@° PLOS | ONE

Check for
updates

E OPENACCESS

Citation: Schlaeger S, Freitag F, Klupp E,
Dieckmeyer M, Weidlich D, Inhuber S, et al. (2018)
Thigh muscle segmentation of chemical shift
encoding-based water-fat magnetic resonance
images: The reference database MyoSegmenTUM.
PLoS ONE 13(6): €0198200. https:/doi.org/
10.1371/journal.pone.0198200

Editor: Peter Lundberg, Linkdping University,
SWEDEN

Received: September 7, 2017
Accepted: May 15,2018
Published: June 7, 2018

Copyright: © 2018 Schlaeger et al. This is an open
access article distributed under the terms of the
Creative Commons Attribution License, which
permits unrestricted use, distribution, and
reproduction in any medium, provided the original
author and source are credited.

Data Availability Statement: All relevant data are
within the paper and the presented database online
accessible at hitps://osf.io/svwa7/?view_only=
€2¢980c17b3a40fca35d088a3cdd83e2.

Funding: The present work was supported by the
German Society for Muscle Diseases and Philips
Healthcare to Dimitrios C. Karampinos.

Competing interests: The authors have declared
that no competing interests exist.

RESEARCH ARTICLE

Thigh muscle segmentation of chemical shift
encoding-based water-fat magnetic
resonance images: The reference database
MyoSegmenTUM

Sarah Schlaeger'-?*, Friedemann Freitag?, Elisabeth Klupp', Michael Dieckmeyer?,
Dominik Weidlich?, Stephanie Inhuber®, Marcus Deschauer*, Benedikt Schoser®,
Sarah Bublitz*, Federica Montagnese®, Claus Zimmer', Ernst J. Rummeny?, Dimitrios
C. Karampinos?, Jan S. Kirschke', Thomas Baum'

1 Department of Neuroradiology, Klinikum rechts der Isar der Technischen Universitat Minchen, Munich,
Germany, 2 Department of Radiology, Klinikum rechts der Isar der Technischen Universitat Minchen,
Munich, Germany, 3 Department of Sports Science, Technische Universitat Minchen, Munich, Germany,

4 Department of Neurology, Klinikum rechts der Isar der Technische Universitat Miinchen, Munich, Germany,
5 Friedrich-Baur-Institut an der Neurologischen Kilinik, Klinikum der Universitat Miinchen der Ludwig-
Maximilians-Universitat, Munich, Germany

* sarah.schlaeger@tum.de

Abstract

Magnetic resonance imaging (MRI) can non-invasively assess muscle anatomy, exercise
effects and pathologies with different underlying causes such as neuromuscular diseases
(NMD). Quantitative MRI including fat fraction mapping using chemical shift encoding-based
water-fat MRI has emerged for reliable determination of muscle volume and fat composition.
The data analysis of water-fat images requires segmentation of the different muscles which
has been mainly performed manually in the past and is a very time consuming process, cur-
rently limiting the clinical applicability. An automatization of the segmentation process would
lead to a more time-efficient analysis. In the present work, the manually segmented thigh
magnetic resonance imaging database MyoSegmenTUM is presented. It hosts water-fat MR
images of both thighs of 15 healthy subjects and 4 patients with NMD with a voxel size of
3.2x2x4 mm? with the corresponding segmentation masks for four functional muscle groups:
quadriceps femoris, sartorius, gracilis, hamstrings. The database is freely accessible online
at https://osf.io/svwa7/?view_only=c2c980c17b3a40fca35d088a3cdd83e2. The database is
mainly meant as ground truth which can be used as training and test dataset for automatic
muscle segmentation algorithms. The segmentation allows extraction of muscle cross sec-
tional area (CSA) and volume. Proton density fat fraction (PDFF) of the defined muscle
groups from the corresponding images and quadriceps muscle strength measurements/neu-
rological muscle strength rating can be used for benchmarking purposes.
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Introduction

The non-invasive evaluation of muscle tissue with magnetic resonance imaging (MRI) has
recently gained a lot of interest to assess muscle strength, neuromuscular diseases (NMD),
musculoskeletal disorders, metabolic diseases and aging effects. An increased signal on
T2-weighted MR images is observed after exercise [1-5] and influence of training effects have
been shown in MR images [6, 7]. In NMD the two main characteristic pathologies are acute
edematous muscle alterations and fatty infiltration of chronically affected muscles [8-10]. In
other musculoskeletal disorders such as osteoarthritis muscle proton density fat fraction
(PDFF) has been related to symptomatic and structural severity [11]. Regional distribution of
intramuscular adipose tissue has also been shown to be different in patients with metabolic dis-
eases such as type 2 diabetes [12].

Conventional magnetic resonance imaging of muscles includes T1-weighted and
T2-weighted Short Tau Inversion Recovery (STIR) sequences. Based on such images a qualita-
tive assessment of the described changes can be performed and semi-quantitative rating scales
for changes in the muscles tissue can be applied [13-16]. However, the hereby performed anal-
ysis is highly dependent on the subjective judgment of the reader and a longitudinal evaluation
of training effects or disease progression remains challenging. To allow a more objective analy-
sis there is an emerging need for quantitative MR data.

Muscle hypertrophy or atrophy can be accessed by the cross sectional area (CSA) of the
muscle. The CSA can be calculated based on anatomical images of the musculature. Using
quantitative chemical shift encoding-based water-fat MRI fatty infiltration in muscle tissue
can be additionally evaluated [17-19].

PDFF and CSA of muscle groups and individual muscles can be related to biometrically
measured muscle strength [20-22]. In patients with NMD characteristic patterns of fatty infil-
tration especially in the thigh have been defined [23] representing a promising approach for
diagnosis of the underlying disease using MR images.

For the subsequent analysis of the quantitative MR data that allows the investigation of sin-
gle muscle groups, regions of interest (ROIs) have to be defined through delineation of the
muscle contours [24]. Despite recent advances on semi-automatic or automatic segmentation
methods, their application in clinical settings is still difficult [25], and the segmentation of the
muscle often needs to be performed mainly manually for every single muscle or muscle group.
Skeletal muscle manual segmentation is a very time consuming process and a bottleneck in the
widespread clinical application of quantitative skeletal muscle MRI. A reliable, robust and fast
automated or semi-automated way of muscle segmentation would be highly beneficial for the
analysis of quantitative muscle MR images. An automatic muscle segmentation would also
improve multi-parametric analysis of different biomarkers because the defined ROIs could be
easily applied on other sequences covering the same anatomical region. Already existing meth-
ods would highly benefit from further evaluation and have yet been only applied on a ground
truth of healthy subjects to the best of our knowledge [25-29].

Particularly the thigh is a region of high interest for quantitative muscle MRI because of its
technical, anatomical and functional advantages. The thigh is a region of good magnetic field
homogeneity with relatively low motion artefacts. Patients with NMD show the disease charac-
teristic patterns mainly in the thigh and lower leg [23] and it is possible to perform muscle
selective exercise in this region.

In the present work, a database offering free online access to manually segmented thigh
muscles of healthy volunteers and NMD patients is reported. A ground truth MR image data-
base is introduced aiming to facilitate access to manually segmented images and to become an
essential tool as training or test dataset in developing automatic segmentation methods for
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thigh muscles. Volumetric information for the segmented muscle groups as well as strength
measurements are also provided.

Materials and methods
Subjects

The study was approved by the institutional Committee for Human Research (Ethikkommis-
sion der Fakultaet fuer Medizin der TU Muenchen). All subjects gave written informed con-
sent before participation in the study.

The database contains 21 MRI datasets of healthy volunteers (males n = 12, female n = 3,
29.1 +/- 7.7 years) (3 subjects were scanned 3 times with repositioning for reproducibility mea-
surements) and 4 datasets of patients with different neuromuscular diseases: myotonic dystro-
phy type 2 (DM2) (n = 2), limb girdle muscular dystrophy (LGMD) 2A (n = 1), amyotrophic
lateral sclerosis (ALS) (n = 1) (male n = 2, female n = 2, 52.8 +/- 8.9 years).

MR imaging

The bilateral thigh muscles were scanned on a 3 Tesla system (Philips, Ingenia, Best, Nether-
lands). Scanning was performed in 2 (healthy volunteers) or 3 (patients) consecutive axial
stacks to cover bilaterally the whole thigh from the hip down to the cranial edge of the patella.
The built-in 12-channel posterior coil and a 16-channel anterior coil were used, which was
placed on top of the hip and thigh region to ensure best signal quality for the scanned muscle
groups.

For the healthy volunteers HV001 to HVO011 a six-echo 3D spoiled gradient echo sequence
was used for chemical shift encoding-based water-fat separation. The sequence acquired the
six echoes in a single TR using non-flyback (bipolar) read-out gradients and the following
imaging parameters: TR/TE,,;,/ATE = 10/1.04/0.8 ms, FOV = 300x525 mm?, acquisition
matrix = 96x263, acquired slice thickness = 4 mm, reconstructed matrix size = 560x560, voxel
size = 3.2x2x4 mm®, number of slices = 65, receiver bandwidth = 2345 Hz/pixel, frequency
direction = A/P (to minimize breathing artifacts), SENSE in L/R direction with reduction fac-
tor R = 2, N,y = 1, scan time = 1 min and 48 s per stack. A flip angle of 3° was used to mini-
mize T,-bias effects.

For the healthy volunteers HV012 to HV015 a six-echo 3D spoiled gradient echo sequence
was used for chemical shift encoding-based water-fat separation. The sequence acquired the
six echoes in a single TR using non-flyback (bipolar) read-out gradients and the following
imaging parameters: TR/TE,,;,/ATE = 6.4/1.1/0.8 ms, FOV = 220x400 mm?, acquisition
matrix = 68x150, acquired slice thickness = 4 mm, reconstructed matrix size = 432x432, voxel
size = 3.2x2.2x4 mm”, number of slices = 63, receiver bandwidth = 2484 Hz/pixel, frequency
direction = A/P (to minimize breathing artifacts), N,y = 1, scan time = 1 min and 25 s per
stack. A flip angle of 3° was used to minimize T;-bias effects.

For the patients, a six-echo 3D spoiled gradient echo sequence was used for chemical shift
encoding-based water-fat separation. The sequence acquired the six echoes in a single TR
using non-flyback (bipolar) read-out gradients and the following imaging parameters: TR/
TE nin/ATE = 10/1.04/0.8 ms, FOV = 262x424 mm?, acquisition matrix = 84x211, acquired
slice thickness = 8 mm, reconstructed matrix size = 512x512, voxel size = 3.2x2x4 mm?, num-
ber of slices = 30, receiver bandwidth = 2325 Hz/pixel, frequency direction = A/P (to minimize
breathing artifacts), SENSE in L/R direction with reduction factor R = 2, N, = 1, scan
time = 20 s per stack. A flip angle of 3° was used to minimize T,-bias effects.

The gradient echo imaging data were processed online using the multi-echo mDIXON fat
quantification method provided by the manufacturer. Specifically, a complex-based water-fat

PLOS ONE | https://doi.org/10.1371/journal.pone.0198200 June 7,2018 3/19


https://doi.org/10.1371/journal.pone.0198200

'qng,L‘JE;|ONE

MyoSegmenTUM: A database for thigh muscle segmentation on magnetic resonance images

decomposition was performed using a single T,* correction and a pre-calibrated fat spectrum,
accounting for the presence of the multiple peaks in the fat spectrum. A seven-peak fat spec-
trum model was employed. The imaging-based proton density fat fraction (PDFF) map was
computed as the ratio of the fat signal over the sum of fat and water signals.

Axial water images, axial fat images and axial PDFF maps of each stack were stored as sepa-
rate datasets for each subject as a *.dcm file and a *.nii file (https://nifti.nimh.nih.gov/nifti-1).

MR image segmentation

Muscle segmentation was performed by manually drawing regions of interest (ROIs) on the
PDFF maps using the open access image viewer software MITK (German Cancer Research
Center, Division of Medical and Biological Informatics, Medical Imaging Interaction Toolkit,
Heidelberg, Germany). The ROIs delineated the following clinically relevant muscle groups:
quadriceps femoris muscle, sartorius muscle, gracilis muscle and hamstring muscles. The
ROIs were placed in each muscle group with a margin of approximately 2 mm to their outer
contour to avoid the accidental inclusion of subcutaneous fat and the muscle fat-interface as
previously reported [20]. The ROIs extend from the cranial beginning of the muscle groups
down to the muscle tendon transition at the knee. The segmentations were performed by one
operator (2 years of experience in imaging of NMD patients) in the images of all 19 subjects
including those acquired for reproducibility purposes and reviewed by a board certified radiol-
ogist (10 years of experience in musculoskeletal radiology). The average segmentation time
was approximately 6 hours for one subject. The manual segmentation of each muscle group is
available as a binary mask, in which pixels with intensity value of 1 correspond to muscle tis-
sue, while pixels with value 0 to the background. Each mask of each image stack was stored as
a separate *.mha file. Consequently, each subject dataset has 16 to 24 corresponding segmenta-
tion masks including both legs and all stacks.

Muscle strength measurements/Neurological muscle strength rating

Right quadriceps muscle maximum isometric torque [Nm] produced by knee extension at 60°
and 90° knee flexion angle was obtained in healthy volunteers (HV001 to HV011) by using a
rotational dynamometer (Isomed 2000, D&R Ferts] GmbH, Hemau, Germany). In HV012 to
HV15 isometric muscle strength measurements were performed bilaterally at 60°. The subjects
were seated in upright position (90° hip flexion) and carefully fastened with safety belts to
avoid any kind of additional movement. The aim was to generate the individual maximum iso-
metric torque in the quadriceps muscle at 60° and 90° knee flexion angle. The subjects per-
formed three repetitions with maximum isometric muscle activity by full recovery in between
and the highest value in each angle was used for the data analysis as previously reported [20].

Neurological muscle strength rating was performed by a board certified neurologist bilater-
ally in the thigh of all 4 patients for knee flexion and knee extension using the Medical
Research Council (MRC) score [30]: 0/5 no contraction; 1/5 muscle flicker, but no movement;
2/5 movement possible, but not against gravity; 3/5 movement possible against gravity, but not
against resistance by the examiner; 4/5 movement possible against some resistance by the
examiner; 5/5 normal strength.

Results

The manually segmented thigh magnetic resonance imaging database is available online at
https://osf.io/svwa7/?view_only=c2c980c17b3a40fca35d088a3cdd83e2. It includes gender, age,
weight and height for each subject and quadriceps muscle strength measurements of the
healthy volunteers as well as the neurological muscle strength rating (MRC score) of the
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Table 1. Gender, age, weight, height, quantitative muscle strength measurements of healthy volunteers.

SUBJECT |GENDER AGE |WEIGHT |HEIGHT |R_QF_STRENGTH R_QF_STRENGTH L_QF_STRENGTH
ID [KG] [cMm] MEASUREMENT 60° [NM] MEASUREMENT 90° [NM] MEASUREMENT 60° [NM]
HV001 m 30 99 179 369 323

HV002 m 25 | 103 191 372 231

HV003 m 21 |96 186 336 270

HV004 m 32 88 177 276 204

HV005 m 48 |89 192 245 183

HV006 m 26 |90 180 321 204

HV007 m 22 |64 174 246 157

HV008 m 25 |86 189 316 225

HV009 m 27 |85 182 282 224

HV010 f 24 |69 169 220 120

HVO011 m 20 | 115 177 218 202

HV012 f 39 |72 164 210 159

HV013 f 25 |76 170 176 187

HV014 m 31 87 189 233 216

HV015 m 41 |77 174 237 228

https://doi.org/10.1371/journal.pone.0198200.t001

patients (Tables 1 and 2). Axial water images, axial fat images and axial PDFF maps of each
stack were deposited as separate datasets for each subject as *.dcm file and *.nii file. The seg-
mentation masks of the four muscle groups of both legs in all stacks were deposited as *.mha
files.

Fig 1 shows the interface of the MyoSegmenTUM database. Datasets of subjects and corre-
sponding segmentation masks are labeled with the same subject ID (HV for healthy volunteer,
P for patient) and stack number. Masks were marked left (L) or right (R) and named after the
muscle group: QF (quadriceps femoris muscle), SA (sartorius muscle), GR (gracilis muscle),
HS (hamstring muscles).

Fig 2 shows the water images (muscle bright), fat images (fat bright) and PDFF maps of a
healthy volunteer (a) contrasted to the images of patients with LGMD2A (b) and DM2 (c)
showing the characteristic pathological involvement patterns of these diseases. On the left leg,
the four different muscle segmentation masks are highlighted, respectively.

In Tables 3 to 6 the PDFF and the volume of all muscle groups of all healthy volunteers and
patients are summarized. Each table contains the values for one muscle group bilaterally,
respectively.

Discussion

In the present work a database for manually segmented thigh muscles in MR images of healthy
volunteers and patients with neuromuscular diseases is presented.

The database offers access to axial water, axial fat images and axial PDFF maps of the thigh
as well as the corresponding segmentation masks for four functional muscle groups. Therefore,
the database offers free access to training or test datasets for automatic segmentation algo-
rithms. Intensity information from the different water and fat contrast can be taken into
account in terms of a joint multivariate analysis process to separate muscle and fat voxels [31-
33]. Furthermore, the open-access database could be used to benchmark different segmenta-
tion methods in a comparable way. The data is available in two (healthy volunteers) and three
(NMD patients) consecutive stacks. The stacks were acquired without a gap and consequently
could easily be merged by a potential user of the database. However, the separated stacks are
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Fig 1. Interface of the MyoSegmenTUM database.

https://doi.org/10.1371/journal.pone.0198200.9001

uploaded on the database so that every user could chose his region of interest and does not
have to download the whole thigh volume if not wanted.

Approximately 80% of the presented images are from healthy volunteers. The healthy mus-
cle tissue and its allocation in the thigh represent the ground truth for automatic segmentation
algorithms. The other images represent an insight into typical presentations of three different
muscle diseases: DM2, LGMD2A, ALS, being “extreme” cases which are useful to understand
the limitations of an applied automatic segmentation method.

The calculated mean PDFF and CSA exemplary illustrate the application of quantitative
MRI data in muscle imaging. Tables 3 to 6 can serve as the ground truth when performing
benchmark tests with newly developed computer vision or machine learning algorithms and
may help to evaluate their performance.

The quantitative data in Tables 3 to 6 can only be extracted after the definition of specific
ROIs. As there is an increasing attempt for quantification in muscle MRI to assess acute and
chronic changes in the muscle tissue there is a high need for a time efficient way of segmenting
the muscle groups or individual muscles. An automatic analysis of quantitative MRI data
enables the analysis of big data. This may allow the application of quantitative water-fat imag-
ing in clinical practice resulting in a better monitoring of disease progression and therapy
effectiveness. It could foster the development of fully automated diagnostic procedures by
computational segmenting and analyzing PDFF maps, followed by an automatic diagnostic
process using the characteristic patterns of NMD [23] in axial MR images and thus helping to
identify the correct diseases.
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Fig 2. Water Images, Fat Images, PDFF Maps of Healthy Volunteer (a) / LGMD2A Patient (b) / DM2 Patient (c) with Segmentation Masks on the Left Leg.
https://doi.org/10.1371/journal.pone.0198200.g002

The present database offers the possibility to work with whole muscle volumes in the thigh.
It is known that quantitative values such as the PDFF and water T2 can differ throughout the
muscle volume affecting the muscle heterogeneously along the proximodistal axis [34]. There-
fore, a segmentation of the whole muscle volume is essential and offers new insights into mus-
cle physiology and pathology.

The relatively low number of datasets can be seen as a limitation of the present database,
particularly in the context of traditional machine learning ground truth databases. However,
the database can be extended by more manually segmented muscle imaging data. It is planned
to gradually increase the number of datasets by additional datasets of healthy thigh muscula-
ture and from patients with various NMD showing less and more extreme pathologies of the
muscle tissue. The amount of training data for automatic segmentation algorithms based on
neural networks is highly dependent on the desired performance of the segmentation tool and
how the available data is altered (mirrored, deformed) to artificially increase the number of
training sets. However, the provided database could be seen as a good starting point for the
development of automatic algorithms and the planned extension should provide enough data-
sets for a sufficient training and testing of the segmentation algorithms.

To obtain accurate PDFF results the presented segmentation was placed slightly inside the
contour of each muscle group to exclude subcutaneous fat and muscle-fat interface. This
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Table 3. PDFF and muscle volume of healthy volunteers and patients in quadriceps femoris muscle.

Subject ID R_QF_PDFF_mean R_QF_PDFF_SD R_QF_V [mm’] L_QF_PDFF_mean L_QF_PDFF_SD L_QF_V [mm’]

HV001_1

stackl 3.67 4.77 1718788.00 3.58 4.15 1658052.00

stack2 3.55 4.40 1386032.00 3.88 4.82 1421528.00

HV001_2

stackl 3.19 4.45 1692708.00 3.26 3.96 1747708.00

stack2 3.52 4.60 1449972.00 3.70 4.45 1334548.00

HV001_3

stackl 3.02 4.14 1709228.00 3.57 3.90 1727000.00

stack2 3.53 4.04 1389408.00 3.84 4.42 1331776.00

HV002_1

stackl 3.81 4.62 1954700.00 4.38 4.59 2036844.00

stack2 4.72 6.24 1175412.00 4.95 5.29 1256168.00

HV002_2

stackl 3.78 4.68 2024556.00 4.35 4.62 1918668.00

stack2 4.24 4.88 1261884.00 4.79 5.28 1381964.00

HV002_3

stackl 3.89 4.33 2010636.00 4.19 4.55 1938084.00

stack2 4.45 4.41 1250028.00 4.84 5.24 1313176.00

HV003_1

stackl 3.17 4.03 1496736.00 3.71 4.98 1659248.00

stack2 4.34 6.56 977720.00 4.32 6.24 961172.00

HV003_2

stackl 3.63 4.09 1645324.00 3.53 4.89 1673008.00

stack2 4.44 5.68 978748.00 4.46 5.93 978240.00

HV003_3

stackl 3.34 3.96 1640932.00 3.42 491 1670328.00

stack2 4.24 5.70 994680.00 4.28 5.90 991892.00

HV004_1

stackl 6.44 7.95 1326784.00 7.04 8.39 1481804.00

stack2 7.45 9.07 889560.00 7.03 8.61 969892.00

HV005_1

stackl 6.12 6.68 1449180.00 5.77 6.09 1432808.00

stack2 7.50 7.47 929148.00 7.34 7.79 953472.00

HV006_1

stackl 3.23 4.14 1275444.00 3.13 3.63 1359984.00

stack2 4.11 6.10 1210860.00 4.04 5.81 1282804.00

HV007_1

stackl 2.67 3.45 1241308.00 2.48 2.97 1313296.00

stack2 3.03 3.31 876612.00 3.04 3.55 1009576.00

HV008_1

stackl 3.67 4.00 1526608.00 3.43 3.75 1736964.00

stack2 4.12 4.54 767012.00 4.30 4.52 867820.00

HV009_1

stackl 3.15 4.55 1643956.00 3.51 5.01 1898412.00

stack2 4.89 7.27 1145252.00 4.72 5.89 1260916.00

HV010_1

stackl 3.08 3.66 812500.00 3.76 4.04 766984.00
(Continued)
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Table 3. (Continued)

Subject ID R_QF_PDFF_mean R_QF_PDFF_SD R_QF_V [mm’] L_QF_PDFF_mean L_QF_PDFF_SD L_QF_V [mm’]
stack2 4.70 6.97 951556.00 436 4.82 1059224.00
HVO11_1

stackl 321 3.95 861920.00 3.77 4.10 771444.00
stack2 474 7.03 984340.00 443 512 1091804.00
HV012_1

stackl 3.29 9.02 236376.00 3.00 5.40 254560.00
stack2 3.69 7.09 830744.00 3.90 597 775104.00
HV013_1

stackl 1.34 4.37 542664.00 1.74 3.53 480972.00
stack2 2.53 488 1070572.00 3.14 4.17 950440.00
HV014_1

stackl 1.28 4.04 699392.00 1.89 3.49 801772.00
stack2 0.81 328 941420.00 1.88 3.77 976860.00
HV015_1

stackl 1.50 3.47 595036.00 2.09 3.39 568980.00
stack2 0.73 3.60 880296.00 2.07 3.74 796276.00
P001_1

stackl 13.05 10.62 241114.00 10.88 9.71 261194.00
stack2 12.58 12.35 232985.00 12.87 13.65 235698.00
stack3 15.67 14.89 81634.00 16.45 15.99 81017.00
P002_1

stackl 8.22 7.20 77556.00 9.01 9.08 71992.00
stack2 8.99 10.21 176872.00 9.47 11.16 175013.00
stack3 11.04 11.24 94434.00 11.94 12.83 97685.00
P003_1

stackl 14.45 10.94 104634.00 10.15 9.03 138679.00
stack2 14.34 10.82 180092.00 9.40 8.43 224038.00
stack3 16.09 13.05 119786.00 11.46 10.64 145572.00
P004_1

stackl 15.67 14.77 130906.00 16.90 15.18 116857.00
stack2 16.89 15.04 136849.00 16.72 15.00 125830.00
stack3 20.53 14.37 14227.00 19.66 12.48 12167.00
HV_mean 3.71 1201096.00 3.93 1234799.33
P_mean 13.96 132590.75 12.91 140478.50

https://doi.org/10.1371/journal.pone.0198200.t003

Table 4. PDFF and muscle volume of healthy volunteers and patients in sartorius anterior muscle.

Subject ID R_SA_PDFF_mean R_SA_PDFF_SD R SA V [mm3] L_SA_PDFF_mean L_SA_PDFF_SD L SA_V [mm3]

HV001_1

stackl 5.79 4.57 102692.00 4.50 391 100072.00

stack2 5.38 4.71 73076.00 4.11 4.48 81932.00

HV001_2

stackl 5.50 491 112892.00 5.08 4.34 113844.00

stack2 4.94 4.48 87256.00 4.87 5.81 93872.00

HV001_3

stackl 5.12 4.65 126308.00 4.28 4.09 120360.00
(Continued )
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Table 4. (Continued)

Subject ID R_SA_PDFF_mean R_SA_PDFF_SD R SA V [mm3] L_SA_PDFF_mean L_SA_PDFF_SD LSA V [mm3]
stack2 4.49 4.76 91392.00 4.53 4.83 87812.00
HV002_1
stackl 6.36 4.48 164728.00 6.09 4.42 173492.00
stack2 5.63 5.92 93796.00 4.98 5.15 91872.00
HV002_2
stackl 5.75 4.50 136116.00 5.18 4.22 164504.00
stack2 5.44 5.41 95924.00 4.92 5.44 101076.00
HV002_3
stackl 5.47 4.45 141620.00 5.01 4.28 172592.00
stack2 5.96 5.59 87308.00 5.63 5.83 97816.00
HV003_1
stackl 3.40 4.27 142852.00 4.28 3.96 140016.00
stack2 4.07 4.55 93552.00 4.72 5.98 96012.00
HV003_2
stackl 5.43 3.69 130808.00 4.24 4.11 142556.00
stack2 4.50 4.24 93600.00 5.33 6.31 96092.00
HV003_3
stackl 4.31 3.72 116132.00 4.24 4.00 135420.00
stack2 4.80 4.06 84312.00 542 6.53 101488.00
HV004_1
stackl 9.59 7.30 110676.00 8.73 6.10 110380.00
stack2 9.74 7.85 78236.00 8.35 8.27 85544.00
HV005_1
stackl 8.21 5.38 92580.00 7.69 5.16 118348.00
stack2 9.29 6.70 68256.00 10.19 7.09 82760.00
HV006_1
stackl 5.77 5.30 102672.00 6.62 6.23 129392.00
stack2 6.34 6.26 80556.00 6.30 6.74 93116.00
HV007_1
stackl 4.75 3.94 84816.00 5.30 3.73 82656.00
stack2 4.94 3.57 58608.00 527 4.43 55140.00
HV008_1
stackl 4.59 4.08 103544.00 5.62 4.21 109360.00
stack2 4.55 3.89 65068.00 4.77 5.11 66268.00
HV009_1
stackl 5.92 5.05 130248.00 6.55 5.48 143068.00
stack2 6.96 6.21 92024.00 6.70 6.18 95740.00
HV010_1
stackl 8.05 6.16 40516.00 7.77 6.60 47068.00
stack2 6.88 6.77 36280.00 9.48 8.87 46612.00
HVO011_1
stackl 8.09 6.10 40072.00 8.64 7.45 52752.00
stack2 6.97 6.69 37136.00 9.28 8.78 46040.00
HVo012_1
stackl 3.64 4.95 21704.00 3.78 4.68 19944.00
stack2 5.40 5.05 24788.00 5.10 5.20 26960.00
HVo013_1

(Continued )
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Table 4. (Continued)

Subject ID R_SA_PDFF_mean R_SA_PDFF_SD R SA V [mm3] L_SA_PDFF_mean L_SA_PDFF_SD L SAV [mm3]

stackl 3.49 5.21 27632.00 4.09 5.27 24908.00

stack2 3.58 5.40 32056.00 4.02 4.79 27072.00

HV014_1

stackl 3.95 4.21 18060.00 4.88 3.90 25272.00

stack2 1.19 4.08 6708.00 2.69 5.05 22720.00

HV015_1

stackl 3.07 4.49 34488.00 391 4.36 33900.00

stack2 2.27 4.41 38368.00 3.95 4.25 30072.00

P001_1

stackl 11.63 6.21 14978.00 15.29 18.26 21032.00

stack2 10.55 8.38 17106.00 11.12 9.31 17797.00

stack3 9.14 6.39 11508.00 9.88 7.57 12504.00

P002_1

stackl 10.16 5.81 6689.00 10.98 7.04 8499.00

stack2 13.58 7.38 6519.00 13.72 7.90 7411.00

stack3 12.15 7.57 3959.00 10.68 7.51 5141.00

P003_1

stackl 12.38 5.18 7023.00 10.83 6.61 8220.00

stack2 12.90 7.04 9478.00 10.84 6.78 8643.00

stack3 12.62 7.83 8289.00 8.90 5.99 8514.00

P004_1

stackl 17.18 8.19 9686.00 16.86 9.67 9063.00

stack2 18.78 9.09 7873.00 16.26 8.36 8554.00

stack3 22.04 11.09 4438.00 20.86 9.71 4965.00

HV_mean 5.47 80939.43 5.65 87760.00

P_mean 13.59 8962.17 13.02 10028.58

https://doi.org/10.1371/journal.pone.0198200.t004

Table 5. PDFF and muscle volume of healthy volunteers and patients in gracilis muscle.

Subject ID R_GR_PDFF_mean R_GR_PDFF_SD R_GR V [mm3] L_GR_PDFF_mean L_GR_PDFF_SD L GR V [mm3]

HV001_1

stackl 4.79 3.96 63808.00 5.41 5.01 54992.00

stack2 4.42 4.66 63692.00 4.83 5.13 59784.00

HV001_2

stackl 4.11 4.80 64692.00 4.28 4.73 55536.00

stack2 4.42 4.57 58832.00 4.88 5.81 60684.00

HV001_3

stackl 4.38 4.53 69516.00 5.15 5.22 58480.00

stack2 3.97 5.18 65648.00 4.21 5.09 54112.00

HV002_1

stackl 3.88 5.02 105060.00 3.98 4.95 90952.00

stack2 3.44 4.10 58040.00 4.46 6.10 63008.00

HV002_2

stackl 4.17 5.31 99604.00 4.28 4.82 90516.00

stack2 3.50 4.38 72856.00 4.15 5.24 67384.00

HV002_3

stackl 4.48 4.41 91508.00 4.56 4.79 96432.00
(Continued)

PLOS ONE | https://doi.org/10.1371/journal.pone.0198200 June 7,2018 12/19


https://doi.org/10.1371/journal.pone.0198200.t004
https://doi.org/10.1371/journal.pone.0198200

o @
@ : PLOS | ONE MyoSegmenTUM: A database for thigh muscle segmentation on magnetic resonance images

Table 5. (Continued)

Subject ID R_GR_PDFF_mean R_GR_PDFF_SD R_GR_V [mm3] L_GR_PDFF_mean L_GR_PDFF_SD L_GR_V [mms]
stack2 3.76 4.68 65404.00 4.44 4.74 61092.00
HV003_1
stackl 2.98 3.12 104428.00 3.40 3.70 110552.00
stack2 2.18 3.50 75792.00 2.36 3.74 75236.00
HV003_2
stackl 2.60 3.51 111120.00 2.55 3.69 108688.00
stack2 2.86 3.36 76616.00 2.58 3.97 75044.00
HV003_3
stackl 3.23 3.44 110032.00 3.57 3.67 109160.00
stack2 3.21 3.57 79572.00 2.93 3.87 78820.00
HV004_1
stackl 6.67 6.09 55588.00 6.43 6.07 46232.00
stack2 7.30 6.72 33924.00 7.14 7.05 33552.00
HV005_1
stackl 5.72 4.84 75540.00 5.62 4.59 91100.00
stack2 6.64 5.22 49572.00 6.92 5.33 65604.00
HV006_1
stackl 5.03 5.04 76920.00 5.53 5.31 74204.00
stack2 5.59 5.28 77692.00 6.32 6.32 73620.00
HV007_1
stackl 2.59 3.44 105132.00 2.38 3.52 69276.00
stack2 3.10 3.39 71068.00 3.46 3.88 50096.00
HV008_1
stackl 3.08 4.05 94616.00 3.38 4.11 92760.00
stack2 3.61 4.34 46052.00 3.92 5.29 46128.00
HV009_1
stackl 3.63 5.38 64984.00 3.76 4.66 64652.00
stack2 5.60 5.57 45128.00 5.36 5.25 45420.00
HV010_1
stackl 5.81 5.72 36648.00 5.50 5.59 33008.00
stack2 3.45 6.08 43788.00 4.23 7.91 46544.00
HVO011_1
stackl 5.96 6.17 37448.00 7.70 9.32 40128.00
stack2 4.04 6.94 44280.00 4.53 8.46 47088.00
HVo012_1
stackl 3.64 10.44 4016.00 -0.91 4.51 7584.00
stack2 6.47 5.85 12428.00 2.35 4.27 37980.00
HVo013_1
stackl 0.18 5.38 18224.00 1.79 4.92 23872.00
stack2 2.98 4.73 36456.00 2.88 4.56 40472.00
HV014_1
stackl 1.31 4.73 16360.00 2.35 4.74 15204.00
stack2 0.85 4.00 21856.00 1.88 3.83 16288.00
HVo015_1
stackl 2.64 3.90 18836.00 4.29 4.14 14728.00
stack2 1.31 4.37 37580.00 2.33 3.48 23324.00
P001_1

(Continued)
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Table 5. (Continued)

Subject ID R_GR_PDFF_mean R_GR_PDFF_SD R_GR_V [mm’] L_GR_PDFF_mean L_GR_PDFF_SD L_GR_V [mm’]
stackl 8.89 5.30 13575.00 9.36 5.23 14346.00
stack2 7.43 5.73 15209.00 7.34 5.21 17009.00
stack3 9.08 7.47 2317.00 7.44 6.14 3006.00
P002_1
stackl 5.15 3.52 3118.00 4.36 3.47 4499.00
stack2 6.40 4.59 15801.00 6.87 5.17 21550.00
stack3 6.67 7.32 4272.00 5.44 6.34 5942.00
P003_1
stackl 7.64 491 4177.00 6.79 5.30 5421.00
stack2 7.18 4.97 8308.00 6.49 4.76 10227.00
stack3 9.40 7.39 3947.00 7.37 5.70 3830.00
P004_1
stackl 9.66 5.97 9527.00 10.38 5.96 8217.00
stack2 11.36 7.11 7976.00 12.74 9.29 8224.00
stack3 17.81 10.21 69.00 16.35 8.99 65.00
HV_mean 3.89 59149.06 4.08 58793.71
P_mean 8.89 7358.00 8.41 8528.00
https://doi.org/10.1371/journal.pone.0198200.t005
Table 6. PDFF and muscle volume of healthy volunteers and patients in hamstring muscles.
Subject ID R_HS_PDFF_mean R_HS_PDFF_SD R_HS V [mm’] L_HS_PDFF_mean L_HS_PDFF_SD L_HS V [mm’]
HV001_1
stackl 3.07 6.07 176260.00 291 5.95 205804.00
stack2 4.84 7.68 666412.00 4.13 6.67 717328.00
HV001_2
stackl 1.81 5.79 182504.00 2.16 5.56 240724.00
stack2 4.74 7.52 697460.00 4.05 6.59 701600.00
HV001_3
stackl 1.34 4.99 203704.00 1.98 5.50 253208.00
stack2 4.23 5.60 683032.00 4.04 6.33 687792.00
HV002_1
stackl 3.44 6.49 408164.00 3.84 6.65 456140.00
stack2 5.77 7.44 671628.00 5.25 593 742308.00
HV002_2
stackl 3.47 5.75 395988.00 4.11 6.05 385528.00
stack2 4.96 5.65 804140.00 5.09 6.19 759040.00
HV002_3
stackl 391 5.69 441320.00 4.41 6.47 433824.00
stack2 5.46 5.72 766964.00 5.50 572 755320.00
HV003_1
stackl 2.28 4.68 373952.00 1.25 4.76 452760.00
stack2 3.47 5.50 590428.00 291 4.89 667224.00
HV003_2
stackl 1.24 5.40 466012.00 1.04 4.65 459748.00
stack2 3.39 4.64 655964.00 2.67 4.63 673252.00
(Continued)
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Table 6. (Continued)

Subject ID R_HS_PDFF_mean R_HS_PDFF_SD R_HS_V [mms] L_HS_PDFF_mean L_HS_PDFF_SD L_HS V [mm3]

HV003_3

stackl 1.70 5.16 427964.00 1.42 4.74 440772.00

stack2 3.31 4.52 681852.00 2.57 4.63 691320.00

HV004_1

stackl 7.72 9.13 263464.00 7.81 9.57 268544.00

stack2 8.70 8.73 454440.00 8.96 8.81 428556.00

HV005_1

stackl 8.12 8.93 363568.00 8.31 8.53 398280.00

stack2 10.83 9.10 753024.00 11.37 9.34 769420.00

HV006_1

stackl 3.91 6.68 264332.00 4.58 7.02 261692.00

stack2 3.80 5.28 820648.00 3.94 6.16 783076.00

HV007_1

stackl 0.76 2.75 253508.00 0.68 3.11 257492.00

stack2 2.04 3.27 569920.00 1.82 4.00 557312.00

HV008_1

stackl 1.20 5.35 402488.00 1.67 5.01 479884.00

stack2 2.81 4.30 586336.00 2.64 4.72 594332.00

HV009_1

stackl 3.83 5.63 333972.00 3.44 5.50 335964.00

stack2 5.75 6.11 598464.00 5.23 6.24 557560.00

HV010_1

stackl 3.82 7.06 150660.00 3.63 7.09 139216.00

stack2 3.19 5.17 570516.00 3.50 5.96 584564.00

HV011_1

stackl 4.06 7.41 165604.00 3.58 6.71 142476.00

stack2 3.22 5.28 565832.00 3.40 5.76 562232.00

HV012_1

stackl 5.42 8.53 7564.00 2.04 5.36 21252.00

stack2 6.53 12.97 243104.00 3.54 6.33 241108.00

HV013_1

stackl 1.80 6.98 61120.00 0.79 5.28 60692.00

stack2 4.22 9.49 418704.00 4.81 9.98 384552.00

HV014_1

stackl 0.93 4.74 83836.00 0.39 3.45 83456.00

stack2 1.51 3.82 463164.00 2.21 4.07 435128.00

HVo015_1

stackl 1.02 2.83 50380.00 1.43 4.29 48936.00

stack2 0.50 3.50 502792.00 1.57 3.59 502520.00

P001_1

stackl 21.67 14.73 32958.00 15.67 9.38 33655.00

stack2 12.64 14.37 123674.00 11.91 12.28 134167.00

stack3 11.74 10.45 56058.00 12.16 9.09 59976.00

P002_1

stackl 18.67 9.46 4456.00 23.87 15.25 5173.00

stack2 70.29 22.93 60003.00 70.16 23.33 65349.00

stack3 58.67 32.79 80285.00 64.76 28.24 88893.00
(Continued)
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Table 6. (Continued)

Subject ID R_HS_PDFF_mean R_HS_PDFF_SD R_HS_V [mm’] L_HS_PDFF_mean L_HS_PDFF_SD L_HS_V [mm’]
P003_1

stackl 5.37 9.21 22135.00 4.51 5.60 23684.00
stack2 8.90 10.12 105870.00 7.42 7.86 105075.00
stack3 14.23 13.60 119446.00 13.44 11.84 116502.00
P004_1

stackl 13.23 11.56 33275.00 13.01 13.34 27916.00
stack2 14.59 12.73 94382.00 15.01 14.40 97686.00
stack3 18.58 13.18 16664.00 16.96 11.33 16550.00
HV_mean 3.76 434314.00 3.59 443379.43
P_mean 22.38 62433.83 22.41 64552.16667

https://doi.org/10.1371/journal.pone.0198200.t006

might be considered as a second limitation, as an automatic segmentation will have to be per-
formed at the exact muscular border and eroded in a consecutive step for evaluation of PDFF.

Conclusion

A database (MyoSegmenTUM) for manually segmented thigh muscles in MR images of
healthy volunteers and patients with neuromuscular diseases was presented together with the
corresponding manual segmentation masks. The database offers training and test datasets for
the development of automatic muscle segmentation algorithms which are highly needed to
exploit the maximum potential out of quantitative muscle MRI in the future for diagnosis and
treatment of muscle pathologies.

Acknowledgments

The present work was supported by the German Society for Muscle Diseases and Philips
Healthcare.

Author Contributions
Conceptualization: Sarah Schlaeger, Thomas Baum.

Data curation: Sarah Schlaeger, Friedemann Freitag, Michael Dieckmeyer, Stephanie Inhuber,
Marcus Deschauer, Benedikt Schoser, Sarah Bublitz, Federica Montagnese.

Formal analysis: Sarah Schlaeger.

Funding acquisition: Claus Zimmer, Ernst J. Rummeny, Dimitrios C. Karampinos.
Methodology: Sarah Schlaeger, Dominik Weidlich, Dimitrios C. Karampinos, Jan S. Kirschke.
Project administration: Thomas Baum.

Supervision: Elisabeth Klupp, Marcus Deschauer, Benedikt Schoser, Claus Zimmer, Ernst J.
Rummeny, Dimitrios C. Karampinos, Jan S. Kirschke, Thomas Baum.

Validation: Jan S. Kirschke, Thomas Baum.
Writing - original draft: Sarah Schlaeger.

Writing - review & editing: Friedemann Freitag, Elisabeth Klupp, Michael Dieckmeyer,
Dominik Weidlich, Stephanie Inhuber, Marcus Deschauer, Benedikt Schoser, Sarah

PLOS ONE | https://doi.org/10.1371/journal.pone.0198200 June 7,2018 16/19


https://doi.org/10.1371/journal.pone.0198200.t006
https://doi.org/10.1371/journal.pone.0198200

@° PLOS | ONE

MyoSegmenTUM: A database for thigh muscle segmentation on magnetic resonance images

Bublitz, Federica Montagnese, Claus Zimmer, Ernst J. Rummeny, Dimitrios C. Karampi-
nos, Jan S. Kirschke, Thomas Baum.

References

1.

10.

11.

12.

13.

14.

15.

Segal RL, Song AW. Nonuniform activity of human calf muscles during an exercise task. Archives of
physical medicine and rehabilitation. 2005; 86(10):2013—7. Epub 2005/10/11. https://doi.org/10.1016/j.
apmr.2005.04.012 PMID: 16213247.

Jayaraman RC, Reid RW, Foley JM, Prior BM, Dudley GA, Weingand KW, et al. MRI evaluation of topi-
cal heat and static stretching as therapeutic modalities for the treatment of eccentric exercise-induced
muscle damage. European journal of applied physiology. 2004; 93(1-2):30-8. Epub 2004/06/29.
https://doi.org/10.1007/s00421-004-1153-y PMID: 15221407.

Kubota J, Ono T, Araki M, Torii S, Okuwaki T, Fukubayashi T. Non-uniform changes in magnetic reso-
nance measurements of the semitendinosus muscle following intensive eccentric exercise. European
journal of applied physiology. 2007; 101(6):713—20. Epub 2007/08/29. https://doi.org/10.1007/s00421-
007-0549-x PMID: 17724609.

Prior BM, Jayaraman RC, Reid RW, Cooper TG, Foley JM, Dudley GA, et al. Biarticular and monoarti-
cular muscle activation and injury in human quadriceps muscle. European journal of applied physiology.
2001; 85(1-2):185-90. Epub 2001/08/22. https://doi.org/10.1007/s004210100434 PMID: 11513314,

Sesto ME, Radwin RG, Block WF, Best TM. Anatomical and mechanical changes following repetitive
eccentric exertions. Clinical biomechanics (Bristol, Avon). 2005; 20(1):41-9. Epub 2004/11/30. https:/
doi.org/10.1016/j.clinbiomech.2004.09.002 PMID: 15567535.

Larsen RG, Ringgaard S, Overgaard K. Localization and quantification of muscle damage by magnetic
resonance imaging following step exercise in young women. Scandinavian journal of medicine & sci-
ence in sports. 2007; 17(1):76—83. Epub 2007/02/20. https://doi.org/10.1111/1.1600-0838.2006.00525.
x PMID: 17305942.

Foley JM, Jayaraman RC, Prior BM, Pivarnik JM, Meyer RA. MR measurements of muscle damage
and adaptation after eccentric exercise. Journal of applied physiology (Bethesda, Md: 1985). 1999; 87
(6):2311-8. Epub 1999/12/22. https://doi.org/10.1152/jappl.1999.87.6.2311 PMID: 10601183.

Carlier PG, Azzabou N, de Sousa PL, Hicks A, Boisserie JM, Amadon A, et al. Skeletal muscle quantita-
tive nuclear magnetic resonance imaging follow-up of adult Pompe patients. Journal of Inherited Meta-
bolic Disease. 2015; 38(3):565—72. https://doi.org/10.1007/s10545-015-9825-9 PMID: 25749708;
PubMed Central PMCID: PMCPMC4432102.

Forbes SC, Willcocks RJ, Triplett WT, Rooney WD, Lott DJ, Wang DJ, et al. Magnetic resonance imag-
ing and spectroscopy assessment of lower extremity skeletal muscles in boys with Duchenne muscular
dystrophy: a multicenter cross sectional study. PloS one. 2014; 9(9):e106435. Epub 2014/09/10.
https://doi.org/10.1371/journal.pone.0106435 PMID: 25203313; PubMed Central PMCID:
PMCPMC4159278.

Kim HK, Laor T, Horn PS, Racadio JM, Wong B, Dardzinski BJ. T2 mapping in Duchenne muscular dys-
trophy: distribution of disease activity and correlation with clinical assessments. Radiology. 2010; 255
(3):899-908. Epub 2010/05/27. https://doi.org/10.1148/radiol. 10091547 PMID: 20501727.

Kumar D, Karampinos DC, MacLeod TD, Lin W, Nardo L, Li X, et al. Quadriceps intramuscular fat frac-
tion rather than muscle size is associated with knee osteoarthritis. Osteoarthritis and cartilage. 2014; 22
(2):226-34. Epub 2013/12/24. https://doi.org/10.1016/j.joca.2013.12.005 PMID: 24361743; PubMed
Central PMCID: PMCPMC3932784.

Karampinos DC, Baum T, Nardo L, Alizai H, Yu H, Carballido-Gamio J, et al. Characterization of the
regional distribution of skeletal muscle adipose tissue in type 2 diabetes using chemical shift-based
water/fat separation. Journal of magnetic resonance imaging: JMRI. 2012; 35(4):899-907. Epub 2011/
12/01. https://doi.org/10.1002/jmri.23512 PMID: 22127958; PubMed Central PMCID:
PMCPMC3292710.

Mercuri E, Pichiecchio A, Allsop J, Messina S, Pane M, Muntoni F. Muscle MRI in inherited neuromus-
cular disorders: past, present, and future. Journal of magnetic resonance imaging: JMRI. 2007; 25
(2):433-40. Epub 2007/01/30. https://doi.org/10.1002/jmri.20804 PMID: 17260395.

Morrow JM, Matthews E, Raja Rayan DL, Fischmann A, Sinclair CD, Reilly MM, et al. Muscle MRI
reveals distinct abnormalities in genetically proven non-dystrophic myotonias. Neuromuscular disor-
ders: NMD. 2013; 23(8):637—46. Epub 2013/07/08. https://doi.org/10.1016/j.nmd.2013.05.001 PMID:
23810313; PubMed Central PMCID: PMCPMC3744809.

Mercuri E, Counsell S, Allsop J, Jungbluth H, Kinali M, Bonne G, et al. Selective muscle involvement on
magnetic resonance imaging in autosomal dominant Emery-Dreifuss muscular dystrophy. Neuropedia-
trics. 2002; 33(1):10—4. Epub 2002/04/04. https://doi.org/10.1055/s-2002-23593 PMID: 11930270.

PLOS ONE | https://doi.org/10.1371/journal.pone.0198200 June 7,2018 17/19


https://doi.org/10.1016/j.apmr.2005.04.012
https://doi.org/10.1016/j.apmr.2005.04.012
http://www.ncbi.nlm.nih.gov/pubmed/16213247
https://doi.org/10.1007/s00421-004-1153-y
http://www.ncbi.nlm.nih.gov/pubmed/15221407
https://doi.org/10.1007/s00421-007-0549-x
https://doi.org/10.1007/s00421-007-0549-x
http://www.ncbi.nlm.nih.gov/pubmed/17724609
https://doi.org/10.1007/s004210100434
http://www.ncbi.nlm.nih.gov/pubmed/11513314
https://doi.org/10.1016/j.clinbiomech.2004.09.002
https://doi.org/10.1016/j.clinbiomech.2004.09.002
http://www.ncbi.nlm.nih.gov/pubmed/15567535
https://doi.org/10.1111/j.1600-0838.2006.00525.x
https://doi.org/10.1111/j.1600-0838.2006.00525.x
http://www.ncbi.nlm.nih.gov/pubmed/17305942
https://doi.org/10.1152/jappl.1999.87.6.2311
http://www.ncbi.nlm.nih.gov/pubmed/10601183
https://doi.org/10.1007/s10545-015-9825-9
http://www.ncbi.nlm.nih.gov/pubmed/25749708
https://doi.org/10.1371/journal.pone.0106435
http://www.ncbi.nlm.nih.gov/pubmed/25203313
https://doi.org/10.1148/radiol.10091547
http://www.ncbi.nlm.nih.gov/pubmed/20501727
https://doi.org/10.1016/j.joca.2013.12.005
http://www.ncbi.nlm.nih.gov/pubmed/24361743
https://doi.org/10.1002/jmri.23512
http://www.ncbi.nlm.nih.gov/pubmed/22127958
https://doi.org/10.1002/jmri.20804
http://www.ncbi.nlm.nih.gov/pubmed/17260395
https://doi.org/10.1016/j.nmd.2013.05.001
http://www.ncbi.nlm.nih.gov/pubmed/23810313
https://doi.org/10.1055/s-2002-23593
http://www.ncbi.nlm.nih.gov/pubmed/11930270
https://doi.org/10.1371/journal.pone.0198200

@° PLOS | ONE

MyoSegmenTUM: A database for thigh muscle segmentation on magnetic resonance images

16.

17.

18.

19.

20.

21.

22,

23.

24,

25.

26.

27.

28.

29.

30.
31.

32.

33.

Poliachik SL, Friedman SD, Carter GT, Parnell SE, Shaw DW. Skeletal muscle edema in muscular dys-
trophy: clinical and diagnostic implications. Physical medicine and rehabilitation clinics of North Amer-
ica. 2012; 23(1):107-22, xi. Epub 2012/01/14. https://doi.org/10.1016/j.pmr.2011.11.016 PMID:
22239878.

Karampinos DC, Yu H, Shimakawa A, Link TM, Majumdar S. T(1)-corrected fat quantification using
chemical shift-based water/fat separation: application to skeletal muscle. Magnetic resonance in medi-
cine. 2011; 66(5):1312-26. https://doi.org/10.1002/mrm.22925 PMID: 21452279; PubMed Central
PMCID: PMCPMC3150641.

Reeder SB, Hu HH, Sirlin CB. Proton density fat-fraction: a standardized MR-based biomarker of tissue
fat concentration. Journal of magnetic resonance imaging: JMRI. 2012; 36(5):1011—4. Epub 2012/07/
11. https://doi.org/10.1002/jmri.23741 PMID: 22777847; PubMed Central PMCID: PMCPMC4779595.

Burakiewicz J, Sinclair CDJ, Fischer D, Walter GA, Kan HE, Hollingsworth KG. Quantifying fat replace-
ment of muscle by quantitative MRI in muscular dystrophy. Journal of neurology. 2017. Epub 2017/07/
08. https://doi.org/10.1007/s00415-017-8547-3 PMID: 28669118.

Baum T, Inhuber S, Dieckmeyer M, Cordes C, Ruschke S, Klupp E, et al. Association of Quadriceps
Muscle Fat With Isometric Strength Measurements in Healthy Males Using Chemical Shift Encoding-
Based Water-Fat Magnetic Resonance Imaging. Journal of computer assisted tomography. 2016; 40
(3):447-51. Epub 2016/03/10. https://doi.org/10.1097/RCT.0000000000000374 PMID: 26953765;
PubMed Central PMCID: PMCPMC4872643.

Dahlqvist JR, Vissing CR, Hedermann G, Thomsen C, Vissing J. Fat Replacement of Paraspinal Mus-
cles with Aging in Healthy Adults. Medicine and science in sports and exercise. 2017; 49(3):595-601.
Epub 2016/10/21. https://doi.org/10.1249/MSS.0000000000001119 PMID: 27741218.

Dahlgvist JR, Vissing CR, Thomsen C, Vissing J. Severe paraspinal muscle involvement in facioscapu-
lohumeral muscular dystrophy. Neurology. 2014; 83(13):1178-83. Epub 2014/08/22. https://doi.org/10.
1212/WNL.0000000000000828 PMID: 25142899.

Wattjes MP, Kley RA, Fischer D. Neuromuscular imaging in inherited muscle diseases. European radi-
ology. 2010; 20(10):2447—-60. Epub 2010/04/28. https://doi.org/10.1007/s00330-010-1799-2 PMID:
20422195; PubMed Central PMCID: PMCPMC2940021.

Barnouin Y, Butler-Browne G, Voit T, Reversat D, Azzabou N, Leroux G, et al. Manual segmentation of
individual muscles of the quadriceps femoris using MRI: a reappraisal. Journal of magnetic resonance
imaging: JMRI. 2014; 40(1):239—-47. Epub 2014/03/13. https://doi.org/10.1002/jmri.24370 PMID:
24615897.

Baudin PY, Azzabou N, Carlier PG, Paragios N. Prior knowledge, random walks and human skeletal
muscle segmentation. Medical image computing and computer-assisted intervention: MICCAI Interna-
tional Conference on Medical Image Computing and Computer-Assisted Intervention. 2012; 15(Pt
1):569-76. Epub 2013/01/05. PMID: 23285597.

Le Troter A, Foure A, Guye M, Confort-Gouny S, Mattei JP, Gondin J, et al. Volume measurements of
individual muscles in human quadriceps femoris using atlas-based segmentation approaches. Magma
(New York, NY). 2016; 29(2):245-57. Epub 2016/03/18. https://doi.org/10.1007/s10334-016-0535-6
PMID: 26983429.

Andrews S, Hamarneh G. The Generalized Log-Ratio Transformation: Learning Shape and Adjacency
Priors for Simultaneous Thigh Muscle Segmentation. IEEE transactions on medical imaging. 2015; 34
(9):1773-87. Epub 2015/02/24. https://doi.org/10.1109/TMI.2015.2403299 PMID: 25700442,

Karlsson A, Rosander J, Romu T, Tallberg J, Grongvist A, Borga M, et al. Automatic and quantitative
assessment of regional muscle volume by multi-atlas segmentation using whole-body water—fat MRI.
Journal of Magnetic Resonance Imaging. 2015; 41(6):1558—-69. https://doi.org/10.1002/jmri.24726
PMID: 25111561

Brunner G, Nambi V, Yang E, Kumar A, Virani SS, Kougias P, et al. Automatic quantification of muscle
volumes in magnetic resonance imaging scans of the lower extremities. Magn Reson Imaging. 2011; 29
(8):1065—75. Epub 2011/08/23. https://doi.org/10.1016/j.mri.2011.02.033 PMID: 21855242.

MRC. Aids to the Examination of the Peripheral Nervous System: The Stationery Office Books; 1976.

Makrogiannis S, Serai S, Fishbein KW, Schreiber C, Ferrucci L, Spencer RG. Automated Quantification
of Muscle and Fat in the Thigh from Water-, Fat-and Non-Suppressed MR Images. Journal of magnetic
resonance imaging: JMRI. 2012; 35(5):1152—-61. https://doi.org/10.1002/jmri.22842 PMID: 22170747
PubMed Central PMCID: PMCPMC3319811.

Yang YX, Chong MS, Tay L, Yew S, Yeo A, Tan CH. Automated assessment of thigh composition using
machine learning for Dixon magnetic resonance images. Magma (New York, NY). 2016; 29(5):723-31.
Epub 2016/03/31. https://doi.org/10.1007/s10334-016-0547-2 PMID: 27026244.

Valentinitsch A, Karampinos DC, Alizai H, Subburaj K, Kumar D, Link TM, et al. Automated unsuper-
vised multi-parametric classification of adipose tissue depots in skeletal muscle. Journal of magnetic

PLOS ONE | https://doi.org/10.1371/journal.pone.0198200 June 7,2018 18/19


https://doi.org/10.1016/j.pmr.2011.11.016
http://www.ncbi.nlm.nih.gov/pubmed/22239878
https://doi.org/10.1002/mrm.22925
http://www.ncbi.nlm.nih.gov/pubmed/21452279
https://doi.org/10.1002/jmri.23741
http://www.ncbi.nlm.nih.gov/pubmed/22777847
https://doi.org/10.1007/s00415-017-8547-3
http://www.ncbi.nlm.nih.gov/pubmed/28669118
https://doi.org/10.1097/RCT.0000000000000374
http://www.ncbi.nlm.nih.gov/pubmed/26953765
https://doi.org/10.1249/MSS.0000000000001119
http://www.ncbi.nlm.nih.gov/pubmed/27741218
https://doi.org/10.1212/WNL.0000000000000828
https://doi.org/10.1212/WNL.0000000000000828
http://www.ncbi.nlm.nih.gov/pubmed/25142899
https://doi.org/10.1007/s00330-010-1799-2
http://www.ncbi.nlm.nih.gov/pubmed/20422195
https://doi.org/10.1002/jmri.24370
http://www.ncbi.nlm.nih.gov/pubmed/24615897
http://www.ncbi.nlm.nih.gov/pubmed/23285597
https://doi.org/10.1007/s10334-016-0535-6
http://www.ncbi.nlm.nih.gov/pubmed/26983429
https://doi.org/10.1109/TMI.2015.2403299
http://www.ncbi.nlm.nih.gov/pubmed/25700442
https://doi.org/10.1002/jmri.24726
http://www.ncbi.nlm.nih.gov/pubmed/25111561
https://doi.org/10.1016/j.mri.2011.02.033
http://www.ncbi.nlm.nih.gov/pubmed/21855242
https://doi.org/10.1002/jmri.22842
http://www.ncbi.nlm.nih.gov/pubmed/22170747
https://doi.org/10.1007/s10334-016-0547-2
http://www.ncbi.nlm.nih.gov/pubmed/27026244
https://doi.org/10.1371/journal.pone.0198200

o @
@ : PLOS | ONE MyoSegmenTUM: A database for thigh muscle segmentation on magnetic resonance images

resonance imaging: JMRI. 2013; 37(4):917-27. Epub 2012/10/26. https://doi.org/10.1002/jmri.23884
PMID: 23097409; PubMed Central PMCID: PMCPMC3573225.

34. Hooijmans MT, Niks EH, Burakiewicz J, Anastasopoulos C, van den Berg Sl, van Zwet E, et al. Non-uni-
form muscle fat replacement along the proximodistal axis in Duchenne muscular dystrophy. Neuromus-
cular disorders: NMD. 2017; 27(5):458—64. Epub 2017/03/18. https://doi.org/10.1016/j.nmd.2017.02.
009 PMID: 28302391.

PLOS ONE | https://doi.org/10.1371/journal.pone.0198200 June 7,2018 19/19


https://doi.org/10.1002/jmri.23884
http://www.ncbi.nlm.nih.gov/pubmed/23097409
https://doi.org/10.1016/j.nmd.2017.02.009
https://doi.org/10.1016/j.nmd.2017.02.009
http://www.ncbi.nlm.nih.gov/pubmed/28302391
https://doi.org/10.1371/journal.pone.0198200

