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The idea that small noncoding RNAs might be able to 
break the paradigm of a linear correlation between 
mRNA and protein expression first came up almost 

25 years ago. In 1993, Lee et al1 found that, in Caenorhabditis 
elegans, the gene lin-4 did not encode a protein, but rather 
a small RNA that is able to reduce protein levels of lin-14. 
Almost 7 years later, Bartel et al were able to identify the sim-
ilarly acting, small noncoding RNA let-7 in multiple species, 
including Homo sapiens, leading to speculation that probably 
more molecules of a similar kind might exist.2 This assump-
tion proved true within a year, when Lagos-Quintana et al3 
successfully cloned several new so-called microRNAs (miR-
NAs). The major properties of miRNAs are that they are 
processed from a precursor that contains a hairpin structure, 
that their active form is a single-stranded RNA molecule of 
~22 nucleotides in length, and that they seem to primarily 
bind to the 3′-untranslated region (UTR) of certain mRNAs, 
thereby negatively impacting protein levels.

To date, 1881 human miRNA sequences4 have been iden-
tified, and knowledge about miRNA function and their 
importance in the regulation in virtually all relevant biologic 
processes has largely evolved. It has become increasingly clear 
that miRNAs are major elements in fine-tuning the expres-
sion of more than 30% of all protein-coding genes within the 
human organism and that these small molecules play a critical 
role not only in homeostasis but also in the development and 
maintenance of numerous pathological processes.

miRNA BIOGENESIS AND TARGET INTERACTION
Genes coding for the miRNA class of molecules are het-
erogeneously located within the human genome: whereas 
about half of human miRNAs genes are intergenic, that is, 
found in distant locations from currently annotated genes, 
the other half of currently known miRNA genes are intra-
genic, that is, located within protein-coding genes. The 
expression of miRNAs is tightly regulated by the same 
mechanisms controlling gene expression generally. While 
intergenic miRNAs possess own promoters, intragenic miR-
NAs are usually cotranscribed together with their host gene 
and then further processed to mature miRNAs.5 Promoter 
activities are determined by binding of transcription factors, 
silencers, and DNA methylation processes. Consequently, 
the expression of miRNA is strongly influenced by envi-
ronmental factors and external stimuli, such as inflam-
mation, hypoxia, or treatment with drugs. Also, diverse 
classes of RNAs, so-called ceRNAs (competing RNAs, eg, 
pseudogenes, long noncoding RNAs, circular RNAs, and 
also messenger RNAs) can reduce the influence of miRNAs 
by competing for binding sites or by acting as miRNA-
absorbing “sponges,” thus reducing the levels of available 
miRNAs.6

miRNAs are transcribed by the polymerase Pol II  
(Figure 1A),7 and the resulting transcriptional product, called 
primary miRNA (pri-miRNA), can vary greatly in length, up 
to several thousands of nucleotides. This pri-miRNA forms 
a hairpin loop structure that undergoes further processing 
in the so-called microprocessor, a protein complex includ-
ing the RNA-binding enzyme DGCR8 and the RNAse III 
Drosha.8 Drosha cuts the double-stranded end, leaving a ~70 
nucleotide long hairpin precursor miRNA (pre-miRNA).9 As 
is typical for RNAse III cleavage, the pre-miRNA contains a 
2 nucleotide 5′-end overhang that is recognized by Exportin 
5, which is necessary for transport into the cytoplasm.10 In 
a second processing step, a protein complex including the 
RNA recognizing protein TAR RNA binding protein and 
another enzyme of the RNAse III family, Dicer, cuts out the 
hairpin loop structure, leaving the mature miRNA:miRNA* 
double strand.11 Usually, 1 of the 2 strands is degraded, 
whereas the other is incorporated into the so-called RNA-
induced silencing complex.12 The miRNA incorporated in the 
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RNA-induced silencing complex recognizes its target mRNA 
through Watson-Crick complementarity of its 5′-end to the 
3′-UTR of its target (Figure 1B). Whereas in plants miRNAs 
seem to nearly perfectly match the target sequence, this is not 
true in mammals, where imperfect pairing is predominant 
and near-perfect complementarity is only required for the 
“seed-region” of the mature miRNA (nucleotides 2–7). After 
recognition, miRNAs regulate target mRNAs through either 
translational repression or mRNA destabilization or a com-
bination of both mechanisms. Recent research has indicated 
that mRNA degradation explains the majority of miRNA-
mediated repression, while translational repression accounts 
for roughly 10% to 25% of the overall repression.13,14 In most 

cases, miRNA-induced changes in gene expression are subtle 
with net repressions in the range of 2- to 5-fold, and biologi-
cal effects are achieved by high redundancy: each miRNA 
can regulate multiple target genes, while one protein-coding 
mRNA can be targeted by multiple miRNAs. Usually, miR-
NAs act in networks, that is, one single miRNA regulates not 
only one mRNA but also further transcripts within the tar-
get interactome. Also, as one single miRNA is merely suffi-
cient to influence entire signaling pathways, it is a frequently 
occurring phenomenon that several miRNAs act together in a 
similar direction. This situation is further complicated by the 
existence of indirect miRNA-mRNA interactions: for exam-
ple, by targeting transcription factors, suppressor proteins, or 

Figure 1.  A, miRNA biosynthe-
sis pathway. miRNA genes are 
transcribed by Pol 2/3 from 
the DNA (primary miRNA tran-
script) and cleaved through 
the Drosha/DGCR8 complex 
(precursor miRNA). After export 
from the nucleus via Exportin-5/
RAN-GTP, Dicer in conjunction 
with TAR RNA binding protein 
do the final processing, leaving 
the mature miRNA transcripts. 
B, miRNA transcript recognition 
and targeting. After processing, 
the miRNA is loaded into the 
RNA-induced silencing complex 
(RISC) that consists of Ago and 
Ago-interacting proteins, such 
as Dcp and Gw182. The miRNA 
then recognizes its target mes-
sage through base-pairing to the 
target’s 3′-untranslated region. 
The most important region for 
this interaction in animals is the 
seed region (miRNA sequence 
in red). Imperfect seed-pairing 
can be compensated for by high 
degree of complementarity to 
the 3′-end of the miRNA.
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enzymes that catalyze DNA methylation, miRNAs can, with-
out evident binding sites within the 3′-UTRs of the regulated 
genes, unexpectedly impact gene expression.15

In this highly complex scenario, various in silico predic-
tion algorithms have been developed during the last decade 
to identify potential direct and indirect miRNA-target inter-
actions and to allow for subsequent experimental validation 
and characterization.16

miRNAS IN HUMAN DISEASE
It is well known that the miRNA repertoire expressed by 
each cell type is highly specific. Likewise, miRNA expres-
sion patterns of different tissues are characteristic and 
contribute to the shaping of specific tissue features and 
functions. Some miRNAs are even exclusively expressed 
in certain tissues or cell types. It thus is not surprising that 
also for a wide spectrum of human diseases—ranging from 
cancer, hematologic, cardiovascular, and neurologic dis-
eases to pathologic conditions caused by dysfunctions of 
the immune system—specific miRNA expression patterns 
could be identified.17–20 Mostly, the assignment of specific 
miRNAs to certain diseases is only based on correlative 
analyses; however, for some of these miRNAs, causal links 
to pathogenesis have been revealed: for example, miR-21 has 
been shown to act as a proto-oncogene in multiple cancers 
including colorectal adenocarcinoma and breast cancer,21 or 
miR-146a, which acts as inhibitor of inflammatory processes 
by dampening nuclear factor-κB (NF-κB) signaling and thus 
is frequently suppressed in inflammatory diseases.22

miRNAs not only influence gene expression within their 
parental cells, they also act as signaling molecules promot-
ing intercellular communication. Recent research discovered 
that miRNAs can be packaged into exosomes or microves-
icles and subsequently are released from cells into the sur-
rounding tissue or into the circulation. Other cells can take 
up these secreted miRNAs, which then establish their regula-
tive activity in the new cellular surrounding.23–25 Unlike other 
extracellular RNA molecules, the membrane-enclosed or 
lipid-bound extracellular miRNAs are remarkably stable and 
can be detected in virtually all body fluids, including blood, 
saliva, bronchial secretions, urine, liquor, and breast milk.26

Due to these unique features—disease specificity, high 
stability, and accessibility—miRNAs have already gained 
importance as useful clinical biomarkers for diagnosis and 
prognosis of specific diseases and to monitor treatment 
responses. Accordingly, during the last decade, strong efforts 
have been made in almost all clinical fields to identify and to 
validate single or sets of miRNAs as convincing biomarkers.27,28

Due to their broad regulative capabilities, miRNAs also 
bear a high potential as therapeutic targets29—at least in 
diseases in which a clear causal link between the patho-
logic state and the altered expression of specific miRNAs 
has been found. In the last few years, several formula-
tions of miRNA mimetics and inhibitors targeting specific 
pathology-driving genes have been developed and admin-
istered to patients within the framework of clinical studies, 
which will be discussed below. So far, these highly inter-
esting approaches are still preliminary and need extensive 
improvement. Nonetheless, the field of miRNA therapies 
has made a huge leap forward.

miRNAS IN CRITICAL CARE MEDICINE
In critical care medicine, there is still an urgent need for 
valid biomarkers that enable an early and precise detec-
tion of life-threatening disorders such as sepsis, acute lung 
injury (ALI), and the frequently associated failure of organs. 
In this regard, miRNAs have increasingly gained attention 
during the last years, and a remarkable number of single 
miRNAs, or of miRNA sets as new biomarkers, have been 
proposed. The implementation of these biomarkers into 
the clinical routines is an ongoing task and some hurdles 
still have to be taken. Also, a multitude of both in vitro and 
animal studies aiming at the elucidation of specific miRNA 
effects and the underlying molecular mechanisms have 
been published.

Herein, we will provide a short survey of the current sta-
tus quo in sepsis, ALI, and acute organ dysfunction.

SEPSIS
It is well established that miRNAs are potent regulators of 
both the innate and the adaptive immune system. They influ-
ence a multitude of cellular processes ranging from specific 
immune cell functions to proliferation and differentiation, 
thereby controlling a wide range of immune functions.30 It 
thus is justified to expect that miRNAs could serve as effi-
cient biomarkers not only for the detection of early sepsis 
but also for distinguishing the hyperinflammatory and the 
immunosuppressive phases of sepsis. Accordingly, a num-
ber of studies aiming at the identification of miRNAs that 
are differentially expressed in sepsis versus healthy controls 
and in nonsurvivors versus survivors have been published 
during the last few years. In these studies, the expression 
of miRNAs was profiled either in plasma/serum or whole 
blood or in purified blood cells. For example, in whole blood, 
miR-155 and miR-21 were shown to be elevated in sepsis, 
while miR-150 was found to be downregulated.31–33 In other 
studies investigating serum or plasma samples, miR-223, 
miR-143, and miR-34a were upregulated,34,35 and miR-146a 
and miR-15a were downregulated.34,36 Some authors chose 
a more specific approach and analyzed cells of the adaptive 
immunity. In these studies, sepsis patients exhibited elevated 
miR-15a/16 and miR-223 and reduced miR-146a and miR-
31 expression levels.37–39 Some studies were able to detect 
correlations between expression levels of specific miRNAs  
(eg, miR-233, miR-150, miR-547-5p, miR-133a) and the 
severity of sepsis.40,41 Additionally, to enable an early diag-
nostic differentiation and a specific therapeutic approach, 
several recent studies aimed at using miRNAs to distinguish 
between sepsis and the Systemic Inflammatory Response 
Syndrome.42–44 A comprehensive summary of miRNAs that 
have been identified as differentially expressed in sepsis 
patients as compared to healthy individuals so far is given 
in the articles by Kingsley and Bhat45 and Neudecker et al.46

To date, it is not clear which cell types are the origins of 
free circulating miRNAs in sepsis and whether other coex-
isting morbidities (eg, tumors) set free miRNAs that might 
strongly bias the sepsis-specific expression profiles. Due to 
these uncertainties and to the rather small sample sizes of 
most studies, it currently is not clear which of the proposed 
miRNA biomarkers will reveal as reliable diagnostic tools in 
the diagnosis and treatment of sepsis in the future.
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Elucidation of the molecular mechanisms underlying 
specific miRNA alterations in sepsis is a conditio sine qua 
non to (i) acquire a comprehensive understanding of the 
pathomechanisms underlying sepsis, and to (ii) develop 
miRNA-based therapy approaches. A large number of in 
vitro and animal studies dealing with these issues have been 
published during the last decade, which provided profound 
insights into the networks of miRNA signaling within the 
immune system generally and in particular regarding the 
pathophysiology of sepsis. It has become clear that miRNAs 
are hubs within the regulatory circuitries of inflammatory 
responses. They target central transcription factors such 
as NF-κB or hypoxia-inducible factor 1-alpha, cell surface 
receptors such as toll-like receptors, or intracellular sig-
naling cascades such as mitogen-activated protein kinase 
pathways. Also, direct targeting of cytokines and/or their 
receptors is a frequently occurring phenomenon. As a result, 
development, function, and differentiation of both adap-
tive and innate immune cells are affected, which impacts 
both hyperinflammation and immunosuppression in sepsis. 
Which side of the coin will be more pronounced depends 
on the individual miRNA expression profiles, the regulated 
target genes, and, importantly, the cellular environment. For 
example, many miRNAs that have been identified as clini-
cal markers in sepsis have experimentally been validated as 
regulators of the NF-κB-pathway (Figure 2, Table 1): miR-
31 targets the NF-κB inducing kinase,47 miR-146a and miR-
15a/16 target the interleukin-1 receptor-associated kinase 
1,49,56 miR-223, miR-15a/16 target the IκB kinase alpha,50 
and miR-155 controls expression of the transforming growth 
factor (TGF)-beta-activated kinase 1/MAP3K7-binding pro-
tein 2.59 The NF-κB family of transcription factors controls 
a multitude of contributors to the inflammatory response, 
such as proinflammatory cytokine production, leukocyte 
recruitment, or cell survival, and is also involved in the feed-
back control of inflammation.64,65 Thus, these miRNAs can 
be considered important players within the inflammatory 
networks regulated by NF-κB influencing magnitude and 
duration of inflammation during sepsis.

The most important miRNAs known in the context of 
sepsis so far and their functions in immune cells, as well as 
the respective literature, are summarized in Table 1. It has to 
be kept in mind, however, that neither mouse models nor in 
vitro experiments with cell lines or primary cells fully cover 
the functional networks of the human organism.66,67 Thus, 
miRNAs in the context of human sepsis can only be consid-
ered “guilty by association,” and the exact impact of these 
miRNAs on the inflammatory responses during the differ-
ent stages of sepsis needs to be fully elucidated.

ACUTE LUNG INJURY
ALI is orchestrated by activated immune cells and by excess 
cytokine and protease release into the alveolar space.68 Given 
these conditions, immunomodulatory miRNAs proposed as 
biomarkers in sepsis might also be of diagnostic value in ALI. 
Additionally, miRNAs affecting epithelial and endothelial 
cells might play a role. Surprisingly, unlike in sepsis, clinical 
studies evaluating miRNAs as possible biomarkers in ALI 
are scarce. One study analyzing blood samples of 45 patients 
with ARDS induced by cardiopulmonary bypass found dif-
ferential expression of a set consisting of 6 upregulated and 5 

downregulated miRNAs.69 If these miRNAs might reveal as 
suitable biomarkers still needs to be determined.

There exist a variety of animal studies investigating the 
role of miRNAs in the pathogenesis of ALI. Data were mostly 
derived from rodents subjected to ALI induced by intratra-
cheal injection of lipopolysaccharide (LPS), acid, or bacteria, 
or by ventilator trauma. In these studies, a large number of 
different miRNAs was found to be differentially regulated 
(extensively reviewed in the study by Rajasekaran et al70); 
however, a consensus regarding the value of these miRNAs 
in the development and resolution of ALI has not yet been 
achieved. ALI animal models have also been used to inves-
tigate miRNA treatment approaches in a surprisingly high 
number of studies, which is most likely due to the fact that 
an easy-to-handle and specific application of miR-mimics 
or anti-miRs via the airways is possible. In these studies, 
several miRNAs have been evaluated with respect to their 
capacity to influence the course of ALI.70 Interestingly, 3 
of those inflammation-related miRNAs relevant in sep-
sis revealed also here as promising therapeutic targets: in 
LPS-mediated injury, anti-miR-155 application significantly 
reduced the numbers of inflammatory cells and the levels 
of proinflammatory cytokines in bronchoalveolar lavage,71 

Figure 2.  miRNAs target central components of the nuclear factor-
κB (NF-κB) signaling pathway thereby regulating the inflammatory 
response in sepsis. FADD indicates fas-associated protein with 
death domain; IKK, IκB kinase alpha; IRAK, interleukin-1 receptor-
associated kinase; NIK, NF-κB inducing kinase; RIP1, receptor-inter-
acting serine/threonine proteinkinase 1; TAB, TGF-beta-activated 
kinase 1/MAP3K7-binding protein 2; TAK, tat-associated kinase; 
TGF, transforming growth factor; TIRAP, toll-interleukin 1 receptor 
domain containing adaptor protein; TLR4, toll-like receptor-4; TNF-R, 
tumor necrosis factor receptor; TRADD, TNF receptor type 1-associ-
ated death domain; TRAF, TNF receptor-associated factor 2; TRAM, 
toll-like receptor adaptor molecule.
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which was further corroborated in miR-155−/− mice, thus 
suggesting a role of miR-155 as a driver of lung inflamma-
tion.72 miR-146a and miR-125b, on the other hand, were 
found to ameliorate lung injury. miR-146a-mimic applica-
tion suppressed both LPS- and acid-induced expression of 
proinflammatory cytokines and inducible nitric oxide syn-
thase.73,74 Overexpression of miR-125b reduced lung perme-
ability and expression of proinflammatory mediators and 
improved mice survival.75 Both miRNAs thus have been 
suggested as potential therapeutic targets for ALI. Similar to 
sepsis, miRNAs hold promise to become valuable biomark-
ers and therapy tools in the future; however, additional 
studies will be required to assess these issues.

ACUTE ORGAN FAILURE
Acute failure of liver, kidney, and heart are important clini-
cal complications in intensive care medicine, with high 
mortality rates. Also here, miRNAs are increasingly gaining 
attention because biomarkers enabling an early and exact 
diagnosis and prognostic estimation, as well as innovative 
therapy approaches, are strongly needed.

Several miRNAs are specifically expressed or enriched in 
the liver, with miR-122 being the most abundant liver-specific 
miRNA. Both acute and chronic liver damage are associated 
with hepatocyte cell death, which leads to the release of liver-
specific miRNAs. Starkey Lewis et al found substantially 
elevated plasma levels of miR-122 and miR-192 in acetamin-
ophen-induced acute liver injury.76 Determination of miR-122 
significantly outperformed alanine aminotransferase (ALT), 
international normalized ratio (INR), and acetaminophen 
plasma concentrations for the prediction of this type of liver 
injury.77 In a study evaluating miRNAs in liver steatosis, miR-
122 was found to correlate with the severity of the disease.78 
In chronic hepatitis C, the typical inflammation-related miR-
NAs miR-155, miR-125b, and miR-146a were increased in 
patients’ plasma.79 As liver-specific delivery of nucleic acids 
by microparticles has successfully been demonstrated by 
Press et al,80 therapeutic approaches using miRNA mimics or 
antagonists are conceivable in the near future.

The intestine is a unique organ where multiple commu-
nications between the immune system, gut epithelium, and 
commensal microbiota take place. A breakdown of homeosta-
sis can lead to inflammatory disorders as frequently seen in 

the perioperative context. Biomarkers indicating the onset of 
acute gut injury are scarce, and miRNAs are currently one of 
the most promising molecules in this field. To date, however, 
available data are mainly derived from models of inflamma-
tory bowel disease (IBD). For example, a very recent study 
using a murine model of dextrane sodium sulfate-induced 
colitis shed light on the pivotal function of miR-223 in IBD: 
administration of miR-223 mimics inhibited the NLRP3 
inflammasome, thereby reducing interleukin-1β-mediated 
dextrane sodium sulfate-induced colitis.81 These findings are 
consistent with clinical data reporting miR-223 to be elevated 
in a subset of patients experiencing IBD,82 thus suggesting 
miR-223 as a potent new biomarker for gut inflammation. 
Further studies are needed to clarify whether these findings 
can be transferred into the acute perioperative setting.

In acute kidney injury (AKI), many miRNAs have been 
shown to be involved in the amplification or reduction of 
acute injury processes. While molecular mechanisms have 
only been investigated in animal studies so far (extensively 
reviewed in the article by Fan et al83), a considerable number 
of clinical studies have provided data on the potential of cer-
tain miRNAs to serve as markers of early AKI. Specifically, 
miR-21 has been revealed as stable biomarker: urine and 
plasma miR-21 levels have been shown to correlate with AKI 
severity and hospital mortality and to predict the probability 
of postoperative renal replacement therapy. Also, lower base-
line plasma levels of miR-21 have been shown to predict AKI 
after cardiac surgery.84,85 In animal models of AKI, overexpres-
sion of miR-21 provided renoprotection, thus suggesting this 
miRNA as a therapeutic target.86,87 Further, decreased serum 
levels of the kidney-enriched miRNAs miR-29a, miR-101-3p, 
and miR-127a have been shown to predict AKI in intensive 
care unit patients.88 Even in AKI, anti-inflammatory miR-146a 
plays an important role, as decreased blood levels have been 
shown to be a predictor of AKI in the intensive care unit.88

Research on the role of miRNAs as biomarkers for dif-
ferent cardiovascular disease entities has exponentially 
expanded during the last few years, and miRNAs have been 
suggested as new biomarkers providing additional infor-
mation to established protein-based markers such as car-
diac troponins and natriuretic peptide. A large number of 
encouraging results have been obtained so far, which have 
extensively been reviewed before.89,90 Here, we will focus on 

Table 1.   Mechanisms of Action of miRNAs Identified as Sepsis Biomarkers
 Targets Regulated Signaling Pathways Regulation in Sepsis Patients References
miR-31 FIH, NIK, SAP HIF-1α, NF-κB, SLAM T cells  37,47,48
miR-15a/16 TLR4, IRAK 1, IKK-α TLRs, IL-1, NF-κB PBMCs  34,49,50
miR-21 PDCD4, SORBS2, IL-12 Apoptosis, STAT Blood  33,51,52
miR-143 IL13R, TLR2, COX-2 STAT, TLR, prostaglandins Serum  34,53–55
miR-146a IRAK, TRAF6, PRKCƐ IL-1, TNF, calcium signaling, NF-κB Serum, T cell  34,38,56
miR-150 HIF-1α, VEGFA, ARRB2 HIF-1α, angiogenesis, signal inhibition Blood  43,57,58
miR-155 SOCS1, SHIP1, TAB2 STAT, PI3K, AKT, NF-κB Blood  31,59–61
miR-223 NLRP3, NFI-A, IGF-1R, STAT3, 

FOXO1, IKK-α
IL-1, DNA-binding, PI3, AKT, STAT, NF-κB Serum, PBMCs  39,50,62,63

Abbreviations: AKT, protein kinase B; ARRB2, arrestin beta 2; COX-2, cyclooxygenase-2; FIH, factor inhibiting hypoxia; FOXO1, forkhead box protein 01; HIF-
1α, hypoxia-inducible factor 1-alpha; IGF-1R, insulin-like growth factor receptor 1; IKK-α, I-kappaB kinase alpha; IL, interleukin; IRAK, interleukin-1 receptor-
associated kinase; NF-κB, nuclear factor-κB; NFI-a, nuclear factor 1A; NIK, NF-κB-inducible kinase; NLRP3, NACHT, LRR and PYD domains-containing protein 3; 
PBMC, peripheral blood mononuclear cells; PCDC4, programmed cell death 4; PI3K, phosphatidylinositide-3-kinase; PRKCƐ, protein kinase C epsilon; PTGS2, 
prostaglandin-endoperoxide synthase 2; SAP, SLAM-associated protein; SHIP1, phosphatidylinositol-3,4,5-trisphosphate 5-phosphatase 1; SLAM, signaling 
lymphocyte activation molecule; SOCS1, suppressor of cytokine signaling 1; SORBS2, Sorbin and SH3 domain containing protein 2; STAT3, signal transducer and 
activator of transcription 3; TAB2, TGF-beta-activated kinase 1/MAP3K7-binding protein; TLR, toll-like receptor; TNF, tumor necrosis factor; TRAF, TNF receptor-
associated factor; VEGFA, vascular endothelial growth factor A.
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the description of the most striking miRNAs in myocardial 
infarction (MI) and heart failure.

In acute MI, miRNAs with high myocardial expression 
are released into the peripheral circulation, which opens up 
new opportunities of improving diagnostic discriminatory 
power and/or accelerate diagnosis by determination of spe-
cific miRNAs in the peripheral blood of patients suspicious 
of MI.91 For example, the cardiac-specific miR-208b is detect-
able within 3 hours after MI and may persist elevated for as 
long as 90 days. In several studies, miR-208b was revealed as 
a useful early biomarker for MI.92,93 Also, a signature consist-
ing of 6 miRNAs was revealed as a reliable predictor of MI, 
with an AUC significantly exceeding troponin C and creatine 
kinase-MB.94 In MI, miRNAs were also shown to exert pre-
dictive impact: in 2 large cohorts, an miRNA set consisting 
of miR-126, miR-197, and miR-233 was identified to reliably 
predict MI in persons with coronary artery disease.95,96

In heart failure, miRNAs miR-558, mR122*, and miR-
520-d-5p were identified in a cohort of 53 patients as a stable 
biomarker set to predict the diagnosis “nonischemic heart 
failure.”97 In another study comprising 42 patients experi-
encing heart failure, miR-182 was identified to predict mor-
tality with higher prognostic power than NT-proBNP and 
high-sensitive C-reactive protein.98 Taken together, miRNAs 
are clearly on the verge of implementation in the prediction 
and diagnosis of AKI, MI, and heart failure and may be a 
valuable future tool in intensive care medicine.

miRNAS IN ANESTHESIA AND POSTOPERATIVE 
CARE
In animal models, commonly used anesthetic drugs (eg, pro-
pofol, sevoflurane, and ketamine) have been found to induce 
neurotoxic effects such as neurodegeneration, neural apop-
tosis, and impairment of neural stem-cell self-renewal.99–101 
Recent research identified miRNAs as one of the key players 
mediating neurotoxic or protective effects.102 In 2014, Goto 
et al103 discovered in rodents that propofol and sevoflurane 
administration substantially altered miRNA expression pro-
files. These results made the pace for further rodent studies 
in this area. For example, it was shown that administration of 
propofol induces downregulation of miR-21 and induction of 
miR-665, leading to impairment of neuronal differentiation and 
induction of apoptosis.104,105 For isoflurane, downregulation 
of miR-214 and let-7d was reported, leading to an increase of 
apoptosis via induction of Bax,106,107 and in ketamine anesthe-
sia, miRNA expression patterns could be associated with hip-
pocampal neurodegeneration and memory impairment.108,109

Taken together, a large body of animal studies suggests 
that commonly used drugs for induction and maintenance 
of anesthesia induce alterations in miRNA expression, 
which might deteriorate neuronal integrity and neurocog-
nitive processes such as memory and learning. Whether 
these experimental findings may also be true for the human 
organism needs to be investigated in the near future.

In postoperative care, reliable biomarkers that allow for 
prediction or at least timely detection of complications are 
needed. Generally, miRNA markers of acute organ injury 
as described above may also be of considerable predictive 
value in this setting. With regard to specific postoperative 
complications, only a few studies addressing miRNAs as 
possible biomarkers are available so far: for example, a study 

investigating 30 children after heart surgery revealed a set of 
3 miRNAs (208a, 208b, and 499) as possible biomarkers for 
early detection of postoperative myocardial damage.110 Also, 
miRNA-499 was identified as a marker for postoperative MI 
in 30 patients undergoing coronary artery bypass grafting.111 
Several ongoing studies are evaluating the suitability of 
miRNAs as biomarkers in postoperative care, for example, 
as predictors of postoperative delirium (ClinicalTrials.gov). 
Taken together, miRNAs may serve as valuable biomarkers 
in the postoperative setting in the near future.

miRNAS IN PAIN
Pain plays a central role in perioperative care. Several classi-
fications of pain exist, the broadest one being the distinction 
between acute and chronic pain, with a subclassification of 
the latter into inflammatory versus neuropathic. Chronic pain 
syndromes greatly contribute to the overall cost for the medi-
cal system,112,113 and both diagnostic and treatment options 
are limited, not at least due to lack of understanding of its 
pathophysiology. In 2007, a first study reported the down-
regulation of 7 miRNAs in the trigeminal rat ganglion after 
inducing inflammatory pain in the masseter muscle.114 Since 
then, noncoding RNA molecules have been acknowledged to 
play a critical part in especially chronic pain pathophysiology.

The dorsal root ganglion (DRG) has been identified as 
a key structure involved in the pathophysiology of neu-
ropathic pain processing,115,116 and spinal nerve ligation 
leads to changes of both the proteome117 and the transcrip-
tome118 of this structure. Evidence for miRNA involvement 
was presented by Zhao et al119 in 2010, who reported that 
miRNA function seems to primarily impact inflamma-
tory pain. A global reduction of miRNA expression levels 
via Dicer knockdown leads to the downregulation of sev-
eral nociceptor-associated proteins crucial for develop-
ment and maintenance of hyperalgesia.120,121 Shortly after, a 
number of proteins connected to pain recognition, such as 
CACNA2D1, SCN11A, and P2RX4, were found to be regu-
lated by miRNAs.115,119,122,123

Table 2.   Different Detection Platforms Currently 
Used in miRNA Diagnostics and Research
Detection Method Features References
qRT-PCR Cost-efficient 131–133

High sensitivity, accuracy, 
reproducibility

Widely available
Automatable
Fast method

Microarray Multiple microRNA analyses in 
parallel

134,135

Discovery of microRNA signatures
Not suitable for high throughput

NGS Highly precise 136,137
Discovery of unknown sequences
Time-consuming data processing
Cost-intensive

SPR Highly sensitive 138,139
Very fast
Suitable for point-of-care analysis
Still in the stage of development

Abbreviations: NGS, next-generation sequencing; qRT-PCR, quantitative 
reverse transcription polymerase chain reaction; SPR, surface plasmon 
resonance.
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miRNAs can also directly trigger pain sensation. Based 
on the observation that miRNAs circulating in blood and 
cerebrospinal fluid can aggravate neurodegeneration,124 
Park et al125 found that extracellular miRNAs could induce 
rapid onset of pain via induction of rapid inward currents 
in DRG neurons. This effect was mainly mediated by toll-
like receptor-7 that recognized the single-strand RNA motif 
GUUGUGU in the mature sequences of hsa-let-7b and hsa-
miR-599.125 Interestingly, let-7b is highly enriched in DRG 
neurons and is released upon neuronal activity125 and has 
also been linked to complex regional pain syndrome.126 The 
ultimate location for pain processing is the central nervous 
system, and it is hardly astonishing that miRNAs related 
to central pain processing have been described. Pohl et al127 
focused on the investigation of the effects of inflammatory 
pain on the prefrontal cortex that is activated in acute as 
well as chronic pain, finding significantly increased levels of 
miR-155 and miR-223. In a more functional approach, Imai 
et al128 combined functional MRI, in silico analyses, and lab-
oratory methods to draw a connection between neuropathic 
pain that decreases the expression of miR-200b/miR-449 
and the mesolimbic circuitry via unleashed expression of 
DNA methyltransferase 3a.

In summary, miRNAs are evidently involved in major 
known pathways relevant to pain development and main-
tenance113 and may support therapeutic decisions someday 
as exemplified by hsa-miR-124 expression in CD4 T cells 
that has been found to be predictive of treatment response 
in chronic lower back pain.129

CURRENT USE OF miRNAS AS CLINICAL 
BIOMARKERS AND THERAPEUTIC TOOLS
miRNAs as Biomarkers
Despite the multitude of miRNAs that have been pro-
posed as possible biomarkers, determination of miRNAs 
has not made its way into clinical practice so far. This is, 
indeed, surprising and mainly due to the fact that a uni-
versal measuring method enabling an easy-to-handle, fast, 
reliable, and inexpensive determination of miRNAs does 
not exist to date. miRNA expression profiling is a techni-
cal challenge: miRNAs are tiny molecules, miRNA family 
members exhibit a high degree of homology, and abso-
lute miRNA concentrations in body fluids are rather low. 
Several measurement platforms are currently available to 
determine relative miRNA abundance in biological samples 
using different technologies such as small RNA sequencing, 

Figure 3.  Overview of miRNAs involved in the pathogenesis of organ failure, sepsis, and pain syndromes, which are also considered as pos-
sible specific biomarkers.
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reverse transcription quantitative polymerase chain reac-
tion, and microarray hybridization. Each method has its 
strengths and weaknesses, and selection of the measuring 
method depends on the specific scientific questions to be 
addressed.130 The different detection platforms currently 
used in miRNA diagnostics and research are briefly sum-
marized in Table 2.

Moreover, to ensure reliable miRNA measurement, it is 
necessary to carefully choose the compartment most suit-
able for measuring the miRNAs of interest (eg, serum, 
plasma, blood cells, tissue specimens, or body fluids such as 
urine or liquor) and to select an appropriate normalization 
strategy.140 Also, it has to be taken into account that miRNA 
expression profiles are influenced by genetic heterogeneity 
and exogenous influences, such as medication, nutrition, or 
exposure to certain environmental conditions.141,142

In the field of perioperative medicine, multi-institutional 
studies adhering to standardized protocols for sample prep-
aration, miRNA detection, and data analysis are required 
to clearly make out those miRNAs qualifying as valid bio-
markers for future clinical use (possible miRNA candidates 
are summarized in Figure 3). Actually, we are very close to 
an implementation of miRNAs into the daily clinical use, 
which will provide valuable complementary data on our 
roads toward a personalized medicine.

miRNA-Based Therapy
The concept of inhibiting or overexpressing miRNAs for 
therapeutic purposes represents a new frontier in modern 
medicine. To date, first approaches—either using miRNA 
mimics or miR-inhibitors—have made their way into clini-
cal studies so far.

Synthetic miRNAs that mimic natural miRNAs are sup-
posed to exert therapeutic effects by reconstituting miRNAs 
that are downregulated during disease or by downregu-
lating signaling pathways involved in disease pathology. 
miRNA mimics are double-stranded oligonucleotides that 
require liposomes, lipoprotein-based carriers, or nanopar-
ticles as vehicles for their delivery.143,144 The first miRNA 
mimic to enter a clinical study in the field of oncology was 
MRX34. This substance was designed to deliver a mimic of 
the naturally occurring tumor suppressor miR-34, which is 
underexpressed in a wide variety of cancers. MRX34 was 
tested in a multicenter phase 1 clinical trial starting 2013, 
which included patients with primary liver cancer, other 
solid cancers, and hematological malignancies. Results of 
this study are elusive, as it was stopped in 2016 due to mul-
tiple immune-related severe adverse events. Very recently, 
a phase 1 study evaluating the miRNA mimic MRG-201 
was initiated. This substance is designed to mimic miR-29b, 
thereby decreasing the expression of collagen and other 
proteins that are involved in fibrous scar formation, and is 
applied in healthy volunteers by intradermal injection.

Pharmacologic approaches of miRNA inhibition exert 
therapeutic effects by use of anti-miRs or miRNA sponges. 
Both classes of molecules block natural miRNAs and thus 
are supposed to silence miRNAs that are elevated during 
disease or to disinhibit signaling pathways involved in 
disease pathology. Anti-miRs are single-stranded oligo-
nucleotides that are chemically modified to enhance target Ta
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affinity, stability, and tissue uptake.143,144 Unlike double-
stranded miRNA mimics, anti-miRs can be administered 
dissolved in saline solution. Once entering the circulation, 
they are easily taken up by multiple tissues and organs, 
where they specifically bind to endogenous miRNAs thus 
reducing their availability. Sponges are RNA molecules 
that contain multiple seed sites of a specific miRNA that 
act as competitive inhibitors by “hoovering” endogenous 
miRNAs.

The prime example of a successful therapeutic anti-
miRNA approach is miravirsen, an LNA-modified anti-
miR-122 that effectively combats a hepatitis C virus 
infection.145 Miravirsen targets the liver-specific miR-122, 
which is “hijacked” by the hepatitis C virus to bind to 
sequences in the 5′-UTR of the viral RNA, thereby enhanc-
ing virus replication. In a first phase 2a clinical trial enrolling 
36 patients with chronic hepatitis C, miravirsen treatment 
showed a dose-dependent antiviral activity clearly exceed-
ing the time of therapy. Notably, in 4 of 9 patients receiv-
ing the highest doses, stable seroconversion was achieved. 
In this clinical trial, no adverse side effects were reported. 
Further evaluation of miravirsen is a topic of several ongo-
ing studies.

Another substance that very recently entered clini-
cal phase 1 evaluation is MRG-106, an LNA anti-miR of 
miRNA-155. In hematological malignancies, miRNA-155 
plays a key role in differentiation, function, and prolifera-
tion of blood and lymphoid cells, and inhibition of miRNA-
155 in lymphoma cells reduced proliferation in vitro. The 
phase 1 trial of MRG-106 enrolls patients experiencing cuta-
neous T-cell lymphoma and aims at assessing safety, toler-
ability, and molecular effects of MRG-106 in the lesions of 
MF patients. Trials for miRNA mimics or LNA inhibitors 
that have made their way into clinical evaluation so far are 
summarized in Table 3.

Currently, miRNA-based therapy still is in its infancy and 
a number of problems have to be addressed until a broad, 
reliable, and safe clinical use will be a feasible objective. 
The development of delivery systems enabling cell-specific 
uptake and the design of therapeutical molecules with-
out toxic side effects remain a major challenge. Moreover, 
unwanted off-target effects have to be minimized. After 
taking these hurdles, miRNA-based therapy strategies will 
open up one of the most innovative and promising perspec-
tives in current medicine.

CONCLUSIONS
It is to be expected that miRNAs will find their way as very 
helpful new biomarkers and as effective therapy tools into 
the clinical routine in the near future. This will help to strike 
out on new paths, which—not least in perioperative medi-
cine—will entail significant medical improvements. E
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