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Abstract

Molecular targeted therapy of advanced neuroendocrine tumours (NETs) of the 

gastroenteropancreatic (GEP) system currently encompasses approved therapy with the 

mammalian target of rapamycin (mTOR) inhibitor everolimus and the multi-tyrosinkinase 

inhibitor sunitinib. However, clinical efficacy of these treatment strategies is limited by low 

objective response rates and limited progression-free survival due to tumour resistance. 

Further novel strategies for molecular targeted therapy of NETs of the GEP system are 

needed. This paper reviews preclinical research models and signalling pathways in NETs of 

the GEP system. Preclinical and early clinical data on putative novel targets for molecular 

targeted therapy of NETs of the GEP system are discussed, including PI3K, Akt, mTORC1/

mTORC2, GSK3, c-Met, Ras–Raf–MEK–ERK, embryogenic pathways (Hedgehog, Notch, 

Wnt/beta-catenin, TGF-beta signalling and SMAD proteins), tumour suppressors and 

cell cycle regulators (p53, cyclin-dependent kinases (CDKs) CDK4/6, CDK inhibitor p27, 

retinoblastoma protein (Rb)), heat shock protein HSP90, Aurora kinase, Src kinase family, 

focal adhesion kinase and epigenetic modulation by histone deacetylase inhibitors.

Introduction

Neuroendocrine tumours (NETs) of the 
gastroenteropancreatic (GEP) system are often 
metastasized at the time of diagnosis and curative 
resection is not possible in all cases (1, 2). Our 
knowledge on medical therapy of advanced disease of 
NETs of the GEP system (2, 3, 4, 5, 6, 7, 8), including 
molecular targeted therapy with the mammalian 
target of rapamycin (mTOR) inhibitor everolimus 
and the multi-tyrosinkinase inhibitor sunitinib, 
has significantly progressed over the last few years. 
Hallmarks of gastrointestinal NET development have 
been defined (9, 10) and our understanding of genetics 
(11, 12, 13), epigenetics (14, 15), tumourigenesis (9), 
angiogenesis (9), novel biomarkers (10) and how to 
overcome resistance mechanisms (16, 17, 18) has 

tremendously grown in the last few years. However, 
clinical efficacy of molecular targeted therapy with 
the mTOR inhibitor everolimus and the multi-
tyrosinkinase inhibitor sunitinib in NETs of the GEP 
system is limited by low objective response rates and 
limited progression-free survival (PFS) due to tumour 
resistance (2, 5, 16, 17).

Further novel strategies for molecular targeted 
therapy of NETs of the GEP system are needed. This 
review is focused on novel putative targeted therapies for 
well-differentiated NETs with G1/G2 grading of the GEP 
system (19, 20). We review current preclinical and early 
clinical data on several putative novel targets and future 
challenges for molecular targeted therapy of NETs of the 
GEP system.
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Novel targets and future strategies in NETs

Preclinical in vitro and in vivo model in NETs

Preclinical models of NETs currently encompass only 
a limited number of human NET cell lines and mouse 
models, as has been recently reviewed (21, 22, 23, 24). 
The most commonly used human neuroendocrine 
neoplasia cell lines of GEP origin encompass the 
pancreatic cell lines BON1 (25) and QGP1 (26), as 
well as the small intestinal cell lines GOT1 (27) and 
KRJ-I (28). The human insulinoma cell line CM has 
been reported to be not a valid model of beta cell 
function and to not secrete insulin because of severe 
chromosomal aberrations (29). Further human NET cell 
lines established are the small intestinal cell lines P-STS, 
L-STS and H-STS (30) and the neuroendocrine carcinoma 
cell lines NEC-DUE1, NEC-DUE2 (31) and N-TAK1 (32). 
Whole-exome characterisation of human pancreatic 
NET cell lines BON1 and QGP1 and human carcinoid 
lung cell lines, e.g. H727, has been reported (33, 34). 
A major limitation of the available human NET cell lines 
is that their mutation rate and pattern seem distinct 
from well-differentiated NETs in patients (33, 34) and 
thus might not adequately depict the tumour biology of  
well-differentiated NETs.

Cell-signalling pathways in GEP-NETs

PI3K–Akt–mTOR pathway
The PI3K–Akt–mTOR pathway is well known to be critical 
in GEP-NETs and offers promising mechanistic research 
approaches and therapeutic targets (35). Molecular 
targeting of the PI3K–Akt–mTOR pathway opened up new 
perspectives for therapeutic strategies and presented a 
vast variety of drugable pharmacologic targets (Table 1) as 
this pathway is involved in the pathogenesis and tumour 
growth of NETs (16, 36, 37, 38) (Fig. 1).

Overactivation of the PI3K–Akt–mTOR pathway in 
GEP-NETs Genetic mutations in the PI3K–Akt–mTOR 
pathway show an overall occurrence of 15% and an altered 
gene expression pattern in pancreatic NETs (13, 35). Gene 
amplification of PI3K–Akt–mTOR signalling components, 
mostly because of Akt1 and Akt2 amplifications, has been 
demonstrated to be common in small intestine NETs 
(SI-NETs) in approximately 33% (16/48 tumours) (11). 
The dysregulations of Akt because of point mutations, 
gene amplification and/or overexpression, which result in 
the constitutive activation of Akt, lead to radio-resistance 

in cancers; an enhanced PI3K–Akt–mTOR pathway 
expression causes accelerated DNA double-strand break 
repair, which forms the radio-/chemo-resistance base (39).  
Misregulation in the PI3K–Akt–mTOR signalling pathway 
usually occurs because of constitutive activation of PI3K, 
for example because of downregulation and/or mutational 
loss of function of PTEN which then leads to unregulated 
activation of Akt (40). The upstream mTOR regulators 
PTEN and TSC2 are often mutated,  downregulated or 
altered in their protein expression level, causing mTOR 
activation in pancreatic NETs (41, 42). Loss of PTEN 
protein was evidenced in 63% of small cell neuroendocrine 
carcinomas (17/27), with 38% (5/13) exhibiting allelic 
loss (43). An immunohistochemical (IHC) analysis 
showed expression and activity levels of mTOR, 4EBP1, 
cytoplasmic phospho-4EBP1 (p4EBP1), nuclear p4EBP1, 
phospho-S6K (pS6K) and phospho-eIF4E (peIF4E) in  
GEP-NETs and demonstrated that 61, 93, 80, 69, 57 and 
79% of the analysed GEP-NETs were positive for these 
proteins,  respectively (44). Another IHC  analysis of 
72 primary pancreatic NETs showed a downregulation 
of TSC2 and/or PTEN in 85% of the cases, which was 
clearly correlated with shorter disease-free and overall 
survival (41). High mTOR activity was correlated with 
an enhanced proliferative capacity, and differences in 
mTOR activity and expression levels were associated with 
the possible variation in mTOR inhibitor response (44). 
Another IHC study correlated the expression of mTOR 
and its downstream targets RPS6KB1, RPS6 and eIF4EBP1 
with an adverse clinical outcome in NETs (45). In an IHC 
study of ileal NETs, a clear overexpression of mTOR was 
determined in 76.2% of all cases (46).

Inhibition of the PI3K–Akt–mTOR pathway in  
GEP-NETs Inhibition of mTORC1 by rapamycin and 
its analogues is an effective anti-tumoural strategy in 
NETs. The mTORC1 inhibitor everolimus is currently 
approved for treatment of pancreatic NETs (47) and 
also of GI-NETs and lung NETs (48, 49). Sensitivity of 
cancer cells to rapamycin and its analogues is positively 
correlated with PIK3CA and/or PTEN mutations and 
with PI3K–Akt–mTOR activation demonstrated by high 
pAkt and p70S6K levels (50, 51). Following treatment 
with rapamycin and its analogues, a compensatory 
upregulation of the PI3K–Akt cascade with an increase 
in p-Akt T308 and pAkt S473 is observed in rapamycin-
sensitive cancer cells but not in rapamycin-insensitive 
 cancer cells (50, 51). On the other hand, this upregulation 
of p-Akt during treatment with rapamycin and its 
analogues is an important compensatory mechanism, 
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causing treatment resistance (52, 53, 54, 55, 56, 57, 58, 
59, 60). Thus, the anti-tumoural efficacy of mTORC1 
inhibitors as everolimus or temsirolimus is limited, 
most probably because of rescue mechanisms, including 
compensatory upregulation of PI3K–Akt signalling 
and Ras–Raf–MEK–ERK1/2 signalling by mTORC1 
inhibitors (52, 53, 54, 55, 56, 57, 58, 59, 60, 61). The 
better understanding of long-term resistance formation 
to everolimus treatment is of fundamental importance 
to establish predictive biomarkers and to provide 
rationale dual targeting options in order to overcome 
such acquired or intrinsic resistance (53, 62). Because 
of the importance of the PI3K–Akt–mTOR pathway in 
GEP-NENs, many possible therapeutic targets open up 
on many different levels along the signalling pathway 
and further research is required. Dual horizontal 
inhibition of the PI3K–Akt–mTOR signalling cascade as 
well as dual vertical inhibition of mTORC1 and other 
pathways as Ras–Raf–MEK–ERK1/2 signalling might be 
a promising future strategy to overcome compensatory 
rescue mechanisms and resistance in NETs.

mTOR inhibition The mTOR has an essential role 
in cell growth control and involvement in human 

tumourigenesis. It is involved in two distinct multi-
protein complexes, namely mTORC1 and mTORC2  
(63, 64). While mTORC1 is stimulated by various growth 
factors and is sensitive to inhibition by rapamycin and 
its analogues, mTORC2 is considered insensitive to 
rapamycin and its analogues (63, 64).

The role of mTORC1 inhibition in GEP-NETs has 
been recently extensively reviewed by Briest and 
coworkers. (65). Using various preclinical in vitro and 
in vivo models of NETs, anti-tumoural effects have been 
demonstrated for rapamycin (66) and everolimus (58, 
67, 68, 69, 70). mTORC1 inhibition in NETs causes 
dephosphorylation of the mTORC1 downstream signals 
p70S6K and 4EPB1, and compensatory upregulation 
of the upstream signal Akt (52, 55, 56, 66). Dual 
targeting within the same pathway (vertical targeting) 
or within different pathways (horizontal targeting) 
seems to be a possible solution for de novo or acquired 
mTORC1 inhibitor resistance and for inhibition escape 
mechanisms (35).

PI3K inhibition Preclinical studies in NET cell lines  
in vitro and xenograft mouse model in vivo have 
demonstrated anti-tumoural efficacy of the PI3K inhibitor 

Table 1 Molecular targeting therapies of the PI3K–Akt–mTOR pathway in GEP-NETs.

 
Target

Immunohistochemical 
data

Gene expression/
somatic mutations

Substance: in vitro data 
Human NET cell lines

Substance: in vivo 
data Animal model

 
Clinical trials

mTORC1 Kasajima et al. (44), 
Geis et al. (46)

mTOR upregulation Everolimus
Passacantilli et al. (58), 
Grozinsky-Glasberg 
et al. (68), Zitzmann 
et al. (69), 
Djukom et al. (70)

Temsirolimus
Rapamycin
Moreno et al. (66)

Everolimus
Djukom et al. (70), 
Pool et al. (267)

Rapamycin
Moreno et al. (66)

Everolimus 
(phase 3)

Yao et al. (47), 
Pavel et al. (48)

Yao et al. (49)
Temsirolimus 
(phase 2)

Hobday et al. 
(268),  
Duran et al. (52)

PI3K
mTORC1/mTORC2

Missiaglia et al. (41), 
Pitt et al. (40), 
Cingarlini et al. (42), 
Tan et al. (43)

PI3K upregulation; 
PTEN/TSC2 
downregulation/
mutational loss of 
function

LY294002
Djukom et al. (70), 
Couderc et al. (71)

BKM120
Valentino et al. (73)
BEZ235
Gagliano et al. (51), 
Zitzmann et al. (56), 
Passacantilli et al. (58), 
Valentino et al. (73)

BYL719
Passacantilli et al. (58)

LY294002
Djukom et al. (70), 
Couderc et al. (71)

BEZ235 (phase2)
Fazio et al. (60)
CC-223 (phase 1)
Mita et al. (83)

Akt 
 
 
 
 

Banck et al. (11) 
 
 
 
 

Akt1/Akt2 gene 
 amplification 
 
 
 

Perifosine
Zitzmann et al. (78)
MK-2206
Somnay et al. (79)
Triciribine
Gloesenkamp et al. (82)

 
 
 
 
 

MK-2206 (phase 
1, 2)

Yap et al. (80), 
Reidy-Lagunes 
et al. (81) 
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LY294002 alone and in combination with the mTORC1 
inhibitors rapamycin or everolimus (70, 71). In RIP1-Tag2, 
the selective inactivation of the p110α PI3K isoform, either 
genetically or pharmacologically (GDC-0326), decreased 
tumour growth and vascular area, and GDC-0326 
reduced the incidence of liver and lymph node metastasis 
compared with vehicle-treated mice (72). In vitro studies 
also demonstrated the pan-PI3K inhibitor BKM120 (73) 
and the dual PI3K/mTOR inhibitor BEZ235 alone and in 
combination with the mTORC1 inhibitor everolimus (51, 
56, 58, 73) to exert anti-tumoural efficacy in NET cells. In 
human NET cell lines, the PI3K inhibitors BEZ235, BKM120 
and BYL719 were tested in combination with RAD001 
to overcome feedback resistance mechanisms occurring 
often by sole mTOR inhibition (58, 74). In another study, 
different NET cell lines were treated with either the pan-
PI3K inhibitor BKM120 or the dual PI3K/mTOR inhibitor 
BEZ235 alone or in combination with the MEK inhibitor, 
PD0325901 (73), the combination of BEZ235 and 
PD0325901 was the most effective therapy option in vivo 

compared with single-agent treatments demonstrating 
the great potential of horizontal combinational targeting 
(73). However, the clinical development of BEZ235 was 
terminated, and two clinical phase 2 studies in NETs did 
not meet the statistical endpoint and demonstrated severe 
toxicity (60, 75). Nevertheless, targeting PI3K in NETs with 
other compounds still might be a promising approach. 
Further agents and inhibitors concerning PI3K or other 
upstream targets that are recently in clinical trials should 
also be tested for therapeutic approaches in GEP-NETs  
(65, 76). Currently, there is only one FDA-approved delta-
specific PI3K inhibitor (idelalisib) used in leukaemia 
and two types of lymphoma, but there are over 30 PI3K 
inhibitors at different stages in clinical trials, belonging 
to either a dual pan-Class I PI3K/mTOR inhibitor, a pan-
Class I PI3K inhibitor lacking significant mTOR activity or 
an isoform-selective PI3K inhibitor (77).

Akt-inhibition The pan-Akt inhibitor perifosine 
demonstrated strong anti-tumoural effects in vitro in 

 

Figure 1
Important growth factors and cellular signalling pathways involved in tumourigenesis and angiogenesis of NETs. PI3K–Akt–mTOR pathway, Ras–Raf–
MEK–ERK pathway, Wnt/beta-catenin pathway, Notch-1 signalling and Hedgehog signalling, cyclin-dependent kinases in a cellular context.
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human NET cell lines and a particular role of Akt1 and 
Akt3 isoforms was determined because of knockdown 
methods with siRNA, suggesting a therapeutic potential 
by selective Akt1/Akt3 targeting (78). In vitro studies with 
the allosteric pan-Akt inhibitor MK-2206 in NET cell lines 
demonstrated a decrease in pAKT expression, inhibition 
of proliferation and induction of apoptosis mechanisms 
and a decreased expression of the NET tumour markers 
CgA and NSE (79). In a clinical phase 1 study with 
MK-2206 in patients with solid tumours, two patients 
with pancreatic NETs experienced a minor tumour 
response (80). A clinical phase 2 study with MK-2206 
including eight patients with NETs (NCT01169649) was 
terminated early by the sponsor and demonstrated minor 
response/stable disease in 4/8 (50%) with a range from 
4.2 to 10.2 months (81). In insulinoma CM cells and gut 
neuroendocrine STC-1 cells, the Akt inhibitor triciribine 
decreased cell growth and showed synergistic anti-
proliferative effects in combination with 5-fluorouracil or 
the mTORC1 inhibitor everolimus or the IGF-1R inhibitor 
NVP-AEW541 (82).

mTORC1/mTORC2 inhibition In a phase 1 clinical trial 
expansion with the mTORC1/mTORC2 inhibitor CC-223 
on non-pancreatic NETs, prolonged stable disease and 
symptomatic improvement in subjects with refractory 
carcinoid syndrome were reported (83). The highly 
selective dual inhibitor of PI3K and mTORC1/mTORC2 
PKI-587 has shown promising anti-proliferative effects in 
a study with various NET cell lines (BON1, QGP1, KRJ-I 
and LCC-18) (84).

Combination of mTORC1 and EGFR inhibition Everolimus 
exhibited synergistic effects in combination with the EGFR 
inhibitor erlotinib on large-cell NETs and bronchial NETs 
with an activated EGFR-Akt-mTOR pathway by inducing 
apoptosis (61). Dual therapeutic targeting of EGFR and 
mTOR in a preclinical mouse model with pancreatic NETs 
could overcome drug resistance and improve survival (85).

Combination of mTORC1 and somatostatin 
analogues Treatment of NET cells in vitro with a 
combination of the mTORC1 inhibitor rapamycin or 
everolimus plus the somatostatin analogue octreotide 
has caused controversial results in different models. 
The combination of mTORC1 inhibitors plus octreotide 
caused no enhanced anti-tumour activity in comparison 
to mTORC1 inhibition alone in human NET cell lines 
BON1 and H727 (66, 68, 86) and primary tumour cells in 
vitro. The lack of effect of octreotide in BON1 and H727 

cells might be because of the fact that these cell lines do 
not express a sufficient amount of somatostatin receptor 
type 2 (87) and it does not seem an appropriate model in 
this setting. In contrast, in the human SI-NET cell lines 
KRJ-I and H-STS in vitro everolimus and octreotide alone, 
each showed anti-tumoural effects, while everolimus plus 
octreotide caused an enhanced anti-tumoural activity 
(55). However, an escape feedback loop activation was 
encountered in KRJ-I and H-STS cells following treatment 
with everolimus or everolimus plus octreotide, so dual 
targeting with everolimus plus octreotide could not 
overcome the pAkt-pERK1/2-mediated escape mechanisms 
(55). In a clinical phase 3 trial, there was no significant 
superior effect of combined treatment with everolimus 
plus octreotide LAR versus placebo plus octreotide LAR in 
patients with NETs and carcinoid syndrome (48).

Combination of mTORC1 and VEGF inhibition The 
preclinical rationale for the combination of mTORC1 
inhibition and inhibition of VEGF signalling and its 
possible role to overcome resistance mechanisms has 
been extensively reviewed by Cella and coworkers (18). 
Current clinical trials with VEGFR inhibition in patients 
with NETs have been recently reviewed by Pavel and 
coworkers (76).

Other mTOR inhibitors: aspirin and metformin AMP-
activated protein kinase (AMPK) is a highly conserved key 
regulator implicated in cellular homeostasis, cell growth 
and cytoskeletal and cell death mechanisms (88). AMPK 
activation causes downregulation of mTOR and S6K 
phosphorylation and generates overall mRNA translation 
reduction and protein synthesis decrease, making it a 
possible target for anti-cancer approaches (88). In this 
context, metformin (89, 90, 91) and aspirin (92), as 
well as several other drugs like phenformin, resveratrol, 
berberine, statins, epigallocatechin gallate and capsaicin, 
have been suggested to exert anti-tumoural effects by 
activation of AMPK and inhibition of mTOR (93).

In the human NET cell lines BON1, GOT1 and NCI-
H727 in vitro incubation with aspirin caused decreased 
cell viability/proliferation because of cell cycle arrest 
mechanisms with mTOR downstream signalling 
suppression (67). Preclinical in vivo data in the Rip1-Tag2 
mouse model causing pancreatic NETs showed a significant 
inhibition of tumour proliferation by aspirin or enalapril 
alone, while the combination of aspirin and enalapril was 
the most efficient regarding tumour size reduction and 
prolonged overall median survival (94). An epidemiologic 
study reported use of aspirin as a protective factor with a 
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risk reduction for the development of SI-NETs (HR 0.20; 
95% CI 0.06–0.65, P = 0.008) (95).

In vitro incubation with metformin caused decreased 
cell viability/proliferation in BON1, GOT1 and H727 
cells, because of cell cycle arrest mechanisms with mTOR 
downstream signalling suppression (96). In prospect 
of evaluating the possible anti-proliferative effect of 
metformin in combination with everolimus and octreotide 
LAR in well-differentiated pancreatic NET patients, 
a  single-centre phase 2 study was designed (MetNET-1 
trial, NCT 02294006) (97). First findings of the PRIME-
NET study suggest that the combination of metformin 
with everolimus and/or somatostatin analogues can 
cause a clinical benefit in diabetic NET patients (98). The 
MetNET-2 trial (NCT02823691) was designed to evaluate 
the safety of metformin in combination with lanreotide 
in well-differentiated gastrointestinal and lung NETs (98).

GSK3
The glycogen synthase kinase 3 (GSK3), with its two 
isoforms alpha (GSK3-α) and beta (GSK3-β), unlike most 
other kinases is active in its non-phosphorylated state 
(99). Various studies have demonstrated an association 
between GSK3 deregulation and tumourigenesis (99, 100). 
However, as has been recently reviewed, GSK3 plays an 
ambiguous role as an tumour suppressor or oncogene, 
respectively. This has limited the use of GSK3 inhibitors 
in targeted therapy of cancer including GEP-NETs, so far 
(99) (Table  2). GSK3 is involved in various major NET 
pathways, such as Wnt/beta-catenin, PI3K–Akt–mTOR 
and Ras–Raf–MEK–ERK, Hedgehog and Notch signalling 
(99). Treatment with the GSK3 inhibitors CHIR99021, 
6-bromoindirubin-3′oxime-, 1-azakenpaullone and siRNA 
enhanced the proliferative growth of rat insulinoma 
INS-1E cells (101). On the other hand, the non-specific 
GSK3 inhibitor lithium chloride showed NET growth 
inhibition in vitro and in vivo (102, 103). Similarly, in 
gastrointestinal and pulmonary tumour cell lines, dual 
targeting with lithium chloride and histone deacetylase 
(HDAC) inhibitors leads to enhanced anti-proliferative 
effects through GSK3 inhibition/phosphorylation 
and Notch-1 expression (104). Further unspecific 
GSK3 inhibitors such as lithium chloride, SB415286 or 
kenpaullone decreased cellular proliferation in different 
rodent insulinoma cell lines through a G2/M cell cycle 
arrest and apoptosis (105). Furthermore, substances such 
as MG-132 (106), ZM336372 (107), metformin (96) and 
aspirin (67) blocked NET cell growth possibly through 
GSK3 inhibition. Despite these promising preclinical Ta
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data, a clinical phase 2 study in 15 patients with low-
grade NETs treated with lithium chloride 300 mg tid p.o. 
caused no objective responses and a median PFS of only 
4.5 months and pre- and post-treatment tumour biopsies 
showed no consistent GSK3-β inhibitory effects (103). 
This might be because of the serum levels of lithium 
chloride reached in humans being not sufficient to 
phosphorylate and inhibit GSK3 (103). Hence, preclinical 
and clinical studies considering more potent and specific 
GSK3 inhibitors need to be evaluated as possible novel 
targets for NETs.

Hepatocyte growth factor (HGF)/c-Met signalling
The MNNG HOS transforming gene (MET) is a receptor 
tyrosine kinase and HGF is its ligand (108, 109). Tumour 
hypoxia upregulates hypoxia-inducible factors (HIFs) 
and induces overexpression of c-Met in tumours, while 
inhibition of Met expression prevents hypoxia-induced 
invasive growth (108, 109). c-Met is involved in tumour 
cell survival, invasion, motility and metastasis formation 
in cancers (108, 109). Upregulation of c-Met contributes 
to resistance of tumour cells (108, 109).

Dual targeting of VEGF and c-Met signalling has been 
discussed to synergistically contribute to anti-tumoural 
effects in pancreatic NETs in RIP-Tag2 mice (110, 111, 
112). VEGF inhibition only inhibited tumour growth 
but increased expression of HIF-1α and c-Met activation 
and increased tumour invasion and metastasis (110, 
111, 112). In contrast, treatment with the dual VEGFR/
c-Met inhibitor cabozantinib (XL184) or the c-Met 
inhibitor PF-04217903 reduces invasion and metastasis 
(110, 111, 112). In the human NET cell lines BON1 and 
H727 in vitro, the highly specific c-Met inhibitor Inc280 
(113, 114) did not cause inhibition of cell proliferation 
(115), while cabozantinib and tivantinib exhibited 
anti-proliferative effects in BON1 and H727 cells, most 
probably mediated by ‘off-target’ effects not mediated 
by c-Met inhibition (115).

Currently, a clinical phase 2 trial investigates the role 
of cabozantinib in advanced pancreatic neuroendocrine 
and carcinoid tumours (NCT01466036).

Ras–Raf–MEK–ERK pathway
The Ras–Raf–MEK–ERK pathway belongs to the mitogen-
activated protein kinase (MAPK) pathway system, is 
activated by various growth factors, is involved in 
cell growth and cell differentiation and represents a 
specific pharmacological target in oncology and possible 

novel target for GEP-NET therapy, including clinical 
development of several Raf inhibitors and MEK inhibitors 
(116) (Fig.  1 and Table  3). Ras and Raf are considered 
proto-oncogenes and gains of function mutations lead to 
tumourigenesis and elevated cell transformation in many 
cancer entities (116). Cancers with activating mutations 
in BRAF are sensitive to Raf and MEK inhibition (116) 
and the BRAF inhibitors vemurafenib and dabrafenib and 
the MEK inhibitor trametinib have been licensed for the 
treatment of BRAFV600-mutated advanced melanoma 
(116, 117).

However, mutations of Ras (13, 118, 119) are only 
very rare events in GEP-NETs with reported mutation 
frequencies (119) of HRas 1% (2/150), KRas 8% (10/125), 
NRas 0.7% (2/274) or BRaf 1% (4/369). Neurofibromatosis 
(NF) type 1 is occasionally associated with the development 
of pancreatic NETs (120). NF type 1 is classified as 
a RasOpathy, as Ras–MAPK signalling is affected by 
mutations of the NF1 gene, encoding neurofibromin as 
an RAS GTPase-activating protein (121).

Preclinical in vitro studies in NET cells demonstrated 
that not only Raf inhibitors (56, 122) and MEK inhibitors 
(57, 73) but instead also Raf-1 activators (107, 123, 124, 
125) might be of interest as potential target as has been 
extensively reviewed by Fazio and coworkers (37, 126). 
In BON1 cells, stable transfection with an oestrogen-
inducible Raf-1 construct (BON1-raf cells) caused an 
induction of MEK and ERK 1/2 signalling (127), induction 
of focal adhesion kinase (FAK) by an MEK/ERK1/2-
dependent pathway (128) and decreased CgA expression 
by an MEK/ERK1/2/FAK-dependent pathway (127, 128) 
and decreased cell adhesion and downregulation of  
beta-catenin by an MEK-dependent pathway (128, 129). 
ATP-competitive Raf inhibitors exert opposing functions 
as inhibitors or activators of MAPK signalling, depending 
on the BRAF mutational status of the tumour cell (130). 
While in BRAF-mutated cancer cells, ATP-competitive 
Raf inhibitors inhibit downstream MAPK signalling, in 
RAS/RAF wild-type tumour cells, ATP-competitive RAF 
inhibitors paradoxically activate MAPK signalling (130). 
In non-neuroendocrine cells (131) and in human BON1 
tumour cells (107), the ATP-competitive Raf-1 inhibitor 
ZM336372 has been reported to cause upregulation of Raf-1 
at the transcriptional level. Treatment of BON1 tumour 
cells with ZM336372 caused induction of phosphorylation 
of Raf-1, MEK and ERK1/2 (123), upregulation of p21 
and p18 (123), suppression of cell proliferation (123) 
and reduced expression of NET markers CgA and 
achaete-scute complex-like 1 (ASCL1) (123). However, 
ZM336372 in BON1 cells also inactivates GSK3 at an  
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Raf–MEK-independent pathway (107) and ZM336372-
induced reduction of CgA and ASCL1 expression has 
been shown to be mediated by an Raf–MEK-independent 
pathway (107); thus, the observed Raf-1 induction might 
not be essential for the anti-tumoural effects of ZM336372. 
The Raf-1 activator teriflunomide has also been reported 
to show anti-proliferative effects in BON1 cells alone (124) 
and in combination with pasireotide (125).

The Ras–Raf–MEK–ERK pathway is a highly complex 
network interacting with other crucial cellular pathways 
such as the PI3K–Akt–mTOR pathway (65). Inhibition of 
mTORC1 causes compensatory upregulation of the MAPK 
pathway (132, 133, 134), and dual horizontal inhibition 
of the mTORC1 and MAPK signalling has additive anti-
tumoural effects in cancer cells. In NET cells in vitro, the 
Raf inhibitor Raf265 has been demonstrated to have anti-
proliferative activity (56, 122). Zitzmann and coworkers 
reported compensatory feedback loops on PI3K–Akt–
mTOR pathway, when Raf–MEK–ERK signalling was 
inhibited in human NET cell lines (56). Combination 
of the mTORC1 inhibitor everolimus or the mTOR/PI3K 
inhibitor NVP-BEZ235 with the Raf inhibitor Raf265 was 
able to suppress Raf265-induced feedback mechanisms 
on pAkt and exerted enhanced anti-proliferative effects 
in comparison to single-substance treatment (56). 
Also synergistic effects of co-targeting the PI3K–Akt–
mTOR and Ras–Raf–MEK–ERK pathway were obtained 
with the PI3K inhibitor BKM120 and the PI3K/mTOR 
inhibitor BEZ235 in combination with the MEK inhibitor 
PD0325901 in human neuroendocrine BON1, H727 and 
QGP1 cells in vitro and a BON1 xenograft model in vivo 
(73) and with the mTOR inhibitor RAD001 and the MEK 
inhibitor UO126 in human neuroendocrine NCI-H727 
and COLO320 cells (57).

As controversial effects of Ras–Raf–MEK–ERK 
inhibition/activation on cancers seem to depend on 

the tumour cell type specific context (126), further 
investigation of the possible benefits or problems of Ras–
Raf–MEK–ERK signalling manipulation in GEP-NETs is 
still required.

Pathways important not only during  
embryogenesis
Hedgehog signalling The hedgehog (Hh) signalling 
pathway is implicated in a vast variety of biological 
processes reaching from embryogenesis to adult-tissue 
homeostasis and tumourigenesis. Misregulation of 
hedgehog signalling provokes numerous human disorders 
including tumourigenesis (135, 136) (Fig. 1).

Inhibitors of the Hh pathway, primarily Smo 
inhibitors, as vismodegib (GDC-0449), BMS-833923, 
saridegib (IPI-926), sonidegib/erismodegib (LDE225), 
PF-04449913, LY2940680, LEQ 506 and TAK-441 are 
in clinical development for cancer therapy (137, 138). 
Vismodegib is the first-in-class hedgehog pathway 
inhibitor licensed for metastatic or locally advanced basal 
cell carcinoma (139) and Gorlin–Goltz associated basal 
cell cancer (140). Further second-generation inhibitors 
of Hh signalling acting downstream of Smo are in 
development (137).

In GEP-NETs, embryological pathways like Hh are 
activated (141). Expression of sonic hedgehog (SHH) and 
one of its downstream targets Snail has been reported 
in 53% (16/30) of SI-NETs (142). Protein expression of 
the SHH receptor PTCH1 was found in 55% (12/22) 
of sporadic pancreatic NET tumour samples and in 
80% (4/5) of MEN1-associated tumours patients (143). 
Expression levels of Ptch1 were not predictive for 
clinical outcome (143). Duodenal gastrinomas and 
associated metastases showed in 100% (15/15) Shh 
expression, whereas no Shh expression was detected in 

Table 3 Targeting the Ras–Raf–MEK–ERK pathway in GEP-NETs.

 
Target

 
Immunohistochemical data

Gene expression/somatic 
mutations

 
Substance: in vitro data Human NET cell lines

Ras/Raf/MEK 
 
 
 
 
 
 
 
 
 
 

Gilbert et al. (118), Jiao et al. 
(13), Vijayvergia et al. (269) 
 
 
 
 
 
 
 
 
 

HRAS/KRAS/NRAS/BRAF/NF1 
expression 
 
 
 
 
 
 
 
 
 

ZM336372
Kunnimalaiyaan et al. (107),  
Van Gompel et al. (123)

Teriflunomide
Cook et al. (124)
Raf265
Zitzmann et al. (56), Zitzmann et al. (122)
PD0325901
Valentino et al. (73)
UO126
Iida et al. (57) 
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pancreatic gastrinomas (144). In gastrointestinal NECs, 
Hh downstream target Gli1 expression was upregulated 
and IHC analysis showed 100% positive staining for 
Gli1 in NECs (12/12), whereas only 1/7 adenocarcinoma 
was positive for Gli1, indicating the importance of Hh 
signalling in NEC formation (145). In vitro treatment with 
the Hh inhibitor cyclopamine caused Gli1, Ptch1, Snail 
and hASH1, mRNA levels to get downregulated (145). 
Permanent activation of Smo caused clonogenicity of 
SCLC in vitro, as well as the initiation and progression 
of mouse SCLC in vivo; additionally, pharmacological 
blockade of Hh signalling inhibited SCLC growth in vivo 
and in vitro after chemotherapy (146). In the multiple 
endocrine neoplasia type 1 (MEN1) tumour syndrome, an 
enhanced Hh signalling causes proliferation of pancreatic 
beta cells and susceptibility to pancreatic islet tumour 
formation (147). Functional menin blocks Hh signalling 
via PRMT5-mediated epigenetic suppression of the Gas1 
gene (147), an important enhancer of the Hh signalling 
(148). Inhibition of Gli1 by the inhibitor GANT-61 
caused decreased expression of Gli1 and its target genes 
in MEN1-depeleted cells (149). Thus, non-functional 
menin engenders Gas1 expression and thereby foments 
pro-proliferative and oncogenic Hh signalling, suggesting 
Menin/PRMT5/hedgehog signalling as a potential target 
for MEN1 treatment (147, 150).

The Smo antagonist cyclopamine (151, 152) 
effectively downregulated Hh target genes and suppressed 
cell proliferation in a murine Rip-Tag2 model of islet cell 
tumours (153) and in human NEC cells (145). Similarly, 
treatment with the orally bioavailable Smo antagonist 
sonidegib (LDE225) in the murine Rip-Tag2 model of islet 
cell tumours caused downregulation of HH downstream 
targets, tumour volume reduction of 95% and prolonged 
median overall survival (154). Also in GOT1, human 
small intestine NETs in nude mice treatment with 
sonidegib (LDE225) inhibited tumour growth (155). 
Sonidegib (LDE225) is currently licensed for the treatment 
of advanced basal cell carcinoma of the skin. A phase 1 
trial to evaluate the safety and tolerability of LDE225 and 
octreotide LAR in patients with progressive NETs (AIO-
NET-0114://www.aio-portal.de/index.php/175.html) has 
been closed.

Notch-1 signalling The Notch-1 signalling pathway is a 
highly conserved embryonic pathway that is important in 
juxtacrine signalling between neighbouring cells, regulates 
cell proliferation and cell differentiation and has been 
demonstrated to play an essential role in tumourigenesis 
and maintenance of cancer stem cells (CSCs) (136) (Fig. 1). 

The role of Notch-1 signalling in NETs has been reviewed 
recently by Crabtree and coworkers (156).

The role of Notch-1 signalling in tumourigenesis 
is paradoxical and dependent upon the specific cancer 
cell type context, as Notch-1 has been demonstrated to 
function either as a tumour suppressor or as an oncogene, 
respectively (157, 158, 159, 160, 161, 162):

1. In various haematologic and solid tumours, for 
example breast cancer and colon cancer, Notch-1 
and its respective ligands are overexpressed and an 
oncogenic role of the Notch-1 gene has been shown 
(157, 158, 159, 163). Notch-1 signalling can be 
inhibited by specific antibodies against Notch-1 and 
its ligands as well as by gamma-secretase inhibitors, 
inhibiting cytoplasmatic Notch-1 intracellular domain 
formation and thus subsequent Notch-1 target gene 
activation (163, 164); these strategies are in clinical 
development in several cancer entities (163, 164).

2. In contrast, reduced/absent Notch-1 activity is found in 
carcinoid like NETs, pheochromocytomas and thyroid 
carcinomas and Notch-1 re-expression/reactivation 
has been demonstrated to exert anti-tumoural effects 
in these tumour entities (165). Therefore, Notch-1 
activators are evaluated as potential pharmacological 
agents in some NETs (165).

Preclinical studies in human pancreatic carcinoid BON1 
and bronchopulmonary carcinoid H727 tumour cells 
have demonstrated upregulation of Notch-1 expression 
to cause subsequent downregulation of the achaete-scute 
complex-like 1 (Ascl1) protein, inhibit the secretion of 
neuroendocrine markers and 5-hydroxytryptamine 
and inhibit tumour cell proliferation (166, 167, 168). 
In human carcinoid tumour samples, the Notch 
downstream target Ascl1 protein was overexpressed 
compared with surrounding normal tissue (169). Stable 
transfection of Notch-1 into pancreatic carcinoid BON1 
cells reduces Ascl1 expression probably because of 
degradation (170), inhibits tumour cellular proliferation 
and decreases secretion of neuroendocrine markers as 
neuron-specific enolase, synaptophysin, chromogranin 
A, represses tryptophan hydroxylase 1 expression and 
decreases serotonin and 5-hydroxytryptamine secretion 
(166, 169). Ascl1 has been demonstrated to negatively 
regulate tryptophan hydroxylase 1 expression in BON1 
cells (171), the rate limiting enzyme in the biosynthesis 
of serotonin (171).

The HDAC inhibitor valproic acid (VPA) activated 
Notch-1, blocked Ascl1 expression, lowered CgA 
expression, suppressed cell growth and caused cell cycle 
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arrest because of a p21 and p27 increase and a cyclin 
D1 degradation in neuroendocrine gastrointestinal and 
pulmonary carcinoid cells in vitro (172). In addition, 
VPA also suppressed growth of carcinoid tumours in vivo 
in a mouse tumour xenograft (172). Similarly, VPA also 
activated Notch-1, blocked Ascl1 expression, decreased 
CgA expression and inhibited cell growth inhibition in 
SCLC tumour cells in vitro (173). Combination of the 
HDAC VPA and the GSK3 inhibitor lithium activated 
Notch-1 signalling and inactivated GSK3 activity in 
human NET cells in vitro and caused synergistic anti-
proliferative effects (104). In a clinical phase 2 study, 
eight patients with low-grade NETs were treated with VPA. 
Notch-1 signalling was absent in pretreatment tumour 
samples and upregulated following VPA treatment. Best 
response during VPA treatment was stable disease in 50% 
(4/8) of the patients (174).

The grape antioxidant resveratrol has demonstrated 
to exhibit characteristics relevant for anti-cancer strategies 
(175). Resveratrol was identified and validated as a 
Notch-1 pathway activator by a novel high-throughput 
screening method (167). In human neuroendocrine BON1 
and H727 cells in vitro, resveratrol induced functional 
Notch-2 signalling, decreased ASCL1 protein expression, 
increased expression levels of p21 and cdc2, induced 
cell cycle arrest and inhibited tumour cell growth in vitro 
(167). In addition, resveratrol also suppressed growth 
of H727 carcinoid tumours in vivo in a mouse tumour 
xenograft (167). In a current clinical trial (NCT01476592), 
the biological effects of resveratrol in Notch-1 signalling 
in patients with low-grade gastrointestinal tumours were 
analysed.

The marine-derived Notch-1 signalling activator 
thiodepsipeptide thiocoraline showed Notch-1 
downstream target activation and caused cell cycle 
arrest in BON1 and H727 cells in vitro (176). Also in a 
BON1 xenograft model, thiodepsipeptide thiocoraline 
demonstrated anti-tumoural efficacy (176).

Wnt/beta-catenin The Wnt/beta-catenin signalling 
pathway has been extensively reviewed by others (136, 
176) (Fig. 1).

The Wnt/beta-catenin signalling pathway is 
aberrantly regulated in many cancers including colorectal 
adenocarcinoma, resulting in constitutively active 
beta-catenin signalling (177). Loss of function in APC 
or Axin and beta-catenin gain of function mutations 
prevent its phosphorylation and/or degradation and lead 
to constitutive Wnt/beta-catenin signalling, which is 
frequent in colorectal cancer and other tumours (177).

In NET tumour samples, cytoplasmic and nuclear 
beta-catenin accumulation indicating Wnt/beta-catenin 
signalling activation has been reported in 16% (1/12 GI 
carcinoids and 1/6 bronchial carcinoids) (178). In ileal 
neuroendocrine neoplasms, the APC gene was deleted in 
15% (4/27) and somatic mutations of the APC gene were 
detected in 23% (7/30) of examined tumour samples, 
including 57% missense and 14% nonsense/frameshift 
mutations (179). Loss of APC function was not found to 
be a negative predictive marker in this small cohort (179). 
Low-grade NETs are sporadically observed in patients with 
familial adenomatous polyposis; high nuclear levels of 
beta-catenin give evidence for a possible pathogenic role 
of the adenomatous polyposis coli/beta-catenin pathway 
in these NETs (180).

Controversial data contradicting the classical role of 
Wnt/beta-catenin in tumourigenesis have been reported 
from an in vitro study with rodent islet tumour cell 
lines TGP-61 and InR1G9 (181). In this model, menin 
has been reported to be crucial for canonical Wnt/
beta-catenin signalling and activation of the Wnt/beta-
catenin signalling pathway to inhibit islet tumour cell 
proliferation (181). In contrast, menin has been reported 
to be important for phosphorylation of beta-catenin, and 
in MEN1-deficient knockout mice, beta-catenin signalling 
is activated in pancreatic NETs (182). Conditional beta-
catenin knock out in MEN1-deficient knockout mice 
decreased tumourigenesis of pancreatic NETs (182).

In human pancreatic carcinoid BON1 cells, in vitro 
re-expression of the negative regulators of the Wnt/
beta-catenin pathway (e.g., SFRP-1, Axin-2, DKK-1, 
DKK-3 and WIF-1) was significantly induced by the DNA 
methyltransferase inhibitor 5-AZA-CdR (178). Transfection 
of several inhibitors of the Wnt/beta-catenin pathway, 
e.g., SFRP-1, DKK-1 and WIF-1, in BON1 cells inhibited 
colony formation by 40–60% (178). These findings 
suggest that epigenetic silencing of the Wnt/beta-catenin 
pathway through upregulation of negative regulators or 
active inhibition of the Wnt/beta-catenin pathway can 
cause anti-proliferative effects in BON1 cells (178). In silico 
analyses of the intestinal hormone neurotensin promoter 
showed that at least four consensus of TCF-binding 
elements and a Wnt signal lead to augmented secretion 
and intracellular accumulation of neurotensin in BON1 
and QGP1 cell lines (183, 241). While Wnt/beta-catenin 
pathway activation induces transcriptional expression of 
neurotensin, the selective Wnt inhibitor iCRT3 decreased 
neurotensin and cyclin D1 expression levels in BON1 cells 
(183). On the other hand, neurotensin has been shown 
to promote BON1 cell growth in vitro, and this indicates 
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neurotensin as a direct target of the Wnt/beta-catenin 
signalling pathway which might function as a pivotal 
mediator in NET growth (183).

Downregulation of the Wnt inhibitor Dick-kopf-1 
(DKK-1) and subsequent Wnt signalling activation 
promoted tumourigenesis in an NET model in vivo 
and caused tumour cell survival, proliferation and 
invasiveness (184).

Pharmacological inhibition of the Wnt/beta-catenin 
pathway by small-molecule inhibitors as PRI-724, 
CWP232291, LGK974, Foxy-5 and monoclonal antibodies 
as OMP-54F28, OMP-18R5 or OTSA 1010 has entered 
clinical phase 1 studies in oncology (185, 186, 187). 
Several other compounds are in preclinical development 
(185, 186, 187). Targeting the Wnt/beta-catenin pathway 
in NETs seems worth to be investigated in preclinical and 
clinical trials in the future.

TGF-beta signalling and SMAD proteins The TGF-
beta superfamily encompasses TGF-beta proteins and 
bone morphogenetic proteins. TGF-beta signalling is 
mediated by transforming growth factor-beta receptors 1 
and 2 and intracellular SMAD proteins (188).

Gilbert and coworkers demonstrated by IHC analysis 
a high expression level of transforming growth factor-beta 
receptor 1 (TGFBR1) with intensity score 3 in 74% and 
intensity scores 2 and 3 in almost 100% of pancreatic NETs 
(118) and with intensity score 3 in 28% and intensity scores 
2 and 3 in almost 100% of GI-NETs (189). SMAD genes 
have been demonstrated to be often mutated or deleted in 
SI-NETs in approximately 45% (22/48 tumours) (11).

The putative therapeutic potential of TGF-beta 
signalling in GEP-NETs is very difficult to predict as 
TGF-beta signalling has demonstrated discrepant results 
with tumour growth inhibition as well as tumour 
growth activation in different preclinical GEP-NET 
models, as has been extensively reviewed by Kidd and 
coworkers (190).

Tumour suppressors and the cell cycle
p53 The TP53 gene encodes p53 an important tumour 
suppressor transcribing a network of genes including 
p21 and being implicated in DNA repair, cell growth 
arrest or cell senescence, apoptosis and autophagy (191, 
192). Mutations of the TP53 gene with loss of function 
concerning its tumour suppressor role as well as reduced 
functional p53 protein expression because of changes 
in p53 modulators are existent in many cancers and 
contribute to malignant progression (191, 192, 193).

The most recognised modulators of p53 expression 
are wild-type p53-induced phosphatase 1 (WIP1), murine 
double minute (MDM2) and murine double minute 
X (MDMX) (194, 195). The MDM2 gene encodes an E3 
ubiquitin ligase that generates the ubiquitination of p53 
resulting in its proteasomal degradation (194, 195). The 
WIP1 dephosphorylates and thereby inactivates upstream 
activators like ATM, CHK1 and CHK2 and p53 itself and 
stabilises the p53 inhibitor MDM2 by dephosphorylating 
it at Ser 395 (196). Ataxia telangiectasia mutated kinase 
(ATM) mediates DNA damage response-induced activation 
of p53 (197, 198). ATM also regulates together with 
WIP1 the phosphorylation of DAXX protein (198), while 
DAXX itself is not involved in p53 expression and p53 
downstream signalling (198).

High expression of ATM expression in pancreatic 
NETs is associated with higher tumour differentiation, 
lower tumour size, lower recurrence rate and better 
prognosis (199), while loss of ATM expression is common 
in metastasized disease and is associated with worse 
prognosis (200). Loss of p53 and Rb in different mouse 
models caused development of pancreatic NETs (201, 
202). PHLDA3, a target gene of p53, competes with Akt for 
binding to membrane lipids inhibiting Akt translocation 
and activation. Loss of PHLDA3 increases Akt activity and 
decreases p53-dependent apoptosis, revealing the tumour-
suppressive role of PHLDA3 and the link between p53 and 
Akt signalling (203). PHLDA3 has also been shown to be a 
tumour suppressor in pancreatic NETs (204).

Mutations of the TP53 gene encoding p53 protein 
are rare in GEP-NETs and have been reported only in 1% 
(1/89) (205) to 3% (13). However, Hu and coworkers (206) 
observed a high rate of copy number gains of MDM2 
in 22%, MDM4 in 40% and WIP1 in 51% of pancreatic 
NETs. Therefore, inhibition of p53 modulators as MDM2 
and induction of re-expression of p53 wild-type in  
GEP-NETs might be a promising therapeutic strategy (207) 
and should be investigated. Unfortunately, the majority 
of available GEP-NET cell lines do not reflect the wild-type 
TP53 status (208) or have not been assessed so far, making 
it difficult to estimate possible targets in those cell lines 
and thus limiting the possibilities for a transferable in vitro 
drug assessment (209).

Possible therapeutic strategies in oncology to 
re-induce wild-type p53 expression and function reach 
from p53 activator stimulation to a possible inhibition 
of its negative regulators such as MDM2 inhibitors (207, 
210), MDM4 inhibitors (211) and WIP1 inhibitors (212). 
Preliminary data in human NET cell lines in vitro have 
been reported, demonstrating MDM2 inhibition to be 
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a potential novel target in p53-wild-type NETs. In the 
human SI-NET cell line KRJ-I, the MDM2 inhibitor 
nutlin-3 caused upregulation of p21 and inhibition 
of cell proliferation (209). In the human SI-NET cell 
line GOT1, the MDM2 inhibitor NVP-CGM097 caused 
upregulation of p53 and p21 and inhibition of cell 
proliferation (208). Furthermore, NVP-CGM097 showed 
additive effects with 5-fluorouracil on cellular survival 
decrease because of enhanced downregulation of the 
p53-p21-Rb-E2F1 cascade in the p53 wild-type NET cell 
line GOT1 (208).

Based on current findings (198, 206, 213) (Table 4), 
future preclinical studies should also evaluate the putative 
correlations of expression patterns of WIP1, ATM and 
DAXX phosphorylation status in GEP-NETs, as well as 
the putative role of novel WIP1 inhibitors on P53-p21-Rb 
activity and DAXX phosphorylation status in GEP-NETs.

CDKs and Rb The family of cyclin-dependent kinases 
(CDKs) encompasses 20 members (214) which catalyse 
the phosphorylation of key proteins and transcription 
factors implicated in cell cycle transition (215).

CyclinC-CDK3, CyclinD-CDK4 and CyclinD-CDK6 
regulate in quiescent cells the G0–G1 transition and the 
early G1 phase in proliferating cells by phosphorylating 
the tumour suppressor retinoblastoma protein pRb and 
thus activating E2F (216) (Fig. 1).

CDKs and their regulators are often misregulated in 
cancer cells and become unable to accomplish properly 
their cell cycle, transcription and/or proliferation 
controlling role (217, 218). The CDK4–cyclin D–Rb–E2F 
cascade is aberrant in many cancers, including GEP-NETs  
(214, 219, 220) (Table  4). The oral selective CDK4/6 
inhibitor palbociclib (PD0332991) in combination with 
fulvestrant has been approved as first-in-class drug for 
the treatment of ER-positive, HER2-negative breast cancer 
(214, 221, 222). Other CDK4/6 inhibitors as ribociclib 
(LEE011) and abemaciclib (LY2835219) are in clinical 
development (214, 219, 220, 223).

While Men1(+/−) as well as Men1(+/−); Cdk2(−/−) 
mice develop pituitary and pancreatic NETs, Men1(+/−); 
Cdk4(−/−) mice do not (224). These data indicate CDK4 
to be essential for tumourigenesis of pancreatic NETs 
(224). In 92 tumour samples of human pancreatic NETs, 
overexpression of CDK4 and phospho-Rb1 was detected 
in 58% and 68%, and the respective expression levels 
were positively correlated with each other (225). Gene 
amplifications of CDK4 or CDK6 were found in 19% (5/26) 
investigated tumour samples (225). In an orthotopic 
BON1 xenograft model, the multi-inhibitor ZK 304709 Ta
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(CDK1, 2, 4, 7 and 9, VEGFR, PDGFR) caused significant 
anti-tumoural effects by induction of apoptosis and 
inhibition of angiogenesis (226). Investigation of CDK 
gene copy numbers in BON1, H727 and QGP1 human 
NET cell lines revealed H727 cells to harbour three copies 
and QGP1 cells to harbour six copies of the CDK4 gene 
(225). In an orthotopic BON1 xenograft model, the multi-
inhibitor ZK 304709 (CDK1, 2, 4, 7 and 9, VEGFR, PDGFR) 
caused significant anti-tumoural effects by induction of 
apoptosis and inhibition of angiogenesis (226). The 
CDK4/6 inhibitor Palbociclib (PD0332991) reactivated 
Rb1, induced G1 cell cycle arrest and inhibited tumour 
cell growth in BON1 and QGP1 cells in vitro and also 
showed anti-tumoural activity in a QGP1 xenograft model 
in vivo (225). The CDK4/6 inhibitor ribociclib (LEE011) 
decreased tumour cell proliferation in BON1, QGP1 and 
H727 cells, through dephosphorylation of Rb and a 
subsequent G1 phase cell cycle arrest in vitro (227). LEE011 
was ineffective in GOT1 cells, and treatment sensitivity 
towards LEE011 was associated with high expression 
of cyclin D1 and Rb (227). Combination treatment 
of LEE011 and 5-fluorouracil or everolimus showed a 
significant enhancement in the inhibition of cell viability 
when compared to single-substance treatments because 
of PI3K–Akt–mTOR and Ras–Raf–MEK–ERK pathway 
downregulation and cooperative downregulation of cell 
cycle components (227). However, LEE011 also exhibited 
antagonising effects with 5-fluorouracil, protecting NET 
cells from the DNA-damaging effects of chemotherapy 
(227). Hence, the efficiency of a dual targeting approach 
with LEE011 and chemotherapeutic agents in NETs 
remains to be assessed in the clinic (227). Clinical phase 
2 trials of Ribociclib (LEE011) (NCT02420691) and 
Palbociclib (PD0332991) (NCT02806648) in patients with 
NETs are currently recruiting patients (76).

p27 The CDK inhibitor p27 (also known as KIP1) is 
encoded by the CDKN1B gene and regulates the transition 
from cell cycle phase G0/G1 to S and is implicated in cellular 
processes like proliferation, motility and apoptosis (228).

Pellegata and coworkers (229, 230) first described 
mutations in CDKN1B gene causing a p27 deficiency 
and a new MEN-like phenotype in rats and humans, 
further on named MEN-4 (MENX) syndrome (229, 230). 
CDKN1B gene mutations in MEN-4 (MENX) syndrome 
predominantly cause pituitary and parathyroid tumours 
(229, 230).

Exome and genome analyses of SI-NETs identified 
frameshift mutations in the CDKN1B gene in 8% (14/180) 
and deletions in 15% (7/50) (12); thus, the CDKN1B gene 

constitutes the most commonly mutated gene in SI-NETs 
(231). Another large cohort study with SI-NET tumour 
samples also demonstrated mutations in the CDKN1B 
in 8.5% (17/200) (232). However, neither a correlation 
between CDKN1B mutation status and p27 protein 
expression level nor between clinical characteristics 
of CDKN1B mutated and CDKN1B wild-type tumour 
patients could be encountered (232). Because of these 
data, CDKN1B has been suggested a potential haplo-
insufficient tumour suppressor gene in SI-NETs (232). In 
55 MEN1 patients, the single nucleotide polymorphism 
V109G in the CDKN1B gene was detected in 44% (24/55) 
of the patients (233). The SNP V109G CDKN1B gene was 
significantly correlated with a faster development of 
aggressive MEN1-related tumours (233). The expression 
level of p27 turned out to be subtype (WHO class) 
specific and in combination with Cyclin-E expression, a 
correlation of low p27 expression and overexpression of 
cyclin E was found to play a role in the aggressiveness in 
GEP-NETs (205). In an analysis of 327 GEP-NET tumour 
samples, loss of p27 protein expression which occurred 
in 21% was a predictor of poor overall survival and poor 
prognosis (234).

Currently, there are no established drugable targets to 
reactivate or increase p27 expression in cancers, respective 
GEP-NETs (Table 4). The E3 ubiquitin ligase S-phase kinase-
associated protein 2 (Skp2) is an important mediator 
of ubiquitination of various proteins including p27, 
rendering them to subsequent proteasomal degradation. 
Small-molecule inhibitors of the E3 ubiquitin ligase Skp2 
(235) might be a promising future therapeutic approach 
in cancer (236, 237) and then might also be worth to be 
investigated in GEP-NETs.

Other important pathways
Hsp90 The heat shock protein 90 (Hsp90) is a highly 
conserved and essential component of the molecular 
chaperone family (238). The central function of Hsp90 
is the proper folding, maturation and the structural 
integrity regulation of an enormous subgroup of proteins 
that are involved in major cellular processes, such as 
cell cycle regulation, cellular proliferation and apoptosis 
(238). Heat shock proteins are overexpressed in various 
cancers, and their overexpression is a negative prognostic 
indicator of therapeutic resistance and poor survival 
(239). Hsp90 inhibitors cause misfolding and consequent 
ubiquitination and proteasomal degradation of client 
proteins and are currently in clinical development 
(238, 240).
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Gilbert and coworkers demonstrated by IHC analysis 
a high expression level of Hsp90 with intensity scores 2 
and 3 in almost 100% of pancreatic NETs (118) and with 
intensity score 3 in 74% and intensity scores 2 and 3 
in almost 100% of GI-NETs (189). The Hsp90 gene was 
amplified in 10% (5/48) patients in SI-NETs (11).

In vitro assays with various human NET cell lines 
showed anti-proliferative effects of several Hsp90 
inhibitors as AUY922 (241), HSP990 (241), IPI-504 
(242) and 17-(allylamino)-17-demethoxygeldanamycin 
(17-AAG) (118, 189). The Hsp90 inhibitors AUY922 and 
HSP990 inhibited cell proliferation of human BON1, 
H727 and GOT1 NET cells and the inhibitory effects 
were shown to be associated with decreased ErbB and 
IGF-1 receptor expression as well as decreased Erk and 
Akt phosphorylation levels (241). The Hsp90 inhibitor 
IPI-504 inhibited in NET cell proliferation of human 
BON1 and CM NET cells and inhibited client targets 
from the PI3K–Akt–mTOR pathway and decreased 
levels of IGF-1 receptor expression (242). Combination 
of the Hsp90 inhibitor IPI-504 with mTOR or AKT 
inhibitors caused synergistic anti-tumoural effects 
(242). The Hsp90 inhibitor 17-(allylamino)-17-
demethoxygeldanamycin (17-AAG) significantly 
blocked proliferation in bronchopulmonary NET cell 
lines NCI-H727, NCI-H720 and NCI-H835 and in 
pancreatic NET cell line QGP-1 and induced a loss of 
EGFR, IGF1R and VEGFR2 (118, 189).

Aurora kinase Aurora kinases are serine–threonine 
kinases playing an important role in the regulation of 
mitosis and include aurora kinase A (AURKA), auroras 
kinase B (AURKB) and aurora kinase C (AURKC) (243). 
Overexpression of either Aurora kinase can lead to 
tumourigenesis and is evidenced in many human 
cancers and propose new possible targeting strategies 
(243).

AURKA regulates several proteins important in 
carcinogenesis, as for example aurora kinase A inhibits 
p53 transactivation (244), activates MDM2 and enhances 
p53 proteasomal degradation (244), inhibits GSK3-β 
and enhances β-catenin activity, and activates SRC and 
promotes cancer cell invasion (243).

Aurora kinase inhibitors such as alisertib (MLN8237), 
danusertib (PHA-739358), MK-5108 (VX689) and ENMD-
2076 are in clinical development (243).

The AURKA gene has been demonstrated to be often 
amplified in SI-NETs in approximately 19% (9/48) (7). 
AURKA protein expression has been found in 95% (41/43) 
of the GEP-NET tumour samples (245).

The aurora kinase inhibitor ZM447439 inhibited 
cell proliferation of human NET cells BON1, QGP1 
and MIP-101 and showed synergistic anti-proliferative 
effects with streptozocin and cisplatin (246). The aurora 
kinase inhibitor danusertib (PHA-739358) inhibited cell 
proliferation of human pancreatic NET cells BON1 and 
QGP1 in vitro and in a murine orthotopic xenograft 
model (245).

HDAC HDAC inhibitors are epigenetic modulators 
(247) and several HDACs such as vorinostat (SAHA), 
belinostat (PXD101), panobinostat (LBH-589) and 
romidepsin (FK228 and FR901228) have been licensed 
(248), while others such as entinostat (SNDX-275) are 
under clinical development (249). HDAC inhibitors 
are of great interest for anti-cancer drug development 
(250).

Epigenetic changes in NETs have recently been 
extensively reviewed by Karpathos and coworkers 
(251) including aberrant methylated loci, chromatin 
remodelling and miRNA expression patterns. Aberrant 
methylated loci in NETs have been described for DKN2a/
P16INK4a, RASSF1, TIMP3, MGMT, hMLH1, P16, APC, 
CTNNB1, HIC1, E-cadherin, RARβ, MEN1, VHL, PTEN, 
P14, GATA5, ESR1, GST, RUNX3, P14, THBS1, RAR 
(RARA), P73 (TP73), WT1, CDH13 and CIMP status, 
respectively (251). Differential epigenetic changes have 
been shown to be mediated by DAXX or ATRX gene 
mutations (15) and MEN1 gene mutations (252, 253) 
in NETs.

Based on the role of epigenetic changes in GEP-NETs, 
treatment with HDAC inhibitors might be promising. 
Preclinical in vitro models demonstrated dose-dependent 
inhibition of cell proliferation and induction of apoptosis 
and cell cycle arrest in GI-NET cell lines CM and BON1 
treated with the HDAC inhibitors trichostatin A, sodium 
butyrate (NaB) and MS-275, respectively (254). VPA is also 
an HDAC inhibitor and has shown Notch-1 activation 
and anti-tumoural effects in preclinical NET models (104, 
172, 173) (for review, see the aforementioned chapter 
on Notch-1 signalling). In addition, VPA has also been 
demonstrated to increase somatostatin receptor subtype 2 
expression in NET cells (255).

In contrast to a mechanistic rationale and promising 
preclinical results with HDAC inhibitors in NETs, the 
clinical development in NETs has not been successful so 
far, as reviewed by Karpathakis and coworkers (251). A 
clinical phase 2 trial with depsipeptide in NET patients 
was terminated because of cardiac toxicity (256). Two 
clinical phase 2 trials with panobinostat (LBH589) in 
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low-grade NETs demonstrated only stable disease as the 
best response with a median PFS of 9.9 months (257). A 
clinical phase II study in patients with low-grade NETs 
of the HDAC inhibitor VPA demonstrated only stable as 
the best response (174). Our increasing knowledge and 
understanding of the epigenetic modifications in NETs 
(251) might help us to improve this therapeutic strategy 
in the future.

Src Src is a proto-oncogene belonging to the Src kinase 
family (258). Inhibitors of the SRC family of tyrosine 
kinases (SFK) such as dasatinib, bosutinib or sarcatinib 
(AZD0530) have been explored in other haematologic and 
solid tumours (258).

CSCs have been identified as a novel important 
putative target for medical therapy in the oncological 
field (259, 260), including CSCs from NETs (141, 261, 
262). Embryonic pathways such as Src, Hedgehog (136), 
Notch-1 (136), Wnt–beta-catenin (136) and transforming 
growth factor-β have been suggested to be important 
players in this field (141, 261, 262). Human NET CSCs have 
been identified with the Aldefluor (Stemcell Technologies, 
Vancouver, Canada) assay as aldehyde dehydrogenase-
positive (ALDH+) cells (262). Sorting the human midgut 
carcinoid cell line CNDT2.5, CNDT2.5 ALDH+ cells formed 
in vitro tumour spheres, whereas CNDT2.5 ALDH− cells 
did not (262). In a xenograft model, CNDT2.5 ALDH+ cells 
caused more aggressive tumour growth in comparison to 
CNDT2.5 ALDH− cells (262). Src expression was increased 
in ALDH+ cells and treatment of ALDH+ tumours with 
anti-Src short interfering RNA reduced tumour mass by 
91% (262).

In human NETs, Src has been found to be often 
amplified in approximately 23% (11/48 tumours) of all 
SI-NETs investigated (11).

In human neuroendocrine pancreatic QGP1, BON1 
and CM cells in vitro, expression levels of activated p-Src 
(Tyr 416) and activated downstream targets of mTOR, 
namely p4EBP1 and p-rpS6 correlated positively (263). 
Treatment of QGP1 and BON1 cells with the SFK inhibitor 
PP2 or RNAi depletion of endogenous Src deactivated 
the mTOR pathway downstream targets 4EBP1 and 
rpS6 indicating an interaction between Src and mTOR 
signalling in GEP-NETs (263).

These preclinical findings suggest an important role 
for Src and possibly other members of the Src family of 
tyrosine kinases (SFK) as possible target in the treatment 
of GEP-NETs alone or in combination with mTOR 
inhibitors as has been extensively reviewed by Capurso 
and coworkers (264).

FAK The non-receptor tyrosine kinase FAK is a scaffolding 
protein interacting with growth factors and integrins 
and regulating Src and PI3K–Akt signalling (265). FAK is 
overexpressed and hyperphosphorylated in pancreatic 
NETs (59). FAK has also been shown to be involved in 
cellular adhesion and migration in the BON1 carcinoid 
cell line in vitro (128). The FAK inhibitor PF-04554878 
inhibited pancreatic NET proliferation in an orthotopic 
xenograft mouse model and showed synergistic anti-
tumoural effects in combination with everolimus (59). 
Another FAK inhibitor OXA-11 inhibited pancreatic NET 
liver metastases in the Rip-Tag2 transgenic mice model 
alone and synergistically together with the anti-VEGFR-2 
antibody DC101 (266).

Conclusion

A number of promising novel molecular targets defined 
by preclinical and early clinical studies in NETs of the GEP 
system are discussed in this review in order to provide 
the translational as well as the clinical researcher with 
a comprehensive overview of the current status of the 
field. Combinational treatment approaches with ‘dual 
horizontal targeting’ of different signalling pathways 
or ‘dual vertical targeting’ of the same pathway at 
different points in the signalling cascade represent 
powerful tools to enhance anti-tumour efficacy and 
to overcome resistance mechanisms. However, dual-
targeted therapy in clinical trials has so far often been 
limited by increased toxicity and side effects. Promising 
novel molecular targeting approaches to become 
translated into clinical treatment of NETs of the GEP 
system in the future might include strategies to target 
the CDK4/6-Rb-E2F axis or GSK3 signalling, as well as 
targeted upregulation of the tumour suppressor p53 or 
epigenetic modulation of various target genes. Future 
translational research is required to further improve 
our understanding of tumour biology and to translate 
preclinical data into clinical treatments strategies in 
NETs of the GEP system.
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