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Abstract

Background: State-of-the-art classifiers based on convolutional neural networks (CNNs) were shown to classify images of skin
cancer on par with dermatologists and could enable lifesaving and fast diagnoses, even outside the hospital via installation of
apps on mobile devices. To our knowledge, at present there is no review of the current work in this research area.

Objective: This study presents the first systematic review of the state-of-the-art research on classifying skin lesions with CNNs.
We limit our review to skin lesion classifiers. In particular, methods that apply a CNN only for segmentation or for the classification
of dermoscopic patterns are not considered here. Furthermore, this study discusses why the comparability of the presented
procedures is very difficult and which challenges must be addressed in the future.

Methods: We searched the Google Scholar, PubMed, Medline, ScienceDirect, and Web of Science databases for systematic
reviews and original research articles published in English. Only papers that reported sufficient scientific proceedings are included
in this review.

Results: We found 13 papers that classified skin lesions using CNNs. In principle, classification methods can be differentiated
according to three principles. Approaches that use a CNN already trained by means of another large dataset and then optimize
its parameters to the classification of skin lesions are the most common ones used and they display the best performance with the
currently available limited datasets.

Conclusions: CNNs display a high performance as state-of-the-art skin lesion classifiers. Unfortunately, it is difficult to compare
different classification methods because some approaches use nonpublic datasets for training and/or testing, thereby making
reproducibility difficult. Future publications should use publicly available benchmarks and fully disclose methods used for training
to allow comparability.
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Introduction

In the past 10-year period, from 2008 to 2018, the annual
number of melanoma cases has increased by 53%, partly due
to increased UV exposure [1,2]. Although melanoma is one of
the most lethal types of skin cancer, a fast diagnosis can lead
to a very high chance of survival.

The first step in the diagnosis of a malignant lesion by a
dermatologist is visual examination of the suspicious skin area.
A correct diagnosis is important because of the similarities of
some lesion types; moreover, the diagnostic accuracy correlates
strongly with the professional experience of the physician [3].
Without additional technical support, dermatologists have a
65%-80% accuracy rate in melanoma diagnosis [4]. In
suspicious cases, the visual inspection is supplemented with
dermatoscopic images taken with a special high-resolution and
magnifying camera. During the recording, the lighting is
controlled and a filter is used to reduce reflections on the skin,
thereby making deeper skin layers visible. With this technical
support, the accuracy of skin lesion diagnosis can be increased
by a further 49% [5]. The combination of visual inspection and
dermatoscopic images ultimately results in an absolute
melanoma detection accuracy of 75%-84% by dermatologists
[6,7].

For some time, the problem of classifying skin lesions has also
moved into the focus of the machine learning community.
Automated lesion classification can both support physicians in
their daily clinical routine and enable fast and cheap access to
lifesaving diagnoses, even outside the hospital, through
installation of apps on mobile devices [8,9]. Before 2016,
research mostly followed the classical workflow of machine
learning: preprocessing, segmentation, feature extraction, and
classification [9-11]. However, a high level of
application-specific expertise is required, particularly for feature
extraction, and the selection of adequate features is very
time-consuming. In addition, errors and the loss of information
in the first processing steps have a very strong influence on the
classification quality. For example, a poor segmentation result
often leads to poor results in feature extraction and,
consequently, low classification accuracy.

In 2016, a change occurred regarding the research of lesion
classification techniques. An indication of this change can be
found in the methods submitted to the 2016 International
Symposium on Biomedical Imaging (ISBI) [12]. The 25
participating teams did not apply traditional standard machine
learning methods; instead, they all employed a deep learning
technique: convolutional neural networks (CNNs) [13].

This paper presents the first systematic review of the
state-of-the-art research on classifying skin lesions using CNNs.
The presented methods are categorized by whether a CNN is
used exclusively as a feature extractor or whether it is applied
for end-to-end-learning. The conclusion of this paper discusses
why the comparability of the presented techniques is very
difficult and which challenges must be addressed in the future.

Methods

Search Strategy
The Google Scholar, PubMed, Medline, ScienceDirect, and
Web of Science databases were searched for systematic reviews
and original research articles published in English. The search
terms convolutional neural networks, deep learning, skin cancer,
lesions, melanoma, and carcinoma were combined. Only papers
that showed sufficient scientific proceedings are included in
this review.

Study Selection
We limited our review to skin lesion classification methods. In
particular, methods that apply a CNN only for lesion
segmentation or for the classification of dermatoscopic patterns
as in Demyanov et al [14] are not considered in this paper.
Furthermore, only papers that show a sufficient scientific
proceeding are included in this review. This latter criterion
includes presenting the approaches in an understandable manner
and discussing the results sufficiently. Works in which the origin
of the performance was not plausible are not considered in this
work, for example, in Carcagnì et al [15] or Dorj et al [16].

Convolutional Neural Networks
CNNs are neural networks with a specific architecture that have
been shown to be very powerful in areas such as image
recognition and classification [17]. CNNs have been
demonstrated to identify faces, objects, and traffic signs better
than humans and therefore can be found in robots and
self-driving cars.

CNNs are a supervised learning method and are therefore trained
using data labeled with the respective classes. Essentially, CNNs
learn the relationship between the input objects and the class
labels and comprise two components: the hidden layers in which
the features are extracted and, at the end of the processing, the
fully connected layers that are used for the actual classification
task. Unlike regular neural networks, the hidden layers of a
CNN have a specific architecture. In regular neural networks,
each layer is formed by a set of neurons and one neuron of a
layer is connected to each neuron of the preceding layer. The
architecture of hidden layers in a CNN is slightly different. The
neurons in a layer are not connected to all neurons of the
preceding layer; rather, they are connected to only a small
number of neurons. This restriction to local connections and
additional pooling layers summarizing local neuron outputs into
one value results in translation-invariant features. This results
in a simpler training procedure and a lower model complexity.

Current Classifiers for Skin Lesions Based on
Convolutional Neural Networks
In this section, the individual CNN methods used to classify
skin lesions are presented. CNNs can be used to classify skin
lesions in two fundamentally different ways. On the one hand,
a CNN pretrained on another large dataset, such as ImageNet
[18], can be applied as a feature extractor. In this case,
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classification is performed by another classifier, such as
k-nearest neighbors, support vector machines, or artificial neural
networks. On the other hand, a CNN can directly learn the
relationship between the raw pixel data and the class labels
through end-to-end learning. In contrast with the classical
workflow typically applied in machine learning, feature
extraction becomes an integral part of classification and is no
longer considered as a separate, independent processing step.
If the CNN is trained by end-to-end learning, the research can
be additionally divided into two different approaches: learning
the model from scratch or transfer learning. An overview of the
presented CNN methods is shown in Figure 1.

A basic requirement for the successful training of deep CNN
models is that sufficient training data labeled with the classes
are available. Otherwise, there is a risk of overfitting the neural
network and, as a consequence, an inadequate generalization
property of the network for unknown input data. There is a very
limited amount of data publicly available for the classification
of skin lesions. Almost all published methods use datasets that
contain far less than 1000 training data points per training class.
In comparison, well-known CNN models for image
classification, such as AlexNet [18], VGG [19], GoogLeNet
[20], or ResNet [21], are trained via the large image database
ImageNet and have over 1000 training images for each training
class.

However, through the use of a specific training procedure called
transfer learning, powerful CNN models with several million
free parameters can also be employed for classification, even
if only a small amount of data are available for training. In this
case, the CNN is pretrained using a very large dataset, such as
ImageNet; it is then used as an initialization of the CNN for the
respective task. In particular, the last fully connected layer of
the pretrained CNN model is modified according to the number
of training classes in the actual classification task. There are
then two options for the weights of the pretrained CNN: to
fine-tune all layers of the CNN or to freeze some of the front
layers because of overfitting problems and to fine-tune only
some back layers of the network. The idea behind this technique
is that that the front layers of a CNN contain more generic

features (eg, edge or color-blob detectors) that are useful for
many tasks, but the back layers of the CNN become increasingly
specific to the details of the classes contained in the original
dataset.

In the following discussion, statistical quantities to evaluate
different classifiers are introduced. Next, methods that utilize
the CNN as a feature extractor are presented. The last subsection
provides an overview of the methods involved when using CNN
for end-to-end-learning.

Performance Metrics for Classifiers
A classifier assigns each object to a class. This assignment is
generally not perfect and objects may be assigned to the wrong
class. To evaluate a classifier, the actual class of the objects
must be known. To evaluate the classification quality, the class
assigned by the classifier is compared with the actual class. This
allows the objects to be divided into the following four subsets:

1. True positive (TP): the classifier correctly predicts the
positive class.

2. True negative (TN): the classifier correctly predicts the
negative class.

3. False positive (FP): the classifier incorrectly predicts the
positive class.

4. False negative (FN): the classifier incorrectly predicts the
negative class.

Based on the cardinality of these subsets, statistical quantities
for the classifier can now be calculated. A common and widely
used quantity is accuracy, which is only a reasonable measure
if the different classes in the dataset are approximately equally
distributed. Accuracy is calculated by (TP + TN)/(TP + TN +
FP + FN). It specifies the percentage of objects that have been
correctly classified.

Two other important metrics are sensitivity and specificity,
which can be applied even if the different classes are not equally
distributed. Sensitivity indicates the ratio of objects correctly
classified as positive out of the total number of positive objects
contained in the dataset and is calculated by TP/(TP + FN).
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Figure 1. An overview of the presented convolutional neural networks (CNNs) methods and the corresponding categorization.

Specificity indicates the ratio of negative objects correctly
classified as negative out of the total number of negative objects
contained in the available dataset and is calculated by TN/(TN
+ FP).

The output of a binary classifier is interpreted as a probability
distribution over the classes. Normally, objects with an output
value greater than .5 are assigned to the positive class in a binary
classifier and objects with an output value less than .5 are
assigned to the negative class. An alternative approach is used
based on the receiver operating characteristic (ROC). The
threshold used for classification systematically varies between
0 and 1, and the sensitivity and specificity are determined for
each selected threshold. The ROC curve is calculated by plotting
the sensitivity against 1-specificity and can be used to evaluate
the classifier. The further the ROC curve deviates from the
diagonal, the better the classifier. A suitable overall measure
for the curve is the area under the curve (AUC).

Results

Classifier That Utilizes the Convolutional Neural
Network as a Feature Extractor
A CNN can be included in classification by removing the fully
connected layers of a CNN that were pretrained with a large
dataset. In skin lesion classification, pretraining is performed
using ImageNet. Despite the nonmedical image domain, the
learned features have sufficient quality for lesion classification
[22].

Pomponiu et al [23] used only 399 images from a standard
camera for the classification of melanomas versus benign nevi.
First, data augmentation and preprocessing were performed.
Subsequently, a pretrained AlexNet was applied for the
extraction of representational features. The lesions were then
classified with a k-nearest-neighbor classifier using cosine
distance metrics. The algorithm was not tested with an
independent test dataset; only a cross-validation was performed.
The algorithm achieved a sensitivity of 92.1%, a specificity of

95.18%, and an accuracy of 93.64%. In addition to the
nonexistent independent test dataset, it is also critical to note
that the region of interest for each skin lesion must be manually
annotated.

An AlexNet model for feature extraction was also applied by
Codella et al [24]. In contrast to Gutman et al [12], however, a
total of 2624 dermatoscopic images from the publicly available
International Skin Imaging Collaboration (ISIC) database were
used for the classification of melanoma versus nonmelanoma
lesions or melanoma versus atypical nevi. In addition to the
modified AlexNet outputs, the authors also used low-level
handcrafted features and features from sparse coding, a deep
residual network, and a convolutional U-network. Classification
based on all of these features was then performed using a support
vector machine. The authors reported an accuracy of 93.1%, a
sensitivity of 94.9%, and a specificity of 92.8% for classifying
melanoma versus nonmelanoma. In the more difficult
discrimination between melanomas and atypical nevi, an
accuracy of 73.9%, a sensitivity of 73.8%, and a specificity of
74.3% were reported. The authors also showed that the use of
deep features results in a better performance compared to
classifiers that only used low-level handcrafted features.

Kawahara et al [25] used a linear classifier to classify 10
different skin lesions. Feature extraction was also performed
using an AlexNet whose last fully connected layer was replaced
with a convolutional layer. This slightly modified AlexNet was
tested using the public Dermofit Image Library, which contains
1300 clinical images of 10 skin lesions. An accuracy of 81.8%
was achieved based on the entire dataset of 10 different types
of skin lesions.

Skin Lesion Classifier Using End-to-End Learning

Convolutional Neural Network Model Training With
Transfer Learning
Because publicly available datasets are limited, a common
method of skin lesion classification involves transfer learning.
Therefore, all such works pretrain a CNN via the ImageNet
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dataset; next, the weighting parameters of the CNN are
fine-tuned to the actual classification problem.

Esteva et al [26] presented a landmark publication. For the first
time, a CNN model was trained with a large amount of data,
specifically 129,450 images, of which 3374 were obtained from
dermatoscopic devices and represented 2032 different skin
lesions. Two binary classification problems were considered:
keratinocyte carcinomas versus benign seborrheic keratosis and
malignant melanomas versus benign nevi. The last classification
differentiation was performed for both clinical and
dermatoscopic images. The authors used a GoogLeNet Inception
v3 model for the classification, which was pretrained with the
large image database ImageNet. The CNN model was then
fine-tuned to classify skin lesions using transfer learning. A
special property of this approach is the use of a novel
tree-structured disease taxonomy in which the individual
diseases form the leaves of the tree. The inner nodes group
together individual diseases that are visually and clinically
similar. The CNN does not have a two-dimensional vector as
the output; instead, it reports a probability distribution with over
757 training classes. To determine the probabilities of a coarser
lesion class (ie, an inner node at a higher level in the tree), the
probabilities of the child nodes of this coarser lesion class are
summed together. The authors show within the evaluation that
a CNN that has been trained for finer classes has a better
performance than a CNN that has been trained for the distinct
classes that are of interest for the problem. The trained CNN
was tested with test data that were fully biopsy-proofed and
achieved an ROC AUC of .96 for carcinomas, an ROC AUC
of .96 for melanomas, and an ROC AUC of .94 for melanomas
classified exclusively with dermatoscopic images.

Haenssle et al [3] presented a very similar approach to Esteva
et al [26]. A GoogLeNet Inception v3 model was adapted for
skin lesion classification with transfer learning, whereby the
weights were fine-tuned in all layers. The analysis was limited
to dermatoscopic images of melanoma versus benign nevi and
the AUC ROC achieved for this task was .86 (Esteva et al [26]:
.94). The exact number of training data points was not provided
and not all data had been proofed by a biopsy. However, the
publication included the largest number of dermatologists to
date (n=58) and was the first to indicate that additional clinical
information improves both; sensitivity and specificity of
dermatologists.

Han et al [27] are particularly noteworthy for their scientific
transparency since they have made their computer algorithm
publicly available for external testing. The team presented a
classifier for 12 different skin diseases based on clinical images.
They developed a ResNet model that was fine-tuned with 19,398
training images. With the publicly available Asan dataset, the
CNN model achieved ROC AUCs for the diagnoses of basal
cell carcinoma, squamous cell carcinoma, intraepithelial
carcinoma, and melanoma of .96, .83, .82, and .96, respectively.

An ensemble of CNNs for the classification of melanomas
versus nevi or lentigines is presented by Marchetti et al [13].
They implemented five methods to fuse all automated
predictions from the 25 participating teams in the ISBI 2016
Challenge into a single classification result. For this purpose,

they tested two nonlearning approaches and three machine
learning methods. The fusion algorithms were trained with 279
dermatoscopic images from the ISBI 2016 Challenge dataset
and were tested with 100 other dermatoscopic images from the
same dataset. Based on average precision, greedy fusion was
the best-performing ensemble method with a sensitivity of 58%
and a specificity of 88%.

Another type of CNN ensemble was presented by Bi et al [28].
They considered the classification of melanomas versus
seborrheic keratosis versus nevi using dermatoscopic images.
They did not train multiple CNNs for the same classification
problem; instead, three ResNets for different problems were
trained: one for the original three-class problem and two binary
classifiers (ie, melanoma versus both other lesion classes or
seborrheic carcinoma versus both other lesion classes) by
fine-tuning a pretrained CNN. The test utilized 150
dermatoscopic images and resulted in an ROC AUC of .854 for
melanomas, an ROC AUC of .976 for seborrheic carcinomas,
and an average ROC AUC over all classes of .915.

A special architecture of a CNN ensemble is presented by
Kawahara et al [29]. The CNN was composed of multiple parts
in which each part considers the same image at a different
resolution. Next, an end layer combines the outputs from
multiple resolutions into a single layer. The CNN identifies
interactions across different image resolutions and the weighting
parameters are completely optimized by end-to-end learning.
The algorithm achieved an average classification accuracy of
79.5% in the public Dermofit Image Library.

Similar to Esteva et al [26], Sun et al [30] introduced a classifier
that used 198 very finely defined training classes. In total, 6584
clinical images of the publicly available image archive
DermQuest were used for training and testing and the
performance of the CNN models CaffeNet and VGGNet were
evaluated for this classification problem. The best average
accuracy of 50.27% over all 198 classes was obtained using a
pretrained VGGNet, which was optimized by fine-tuning the
weighting parameters.

A modified VGGNet was also utilized by Lopez et al [31],
where the classification of melanoma versus nevi or lentigines
was addressed using dermatoscopic images. The authors
compared the classification accuracy of a CNN trained from
scratch, a pretrained CNN with transfer learning and frozen
layers, and a pretrained CNN with transfer learning and
fine-tuning of the weighting parameters. All three configurations
were tested with 379 images from the ISBI 2016 Challenge
dataset, and the last-mentioned configuration achieved the
highest accuracy of 81.33%.

Convolutional Neural Network Model Training From
Scratch
The previously introduced two-step approach by Bi et al [28]
also falls under the category “learning from scratch” due to the
method of training of the the ResNet model for the three-class
classification of melanoma versus seborrheic keratosis versus
nevus. Bi et al [28] used approximately 3600 dermatoscopic
images from the ISBI 2017 Challenge dataset and additional
images from the ISIC Archive to achieve the results reported.
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In Nasr-Esfahani et al [32], a two-layer CNN was trained from
scratch for the distinction of melanoma versus benign nevi based
on clinical images. Only 136 images were used to train the
model and the test dataset contained only 34 images. The images
were all from the public image archive of the Department of
Dermatology of the University Medical Center Groningen. The
method achieved a sensitivity of 81%, a specificity of 80%, and
an accuracy of 81%. However, the result should be viewed
critically because the test dataset was very limited.

Discussion

Principal Findings
One issue with the comparison of skin lesion classification
methods is that the considered problem formulations of the
individual works differ, sometimes only slightly. This occurs
not only for the considered training classes and the used data,
but also for the presented statistical quantities. In addition, some
works use nonpublic archives of skin clinics in addition to
publicly accessible data archives [3,26]. This makes it even
more difficult to reproduce the results. Since 2016, the ISIC
Melanoma Project has attempted to improve this aspect by
establishing a publicly accessible archive of dermatoscopic skin
lesion images as a benchmark for education and research [12].
In addition, they announced an annual challenge in which a
clearly defined problem must be addressed. It would be desirable
if more work would compare itself with this benchmark to

achieve a better ranking of the procedures in the state of
research.

Another important challenge in this research area is the
development of large public image archives with images as
representative of the world population as possible [33]. The
existing image archives mainly contain skin lesions from
light-skinned people. The images in the ISIC database, for
example, come mainly from the United States, Europe, and
Australia. To achieve an accurate classification for dark-skinned
people as well, the CNN must learn to abstract from the skin
color. However, this can only occur if it observes enough
pictures of dark-skinned people during the training.

An improvement in classification quality could be achieved by
adding clinical data (eg, age, gender, race, skin type, and
anatomic location) as inputs for the classifiers. This additional
information is advantageous for the decision making of
dermatologists, as Haenssle et al [3] show. Future work should
take these aspects into account.

Conclusions
Unfortunately, it is difficult and in many times impossible to
compare the performance of published classification results
since many authors use nonpublic datasets for training and/or
testing. Future publications should use publicly available
benchmarks and fully disclose methods used for training to
allow comparability.
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