arrestin2delta-CTEV 
stable expressing PC12 cells and stimulated with increasing concentrations of norepinephrine, serotonin or 
asenapine. The asenapine stimulation was followed one hour later by 0.7 µM serotonin. Data are shown as 
mean ± s.e.m. (error bars), n = 6.
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antagonist assays as initially described for GPCR split TEV assays (Supplementary Fig. S1a,b). To determine 
the optimal assay conditions, we performed online-luciferase split TEV measurements for selected dopamine-, 
serotonin- and β-adrenergic receptors to follow the kinetics of the approach (Supplementary Fig. S1c). Based on 
these analyses, in all following experiments cells were harvested 6 h after compound addition (Supplementary 
Fig. S1d). As we have applied transient transfections, each GPCR has a different steady-state of newly synthesized 
vs. already present receptor proteins, causing an individual pattern of activation and desensitization. The best 
overlap among activations of GPCRs tested in the online-luciferase assays was obtained at 6 h post stimulation, 
which was set as general time point for lysis of GPCRprofiler experiments.

After cell lysis, RNA from each sample was isolated and converted into cDNA by reverse transcription. To con-
trol the next steps of amplification and sequencing, additional control EXT reporters were added as plasmids to 
each sample to represent low- and higher-level expressed EXT reporters within all data points of each individual 
assay and served as external calibrators (eCals) (Fig. 2b). For quantitative analysis all EXTs (assay EXT reporter, 
iCal EXTs, and eCal EXTs) were simultaneously PCR-amplified and each sample was labelled with an additional 
unique sample barcode (Supplementary Fig. S2). This permits the mixing of all samples and sequencing of all 
pooled samples using a single sequencing run (Fig. 2b). The sample barcodes enable tracing experimental con-
ditions, whereas the read counts per EXTs serve as quantitative measurements for the corresponding GPCRs. To 
analyse the biological output of the EXT assays, the raw sequencing data were processed by code splitting, read 
counting, and sample normalization and calibration steps (for details see Methods). From the normalized data 
the fold changes of receptor activities were finally calculated.

Multiplexed profiling of GPCR activation.  We applied the GPCRprofiler assay to simultaneously 
assess ligand-dependent activation of multiple GPCRs. We selected a panel of 19 GPCRs of different aminergic 
and peptide-binding subfamilies. Prior to this selection, the functionality of our candidate GPCRs was indi-
vidually tested in standard luciferase split TEV assays to assess background activity and stimulation efficiency 
(Supplementary Fig. S3). Notably, for all our candidate GPCRs except ADRB3 successful β-arrestin recruitment 
assays are reported28,33. For ADRB3, we show in this study that stimulation of this GPCR, if modified by the V2R 
tail, can be monitored using a split TEV-based beta recruitment assay (Supplementary Fig. S3). In these assays, 
GPCR activation was assayed both in U2OS and PC12 cells, and GPCRs that displayed a significant activation in 
at least one cell line when stimulated with their cognate ligand were chosen for the GPCRprofiler assays.

For the GPCRprofiler, each GPCR was assigned to three unique EXT reporters (Supplementary Table S1 and 
S2). All receptors were treated with serotonin, dopamine, epinephrine, vasopressin, and somatostatin separately 
within a concentration range of 100 pM to 100 µM at single log-scale steps. In addition to the stimulation with 
the single compounds, a compound-mixture (mix) of all agonists was tested. The first set of experiments were 
carried out in the human osteosarcoma cell line U2OS. We normalized the raw sequencing data to total read 
numbers of sample codes, followed by averaging reads of internal and external calibrator EXTs as described above 
(Supplementary Fig. S4). The read counts of external calibrator EXTs showed a linear increase to the increasing 
level of input with high correlation (R2 > 0.93), indicating appropriate calibration and sensitivity measures for 
this multiplexed approach (Fig. 3a). The response profiles for each receptor at each stimulus condition were 
visualized in a heatmap, covering the five selected GPCR ligands, the ligand mix, and 19 GPCRs (Fig. 3b). For 
each GPCR, a dose-dependent receptor activation induced by its cognate agonist was observed, as exemplified by 
the HTR2A dose-response data extracted from the profiling experiment (Fig. 3c). In this vein, the five serotonin 
receptors (HTR1A, HTR2A, HTR4, HTR5, and HTR7) were activated by serotonin up to 2–5-fold (Fig. 3b). 

Figure 2.  Design and strategy of multiplexed EXT-based split TEV GPCR activation assays. (a) Design of 
multiplexed GPCR profiling assay. For the mix & divide design, a separate transfection of GPCR-V2R-NTEV-
tevS-GV, β-arrestin2delta-CTEV and three unique EXT reporter plasmids was done for each GPCR. After 
2 h, all transfections were pooled with an internal calibrator barcode mix (iCals), divided into assay samples 
and plated onto 6-well plates. Samples were treated under different conditions depending on the assay. (b) 
Processing of samples after cell lysis. From each sample, the total RNA was isolated and converted into cDNA. 
After adding external calibrator barcodes (eCals), EXT sequences were PCR-amplified and each sample was 
additionally barcoded (Supplementary Fig. S3). Afterwards, samples were pooled and sequenced using next-
generation sequencing followed by sample splitting, read counting, sample normalization, and calibration.
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The dopamine and the adrenergic receptors displayed maximal induction rates ranging from 2-fold for DRD1, 
DRD3 and ADRB3, and up to 10- and 13-fold for ADRA2B and ADRA2C. Notably, both receptor subfamilies 
exhibited elevated signals upon dopamine as well as epinephrine stimulation. The dopamine receptor DRD2 was 
5-fold activated at 10 µM of serotonin. Vasopressin receptors AVPR1A and AVPR2 were induced by vasopres-
sin. The induction rates of the somatostatin receptors by somatostatin could be detected for SSTR1 up to 4-fold 
and for SSTR2 and SSTR3 up to 9–10-fold. When all GPCRs were stimulated with the ligand mix, analogous 
dose-dependent activation signals were produced for all GPCRs. Importantly, signals were highly similar in their 
intensities to the observed signals in the corresponding single agonist conditions (Fig. 3b).

To test whether the GPCR profiler identifies different response profiles in other cell types, we performed an 
identical experiment in PC12 cells. Activation profiles for adrenergic, vasopressin, and somatostatin receptors are 
comparable in both cell types (Supplementary Fig. S5a). In contrast, profiles for serotonin and dopamine recep-
tors displayed varying efficiencies. For example, activities for HTR2A, HTR4, and DRD1 were readily monitored 
in PC12 cells, but not for the other serotonin (HTR1A, HTR5A, HTR7) and dopamine receptors (DRD2, DRD4, 
DRD5) tested. When comparing fold changes obtained from GPCR profiles in U2OS and PC12 cells, we noted 
that activities for selected GPCR, such as HTR2A, ADRA1A, and AVPR1A, are more prominent, as evident from 
89.5-fold, 314.2-fold, and 44.3-fold activation, respectively (Supplementary Fig. S5b). However, U2OS cells are 
more applicable to the GPCR profiler, as a larger number of functional GPCR activity assays could be performed 
simultaneously. For HTR7 and ADRB3, however, no consistent activation dependent increases in assay activity 
were observed in U2OS and PC12 cells, neither by applying individual ligands nor by using the agonist mix 
suggesting that these two assays are not functional or below detection limit. Therefore, these two assays were 
excluded from any further antagonist experiments. In summary, the results suggest that the used agonists, which 
are classical endogenous neurotransmitters and hormones, are acting specifically on their cognate GPCR sub-
groups. For dopamine and epinephrine treatments, however, we observed substantial cross-talk between their 
cognate receptor subfamilies, which is in agreement with published data34–37.

Profiling GPCR activities induced by antipsychotic drugs.  Next, we applied the multiplexed 
GPCRprofiler to measure the effects of GPCR targeting drugs on receptor activity. Here, 18 different GPCRs were 
treated with the antipsychotic drugs paliperidone and aripiprazole (Fig. 4a). Paliperidone (9-OH-risperidone) 
is the active metabolite of the older atypical antipsychotic risperidone and acts in the classical mode of action of 
antipsychotics to inhibit DRD2 and HTR2A receptors. In addition, binding affinities to α-adrenergic receptors 
and the histamine receptor HRH1 were described for paliperidone using biochemical assays38–40. In contrast, 
aripiprazole is controversially described either as DRD2 partial agonist or, depending on the cell type used, as 
functionally selective drug acting as DRD2 agonist, partial agonist, or antagonist41,42. To address any changes in 
GPCR activities caused by the selected drugs, receptors were stimulated for 6 h applying two different param-
eters. First, to monitor agonistic effects, GPCRs were treated with the drugs only (Supplementary Fig. S1a). 

Figure 3.  Multiplexed profiles of agonist-induced GPCR activities. (a) Sequencing reads per input plasmid 
molecules of different external calibrator EXTs reveal a linear distribution with high correlation (R2 > 0.93). (b) 
Heatmap of multiplexed EXT-based measurement of GPCR activations. Plotted are fold changes of receptor 
activation in reference to unstimulated condition of 19 different GPCRs in U2OS cells. All GPCRs were treated 
with different concentrations of the single compounds serotonin, dopamine, epinephrine, vasopressin and 
somatostatin and a mixture (mix) of the five compounds. (c) Individual EXT-based dose response analysis 
of the serotonin receptor HTR2A stimulated by serotonin extracted from multiplexed GPCR assay showing 
concentration dependent receptor activation.
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Second, to measure antagonistic effects, GPCRs were treated both with the drugs and the corresponding agonist 
(Supplementary Fig. S1b). This experimental design therefore allows to identify potential antagonistic effects of 
agonists and vice versa. For a profiling experiment, drugs were applied at increasing concentrations. After a 1 h 
pre-incubation period, an agonist-mix of serotonin, dopamine, epinephrine, histamine, vasopressin, and soma-
tostatin was added, with a concentration of 1 µM each (Supplementary Fig. S1b). Thus, for the two stimulation 
parameters, the obtained signals either result from direct drug-induced receptor activation, suggesting the drug 
acting as agonist. Alternatively, a drug-induced inhibition of agonist-mediated GPCR activation specifies the 
drug as antagonist.

Both strong and subtle modulatory effects for agonistic and antagonistic actions were scored. For strong ago-
nistic effects, we visualized conditions that displayed a minimum fold change of 2. To also detect subtle agonistic 
effects (i.e. less than a 2-fold change of activity), we calculated percent-wise changes for each step of increasing 
drug concentrations. We determined a positive effect to be true if a minimum of three consecutive increases were 

Figure 4.  Multiplexed GPCR activity profiles induced by antipsychotic drugs. (a) Graphical representation 
of stimulation conditions in compound profiling GPCR assay monitoring effects of the antipsychotic drugs 
paliperidone and aripiprazole. GPCRs were stimulated with antipsychotic drugs alone to monitor receptor 
activating agonistic compound effects and in combination with agonist-mix to detect antagonistic receptor 
inhibiting compound effects. (b) Heatmap of agonistic compound effects. GPCRs were stimulated with 
paliperidone and aripiprazole at the indicated concentrations. (c) Heatmap of antagonistic compound effects. 
GPCRs were stimulated with drugs as indicated together with agonist-mix containing the agonists serotonin, 
dopamine, epinephrine, histamine, vasopressin and somatostatin each at 1 µM. Agonist-mix was added 1 h after 
drugs. Validation of drug induced effects by dose response curves of standard single luciferase GPCR split TEV 
assays of (d) receptor activation of the dopamine receptor DRD2 by aripiprazole, (e) receptor inhibition of the 
dopamine receptor DRD2 and (f) the serotonin receptor HTR2A by paliperidone.
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scored. Strong agonistic effects were observed for aripiprazole on DRD2, showing a constantly high activation 
for all concentrations applied (Fig. 4c). Using standard single GPCR luciferase assays, we confirmed the agonistic 
effect caused by aripiprazole (Fig. 4d). Further, subtle agonistic effects for aripiprazole were detected on the sero-
tonin receptor HTR2A in a dose-dependent manner (Supplementary Fig. S6).

For strong antagonistic effects, fold changes for each condition were subtracted from the corresponding 
maximal receptor activity within one dose-response treatment, and inverted fold change values above 1 were 
visualized. Both drugs showed dose-dependent receptor inhibition on various GPCRs. Paliperidone showed 
dose-dependent inhibition of receptor activity on several GPCRs, i.e. the dopamine receptor DRD2 (Fig. 4c,e), 
the serotonin receptor HTR2A (Fig. 4c,f), the two α-adrenergic receptors ADRA2B and ADRA2C and the his-
tamine receptor HRH1 (Fig. 4c). Likewise, aripiprazole inhibited the α-adrenergic receptor ADRA2C and hista-
mine receptor HRH1.

Discussion
We describe a sensitive, robust and multiplexed assay, termed GPCRprofiler, to monitor multiple GPCR activities 
in a parallelized manner by combining a β-arrestin2 recruitment assay with a transcriptional barcode reporter 
strategy. Single GPCR activity assays are based on the protein-protein interaction technique split TEV that allows 
to robustly measure the regulated association of activated (i.e. phosphorylated) receptors with β-arrestin2. As the 
split TEV method allows the flexible use of transcriptional reporters, we complemented the standard firefly lucif-
erase reporter used for single assays with RNA barcode reporters, which allow an integration into multiplexed 
cell-based assays. Using this multiplexed approach, we simultaneously addressed the activation of 19 selected 
GPCRs from five sub-families (serotonin, dopamine, adrenergic, vasopressin, and somatostatin receptors) with 
their cognate ligands (i.e. serotonin, dopamine, epinephrine, vasopressin, somatostatin, and in a mix containing 
all ligands) in a cross-wise manner. Notably, the activity profiles for dopamine and epinephrine were largely 
overlapping for dopamine and adrenergic receptors. In addition, dopamine treatment lead to an activation of the 
serotonin receptor HTR2A in both U2OS and PC12 cells, suggesting that dopamine may have some promiscuous 
properties43. However, serotonin receptor HTR5A was activated by dopamine in U2OS cells only, possibly due to 
cell type specific effects44.

For the analysis of drugs, it is critical to assess its functional properties, as a drug may act as agonist, partial 
agonist, or antagonist. Therefore, monitoring these diverse drug effects in GPCR profiling assays requires a flex-
ible setup that allows measuring agonistic and antagonistic effects in separate experimental paradigms that can 
be, however, performed and analysed in parallel. In our profiling approach, we applied a co-treatment paradigm 
using an agonist mix of ligands that keeps numbers of samples low when compared to applying the agonists sepa-
rately. We challenged the GPCR profiler with the two antipsychotic drugs paliperidone and aripiprazole to assess 
the performance of our approach.

Paliperidone, the primary active metabolite of risperidone, is a classical atypical antipsychotic drug that acts 
predominantly as antagonist. The monitored inhibitory effects on HTR2A, DRD2, the α-adrenergic receptors 
and HRH1 are consistent with the literature39,45. Aripiprazole is reported to act functionally selective as agonist 
and antagonist depending on both the receptor and cell type42. Aripiprazole exerted agonistic effects on DRD2 
and HTR2A, but antagonistic effects on HRH1, and these findings were validated in single luciferase assays. 
The activation of HTR2A is contrarily discussed in the literature. Commonly, an antagonism for this receptor is 
described46. However, a weak partial agonistic effect was reported for aripiprazole in GF62 cells42. It may be pos-
sible that aripiprazole acts functionally selective not only on DRD241 but also on HTR2A in a cell type-dependent 
manner. For aripiprazole, an additionally partial agonism on the serotonin receptor HTR1A is reported, which 
was, however, not detected in this multiplexed GPCR assay, possibly caused by a limited sensitivity of the assay in 
U2OS cells. A comparison of our findings using the GPCRprofiler versus public databases and literature shows 
consistent overlap (Supplementary Table S4).

Several methods are available to assess ligand actions on GPCRs. The most conventional approach to identify 
ligand receptor interactions are cell-free binding assays. These assays have the intrinsic disadvantage that com-
pounds are frequently radioactively labelled, and that binding affinity data does not provide any information 
on the functional properties of ligands. Thus, it is neither clear whether ligands act as agonist or antagonist, 
nor which efficacies are exerted under physiological conditions16. These limitations are overcome in cell-based 
functional assays. These approaches address ligand-dependent receptor activation and signalling within a cellular 
context. Most of these approaches rely on receptor-mediated activation of G proteins, either by directly meas-
uring of second messenger levels (e.g. cAMP and calcium)47–49 or by using reporter gene assays that respond to 
second messenger activities50. Monitoring multiple GPCR-ligand interactions within one experimental setup was, 
however, not feasible as it is known that different G proteins couple to various types of GPCRs. A sensitive and 
robust method to monitor receptor activation of GPCRs uses the dynamic recruitment of β-arrestin, which is a 
measurement independent of G protein activity27,28. In addition, a recent study supports this view as β-arrestin 
can be recruited to activated GPCRs in the absence of active G proteins51. Recently, a large collection of cell-based 
assays using β-arrestin recruitment was introduced to interrogate the druggable GPCRome in a parallel manner28. 
The assay uses a modified Tango assay27 for screening compound libraries against a multiplicity of orphan and 
non-orphan GPCRs. However, the approach is based on single compound per target assays. Therefore, when for 
example analysing target selectivity for a given drug on multiple GPCRs, screening of GPCR activities will lead to 
extensive consumption of materials at increasing costs.

The GPCR profiling assay we introduce provides the following benefits: (I) the GPCRprofiler enables the 
rapid and easy detection of multiple GPCR activities in response to several ligands within one experiment. 
The GPCRprofiler monitors GPCR activation at a time point that is defined by optimal performance of indi-
vidual GPCR assays. As the readout is based on molecular barcodes, large amount of data can be obtained for 
one compound within one measurement. This stands in contrast to conventional single assays, wherein each 
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receptor-ligand combination must be measured separately. Therefore, our approach may be of advantage when 
compounds are limited e.g. in early phases of drug discovery programs. (II) The presented multiplexed GPCR 
assay is highly flexible and scalable in terms of combinations of receptors and ligands using the mix & divide 
design. The GPCRprofiler provides sensitive and specific activity readouts using transient transfections, enabling 
the addition of new GPCR activity assays easily. However, stable cell lines expressing the receptor and/or adapter 
protein might enhance the robustness and sensitivity of the assay, especially for weak receptor activations caused 
by partial agonists that may require a close-to-endogenous expression of GPCRs. (III) The GPCRprofiler can be 
principally performed in all cell lines and primary cells that are amenable to transient transfections allowing to 
screen for cell type-dependent effects of compounds.

GPCR recruitment assays based on β-arrestin2, like split TEV-based GPCR activity assays, use tagged GPCRs, 
and it may be possible that modified receptors show altered signalling properties52. For split TEV, it has been 
shown that GPCR-NTEV-tevS-GV fusions do not substantially interfere with assay performance and signalling23. 
Split TEV-based GPCR recruitment assays are designed to monitor receptor activation only, but not downstream 
signalling effects.

However, the GPCRprofiler may be complemented with genetically encoded pathway reporter assays that 
use overexpressed native GPCRs and molecular barcodes as final readout25. Using this approach, GPCR target 
profiling can be combined with cellular pathway profiling to provide a holistic view of compound actions comple-
mentary to biochemical or transcriptomic drug profiling53.

In summary, we present a multiplexed GPCR activity assay that uses a β-arrestin recruitment assay and molec-
ular barcoding as readout to assess multiple GPCR activities in parallel. We validated the GPCRprofiler using 
cognate ligands and challenged the assay using the antipsychotic drugs paliperidone and aripiprazole. As the 
GPCRprofiler can be flexibly expanded by additional targets, it therefore might represent a suitable platform 
technology for early drug discovery.

Methods
Plasmids.  All expression plasmids were generated by Gateway recombination cloning (Invitrogen). ORFs of 
GPCRs were PCR amplified from a mix of human heart, liver and brain cDNA library using proofreading poly-
merases (PfuUltra, Stratagene or Pwo, Roche). DRD4 ORF was purchased from Bio Basic Inc. as synthesized lin-
ear sequence. ADRB3 ORF shuttle clone was purchased from Source Bioscience (IOH29805). The entry vector for 
β-arrestin2delta383 was described before23. All ORFs were BP-recombined into pDONR plasmid and the yielded 
Entry vectors were sequence verified. Entry vectors were then LR-recombined into the split TEV destination 
vectors pTag4C_X-V2R-NTEV-tevS-GV or pcDNA3.1_X-CTEV, plasmids were described in detail before22,23, to 
obtain the final expression vectors of GPCR-V2R-NTEV-tevS-GV and β-arrestin2delta-CTEV fusion constructs. 
EXT reporter gene plasmids were generated by three-fragment multisite Gateway recombination (Invitrogen). 
EXT synthesis and entry vectors were described before25. To yield final reporter constructs Entry vectors encod-
ing ten-time clustered GAL4-responsive cis-elements (UAS, attL1/attL4), a CMV minimal promoter (attL4/
attL3) were LR-recombined with an EXT entry vector library (attL3/attL2) to obtain final 10xUAS-CMVmin-EXT 
reporter library. All constructs were sequence verified.

Compounds.  Serotonin hydrochloride, Histamine dihydrochloride, Asenapine maleate were purchased from 
Tocris, Dopamine hydrochloride, Epinephrine hydrochloride, [Arg8]-Vasopressin acetate salt, Paliperidone, 
Somatostatin were obtained from Sigma-Aldrich, Aripiprazole was purchased from Toronto Research Chemical.

Cell culture.  U2OS cells were maintained in McCoy’s 5A medium (Gibco) including GlutaMAX (Gibco), 
supplemented with 10% fetal bovine serum (FBS, Gibco) and 100 U/ml each of penicillin and streptomycin 
(Lonza). PC12-tetOFF cells were maintained in low glucose DMEM medium (1 g/L, Lonza), supplemented with 
10% FBS, 5% horse serum (HS, Gibco), 2 mM GlutaMAX (Gibco) and 100 U/ml each of penicillin and strepto-
mycin. PC12 cells were grown on poly-L-lysine (Sigma) coated surfaces for maintenance and experiments; U2OS 
cells were grown on poly-L-lysine surfaces only for experiments. All cells were grown at 37 °C and an atmosphere 
of 5% CO2.

Luciferase reporter assays.  For luciferase assays cells were plated on 96-well white plates at 4 × 104 cells/
well (PC12) one day before the experiment. The assays were performed with 6 wells as replicates per condition. 
Cells were transfected with split TEV and EXT reporter plasmids using lipofectamine 2000 (Invitrogen). Plasmids 
and lipofectamine 2000 transfection reagent (Invitrogen) were diluted in opti-MEM (Gibco) and incubated for 
20 min at room temperature. Medium was removed from cells, the transfection-mix was added and the plates 
incubated for 2 h at 37 °C, followed by the adding of double-volume of culture medium to dilute transfection 
reagents. On the next day, culture medium was exchanged by serum-reduced assay medium (U2OS: McCoy’s 5 A 
supplemented with 0.5% dialyzed FBS (Gibco), 0.1 mM NEAA (Gibco); PC12: low glucose DMEM (1 g/L) supple-
mented with 1% dialyzed FBS and 0.1 mM NEAA) to induce starvation of the cells for 17–18 h. On day 3, medium 
was removed and cells were treated with compounds diluted in assay medium at different concentrations for 6 h 
at 37 °C. After 6 h of compound treatment the medium was removed and the cells were lysed with 30 µl passive 
lysis buffer (Promega). The reading of firefly luciferase was carried out with a Mithras LB 940 Microplate Reader 
(Berthold Technologies) and the software MicroWin2000. The data was exported from MicroWin2000 to Excel 
and the mean and standard error of the mean (s.e.m.) of the 6 replicates for the firefly readings were calculated.

Transfection and stimulation conditions in single EXT reporter assays.  For single EXT reporter 
assays cells were plated on 6-well plates at 4 × 105 cells/well (PC12) one day before the experiment. The assays 
were performed in duplicates for each stimulation condition. Cells were transfected as described for luciferase 
assays. After 2 h of incubation, the transfection mix was removed from the cells and culture medium added 
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and incubated for 20 h at 37 °C. Cells were then starved by medium change to serum-reduced assay medium. 
Afterwards, compounds at different concentrations were applied in duplicates for 6 h at 37 °C. After compound 
treatment cells were washed with PBS and lysed with 500 µl RLT buffer (Qiagen). Lysates were processed for 
sequencing as described below.

Transfection and stimulation conditions in multiplexed EXT reporter assays.  For EXT 
assays transfections were performed in-solution using lipofectamine 2000. Cells were resuspended in culture 
medium without antibiotics at a density of 1.5 × 106 cells/ml (U2OS) or 3 × 106 cells/ml (PC12). Split TEV and 
EXT-reporter plasmids and lipofectamine 2000 were mixed and incubated in serum-reduced opti-MEM for 
20 min at room temperature. Transfection-mixes were added to cell suspensions and incubated for 2 h at 37 °C 
without shaking. Suspensions were centrifuged for 5 min at 900 rpm and resuspended in culture medium to 
remove transfection reagents. All transfection samples were combined within one pool and plated on multiple 
wells of 6-well plates and incubated for 24 h at 37 °C. Afterwards, cells were starved for 17–18 h and then treated 
with compounds for 6 h in duplicates. After compound treatment cells were washed with PBS and 500 µl RLT lysis 
buffer was applied for cell lysis. Lysates were processed for sequencing as described below.

Sequencing library preparation and next-generation-sequencing of EXT assays.  For sequencing 
single and multiplexed EXT assays RNA was purified from cell lysates over RNeasy columns (Qiagen) including 
on-column DNase treatment according to the manufacturers’ protocol (RNeasy Mini Kit, Qiagen) and eluted in 
50 µl H2O. RNA was additional in solution treated with Turbo DNase (Ambion) for 30 min at 37 °C and repuri-
fied over an RNeasy column. First-strand cDNA synthesis was performed with 1 µg total RNA using superscript 
III reverse transcriptase (Invitrogen) and 120 pmol of a random nanomer primer. For later data normalization, 
additional EXT reporter plasmids were added as a mix of twelve external calibrator EXTs (eCals) to each sample. 
Single eCals were added at semi-logarithmic concentrations covering three orders of magnitude, with three EXTs 
representing 3,333 molecules, three EXTs 1,054 molecules, three EXTs representing 333 molecules, and three 
EXTs representing 105 molecules. EXT sequences were PCR-amplified from cDNA samples using ‘decoding’ 
primer Dec1 and Dec2. For next-generation-sequencing Ion Torrent specific sequencing adapters were attached 
5′ and 3′ to the amplified EXT sequences within a second round of PCR. On order to differentiate different sam-
ples 13mer barcodes were introduced between 5′ Ion adapter and target sequence. All processed samples of an 
experiment were combined within one pool and purified using PCR clean-up kit (Macherey-Nagel). The final 
samples were quantified using the dsDNA HS Assay Kit with the Qubit Fluorometer (Thermo Fisher Scientific) 
and adjusted to 23 pM. EXT samples were prepared and sequenced with the Ion Torrent Personal Genome 
Machine (PGM) system according to the manufacturer protocols for 200 bp template preparation and sequenc-
ing (Thermo Fisher Scientific).

Data analysis of EXT reporter assays.  Raw sequencing data analyses were done by using BLAST algo-
rithm and in-house developed R scripts. First, on the basis of the sample barcodes the data were split into the 
original samples encoding the specific treatment conditions and the reads of the assay EXTs, eCals and iCals were 
counted to obtain total read numbers of the individual samples. Samples with total reads below 20% of the aver-
age were excluded from the experiment to avoid variability caused by low read samples. Total read distributions 
between sample codes were balanced by normalization of the individual read numbers per EXT and sample to 
the highest total read number to enable the comparison of EXT reads between samples (Supplementary Fig. S4a). 
The eCals are also used to compensate an overamplification of highly expressed EXTs within the library amplifi-
cation PCRs and the suppression of effects of lower expressed EXTs. These effects can be detected in samples with 
low read numbers of the eCals. To balance these effects, all reads of a sample were calibrated to a normalization 
factor calculated from the eCal reads of the corresponding sample (Supplementary Fig. S4b,c). Following to nor-
malization and calibration steps, the biological sample replicates and the three EXTs assigned to the GPCRs were 
consolidated, and the resulting samples were standardized to a reference sample. In GPCR activation EXT assays, 
all samples that contain a stimulus were standardized to the unstimulated control sample to calculate fold changes 
(FC) of receptor activation.

=FC stimulated condition mean
unstimulated mean
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