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Abstract: Building on the seminal work by Geoffrey Harris in the 1970s, the neuroendocrinology
field, having undergone spectacular growth, has endeavored to understand the mechanisms of
hormonal connectivity between the brain and the rest of the body. Given the fundamental role of
the brain in the orchestration of endocrine processes through interactions among neurohormones,
it is thus not surprising that the structural and/or functional alterations following traumatic brain
injury (TBI) can lead to endocrine changes affecting the whole organism. Taking into account that
systemic hormones also act on the brain, modifying its structure and biochemistry, and can acutely
and chronically affect several neurophysiological endpoints, the question is to what extent preexisting
endocrine dysfunction may set the stage for an adverse outcome after TBI. In this review, we provide
an overview of some aspects of three common metabolic endocrinopathies, e.g., diabetes mellitus,
obesity, and thyroid dysfunction, and how these could be triggered by TBI. In addition, we discuss
how the complex endocrine networks are woven into the responses to sudden changes after TBI,
as well as some of the potential mechanisms that, separately or synergistically, can influence outcomes
after TBI.
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1. Introduction

The concept of active participation of the central nervous system (CNS) in hormonal
communication throughout the body is closely connected to the historic development of endocrinology.
The assumption that the brain works in tandem with the endocrine system to maintain the balance
of various systems in mammals dates back to the second to eighteenth centuries AD [1,2]. However,
active participation of specialized areas of the brain in the integration of endocrine, autonomic,
and behavioral responses was demonstrated by Geoffrey Harris in 1970. Harris was the first to
discover the communication between the hypothalamus and the pituitary gland [3,4], establishing the
idea of a hormonal axis between the CNS and the rest of the body. This finding opened many doors to
exploring the influence of neural activity on endocrine secretion, as well as discovering how alterations
in neuroendocrine functions can actually have an impact on fundamental physiological processes
within the body, including homeostatic balance, growth, reproduction, energetics, and metabolism.
Besides the hypothalamus, the pituitary and pineal glands provide key communication and control
links between the two main systems, the nervous and endocrine systems, and have been classed as the
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primary elements of neuroendocrine integration. The human pituitary gland is a pea-sized appendix
of the diencephalon lying at the base of the brain. It consists of two parts, the adenohypophysis and
the neurohypophysis. The latter directly secretes potent neuropeptides into the circulatory system
after they are transported axonally from hypothalamus nuclei, where the neurosecretory cells reside.
The adenohypophysis receives releasing or inhibiting factors from other hypothalamic nuclei via a
vascular portal system, which themselves regulate the secretion of a number of hormones into the
blood, covering a broad spectrum of defined functions [5]. It is thus obvious that damage to this small
hormone gland can cause long-lasting and even permanent consequences for the whole body.

Taking into account that signs of neuroendocrine dysfunction, such as low blood pressure, reduced
heart rate, anemia, constipation, cold intolerance, loss of muscle mass, depression, and poor memory,
are not uncommon in the context of traumatic lesions to the brain [6], and due to the fact that the
rates of pituitary dysfunction among survivors of traumatic brain injury (TBI) are approximately
37–59% [7,8], the acute or chronic (neuro) endocrine dysfunctions induced by TBI present a range
of consequences that should not be neglected. As the mean annual incidence rate of hospitalized
survivors after TBI in industrialized European countries is about 262 per 100,000 persons per year [9],
the pressing need to advance research in (neuro) endocrine aspects is thus more than obvious. This is
especially important when considering the prediction of the World Health Organization (WHO)
that TBI will become the third leading cause of death and disability in the world by 2020 [10].
Although enormous progress was made during the past decades, TBI still represents a significant
medical problem. It remains a challenging era for the clinical development of improved combinatorial
therapeutic strategies for TBI patients, since a number of pharmacotherapeutic approaches designed
to modulate single groups of mechanisms have failed in clinical trials, despite showing preclinical
promise [11]. Rationales for combining treatment strategies result from the notorious complexity and
heterogeneity of disease processes of tissue injury itself. Systemic and extraneuronal effects of trauma
provide an additional rationale, given that these are often the actual causes of death in brain-injured
patients [12]. In general, the pathophysiological mechanisms that occur in the post-traumatic brain can
be subdivided into primary and secondary damage cascades. Each cascade involves a different set of
processes, which often overlap. The primary injury occurs during the initial phase and is refractory
to most treatment, whereas the multivariable secondary cascade, coming along with TBI-induced
neuronal apoptosis, necrosis, neuroinflammation, and massive gliosis [13], is more treatable and,
at least in part, preventable [14]. That is why recent TBI research is focusing on improving therapeutic
guidelines in order to reduce inflammation and neuronal loss, as well as enhancing neuronal survival
and promoting neuroprotective and neurogenic capacities [15,16].

Given that the prognosis after TBI is strongly dependent on both the anatomical location and
the severity of damage, assessing these two parameters is fundamental to clinical management and
the design of treatment trials, saving patients from unnecessary, often harsh suffering. To date,
the “key points” used to classify the severity of TBI include assessment of consciousness level by
the Glasgow Coma Scale (GCS) [17], assessment of structural damage revealed on neuroimaging
scans (CT classification) [18], and different clinical biomarkers, mainly for cerebrospinal fluid (CSF)
or blood-based assays [19]. All of these biomarkers aim to evaluate TBI and accelerate the diagnostic
procedure, as they allow proof and follow-up of the degree of tissue damage based on the level of
axonal injury (e.g., Tau or NFL, the light subunit of neurofilament protein) [20,21], neuronal loss (e.g.,
neuron specific enolase (NSE) or γ-enolase) [22], damage of astroglial cells (S100 calcium-binding
protein B (S100β) or glial fibrillary acidic protein (GFAP), both astrocyte-specific proteins) [21,23],
neuronal damage (e.g., UCH-L1, ubiquitin C-terminal hydrolase L1 involved in the removal of proteins
in pathological conditions in neurons) [24], and synaptic dysfunction (SBDPs, the synaptotagmin
breakdown products released during synaptic dysfunction) [25,26]. The expression kinetics and
patterns of these biomarkers appear to be a good index of the extent of injury; however, none of them
reliably mirror the consequences to the organism as a whole [25,27]. Given the magnitude of the
post-traumatic structural, chemical, and metabolic changes that may be intimately related to a variety
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of adverse endocrine conditions (preexisting or induced by acute brain injury), which may further
contribute to the development of systemic insufficiency, there is a great need for reliable diagnostic
and prognostic evaluation of hormonal parameters after brain trauma, especially in patients with
moderate to severe TBI. This is not only reasonable, but essential, given the role of endocrine processes
in systemic manifestations of brain injury [6,28] and the fact that the treatment of severe TBI cases is
mainly reduced to focal neurological problems, focusing on avoiding secondary insults and improving
cerebral blood flow and metabolism [16]. For all these reasons, this review approaches a number of
‘endocrine’ aspects of brain injury, as they appear to be involved in many, if not most, of the substantial
problems leading to elevated risk for poor outcome in TBI.

2. All Ranges of TBI Can Cause Significant Hormonal Dysfunction

During the last 15 years, most of the retrospective and prospective studies on TBI revealed an
increased prevalence of post-traumatic neuroendocrine dysfunctions that can produce lifelong deficits
to varying degrees. Pituitary dysfunction following traumatic brain injury has recently received
considerable attention, partly because approximately 50% of TBI patients may develop pituitary
deficiencies [29]. However, the use of systemic pituitary hormonal monitoring has been taken up
slowly [30,31], and it is still not part of standard screening or outcome prediction protocols after
TBI [32].

Hypopituitarism (HP) is defined as a neuroendocrine failure that may involve the loss of one,
several, or all of the pituitary hormones due to hypothalamic-pituitary lesions, regardless of its
origin. Based on the degree and severity of hormone deficiency, HP can be subdivided into partial
and complete (also known as panhypopituitarism) forms [33]. In general, HP is a relatively rare
condition, affecting 46 per 100,000 patients [34], and is mostly caused by adenomas or other tumorous
lesions associated with higher mortality [35]. It should also be taken into account that cranial or
total-body irradiation contributes to a higher risk of developing progressive and irreversible HP [36].
Of particular interest is a causative relationship between TBI and HP, which was suggested in 1918
by Paul Cyran [37]. Although until recently there has been relatively little data on the prevalence
of HP, according to the current study more than half of all investigated TBI patients developed
hormonal abnormalities starting three months after TBI [29], and up to 50% of them were indeed
diagnosed with HP. Also, the fact that almost one-third of patients, who died very shortly after the
brain trauma, showed pituitary gland infarction [38] clearly demonstrates that pituitary insufficiency
after TBI is much more frequent than previously considered [39]. Even when the risk of developing
HP increases proportionally to the severity of TBI [40,41], the pooled prevalence of post-traumatic HP
is still estimated to be ~17% in mild, ~11% in moderate, and ~35% in severe TBI cases [39]. Taking into
account that approximately 80% of all head injury cases are categorized as mild TBI [42,43], this form
of TBI carries a substantial risk of developing post-traumatic HP [7,44,45].

In clinical practice, mild TBI in patients with a condition after head trauma has been defined
by a GCS score of 13–15 [17], and more recently by the appearance one of the following symptoms:
loss of consciousness for less than 30 min, loss of memory of events immediately before or after
the trauma, or impairment of the mental state for up to 24 h [46]. In these cases, patients are often
discharged very early or do not seek medical help at all, because the symptoms are very unspecific
or transient. Although most clinical studies focus only on the impact of moderate to severe TBI on
long-term pituitary dysfunction, a few groups are investigating this underestimated clinical picture.
Here, studies have shown much higher HP prevalence after TBI than one would assume. Indeed,
data from Tanriverdi and colleagues indicated that the percentage of patients developing hormonal
dysfunction after repetitive sports-related to mild TBI ranged from 22.1% [47] to 51.4% [8] in total,
and even a reduction in the volume of the pituitary gland could be observed [48]. Furthermore, a study
from Kelestimur et al. reported growth hormone (GH) deficiency in 45% of boxing athletes [49],
and Ives et al. found several hormonal axes affected in a young patient after multiple soccer-related
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concussions [50]. These dimensions strongly suggest the need to standardize screening protocols,
on which more work has been done lately [51].

The manifestations of post-traumatic HP vary according to not only the severity of the trauma,
but also the time elapsed since the trauma [40]. Because partial or complete hypopituitarism
may occur during acute phases, but also months to years after TBI, an endocrine assessment for
pituitary function in the acute phase as well as prospective evaluations 12 months after the traumatic
event are recommended for all TBI patients regardless of severity [30,31]. Since the screening of
pituitary functions poses diagnostic challenges, in many cases post-traumatic HP still remains an often
overlooked problem [40,41]. Therefore, understanding the pathophysiological processes underlying
the development of dynamic characteristics of HP is critically important. Aside from the injury-induced
focal or systemic inflammatory responses inducing degenerative processes, other factors may
contribute to a gradual evolution of dysfunction [41]. Several previous studies evaluated an
apparently greater resistance of the adrenal, thyroid, and posterior neurohypophyseal axes, while
the gonadotrophic and somatotrophic axes are more frequently affected, with the latter seeming to
have a more chronic character [29,52–54]. Still, identifying the key molecular and pathophysiological
mechanisms regulating the development of HP is necessary to establish evidence-based diagnostic
strategies to prevent a relatively straightforward adoption of hormone deficiency after brain injury.
This goes especially for patients with the most predictive pathogenic factors for the development of HP,
such as basilar skull fracture or diffuse axonal injury, increased intracranial pressure, and diffuse brain
swelling, as well as an (evacuated) intracerebral hematoma [7,53,55–57]. It is worth noting here that
many of these symptoms might primarily result from the brain injury itself, and grave structural lesions
causing impaired vigilance or disorientation could mask early HP signs. In addition, it is important to
remember that manifestations of hypopituitarism, in particular with isolated hormone deficiencies
as in TBI, could be mild or subtle. Thus, it is likely that most HP patients remain undiagnosed and
therefore untreated [39].

Clinical suspicion suggesting screening of TBI patients and knowledge of risk factors, therefore,
plays a critical role in the diagnosis of post-traumatic hypopituitarism. The effort to understand
TBI-related hormonal dysfunctions and the available strategies to treat the consequences should also
be based on precise research of long-term effects. It is noted in this regard that a major percentage
of TBI patients do show long-term memory and concentration deficits, depression, fatigue, and loss
of emotional well-being comparable to symptoms in endocrine disorders such as GH deficiency,
hypogonadism, adrenal insufficiency, and hypothyroidism [58–60]. A correlation is very probable,
as HP also leads to lethargy, severe fatigue, and other neuropsychiatric manifestations. GH deficiency
as well as sex-steroid deficiency can weaken the patient, whereas glucocorticoid deficiency can be
life-threatening [38].

3. Systemic Endocrine Disorders Can Impact the Outcome of TBI

Over the last decades, a growing number of studies have shown substantial evidence for endocrine
dysregulation due to injury-induced hypothalamic-pituitary disturbances. However, there are still
many important aspects that are not fully understood, when taking into account that multiple risk
factors, including preexisting common metabolic endocrinopathies, are involved in the post-traumatic
outcome (Figure 1).

3.1. Glucose Metabolism

At the pathophysiological level, TBI induces massive changes in glucose metabolism, associated
with a decrease of oxidative metabolism due to severely impaired mitochondrial function [61,62].
At the same time, anaerobic glycolysis, the main energy source within the injured brain parenchyma,
is not depressed for quite a while after the laceration, thus resulting in ‘relative hyperglycolysis’,
a state with increased levels of pyruvate and lactate [63]. As a consequence, energy-generation
efficiency decreases significantly, since one molecule of glucose is converted to only a fraction of
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energy-storing ATP molecules when compared to oxidative processes [64]. Thus, it is obvious that
even small fluctuations of intracellular glucose in the cells can quickly lead to an imbalance regarding
energy demand.J. Clin. Med. 2018, 7, x FOR PEER REVIEW  5 of 20 
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The latter then activates a variety of other kinases, inducing the translocation of glucose transporters, 
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widely accepted view of the brain as an insulin-independent organ been challenged [65,66]. Studies 
have shown not only functional influence [67–71], but a significant induction of glucose uptake, 
especially in the telencephalon [65]. Insulin indeed can modify brain cells, either directly via specific 
receptors [72], by passing through astrocytes lining the Virchow–Robin space or tanycytes in the 
walls of the ventricles into the cerebrospinal fluid [66,73,74], or via the median eminence [74]. In the 
CNS, glucose transporters can be found widely in glial cells [66], which are necessary for a 
functioning nervous system, especially when it comes to metabolism, neural repair, immune defense, 
functionality of the blood-brain barrier (BBB), and regulation of neuronal activity. In particular, 
parenchymal astrocytes surrounding capillaries respond to changes in blood glucose levels by up- or 
downregulation of GLUT1 transporters [75,76]. To what extent the insulin-dependent uptake is 
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3.1.2. Hyperglycemia as a Predictor of Mortality Following TBI 

The fulminating inflammatory state following TBI has systemic but also specific effects on the 
CNS. It is especially intriguing that, among other aspects of the evolution of traumatic injury, 
inflammatory cytokines may affect insulin-signaling pathways, potentially disrupting glucose 
availability after TBI [77]. Tumor necrosis factor-α (TNF-α), for example, is potent for almost half of 
insulin-induced phosphorylation, impairing the display of transporters on the cell surface so that 
cells can hardly meet their glucose demands [78,79]. Additionally, the levels of GH (a hormone that 
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Figure 1. The relations schematic shows the concept of a cause-and-effect relationship between the
outcome of traumatic brain injury (TBI) and a preexisting (neuro) endocrine state that appears to be
involved in many, if not most, of the substantial problems leading to elevated risk for poor outcome in
traumatic brain injury.

3.1.1. How Insulin Affects the Brain

Insulin initiates cellular glucose uptake by binding to membrane receptors, resulting in their
phosphorylation and subsequent recruitment of substrates binding phosphoinositid-3-kinase (PIP3).
The latter then activates a variety of other kinases, inducing the translocation of glucose transporters,
such as GLUT4, to the cellular membrane, among other actions. Only in the past few years has
the widely accepted view of the brain as an insulin-independent organ been challenged [65,66].
Studies have shown not only functional influence [67–71], but a significant induction of glucose
uptake, especially in the telencephalon [65]. Insulin indeed can modify brain cells, either directly via
specific receptors [72], by passing through astrocytes lining the Virchow–Robin space or tanycytes
in the walls of the ventricles into the cerebrospinal fluid [66,73,74], or via the median eminence [74].
In the CNS, glucose transporters can be found widely in glial cells [66], which are necessary for a
functioning nervous system, especially when it comes to metabolism, neural repair, immune defense,
functionality of the blood-brain barrier (BBB), and regulation of neuronal activity. In particular,
parenchymal astrocytes surrounding capillaries respond to changes in blood glucose levels by up-
or downregulation of GLUT1 transporters [75,76]. To what extent the insulin-dependent uptake is
accomplished by different cell types throughout the brain, however, remains unclear.

3.1.2. Hyperglycemia as a Predictor of Mortality Following TBI

The fulminating inflammatory state following TBI has systemic but also specific effects on the CNS.
It is especially intriguing that, among other aspects of the evolution of traumatic injury, inflammatory
cytokines may affect insulin-signaling pathways, potentially disrupting glucose availability after



J. Clin. Med. 2018, 7, 59 6 of 21

TBI [77]. Tumor necrosis factor-α (TNF-α), for example, is potent for almost half of insulin-induced
phosphorylation, impairing the display of transporters on the cell surface so that cells can hardly meet
their glucose demands [78,79]. Additionally, the levels of GH (a hormone that acts very similarly
to insulin) elevate during the acute phase after severe injury, and concomitantly induce a state of
peripheral resistance. This constellation is potent in enhancing an insulin-antagonizing effect, leading to
even more elevated glucose levels [80]. Hyperglycemia, defined as excessively increased levels of
blood glucose, is not only a marker of tissue damage, but also a reliable and independent predictor
of mortality in TBI patients [81–84]. This at first seems to be a paradox, since the circulatory system
embodies the vehicle to transport nutrients to the brain, but excessively high glucose levels only occur
when cells are unable to ensure proper uptake. This dysfunction is especially associated with pathologic
insulin deficiency or resistance, as is the case in patients with diabetes mellitus (DM) [85]. Also, in the
acute phase of any critical illness, so-called stress diabetes may develop, enhancing the extent of
hyperglycemia: after a dramatic acceleration of hepatic glucose production to meet the organism’s
energy demands, hyperinsulinemia develops, but is unable to maintain stable glucose levels, resulting
in insulin resistance due to reasons mentioned below. In the immobilized patient, activity-stimulated
glucose uptake in skeletal muscles nearly disappears, a feature that strongly contributes to the state of
critical illness [80].

More obviously, hyperglycemia is harmful, as it can compromise microcirculatory blood flow
and lead to abnormally high BBB permeability. It promotes inflammation and immunosuppression,
and triggers volumetric balancing issues such as hypovolemia [86]. However, scientists and doctors
seem divided over glucose control in patients with severe trauma. There are two treatment paradigms
for critically ill patients and those with severe TBI: conventional glycemic therapy (CGT) (maintenance
of blood glucose < 180 mg/dL using subcutaneous insulin, and if the level exceeds 220 mg/dL,
intravenous insulin is added) and intensive insulin therapy (IIT) (strict maintenance of blood glucose
between 80 and 110 mg/dL) [87]. IIT has been shown to reduce mortality in critically ill patients [85]
and also the risk of developing a severe complication called critical illness polyneuropathy (CIPNP),
depress intracranial pressure, suppress seizures, and can, all in all, improve long-term prognosis
after hospital discharge [88]. Also, a reduction of mortality by almost one-third [89], fewer infectious
complications, and shorter intensive care unit (ICU) stays have been observed [90]. However, many
research groups have found no difference in outcome between the two paradigms, but instead
dangerous hypoglycemic episodes were noted in IIT treated patients, especially in injured regions [91],
which can be fatal as well [92–96]. A large international study by the Normoglycemia in Intensive
Care Evaluation-Survival Using Glucose Algorithm Regulation (NICE-SUGAR) committee showed
higher mortality, mostly due to cardiovascular complications, when compared to CGT controls [87].
Although these studies cannot be compared directly, since there are large differences in terms of cohort
size, treatment paradigms, treatment intensity (i.e., ICU vs. regular unit), and preexisting patient
conditions, concurrent glucose infusions might be needed to protect patients from severe hypoglycemic
episodes [77], along with richer enteral nutrition [93]. Individualized blood glucose control guided by
microdialysis monitoring of brain glucose levels could be an alternative [32], but this requires further
study and establishment of protocols.

3.1.3. Diabetes Mellitus as a Risk Factor for Higher TBI Mortality

Nowadays, almost every tenth person in the adult population is diagnosed with diabetes mellitus
(DM). In 2012, DM caused approximately 3.7 million deaths, almost half of them occurring in patients
younger than 70 years of age. The wide range of complications, including heart attack, stroke,
kidney failure, leg amputation, and vision damage, generate huge costs for most countries’ healthcare
systems [97]. Referring to the paragraph above, it is obvious that insulin-related pathologies have an
impact on the brain, regardless of whether the clinical picture is characterized by insufficient insulin
production due to autoimmune processes (type I DM), a state of absolute deficiency, or by resistance to
actions of the secreted hormone (type II DM), a state of relative deficiency.
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Several experimental approaches were established to explore this hypothesis using animal
models. However, the relationship between diabetes and neuropathy is still far from observable,
partly due to the lack of suitable animal models that mimic human etiology and pathogenesis.
One possible mechanism by which nutritional characteristics or habits interact with damage and
the brain was suggested by Hoane et al. This study revealed that a high-fat sucrose diet in animal
models had a significantly negative impact on the outcome of brain injuries in terms of lesion size
and neuronal and behavioral plasticity, probably due to a reduction of brain-derived neurotrophic
factor (BDNF) [98]. BDNF is the most ubiquitous member of the family of neurotrophins in the CNS,
which trigger phosphorylation cascades that promote protein synthesis, axonal growth, dendritic
maturation, synaptic plasticity, and neuroprotection [99]. It is thus not surprising that the detected
loss of hippocampal neurons due to increased apoptosis could gravely impair cognitive ability
and performance, and even cause a loss of brain weight [100]. On the other hand, such extent
of neurodegeneration in diabetic mice could also be the consequence of imbalanced glial activation
throughout different brain regions, creating massive neuroinflammation and, in the worst cases,
a neuron-threatening environment [101,102]. Moreover, DM can potently cause dysregulated glucose
utilization in astrocytes [103], ultimately leading to an energy-deprived state in which the enrichment
of reactive oxygen species (ROS) results in damage of neuronal DNA, leading to neuronal death [104].
The aberrant accumulation of ROS is also related to the infiltration of neutrophils, which induces an
inflammatory response that, in turn, increases the generation of ROS, initiating the oxidative stress
cascade and, consequently, large neuronal cell loss [105].

Furthermore, consonant with the clinical picture, enrichment of peripheral circulating ketone
bodies, which can be taken up by astrocytes as an alternative energy fuel [106], may also trigger specific
aspects of reactive astrogliosis and the formation of gliotic foci within the brain parenchyma [107].
In support of this, reactive states of glial cells in diabetic animals were paralleled with significant
increases in the number of astrocytes and microglia throughout different hippocampal regions [100].
Since astrocytes serve as biosensors for almost any type of neuropathology, and reactive astrogliosis is
the prototypical response of CNS to diverse types of injury mediated by various cell types and involves
the activation of microglia [108,109], these findings could be linked to considerable neuronal damage
within the different brain regions that go hand-in-hand with behavioral impairments in DM-affected
animals. Although the data obtained from animal studies cannot be directly transferred to humans,
they do contribute to a better understanding of pathophysiological mechanisms and provide prime
candidates to foster the development of new pharmacological drugs.

While we focused on experimental DM paradigms above, it is important to mention that the
gathered data strongly suggest a negative effect of a diabetic state not only on the capacity of
neuronal repair after TBI, but also on the preexisting resilience against neuronal trauma of affected
patients. In line with this, TBI patients with DM had significantly higher mortality and longer
hospital stays than nondiabetic TBI patients. Furthermore, there is strong evidence suggesting a
correlation between low insulin levels and lethality. This also appears to be independent of related
comorbidities, since individuals with type I DM showed higher mortality than those with type II
DM [77]. Considering the growing prevalence of DM, the emerging clinical relevance is not hard to see.

It is thus obvious that a first clinical approach could be even closer monitoring of cerebral gliosis,
either by using biological markers or via imaging, combined with an intensive anti-inflammatory
treatment plan that is escalated as needed. Of particular importance is not only the control of blood
glucose levels, but also the maintenance of physiological insulin levels in TBI patients presenting with
deficiencies of the latter. Still, further effort is required to better reconstruct pathophysiological changes
that corroborate the level of impact on TBI, so that therapeutic guidelines can be precisely improved.

3.2. Obesity

The WHO states that more than 650 million people in the world were obese in 2016, a number that
continues to increase year by year, conspicuously comprising children and adolescents [110]. A major
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study analyzing health trends in the US population between 1999 and 2008 estimated that more than
one-third were defined as obese, i.e., having a body mass index (BMI) greater than 30 kg/m2 [111].
These numbers, and especially the strong involvement of younger generations, dramatically show the
emerging relevance of treating affected patients, since obesity is associated with a wide range of health
concerns [112].

3.2.1. Obesity Causes Chronic Low-Grade Systemic Immunological Dysfunction

Immunologically, the long-standing idea of chronic low-grade inflammation in obese patients
has gained wide acceptance [79,112–115]. Elevated concentrations of the pro-inflammatory agents
TNF-α, interleukin (IL)-6, and IL-8 can be found, presumably arising from adipose tissue [112,116,117].
In addition, serum levels of anti-inflammatory signaling molecules, such as IL-10 and adiponectin,
seem to negatively correlate with the level of adiposity [118]. Similar effects can be found at the
cellular level, with more macrophages accumulating in atherosclerotic plaques when compared to
individuals with normal BMI [112]. Such features probably lead to a higher risk of developing
cardiovascular diseases [119] and a greater prevalence of pulmonary complications, associated with a
more active state of pulmonary alveolar macrophages [120]. At the same time, studies have shown
worse long-term adaptation to pathogens, along with a reduction in the number of CD8+ T cells,
which are on top mostly dysfunctional [112]. This could explain the imbalance of cytokine levels in
general. Also fibrinogen, an important part of the organism’s acute response, may play a prominent
role in adiposity-associated hemostatic imbalance [113], leading to hemodynamic complications and
disturbances such as thrombosis or embolism [121,122].

3.2.2. Obesity Can Cause Hypothalamic and Diffuse Brain Inflammation

In the murine CNS, the hypothalamus accumulates triacylglycerols, diacylglycerols,
and ceramides after high-fat diet (HFD) feeding [123], causing localized inflammatory processes that
have been observed in obese individuals [124–127]. Short-term HFD is capable of quickly inducing
hypothalamic insulin resistance [125], whereas long-term HFD was shown to activate inflammatory
signaling pathways, including transcriptional mediators such as c-Jun N-terminal Kinase (JNK) and
nuclear factor-κβ (NF-κβ). When activated, both of these factors are generally assumed to promote the
production of pro-inflammatory cytokines [128–130], impairing the insulin signaling pathway [77,79].
Together with widely upregulated levels of IL-β and CCR2 within the brain parenchyma [131], all these
factors evoke a damaging environment that may contribute to the induction of gliosis, which many
studies have now focused on.

A study by Gao and colleagues has investigated the effects on the hypothalamic microglia
of HFD-fed mice [132]. Compared to control animals, a significantly increased number of Iba1+
microglial cells were detected, which tend to switch toward an activated phenotype and co-express
a marker associated with phagocytosis (e.g., CD68). Interestingly, treatment of primary cultured
hypothalamic microglia obtained from control animals with serum extracted from HFD-fed mice
induced gene expression of TNF-α and IL-1β. These processes tend to correlate positively with cytokine
concentrations, as genetically modified animals with higher release rates show even stronger reactions
in situ. Similar reactions were also observed by Gupta et al. in cultured astrocytes [133]: the release
of cytokines could also be induced upon exposure to saturated long-chain fatty acids, acting as an
alternative fuel, but disturbed the metabolic lipid balance [106]. On top of that, exaggerating IL-6 levels
can disturb normal metabolism in parenchymal astrocytes, gravely affecting their functioning [134].

A further and particularly alarming finding reported in a genetic murine obesity model is leakage
of the BBB, likely triggered by gliosis [135]. These studies raise the tantalizing possibility that a subset
of leukocytes derived from a myeloid progeny [136] are capable of entering the brain parenchyma [137],
potentially reinforcing the already excessive inflammatory cascade. Given that oxidative environments,
such as an inflammatory milieu, can precondition the brain for neurodegeneration [102], it is not
surprising that hypothalamic neurons are strongly influenced by such conditions. In line with
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this, an ensheathment of synapses and reorganization of synaptic input and a modification of
neurotransmitters are related to diet-induced hypothalamic reactive gliosis and obesity [138,139].
Especially striking are the loss of resident neurons and impairment of local neuronal plasticity
due to apoptosis of neural stem cells within the adult neurogenic niches [140]. Similar trends
have been detected in the course of early hippocampal neurogenesis, possibly causing cognitive
and learning impairments [141], which is particularly intriguing, as the latter is a region very
distant from the hypothalamus. Given the above considerations, it clear that obesity, classically
associated with the disruption of pathways controlling lipid and glucose metabolism, also embodies
an inflammatory condition that results from a complex sequence of events and is, in large part,
responsible for the development of secondary brain damage. One group has investigated the impact
of HFD-induced obesity on the vulnerability of the post-traumatic murine brain in regard to secondary
brain damage [142]. Serum cortisol levels in obese male mice were almost halved 30 days after a mild
concussive event; however, in control animals, secretion rates increased by 26%. This is compatible
with a nonphysiological stress reaction of the organism in obese mice, maybe due to a damaged
adrenal axis. Furthermore, obesity-induced massive microgliosis could, again, be found not only in
the hypothalamus, but also throughout distant areas of the brain, i.e., the cerebral cortex and the
corpus callosum. Such results indicate that the manifestation of diffuse neuroinflammation is a likely
cause of behavioral impairment. These data strongly suggest the potential gravity of obesity-induced
CNS vulnerability, which can have devastating, long-lasting, and even permanent consequences in
obese TBI patients. This is in accordance with the observations in two recently published studies
demonstrating that mortality and post-traumatic complications were common in patients predisposed
to obesity vs. non-obese trauma patients, despite having longer hospital and ICU stays [143,144].

3.2.3. Consequences of Obesity on TBI Outcomes

Although the detrimental effects of obesity on overall health are well understood [145], exactly
how obesity affects TBI outcomes is not. Despite an increased relative risk of fatal outcomes in obese
patients after frontal car crashes [146], there is also evidence showing that the impact of obesity on the
outcome of TBI is not nearly as grave as one would assume, even though it does exist [147]. A study
by Arbabi et al. examined outcomes for adult and pediatric blunt trauma patients [148]. Here, they
found obesity to be an independent predictor of increased severity of an extremity injury. In addition,
obesity was found to be an independent predictor of fatal outcomes after motor vehicle crashes.
Recent population-based data have shown that obese patients present higher rates of complications
than non-obese individuals. Specifically, obese adult trauma patients require more laparotomies and
have a significantly higher incidence of postoperative complications, such as respiratory failure, deep
vein thrombosis, or multisystem organ failure [149,150].

However, it is important to note that obese patients did, in general, present with older age, lower
admission blood pressure, more associated chest injuries, and more severe extremity injuries, so that
the differences concerning morbidity and mortality could not solely be linked to obesity itself [147].
Schneider et al. found a negative correlation between BMI and peak GH serum levels in TBI patients.
The latter could possibly be explained by an increased vulnerability of somatotrophic cells, putting
affected patients at higher risk of developing this disorder in the course of a TBI [29]. This is possibly
due to preexisting hypothalamic gliosis processes, given the data in the paragraph above, which are
indeed detectable via MRI [125]. Particularly in patients suffering from abdominal obesity with visceral
adiposity, a hyperactive and therefore very sensitive hypothalamic-pituitary axis has been documented,
which might worsen the outcome after common secondary complications, such as insults, swelling,
or hypotension [112,151]. However, it is not clear whether the impairment of GH secretion TBI in
adipose patients is due to the injury or simply the result of being overweight. As demonstrated by
data from Klose et al. individuals diagnosed with post-traumatic HP presented with adverse lipid
profiles and unfavorable body composition (measured by BMI, waist circumference, and body fat
mass) 12 months later, but with no significant correlation to insulin-like growth factor 1 (IGF-1) blood
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levels [56]. Since the latter acts as the main signaling factor in the GH cascade, one could draw the
conclusion that additional mechanisms exceeding the GH axis are highly probable.

Thus, as the current evidence is still very fragmentary, simply substituting GH prophylactically
to reduce possible complications could become an ineffective measure with no clinical improvement.
There is still a need to complete the profiles of individual pathogenic components in obese TBI patients
to ensure a solid foundation for personalized treatment plans. For now, the most sensible step is for
clinicians to abide by monitoring and controlling the organism’s excessive inflammatory response.

3.2.4. The Metabolic Syndrome

From an endocrinological point of view, obesity is strongly associated with elevated baseline
insulin levels, peripheral insulin resistance, and hyperglycemia [112], or, in the worst case, with type II
DM. Additionally, blood lipid levels might reach pathologic levels, and it is highly probably that
patients will develop hypertension [152]. This clinical picture is called the metabolic syndrome [152]
and is associated with many chronic complications not restricted to the cardiovascular system, but
also involving other organs, including the brain [134,153]. Given the above considerations, the risks of
both metabolic circuits add to each other in this clinical picture. A state of enhanced chronic systemic
inflammation compounds itself, generating a vicious cycle that at a certain point is very hard to
break. To our knowledge, there are no published data regarding the interactions between TBI and the
metabolic syndrome, or the impact of the latter on the post-traumatic outcome. Only one group has
shown a prevalence of 50% and a negative correlation between GH responsiveness and BMI in retired
professional American football players who experienced multiple head concussions [154]. However,
both aspects could not be necessarily linked to pituitary hormonal dysfunction, again stressing the
complexity of the interactions between an injured brain and a body suffering this syndrome. The latter
and the separation of DM and obesity in highly specialized research groups have surely contributed
to the still fragmentary understanding of underlying processes. However, the significantly increased
mortality in both patient groups that is combined in patients suffering from metabolic syndrome
strongly necessitates joining forces on further research.

3.3. Thyroid Dysfunction

In TBI patients, S100β is a very common clinical marker to estimate the presence and degree of
damage, indicating both glial cell loss and abnormally increased permeability of the BBB [155–157].
Raised serum levels in TBI patients come with more severe radiological findings, higher intracranial
pressure, worse GCS scores, and even higher mortality [157–162]. Interestingly, the expression of
S100β correlates negatively with free thyroxine (T4) levels, the main thyroid hormone [159]. Thus,
the relationship between thyroid dysfunction and the potential for structural and functional recovery
must be taken into account in the course of TBI. A meta-analysis has revealed a prevalence rate
of thyroid dysfunction of about 7% among the adult population in Europe [163]. Since the major
percentage covers the number of undiagnosed patients, these data suggest that thyroid dysfunction is
a more common disease than one would expect.

3.3.1. Neuroprotective Capacities of Thyroid Hormone in Post-Traumatic CNS

Thyroid hormones are essential for the development, maturation, and functionality of the
brain [164]. Recently, the potential role of these hormones in the etiology and manifestation of
symptoms following TBI is gaining increasing attention in both clinical and basic research. This is,
at least in part, due to the effects of thyroid hormone treatment on neuroprotective capacities observed
in experimental animal TBI models. For example, treatment with levothyroxine, a manufactured
synthetic form of T4, not only restores hormone levels in serum obtained from rats 24 h after TBI,
but does not impact the concentration of the hypothalamic releasing hormone thyroid-stimulating
hormone (TSH) or alter expression rates of other important enzymes, which would finally lead to
a lower availability of triiodothyronine (T3), the biologically activated form of T4 [165]. Of note,



J. Clin. Med. 2018, 7, 59 11 of 21

maintenance of T3/T4 serum levels goes hand-in-hand with reduced brain edema and parallels
increased transcriptional activation of anti-apoptotic genes, and upregulation of neurotrophic and
pleotropic factors and pro-neurogenic factors such as doublecortin (Dcx) and SRY-Box2 (Sox2) [165].
These changes represent an essential step to ensure certain repair mechanisms following damage to
the brain parenchyma that include neuroprotection, proper reconstruction of the BBB, and physical
fencing of the damaged areas in order to reduce cell death after injury. Along these lines, other groups
have also shown in a rat model of acute stroke that post-ischemic thyroid hormone treatment may
mediate anti-apoptotic gene expression and reduce reactive gliosis compared to untreated control
animals [166].

Taking into account that treatment with T3 resulted in the restoration of hypoxia-inducible factor
(HIF) levels in cells cultured under hypoxic conditions in vitro, the promotion of neuronal survival
in injured brains upon treatment with thyroid hormone is likely due to the stabilization of oxygen
homeostasis via direct or indirect interaction with HIFs [165]. HIFs are also known for their role in
cellular adaptation to low oxygen availability during periods of reduced oxygen supply. Moreover,
members of the HIF family not only are “master regulators” of oxygen sensing and homeostasis,
but also play a crucial role in hypoxia-associated processes, such as vasodilatation, cell migration,
signaling, and cell fate specification [167]. It is also conceivable that significantly decreased BBB
leakage upon thyroid hormone treatment after brain injury can prevent macrophage infiltration and
contribute to pro-survival cell mechanisms, resulting in the suppression of inflammatory responses in
the post-traumatic brain parenchyma. Overall, these mechanisms seem to enhance neuroprotective
processes, either directly by altering the genome and proteome, or by leading to an improved energy
supply in damaged CNS tissue. The latter has been shown to be critical for neurologic outcomes after
TBI in humans [63], and is also corroborated by data showing that T3 treatment improved motor and
cognitive recovery and reduced lesion size in animals following controlled cortical injury or transient
stroke [168,169]. Thus, despite the promising therapeutic potential suggested by these results, further
studies on the complex interactions are needed to establish optimal dosages, time frames of application,
and combinations of thyroid hormone treatments.

3.3.2. Low Thyroid Hormone Levels Correlate with Bad TBI Outcomes in the Critically Ill

The correlation between abnormally low thyroid hormone levels in critically ill patients and
bad prognosis was discovered quite some time ago [158,162]. Usually, during the acute phase of the
response to severe physical stress, there is a rapid decline in T3 levels, which is also associated with
an increase in concentrations of the biologically inactive reverse T3 (rT3). The severity of the illness
can be read out from the rate of T3 decline, whereas mortality rises proportionally. In very fatal cases,
a fall of T4 has also been reported, and in milder situations, a drop in T4 levels occurs only when
the disease becomes more chronic. This is paralleled with a massive reduction in basal pulsatile TSH
secretion activity [80], the hormone released from the hypothalamus controlling thyroid hormone
secretion. This, as well as hyperglycemia (please see Section 3.1.3), seems to be caused by cytokines
such as TNF-α, IL-1, and IL-6, among other reasons [85].

Low concentrations of free T3 in patients suffering from acute ischemic stroke predict bad
outcomes, as expected [170]. Also, high thyroglobulin (Tg) levels have been found to correlate with
fatal TBI outcomes [171]. After ruling out other possible pathogenic aspects that could cause this
increase, it seems reasonable that damage to the hypothalamic-hypophyseal axis can lead to abnormally
excessive release of thyroid hormones and Tg into the bloodstream, with the feedback mechanisms
no longer able to maintain physiological balance [171]. In combination with significantly lower TSH
concentrations in the acute phase of traumatic brain injury [52], this pathophysiological cascade may
underlie the development of post-traumatic hypothyroidism as a consequence of thyroid function
abnormalities in TBI patients [159,172].

Thus, at least in experimental animal models and other preclinical data, there is strong evidence
that low thyroid hormone levels are central in mediating the worst TBI outcomes. Further work is
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required to reconcile preclinical and clinical outlooks and allow the establishment of precise treatment
protocols for thyroid hormone substitution in TBI patients, hopefully leading to better recovery
and outcomes. In terms of screening for early signs of complications related to thyroid function
abnormalities, and with the aim of minimizing associated comorbidities, close monitoring of blood
levels during the follow-up period seems very beneficial.

4. Concluding Remarks

Here, we focus on TBI as a highly variable disorder that not only typically involves structural
and functional changes within the brain but culminates in the emergence of reactive cascades affecting
the whole organism. Despite growing evidence on the relationship between endocrine dysregulation
and pathogenesis in TBI patients, there are still many important aspects that are not fully understood,
especially when taking into account that multiple risk factors related to preexisting endocrinopathies
are involved in a plethora of injury-induced pathophysiologic mechanisms. Therefore, developing
new therapeutic approaches using a combination of drugs to treat the various elements during
injury-induced (neuro) endocrine cascades would be of enormous clinical and socioeconomic benefit.

In the meantime, Harris’s original idea of neuroendocrinology could be redefined, since not only a
nonfunctioning hypothalamic-hypophyseal axis can affect the whole organism. This means the effects
of comorbidities and cognitive or emotional aspects must all be considered to further improve the
effectiveness of treatment for TBI patients, opening a field that could be named “endocrinogical
neurology”, in which neuroendocrine specialists together with metabolic endocrinologists and
neurologists join forces to identify precise and solid diagnostic criteria for TBI patients.
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