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Abstract: The fragmentation efficiency on Bego artificial stones during lithotripsy and the 
propulsive effect (via video tracking) was investigated for a variety of laser settings. A 
variation of the laser settings (pulse energy, pulse duration, repetition rate) altered the total 
application time required for stone fragmentation, the stone break up time, and the propulsion. 
The obtained results can be used to develop lithotripsy devices providing an optimal 
combination of low stone propulsion and high fragmentation efficacy, which can then be 
evaluated in a clinical setting. Additionally, the fluorescence of human kidney stones was 
inspected endoscopically in vivo. Fluorescence light can be used to detect stone-free areas or 
to clearly distinguish calculi from surrounding tissue or operation tools. 
© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

1. Introduction 

Ureteroscopic Ho:YAG laser lithotripsy is a preferred method for treating urinary stone 
disease [1–6]. Clinical lithotripsy is performed endoscopically by application of laser pulses 
to the calculi. The laser light is guided to the stone by an optical wave guide that is inserted 
into the working channel of either a rigid or flexible endoscope. Clinically, Ho:YAG lasers (λ 
= 2.1 µm) are widely used for this application, owing to the high absorption coefficient of 
water at the respective wavelength. This allows to induce not only thermo-mechanical 
ablation on the stone surface, but also photothermal fragmentation by expansion of the water 
contained in urinary stones [7]. To compare different laser systems and laser parameters, 
different experimental set-ups have been proposed [8–14]. Such set-ups were designed to 
quantify the fragmentation rate and the dusting efficacy. Although the term dust has not been 
defined finally to distinguish between the two processes, a definition of dust as fragments 
smaller than 1 mm has been proposed [15]. Along with the desired stone destruction, pulsed 
laser light also accelerates the urinary stone (propulsion effect), resulting in the need to 
“chase the stone” with the endoscope along the ureter. Such manoeuvres may result in a 
longer treatment time and the possibility of losing the stone or stone fragments [9, 10, 16]. 
Both, fragmentation and propulsion processes, are highly influenced by the chosen laser 
parameters (pulse energy, pulse duration, repetition rate) [15, 17, 18]. The propulsion can be 
measured via a variety of methods, for example by evaluating the maximum deflection angle 
of a pendulum due to laser impact [18–21] or by analysing horizontal [9–12] or vertical stone 
movements [13] in terms of maximum stone displacement. The main disadvantage of these 
techniques is that the propulsion effect of only one single laser pulse can be evaluated. In this 
study, a combination of maximum vertical stone displacement analysis and object tracking 
via high speed camera was used to determine the propulsion characteristics of pulse trains 
over an observation time of 7 seconds [22]. Beyond the quantification of stone destruction 
and propulsion, a third challenge is posed by the proper detection of small fragments. Small 
fragments may remain untreated clinically because of insufficient visibility and/or low 
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contrast with the surrounding tissue under white light illumination. Suitable recognition 
techniques have been proposed and are still under development [23–25]. In view of these 
three clinical challenges, the following investigations on fragmentation and propulsion of 
artificial stones as well as fluorescence response of human calculi were performed to identify 
optimisation potential in the procedure of laser lithotripsy. The main focus was set on the 
fragmentation and propulsion experiments using an experimental laser system, while for 
fluorescence response measurements first results are shown. 

2. Material and methods 

2.1 Laser device and artificial calculi 

As laser source an experimental Ho:YAG device (λ = 2.1 µm) was used, providing a huge 
range of laser settings: pulse energies (E) from 0.5 J/pulse up to 2.5 J/pulse, repetition rates 
(f) from 10 Hz to 80 Hz, and optical pulse durations (t) up to 4 ms. A detailed listing of the 
settings used is shown in Table 1. One combined setting was used where the stone was 
fragmented until the stone broke up (tbreak) with 0.5 J/pulse, 0.4 ms pulse length and 80 Hz 
repetition rate, then the fragmentation was continued using 2.5 J/pulse, 4.0 ms and 10 Hz. As 
the used laser source was an experimental device it was decided to use an optical fiber with 
core diameter of 365 µm for all experiments to guarantee optimal coupling efficacy and to 
prevent damage to the coupling optics, the coupling plug or the fiber itself. With the laser 
device it was possible to create a great variation in pulse length (0.25 ms- 4.0 ms), energy per 
pulse (0.4 J/pulse - 2.5 J/pulse). Depending on the pulse length and energy per pulse 
repetition rates up to 80 Hz could be used. The selection of settings in Table 1 was chosen 
due to experiences from former experiments [15, 20, 22, 26] with standard Ho:YAG laser 
sources and current state of the art laser settings using high repetition rates in combination 
with variations in pulse length and energy per pulse [13, 27, 28]. 

Table 1. Laser settings used for fragmentation and propulsion experiments 

E [J] t [ms] f [Hz] PAverage [W] 
0.5 0.3 10 5 
0.5 0.4 80 40 
0.5 0.6 10 5 
0.5 1.0 10 5 
0.5 1.2 40 20 
0.5 1.3 10 5 
0.5 1.6 10 5 
0.5 2.2 30 15 
1.0 0.3 10 10 
1.0 0.6 10 10 
1.0 1.0 10 10 
1.0 1.2 10 10 
1.0 0.8 40 32 
1.0 1.2 40 40 
1.0 1.6 10 10 
1.0 2.2 30 30 
1.5 0.3 10 15 
1.5 1.0 10 15 
2.0 0.3 10 20 
2.0 1.0 10 20 
2.0 4.0 10 20 
2.5 4.0 10 25 

 
Cubical (edge length: 5 mm) and spherical (Ø: 6 mm) artificial calculi made out of Bego 

powder (BEGO, BEGO GmbH & Co KG, Bremen, Germany) were used for the 
fragmentation and propulsion experiments. All stones were used “dry” without immersion in 
water beforehand. The hardness of the calculi was adjusted by the compound-to-water ratio 
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time consuming chasing of the fragments respectively the break-up behaviour. For time-
effective fragmentation it would be desirable to have maximal ablation rate (total application 
time short) with late break-up of the treated stone (fragments occur very late during the 
application) and low propulsion when it comes to “chasing” the remaining fragments. 
Generally speaking, a simultaneous increase of pulse energy and/or pulse duration as well as 
using repetition rates above 30 Hz seems to be a promising approach in the improvement of 
laser induced lithotripsy. This can be extrapolated from Fig. 5 and Fig. 6, using repetition 
rates of 10 Hz (Fig. 5) the shortest settings regarding to ttotal ranged between 200 s (1J/pulse, 1 
ms, 10 Hz) and 260 s (1J/pulse, 1.6 ms, 10 Hz), whereas in Fig. 6 fastest ttotal lay between 115 
s (setting 7: 1.0J/pulse, 1.2ms, 40Hz) and 150 s (setting 8: 0.5J/pulse, 0.4 ms, 80 Hz). The 
dusting ratios varied between 61% and 84% in all cases. 

Doubling of the energy per pulse for constant pulse duration and repetition rate as 
mentioned beforehand (setting 1: 0.5J/pulse, 2.2 ms, 30 Hz; setting 5: 1.0J/pulse, 2.2 ms, 30 
Hz) and (setting 2: 0.5 J/pulse, 1.2 ms, 40 Hz; setting 7: 1.0 J/pulse, 1.2 ms, 40 Hz) results in 
significant reduction of ttotal, but not in the same way for tbreak. Even though a setting using low 
energy per pulse and short pulse length at high repetition rates (Fig. 6: setting 8: 0.5J/pulse, 
0.4 ms, 80 Hz) was effective regarding to ttotal, but a short break up time thenceforward the 
remaining fragments are further crushed due to recently described “popcorn-technique” [31, 
32]. There was also no improvement in ttotal using setting 8 until tbreak in combination with 
setting 4 (2.5J, 4.0 ms, 10 Hz) for continuing the treatment of the fragments. Unfortunately 
the experimental laser system was just available to test the settings presented, therefore it 
would be of interest to test such “combined settings” on significant impact on the 
improvement of the overall efficacy of the treatment. The correlation between the laser 
parameters, fragmentation times and dusting efficacy has to be further investigated, 
particularly in combination with the generated propulsion. Based on these first preliminary 
data sets in this work it will be possible to continue on profound data. Recently another 
potential method was published which uses experimental data on fragmentation (here: 
ablation volume) and propulsion at different laser settings (here: pulse duration and number 
of pulses, for constant pulse energy) to derive an analytic model function for predicting 
treatment efficacy from laser parameters [30]. This might be an interesting tool for further 
optimization of laser settings and laser development. 

In the propulsion experiments [22], the result reproducibility was better when using 
spherical (first used in this work) instead of cubical stone phantoms. In Fig. 3 it is illustrated 
that the movement profile of the spherical stones (lower graph) during laser application is 
more uniform compared to that of the cubical stones (upper graph). In former experiments 
using cubes it was observed that the cubes became sometimes stuck in the experimental 
apparatus, hence the movement profile was more irregular compared to the spherical 
phantoms. Obviously this renders such experiments time-consuming and the result quality 
less satisfactory or both, which is why spherical artificial stones were introduced in this work 
to improve the overall quality of the set-up. In Fig. 7, most results obtained for the propulsion 
velocity are nevertheless in agreement for both phantom shapes. In other respects, further 
optimisation of the propulsion set-up might be useful in terms of adjustments to fibre distance 
and water flow. The experimental set-ups for fragmentation and propulsion experiments were 
developed on the one hand to mimic a clinical situation, but also to guarantee reproducible 
and reliable results in lab tests, therefore the both set-ups were optimized for good handling 
(Operator) and accessibility (laser fiber, maintenance). The main focus lay on the 
reproducible comparison of different laser settings and laser systems. Especially in case of the 
Propulsion set-up the vertical movement of the stone was used for evaluation was used as the 
gravitation served as “constant” counterforce to bring the stone back into its origin position. 
By keeping the water flow and level constant it was possible to achieve very similar 
conditions for each stone respectively laser setting tested. Even though the clinical situation 
differs from these experimental set-ups, the experimental procedure was in case of the 
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propulsion experiment independent of the investigator, using the fragmentation set-up the 
influence of the operator (subjective influences, including motivation and experience, on the 
obtained results and conclusions) could successively be minimized [15]. As a consequence, a 
high reproducibility could gradually be achieved in the evaluation of different laser systems 
and laser parameters. 

Besides fragmentation and movement of calculi, the fluorescence of human kidney stones 
was investigated in this study. Interesting approaches in this area were recently introduced 
that involved fluorescence excitation on kidney stones with the aiming beam of a laser system 
[24, 25]. This enables one to develop a feedback system for the laser device to differentiate 
hard and soft tissue in front of the fiber tip and finally to avoid accidental laser pulse 
application to surrounding soft tissue [33]. In this study it could be shown that the urinary 
stones emitted sufficiently intense fluorescence light, allowing to clearly distinguishing them 
from surrounding tissue or operation tools such as guide wires, catheters and endoscopes. 
With that, an endoscope-based safety feature can be envisioned in combination with a suitable 
color tracking algorithm. In case of the stone or the fiber out of sight or for instance inside the 
working channel there is a risk to hit operation tools, which could be avoided by activation of 
an emergency alarm [34]. Innovations in laser development resulted in the introduction of 
high power Ho:YAG lasers on the market, providing an average power around 100W, which 
can be very efficient in stone destruction [35–37]. Furthermore, attention should in particular 
also be dedicated to heat generation inside the urinary tract when using such high power laser 
devices [38–42]. Fluorescence-assisted endoscopic laser lithotripsy should be introduced in 
particular in connection with high power laser devices. While these may be equipped with 
temperature measurement features to minimize possible heat-induced damages to surrounding 
soft tissue, fluorescence may provide a prompter feedback signal to prevent direct laser 
application on tissue. Further investigations on all efficacy and safety aspects of lithotripsy 
(fragmentation, dusting, propulsion, stone recognition, and stone/tissue differentiation) should 
certainly be performed to improve the clinical outcome for the benefit of the patient. 

5. Conclusion 

Based on the set-ups used in this study, reproducible data sets concerning fragmentation for a 
variation of energy per pulse (0.5J-2.5J), pulse length (0.25 ms-4.0ms) and repetition rates 
(10Hz- 80Hz) were created. Elongation of pulse length (>1ms) in combination with 
simultaneously increase of energy per pulse dependent on the laser system’s capacity and 
higher repetition rates (>30 Hz) seems to be a promising approach to improve fragmentation 
efficacy. Propulsion experiments were performed for different energies per pulse (0.5J-2.5J), 
pulse length (0.3ms, 0.6ms, 1.0ms) at repetition rates of 10 Hz showing that the 
reproducibility of the results could be improved by the use of spherical instead of cubical 
artificial stones. In combination these data sets can be used to obtain laser lithotripsy 
procedure, meaning using the full potential (high ablation rate, smallest fragment diameter 
(dust), lowest propulsion) of laser devices currently or in the future available on the market. 
Broadband fluorescence response of human calculi could be a useful tool to retrieve lost 
stones or fragments (possible increase of stone free rate) or can be used as a further safety 
feature for laser lithotripsy (reduction of collateral damage to surrounding tissue or 
endoscopic devices). 
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