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In this paper we study the question of how a decision maker ranks sets of
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he has about them is dichotomous in the sense that: (i) the decision maker
partitions the set of all objects into “good” and “bad” items, and (ii) the
said partition is the only information he uses in order to evaluate sets. In
other words, degrees of goodness or badness are ignored and thus, only two
indifference classes are considered. Situations where such a ranking can be of
use include matching, the choice of assemblies, the election of new committee
members, group identification and coalition formation, among others.

Barbera et al. (2001), Dimitrov et al. (2007), Kasher and Rubinstein
(1997), or Samet and Schmeidler (2003), for instance, study society forma-
tion problems in which the distinction is between candidates who qualify for
membership on the basis of the opinion of some founder or member of the
society, and those who do not merit such a qualification. Dichotomy in this
context would be especially meaningful if qualification for membership were
based on a certain religious principle or political ideology. It would also be
natural if societal decisions were settled by vote and the voters had only
to decide for or against, as in Barbera et al. (2001). In other cases, the
members of the society have to decide who is entitled to perform a certain
activity within the group, such as driving a car or teaching at the university.
Analogously, we might consider college admission problems, where the good
(bad) objects might be all those students that do (do not) fulfil a certain
academic requirement.

The objects over which the dichotomous partition is made need not nec-
essarily be people, however. A certain religious doctrine might also serve as
the criterion by which to partition a set of norms into good and bad. Sim-
ilarly, one might consider the mix of day/night shifts allocated to a worker
over a certain period of time, or whether the answers of a participant in

a test or TV quiz are right or wrong. Finally, Bogomolnaia et al. (2005)



propose different examples to analyze allocation mechanisms for problems in
which agents partition potential lottery outcomes dichotomously into good
outcomes and bad ones.

At this point it is important, in any case, to notice that the specification
of good and bad objects in most of these contexts implies homogeneity and
full substitutability of the objects within a particular group.

Given such a dichotomous setting (in which each object is either good or
bad), the specific question we ask is the following: how can one meaningfully
extend this rudimentary information about preferences over single objects to
an ordering on their power set? We answer this question by introducing three
core axioms that naturally define a family of rules for ranking sets in this
context and by presenting axiomatic characterizations of two different rules
that belong to the defined family. Each of these rules takes into account the
number of good objects and the number of bad objects in the corresponding
sets under comparison; they differ in the way in which these two numbers
are combined.

Moreover, each rule induces a unique separable preference relation over
the set of all groups of objects. That is, given an arbitrary set of objects, the
addition of a good object to this set always results in a higher ranked set,
while the addition of a bad object results in a lower ranked set. Clearly then,
the set of all good objects and the set of all bad objects, respectively, con-
stitute the top and the bottom of the induced preference relations. Bearing
this in mind, our results can be interpreted as an axiomatic characterization
of two subclasses of the class of separable preferences, the latter being com-
monly used as a primitive in the analysis of voting situations (cf. Barbera
et al. (1991), Berga et al. (2004), Ju (2003, 2005)) and coalition formation
games (cf. Burani and Zwicker (2003), Dimitrov et al. (2006)).



On the other hand, the results can be also seen as a contribution to the
problem of ranking sets of objects in the context of choice under complete
uncertainty' for the special case in which outcomes are compared dichoto-

mously as in Bogomolnaia et al. (2005).

2 Basic setup

We denote by X the nonempty finite set of objects. These objects may be
candidates considered for membership in a club, for example, or possible
coalition partners, bills under legislative consideration, etc. We assume that
each object is either good or bad, and that there is at least one good object
and at least one bad object (cf. Fishburn (1992)). We denote by G the set
of all good objects in X; the set of all bad objects is X \ G.

The set of all subsets of X, including the empty set, will be denoted by
X. The elements of X' are the (alternative) groups of objects an agent may
be confronted with. The question now arises of how this agent ranks sets
consisting of good and bad elements based on his partition (G, X \ G) of
X. Consequently, the problem to be analyzed is how to establish a reflexive,
transitive and complete binary relation 72 on X. For all C.D € X, C 7 D
is to be interpreted as “C' is at least as good as D”. The asymmetric and
symmetric factors of - will be denoted by > (“is better than”) and ~ (“is
as good as”), respectively. Finally, we denote by P the set of all reflexive,

transitive and complete binary relations on X.

I In the problems of choice under complete uncertainty, or ignorance, the probabilities
of the outcomes generated by each action are not taken into account. Therefore, each
individual decision is simply described by the set of outcomes it generates (see Barbera et

al. (2004) for motivation and a survey of this approach).



3 A family of rules

We start our analysis by introducing the following axioms:

Local monotonicity towards good elements (LM): There exists A € X\ {X}
such that AU {z} >~ A for some z € G\ A.

Local aversion towards bad elements (LA): There exists A € X' \ {X} such
that AU {z} < A for some x € X \ (AUG).

Independence (IND): For all A,B € X, and all z € X \ A, y € X \ B with
reGeyeG, Az Be Au{z} Z BU{y}.

Axiom LM states that we can always find some set, A, that can be im-
proved by adding some good new element to it. This is a rather weak require-
ment if one assumes that good objects are valuable to the decision maker.
Especially, the axiom becomes very plausible if one thinks of A as the empty
set and x as any good element.

The second axiom, LA, expresses the idea that there is some situation
in which the decision maker fears the addition of more bad elements. In
particular, AV says that there exist some set, A, and some bad element not
belonging to A, such that the former is worsened by the addition of the latter.

Finally, IND illustrates the effect of adding (or dropping) two elements
that are “of the same type” in the sense that they are either both good or
both bad. The axiom, which says that the original ranking between any two
sets of objects is preserved under such a modification, is an adaptation to
our context of other similar axioms often found in the literature on ranking
sets (cf. Kannai and Peleg (1984) or Pattanaik and Xu (1990) among many
others).

In fact, IND captures a double assumption: on the one hand it clearly

proposes some idea of separability. On the other hand, given that it applies to
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every pair of elements, x and y, belonging to the same category, it illustrates,
albeit less explicitly, our second main assumption about the preferences over
objects; namely, that no degrees of goodness or badness are considered.?

As it turns out, these three axioms generate a family of rules that are
based on two numbers only - the number of good elements and the number
of bad elements, where the former are positively weighted and the latter are

negatively weighted.

Theorem 1 Let € P satisfy IND, LM, and LA. Then, for all A, B € X,
(1) (|JANG| > |BNG| and |A\ G| < |B\ G|) implies A - B,
(2) (JANG| > |BNG| and |A\ G| < |B\ G|) implies A 7, B.

The proof is presented in the appendix.

4 Characterization results

We now present axiomatic characterizations of two rules that belong to the
above described family of rules.

The first rule turns out to result from the interplay of the core axioms in-
troduced in the previous section and a robustness axiom that we are about to
introduce. The idea behind this axiom works as follows. Imagine a situation
in which a set of elements, A, consists only of a proper subset of bad elements
from another set, B, which, as well as the bad elements, might also contain
good ones. Imagine also that the decision maker, nevertheless, declares a

strict preference for A over B. We interpret this premise as revealing that

2 The double dimension of IND might be made more explicit by splitting it into two
different conditions: (1) Forallz € X\ A,y € X\ Bwithz € G <y e G, {z} ~ {y}; (2)
Forall A,B € X,and allz € X\ A,y € X\Bwith {z} ~ {y}, A= B< AU{z} = BU{y}.



the decision maker is insensitive to the presence of good elements in B, and
that what prevails is the fact that A contains fewer bad elements. In such a
situation, therefore, we require that the decision-maker remains insensitive
when a new element is added to the set B in the sense that the corresponding

strict preference is preserved.

Robustness (ROB): For all A, B € X with A C (B\ G) and for all z € X,
A>B= A BU{z}.

As shown in our next theorem, the addition of ROB to IND, LM, and
LA results in the characterization of the bad-elements-priority rule =€ P,
which was first defined in Dimitrov at al. (2003)3:

For all A,B € X,

AN G < |B\ G,
AZ Biff { or
|A\G|=|B\G| and |[ANG|>|BNG]|.

Theorem 2 Let =€ P. Then = satisfies IND, LM, LA, and ROB if and

only if =",

The proof is presented in the appendix.
In order to demonstrate the independence of the axioms used for the

characterization of =%, consider the following examples:

—(IND): Let |X| > 3. For all A,B € X, let 7= be defined as follows: (1) if
|A| > 3 and |B| > 3, then A ~ B, (2) if |A| < 3 and |B| > 3, then A > B,
(3) if |A| < 3 and |B| < 3, then —==tP.

—(LM): Forall A,Be X, Az Biff |[A\G| <|B\dG|.

3 The cited paper does not contain a suitable axiomatic characterization of the pro-

posed rule.



—(LA): Forall AABe X, A~z Biff (1) |[A\G| > |B\ G|, or (2) |[A\G| =
|IB\ G| and |[ANG| > |BNG|.

—(ROB): Forall A, Be X, A7 Biff (1) |ANG| > |BNG|,or (2) |ANG| =
|IBNG| and [A\ G| < |B\G|.

The second rule from the family of rules described in the previous section
is of an additive nature and can be introduced by means of the following

axiom.

Local dichotomy (LD): There exists A € A\ {X} such that A\{z} ~ AU{y}
for some x € ANG and some y € X \ (AUG).

Condition LD is a much weaker version of a dichotomy axiom used in
Dimitrov et al. (2004). LD states that there exist some set, A, a good
element x, and a bad element y, such that the decision maker considers the
non-inclusion of the good element x in A and the inclusion of the bad element
y in A to be indifferent. In other words, the axiom displays a local perfect
substitution between “the presence of a good element” and “the absence of
a bad element” for some A € A\ {X},z € Aandye X\ A.

We are now ready to present the characterization of the difference rule,
=dc P, defined as follows*:

For all A,B € X,

AZ*Biff [ANG|—|A\G|>|BNG|—|B\G|.
Theorem 3 Let =€ P. Then - satisfies IND, LM, and LD if and only if

——d,

~J

The proof is presented in the appendix.

4 See Dimitrov et al. (2004) for a different characterization of the same rule.



In order to check the independence of the axioms used for the character-

ization of =%, the reader may consider the following examples:

—(IND): Let X = {z,y}, G = {z}, and consider the following ranking on
X0~ {w,yt ~{z} - {y}
—(LM): For all A,Be X, A~ B.

—(LD): For all A, B e X, A Biff |A| > |B|.

As we show in Lemma 4 in the appendix, ~€ P satisfies axioms IND,
LM, and LD if and only if 77 satisfies IND, LA, and LD. Thus, we have the
following alternative characterization of the difference rule.

Theorem 4 Let =€ P. Then = satisfies IND, LA, and LD if and only if
——d

~Y

To check the independence of the above three axioms characterizing =¢,

we may take the following examples:

—(IND): Let X = {z,y}, G = {z}, and consider the following ranking on
X0~z y} ~ {y} - {a}.
—(LA): For all A,Be X, A~ B.

—(LD): For all A, B e X, A Biff |[A| <|B|.

5 Concluding remarks

Among the different ways in which the decision maker may evaluate sets of
objects containing both good and bad elements, we have presented two plau-
sible solutions derived from a common axiomatic basis. These core axioms

are Independence (IND), Local monotonicity towards good elements (LM),



and Local aversion towards bad elements (LA), and they determine a whole
family of rules. Then, imposing the Robustness axiom (ROB) we obtain
a characterization of the bad-elements-priority rule. Finally, if, instead of
(ROB), we use Local dichotomy (LD) and either (LM) and (IND), or (LA)
and (IND), then an additive rule that maximizes the difference between the
number of good and bad elements is obtained.

Our model performs an axiomatic analysis based on a very elementary
partition of the set of objects into good and bad items. A natural step for-
ward in this research is to advance in defining the structure of the decision
maker’s information about the alternatives. For instance, the simple infor-
mation structure described in this paper could be enriched by embedding a
similarity relation (cf. Pattanaik and Xu (2000)) on the sets of good and bad
objects. This would allow discrimination among different subgroups of good
(bad) objects and would also enable consideration of extensions to the rules

characterized here.

6 Appendix

This section collects the proofs of all theorems that appear in the text. In
what follows, for all S C X and all k € {1,...,|S|}, we denote by (5), any
subset of S with &k elements.

We will first prove the following two lemmas.

Lemma 1 Let =€ P satisfy IND and LM. Then BUFE = B for all B € X
and all E C (G \ B) \ {0}.

Proof of Lemma 1. Take € P as above and let F = {ey,...,e,}. By
LM, there exists A € X \ {X} such that AU {z} = A for some z € G\ A.

10



Repeated application of IND implies that {x} = () for some x € G\ A. By
reflexivity, ) ~ () and by IND, {z} ~ {e;}. Thus, by transitivity, {e;} > 0.
Now, by applying IND, B U {e;} > B. Repeating the same argument with
ey we obtain B U {ej, e} = B U {e;1}, and by the same argument repeated
(n — 2)-times and transitivity, we get BUFE > B. m

Lemma 2 Let 7€ P satisfy IND and LA. Then BUE < B forall Be X
and all E C (X \ (BUG))\ {0}.

Proof of Lemma 2. The proof is similar to the proof of Lemma 1 except

that LA is applied instead of LM. m

Theorem 1 Let 7Z€ P satisfy IND, LM, and LA. Then, for all A,B € X,
(1) (|JANG| > |BNG| and |A\ G| < |B\ G|) implies A - B,
(2) (|IANG| > |BNG| and |A\ G| < |B\ G|) implies A7, B.

Proof of Theorem 1. (1) Let |[ANG| > |[BNG| and |[A\ G| < |B\ Gl.
By reflexivity, @ ~ 0. If |[BNG| =0 (ie.,, BNG = 0), ANG = 0 follows
from Lemma 1 with AN G in the role of E, i.e., we have ANG = BNG
in this case. If |[BNG| = s > 0, the application of IND s-times results in
(ANG), ~ BNG. By Lemma 1, with (ANG) \ (ANG), in the role of E,
we have ANG = (ANG),. This, by transitivity, results in ANG >~ BNG.
Therefore, whether BN G # () or BN G = (), we have that ANG = BNG.

By Lemma 2 and |B\ G| > 0 (i.e., B\ G # (), we have BN G = B.
If A\ G = (), we have by transitivity that A > B. Suppose now that
|A\ G| = v. Starting from AN G > BN G and applying v-times IND, we
obtain A = (BN G)U(B\ G),. By Lemma 2, with (B \ G) \ (B \ G), in the
role of £, (BNG) U (B\ G), = B. By transitivity, A > B.

(2) The case in which |[ANG| > |BNG| and |[A\ G| < |B\ G| was

proved in the previous paragraph. Thus, we will distinguish the three re-
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maining possible cases:

(2.1) |JANG| > |BNG|and |A\ G| = |B\ G|,

(2.2) |[ANG|=|BNG|and |A\ G| < |B\ G|, and

(23) |JANG|=|BNG|and |A\ G| = |B\G|.

(2.1) As in the first part of the proof, it can be proved, by using reflexivity,
IND and LM, that ANG = BNG. If |[A\ G| =|B\ G| =0, then it follows
directly that A = B. If |A\ G| = |B\ G| = u > 0, by IND repeated u-times,
A~ B.

(2.2) Let |A\ G| = u. By reflexivity, ) ~ (), and applying u-times IND,
A\ G ~ (B\G),. By Lemma 2, with (B\ G) \ (B\G), in the role of
E, (B\G), = B\ G. By transitivity, A\ G = B\ G. Applying IND
|ANG| = |BNG|-times, A >~ B.

(2.3) From reflexivity, ) ~ (), and applying IND |A N G| = |B N G|-times,
ANG ~ BNG. Again by IND applied |A\ G| = |B\ G|-times, A~ B. m

Theorem 2 Let 7€ P. Then 7, satisfies IND, LM, LA, and ROB if and
only if —=r"P.

Proof of Theorem 2. It is not difficult to check that =" satisfies the four
axioms. Suppose now that 7—€ P satisfies IND, LM, LA, and ROB. We have
to prove that, for all A, B € X,

(1) |A\ G| < |B\ G| implies A > B,

(2) (|JA\ G| =|B\ G| and |[ANG| > |BNG|) implies A > B, and

(3) (|JA\ G| =|B\ G| and |[ANG| =|BNG|) implies A ~ B.

(1) Let |JA\ G| =w and |B \ G| = v, with v > u. By reflexivity and IND
applied u-times, A\ G ~ (B \ G),. By Lemma 2, with (B\ G)\ (B \ G), in
the role of E, (B \ G), = B\ G. By transitivity, A\ G > B\ G.

12



Now, let us consider the following partitions of A\ G and B\ G :

ANG = (A\G) U(AN\G),
B\G = (B\G)'U(B\G),

where
(A\G)' = {z€A\G|zeB\G},
(A\G) = {zeA\G|zec X\ (B\G)},
(B\G)' = {zeB\G|zeA\G}=(A\G),
(B\G)? = {zreB\G|zeX\(AUG)}.

Let (A\G)' = {a7,...,a;,} = (B\G)", (A\G)* = {ag41,---,a; },
(B\ G)* = {by,41,--.,b, }. Note that, by hypothesis, |(B\ G)*| > [(4\ G)*.
Consider {b, .1,...,b;} C (B\G)>. Then ((A\G) U {by . 1,...,b;})\
(A\ G)* ~ A\G by Theorem 1. By transitivity, ((A\G U{by 1, *})\
(A\G)* = B\ G. By ROB, ((A\G)'U{b, 1,....,0;})\ (A\ G)’

Now, if ANG = (), then A ~ A\ G by reflexivity, and by transitivity, A > B.

If ANG # (), then, by Lemma 1, A = A\ G, and by transitivity, A > B.
(2) Let A\G = {ay,...,a, }, B\G = {by,...,b, }, ANG = {af,...,a}},

and BNG = {bf,...,bf },r > s. By Theorem 1, (A \ G)U{a{,...,al} ~ B.

By Lemma 1, A > (A\ G)U{a{,...,af}. Again by transitivity, 4 > B.
(3) By Theorem 1, A~ B. m

Theorem 3 Let € P. Then = satisfies IND, LM, and LD if and only if

=Xt

We will first prove the following two lemmas.

Lemma 3 Let 7-€ P satisfy IND and LD, and let A, B € X be such that

13



B=AUE with |[ENG|=|E\G|. Then A ~ B.

Proof of Lemma 3. Take —€ P as above and let ENG = {ef, et
E\G={ey,...,e, }.

If [ ENG| = |E\G| =0, the lemma follows by reflexivity. If |[E NG| =
|E\ G| > 0, we have by LD that there exists F' € Xp\{X } such that F\{z} ~
F uU{y} for some x € FNG and some y € X \ (FUG). Applying IND
repeatedly, we have () ~ {z,y} for some x € FNG and some y € X\ (F UG).
By reflexivity, ) ~ () and by IND applied twice, {z,y} ~ {ef,e; }. Thus,
by transitivity, @ ~ {e],e;}. By IND, {ed.e5} ~ {e],es,e1,¢e;} and by
transitivity, 0 ~ {e], es, e, e5 }. Repeating the same argument (n —2)-times
and by transitivity, we have ) ~ E. Thus, by IND, A~ AUE, i.e., A~ B.

Lemma 4 € P satisfies IND, LM, and LD if and only if it satisfies IND,
LA, and LD.

Proof of Lemma 4. Let 7-€ P satisfy IND, LM, and LD. We have to show
that 7~ also satisfies LA. Notice first that Lemma 1 and Lemma 3 hold. In
particular, by Lemma 1 we have that {z,y} > {z} for all x € X and all
y € G € Xy with y # z. Furthermore, by Lemma 3, we have ) ~ {z,y} for
all G € Xp, allz € G, and all y € X \ G.

In order to prove that = satisfies LA, we first prove the following Claim:
{z} = {z,w} for all z € X, all G € A\ {X} and all w € X \ G with
w # x. This would demonstrate that, for each G € A \ {X}, there exists
A e X\ {X} such that AU{w} < A for some w € X \ (AU G), as required
by LA. In particular, A could be any singleton included in G.

Consider first the case in which |X| = 2 and let X = {z,w} with w €
X \ G. Since G is nonempty, this means that G = {z}. Then, by Lemma

14



1, {z,w} » {w}. By IND, {z} > 0. On the other hand, by Lemma 3,
() ~ {z,w}. Thus, by transitivity, {x} = {z,w}.

Suppose next that | X| > 3, and take z,w as in the Claim. If G # {z},
then there exists z € G, z # x. By Lemma 3, () ~ {z,w}, and by Lemma 1
we have {z, w} = {w}. By transitivity, 0 > {w}, and by IND, {z} > {z,w}.
If G = {x}, then, by Lemma 1, {z,w} > {w}. By IND, {z} >~ 0. On the
other hand, by Lemma 3, ) ~ {x,w}. Thus, by transitivity, {z} = {z, w}.

Suppose next that € P satisfies IND, LA, and LD. The proof that
also satisfies LM is analagous to the above one by virtue of the fact that in

this case Lemma 2 and Lemma 3 hold. m

Corollary 1 Let € P satisfy IND, LM, and LD. Then the statement
in Lemma 2 holds, that is, BUFE < B for all B € X and all E C
(X\(BUG))\ {0}
Proof Theorem 3. It can be easily checked that =% satisfies the three ax-
ioms. Suppose now that —€ P satisfies IND, LM, and LD. We have to prove
that, for all A, B € X,

(1) JANG|—|A\G|>|BNG|—|B\ G| implies A > B, and

(2) [ANG| —|A\ G| =|BNG| —|B\ G| implies A ~ B.

Let [ANG|=r,|BNG|=s,|A\G| =u, |B\G|=v.

(1) In this case r —u > s — v. We consider the following three possible
cases:

(1.1)

(1.2)

(1.3) r <w and s < v.

(1.1)
(ANG), U (A\G) ~ 0. Also by Lemma 3, (BNG), U (B\G) ~ 0.
Thus, by transitivity, (ANG),U(A\G) ~ (BNG), U (B\G). Given that

r>uwuand s > v,

r>wuand s < v,

Let 7 > u and s > v. By reflexivity, ) ~ (). By Lemma 3,

15



r—u > s — v, by IND applied (s — v)-times (ANG),,, , U(A\G) ~
(BNG), s, U (B\G), ie, (ANG),,, ,U(A\G) ~ B. By Lemma 1,
A= (ANG) U (A\ G), and by transitivity, A > B.

(1.2) Let r > w and s < v. As in case (1.1), by reflexivity, Lemma 3 and
transitivity we get (ANG),U(A\G) ~ (BNG)U(B\G),. By Lemma 1,
A= (ANG),U(A\G), and, if s < v, by Lemma 2,

Uu+s—uv

(BNG)U(B\G), - B.

If s=v, (BNG)U(B\G),=DB. In any case, by transitivity, A > B.

(1.3) Let » < u and s < v. As before, by reflexivity, Lemma 3 and
transitivity we get (ANG)U (A\G), ~ (BNG)U(B\G),. Since r —u >
s — v, then u —r < v — s. Then we can apply IND (u — r)-times obtaining
(ANG)U(A\G) ~ (BNG)U(B\G) That is, A ~ (BNG) U
(B\ G) By Lemma 3,

r+u—r s+u—r"

st+u—r"
(BNG)U(B\G),,, , - B.

Then, by transitivity, A = B.
(2) In this case r —u = s —v. If r > u (s > v), then, as in case (1), by

reflexivity, Lemma 3 and transitivity we get
(ANG),U(A\ @) ~ (BNG),U(B\G),

and by IND applied (r — u)(= s — v)-times, A ~ B.

If r <wu (s <w), then, by reflexivity, Lemma 3 and transitivity we get
(ANG)U(A\G), ~(BNG)U(B\G),,

and by IND applied (u — r)(= v — s)-times, A ~ B. m
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