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Abstract

Background: Segmented phase-sensitive inversion recovery (PSIR) cardiovascular magnetic resonance (CMR)
sequences are reference standard for non-invasive evaluation of myocardial fibrosis using late gadolinium
enhancement (LGE). Several multi-slice LGE sequences have been introduced for faster acquisition in patients with
arrhythmia and insufficient breathhold capability.
The aim of this study was to assess the accuracy of several multi-slice LGE sequences to detect and quantify
myocardial fibrosis in patients with ischemic and non-ischemic myocardial disease.

Methods: Patients with known or suspected LGE due to chronic infarction, inflammatory myocardial disease and
hypertrophic cardiomyopathy (HCM) were prospectively recruited. LGE images were acquired 10–20 min after
administration of 0.2 mmol/kg gadolinium-based contrast agent. Three different LGE sequences were acquired: a
segmented, single-slice/single-breath-hold fast low angle shot PSIR sequence (FLASH-PSIR), a multi-slice balanced
steady-state free precession inversion recovery sequence (bSSFP-IR) and a multi-slice bSSFP-PSIR sequence during
breathhold and free breathing. Image quality was evaluated with a 4-point scoring system. Contrast-to-noise ratios
(CNR) and acquisition time were evaluated. LGE was quantitatively assessed using a semi-automated threshold
method. Differences in size of fibrosis were analyzed using Bland-Altman analysis.
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Results: Three hundred twelve patients were enrolled (n = 212 chronic infarction, n = 47 inflammatory myocardial
disease, n = 53 HCM) Of which 201 patients (67,4%) had detectable LGE (n = 143 with chronic infarction, n = 27
with inflammatory heart disease and n = 31 with HCM). Image quality and CNR were best on multi-slice bSSFP-PSIR.
Acquisition times were significantly shorter for all multi-slice sequences (bSSFP-IR: 23.4 ± 7.2 s; bSSFP-PSIR: 21.9 ± 6.
4 s) as compared to FLASH-PSIR (361.5 ± 95.33 s). There was no significant difference of mean LGE size for all
sequences in all study groups (FLASH-PSIR: 8.96 ± 10.64 g; bSSFP-IR: 8.69 ± 10.75 g; bSSFP-PSIR: 9.05 ± 10.84 g;
bSSFP-PSIR free breathing: 8.85 ± 10.71 g, p > 0.05).
LGE size was not affected by arrhythmia or absence of breathhold on multi-slice LGE sequences.

Conclusions: Fast multi-slice and standard segmented LGE sequences are equivalent techniques for the assessment
of myocardial fibrosis, independent of an ischemic or non-ischemic etiology. Even in patients with arrhythmia and
insufficient breathhold capability, multi-slice sequences yield excellent image quality at significantly reduced scan
time and may be used as standard LGE approach.

Trial registration: ISRCTN48802295 (retrospectively registered).

Keywords: Cardiac MR, CMR, Late gadolinium enhancement, Single-shot, Hypertrophic cardiomyopathy, Myocardial
infarction, Inflammatory heart disease, Myocarditis

Background
Late gadolinium enhancement (LGE) cardiovascular
magnetic resonance (CMR) is a well-established method
for assessment of focal myocardial fibrosis and scarring
in ischemic and non-ischemic cardiomyopathies [1–4].
The presence and extent of LGE has been shown to be
associated with worse patient outcome in a variety of
diseases, i.e. myocardial infarction, hypertrophic cardio-
myopathy (HCM) and acute or chronic inflammatory
heart disease [5–7]. Hence, the assessment of LGE is in-
tegrated into many clinical guidelines and is an integral
part of most contrast-based CMR protocols [8–10].
The reference standard technique for LGE assessment

is typically based on phase-sensitive inversion recovery
(PSIR) sequences that are acquired in a single-slice,
single-breathhold fashion [11, 12]. These segmented
PSIR LGE images generate excellent image quality at a
high spatial resolution if the individual patient has suffi-
cient breathhold capabilities and is in sinus rhythm [13].
However, with the more widespread use of CMR in clin-

ical routine increasing numbers of patients referred for
CMR present with arrhythmias or an inability for sufficient
breathhold for CMR scan. In these patients, conservative
segmented PSIR LGE sequences sometimes fail to provide
satisfactory image quality for accurate assessment.
Furthermore, standard segmented LGE sequences typic-

ally require 5 to 10 min of scan time for complete myocar-
dial coverage. There is a need for faster and more efficient
imaging in CMR in order to enable a more wide-spread use
of CMR in clinical routine as well as in smaller institutions
where access to CMR scanners maybe more restricted [14].
CMR also competes with other non-invasive imaging tech-
niques in terms of scan time optimization leading to efforts
for faster standardized CMR scan protocols [15].

In order to address these issues, multi-slice LGE
sequences have been developed with acquisition of the
entire k-space of an individual image slice within one
heart cycle [16]. Different approaches utilize navigator-
based, free breathing sequencing which works without
breathhold but mostly still requires stable heart rhythm
for optimal image quality [17].
Several small clinical studies have shown that multi-slice

LGE sequences provide similar image quality to standard
segmented LGE sequences [18, 19]. However, the vast ma-
jority of these studies investigated only patients with a sin-
gle disease entity, i.e. myocardial infarction or HCM and/
or excluded patients with arrhythmia. Hence, these studies
are not reflecting clinical reality where the underlying
cause of LGE is often not known prior to the CMR scan
and sinus rhythm is often unstable or non-existent.
In this prospective study we intended to determine the

comparability of standard segmented PSIR LGE imaging
with two different multi-slice LGE sequences with and
without breathhold in a large number of patients with is-
chemic and non-ischemic cardiomyopathy, namely
chronic myocardial infarction, HCM and inflammatory
heart disease. Furthermore, we explicitly did not exclude
patients with arrhythmia. We aimed to assess if multi-
slice LGE sequences represent a robust alternative for
LGE assessment independent of pathophysiologic origin
of LGE, heart rhythm and patient breathhold capabilities.

Methods
Study population
312 consecutive patients with known or suspected LGE
were prospectively recruited. All patients were referred
for clinical LGE assessment using CMR for both, ische-
mic and non-ischemic cardiomyopathies, based on the
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clinical information provided by the referring cardiolo-
gist. A total of 212 patients had chronic myocardial in-
farction, 53 patients had HCM and 47 patients had
inflammatory heart disease.
All patients underwent a single CMR scan with three

different LGE sequences. Exclusion criteria were contra-
indications to CMR and severe chronic renal disease
with an estimated glomerular filtration rate < 30 ml/min/
1.73m2. All studies were performed in accordance with
the local institutional review board and local ethics
committee approval.

Image protocol
All CMR studies were performed on a 1.5 Tesla scanner
(AvantoFit®, Siemens Healthineers, Erlangen, Germany).
Patients were scanned with electrocardiogram (ECG)-
triggering in the supine position using 16-channel
surface phased array coils.
All imaging protocols included assessment of myocar-

dial function in balanced steady-state free precession
(bSSFP) cine sequences and of myocardial morphology
by LGE imaging.
bSSFP cine imaging (TE 1.19 ms, TR 33.36 ms, flip angle

55°, retrospective ECG-triggered gating, matrix
192x156mm, FOV 340 mm, slice thickness 6 mm, band-
width 930 Hz, 30 phases per heart cycle, iPAT GRAPPA
acceleration factor 2) was performed in long axis two- and
four-chamber view for biplanar assessment of left
ventricular (LV) end-diastolic volume (LVEDV), LV mass
(LVM) and LV ejection fraction (LVEF). Contours were
drawn manually and biplanar anatomical and functional
parameters calculated automatically by the post-
processing software according to an established in-line bi-
plane ellipsoid model. [20] The standard three-point
method was used on short axis localizers to define stan-
dardized long axis two-chamber (one point in the LV apex,
one point in the anterior and one point in the inferior wall
of the lv myocardium in the slice with the maximum LV
area) and four-chamber view (one point in the LV apex,
one point in the interatrial septum below the aorta and
one point into the most lateral corner of the right ven-
tricle (RV) on the short axis localizer with the maximum
RV area).
For LGE imaging, a 0.2 mmol/kg intravenous injection

of contrast agent was administered into an antecubital
vein. In patients with myocardial infarction or HCM as-
sessment gadoteridol (ProHance®, Bracco S.p.A., Milan,
Italy) was used. For patient with known or suspected in-
flammatory heart disease gadopentetate (Magnevist®,
Bayer Healthcare, Wayne, New Jersey, USA) was admin-
istered due to established normal values for this contrast
agent for the early enhancement technique which was
clinically assessed in these patients independently from
this study [21].

Ten minutes after contrast administration, a segmented
IR cine bSSFP inversion time (TI) scouting sequence was
performed at a mid-ventricular short axis location to de-
termine optimal TI [22]. TI was adapted to optimally null
the signal of the remote myocardium. Two-dimensional
LGE images were acquired in short-axis views covering
the entire LV myocardium by using three different LGE
sequences: i) a segmented, single-slice, single-breathhold
2D FLASH-based phase-sensitive inversion recovery se-
quence (FLASH-PSIR) which was considered as the refer-
ence standard; ii) a multi-slice 2D bSSFP-based inversion
recovery sequence (bSSFP-IR); iii) a multi-slice 2D bSSFP-
based PSIR sequence (bSSFP-PSIR).
Sequence details are displayed in Table 1.
All LGE sequences were acquired in end-expiratory

breathhold while the bSSFP-PSIR sequence was add-
itionally acquired in free breathing. In case of suspected
artifacts in the LGE images a second perpendicular slice
through the affected region was acquired or read-out of
the phase encoding direction was swapped. Segmented
and multi-slice LGE images were acquired in random
order. Acquisition times and occurrence of arrhythmia
during image acquisition were noted for all sequences.

Qualitative and quantitative image analysis
For all post-processing analyses commercially available
software was used (CVI42 Release 5.6.2, Circle Cardio-
vascular Imaging, Calgary, Canada). A blinded reader
performed LV function assessment in bSSFP cine long
axis slices. For assessment of LVEF endocardial contours
were drawn in the end-diastolic and end-systolic phase
of two- and four-chamber view. All parameters were
automatically calculated after contouring by the post-
processing software. Separately, image quality and
quantitative LGE assessment were performed in a
random and blinded order.
For 30 randomly selected individuals, the same reader

and a second experienced reader repeated analyses for
assessment of intra- and interobserver variability.

Image quality
Visual assessment of image quality was performed on all
LGE sequences for each patient using a previously estab-
lished 4-point-scale using the following grading: excellent
quality, no artifacts (score of 1); good quality, minimal ar-
tifacts (score of 2); moderate quality, some artifacts which
may impair diagnostic quality (score of 3); poor quality,
unacceptable artifacts (score of 4) [19].
Signal intensities were measured in regions of interest

(ROIs) that covered areas of contrast-enhanced myocar-
dium, as well as areas of remote non-enhanced myocar-
dium with an additional ROI located outside the patient
for calculation of background noise. Signal enhancement
was measured as recommended by Simonetti et al. [12].
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In detail, we calculated signal intensities and their
standard deviations in ROIs of LGE-positive myocar-
dium, as well as areas of remote myocardium. Contrast
was defined as difference between mean signal intensity
of both ROIs. Image noise was defined as the standard
deviation of the signal intensity in the normal-appearing
myocardium ROI. Contrast-to-noise ratios (CNR) were
calculated by using these values. Measurement of signal-
to-noise ratios (SNR) is limited on PSIR images conven-
tionally because the measurement of background noise
is invalid in the reconstructed images [23]. Therefore,
we did not perform SNR assessment.

Visual LGE assessment
The distribution area and transmurality of fibrosis was
evaluated according to the American Heart Association
(AHA) 16-segment model. The distribution area of scar
in each segment was scored by the proportion of scar to
each segment (0: no LGE, 1: 1–25%, 2: 26–50%, 3: 51–
75%, 4: 76–100%).
For each subject, the number of segments with

presence or absence of fibrosis and location within
the myocardial wall (subendocardial, intramural, sube-
picardial, transmural) was noted for each LGE
sequence as previously described [24].

Quantitative LGE assessment
Quantification of LGE was performed with the estab-
lished semi-automated signal threshold versus reference
mean (STRM) method as published previously by our
and other groups [21, 25, 26]. On all LGE images, endo-
cardial and epicardial contours were manually traced
and ROIs were defined in hyperenhanced and remote
myocardium.
True LGE was defined by myocardial signal intensity

plus 6 standard deviations (SD) above that of remote,
normal-appearing myocardium within the same slice in
patients with myocardial infarction. For subjects with
HCM and inflammatory heart disease, plus 3 SDs were
defined as true LGE [27].

The automated LGE detection could be manually cor-
rected by the reader for a specific location to exclude
obvious artifacts. After segmentation, myocardial and
scar tissue mass (in grams) were calculated and com-
pared for each AHA segment in each sequence.

Statistical analysis
All statistical analyses were conducted by using statis-
tical software package SPSS 17.0 (International Business
Machines, Armonk, New York, USA). Quantitative data
are expressed as means ± SD. Sample size was calculated
by using power analysis for two proportions to reach a
statistical power of more than 80% to detect differences
of 5%, using the assumption of 16 ± 12 g scar tissue for
patients with chronic myocardial infarction, and 9 ± 5 g
for HCM and inflammatory heart disease which were re-
ported previously by our group [26].
Image quality scores were compared by using the

Mann-Whitney U test. Interobserver and intraobserver
agreement was assessed by using Cohen k statistics.
Statistical comparison of means of LGE size in each

individual multi-slice technique against the segmented
reference standard technique was performed by using
two-tailed paired t tests and Bland-Altman analysis. Scar
tissue percentages per segment, CNR and signal en-
hancement ratios were assessed using the Wilcoxon
signed rank test, as these values did not show normal
distribution.

Results
Patient characteristics
In total, 312 patients were recruited. Fourteen of these
patients were excluded due to incomplete image acquisi-
tion. All remaining 298 patients were successfully
scanned using all techniques and were included in sub-
sequent analyses (203 patients with chronic myocardial
infarction, 50 patients with HCM and 45 patients with
inflammatory heart disease). Patient characteristics are
shown in Table 2. Study individuals with inflammatory
heart disease were significantly younger than patients in
the other groups. HCM patients had an increased LVM
index (LVM-I), decreased LVEDV index (LVEDV-I) and
a slightly elevated LVEF. Figure 1 shows representative
images of LGE short axis slices for each group and each
sequence.

Acquisition time
The average scan time was significantly longer for the
reference standard sequence (361.5 ± 95.3 s including
breaks between slice acquisitions) than for any multi-
slice sequence (SSFP-IR: 23.4 ± 7.2 s; SSFP-PSIR: 21.9 ±
6.4 s, p < 0.01 of all sequences against reference
standard).

Table 1 LGE sequence parameters

FLASH-PSIR SSFP-IR SSFP-PSIR

Mode Segmented Multi-slice
(single shot)

Multi-slice
(single shot)

TE [ms] 5.17 1.06 1.05

Flip Angle 30° 50° 65°

Field of view [mm] 350–450 350–450 350–450

Matrix [mm] 192 × 256 154 × 192 144 × 192

Slice thickness [mm] 7 7 7

Slice gap [mm] 0 0 0

TE Echo time
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Image quality assessment
Image quality scores differed significantly between each
multi-slice and the reference standard sequence. How-
ever, they were not influenced by disease entity or – re-
garding bSSFP-PSIR sequence – breathhold versus free
breathing acquisition. Overall, bSSFP-PSIR images
showed the best image quality scores. (Fig. 2).
Arrhythmia had a negative impact on image quality

scores on the segmented FLASH-PSIR sequence, result-
ing in poor or non-diagnostic image quality in 48,8% of
all patients. Image quality score was not influenced by
arrhythmia in any multi-slice sequence.

Assessment of infarcted-to-remote area CNR is shown
in Table 3. Mean infarcted-to-remote myocardium CNR
was significantly higher on bSSFP-PSIR than on refer-
ence standard sequences (p < 0.01), and on bSSFP-IR
lower than reference standard (p < 0.01). Free breathing
acquisition of bSSFP-PSIR slightly decreased mean
infarcted-to-remote area CNR as compared to acquisi-
tion under breathhold, however, was still superior to ref-
erence standard (p < 0.01). LGE due to chronic
infarction showed significantly higher CNR values in all
sequences than LGE due to HCM or inflammatory heart
disease (p < 0.01).

Table 2 Patient Characteristics

Chronic myocardial infarction HCM Inflammatory heart disease

Number of patients 203 50 45

Gender [♂ / ♀] 160 / 43 (78% / 22%) 35 / 15 (72% / 28%) 32 / 13 (71% / 29%)

Age [years] 66.2 ± 10.7 62.0 ± 14.5 46.3 ± 15.4 *

BMI [kg/m2] 27.6 ± 4.2 27.9 ± 4.3 25.8 ± 4.8

HR [min-1] 68.1 ± 11.5 69.8 ± 16.2 72.2 ± 12.9

LVEF [%] 52.9 ± 10.7 63.0 ± 10.9 * 52.6 ± 13.3

LVEDV-I [ml/m2] 82.5 ± 24.3 69.6 ± 22.1 * 90.9 ± 26.9

SV-I [ml/m2] 41.9 ± 8.7 43.3 ± 12.6 44.8 ± 8.9

LVM-I [g/m2] 59.3 ± 15.8 89.5 ± 28.4 * 61.9 ± 17.2

SR / Arrhythmia 166 / 37 (82% / 18%) 39 / 11 (78% / 22%) 38 / 7 (84% / 16%)

LGE detected [yes / no] 176 / 27 (87% / 13%) 39 / 11 (78% / 22%) 32 / 13 (71% / 29%)

HCM Hypertrophic cardiomyopathy; BMI Body mass index; HR Heart rate; LVEF Left ventricular ejection fraction; LVEDV-I Left ventricular end-diastolic volume index;
SV-I Stroke volume index; LVM-I Left ventricular mass index. SR Sinus rhythm. * p < 0.05
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Fig. 1 Representative LGE images. Three selected patients with chronic myocardial infarction (a-d), hypertrophic cardiomyopathy (e-h) and acute
myocarditis (i-l) with typical LGE localization: subendocardial for infarction, patchy intramural for HCM and subepicardial for myocarditis.
Horizontal rows display corresponding slices of LGE in the same patient, vertical columns show the used techniques: conventional segmented
FLASH-PSIR (a;e;i), multi-slice bSSFP-IR (b;f;j), multi-slice bSSFP-PSIR with breathhold (c;g;k) and free-breathing multi-slice bSSFP-IR
(d;h;l). nonbh = non-breathhold
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Qualitative LGE analysis
Using reference standard sequence, 201 patients (67.4%)
had detectable LGE (n = 143 with chronic infarction,
n = 31 with HCM and n = 27 with inflammatory heart
disease). All 201 LGE-positive patients also had detect-
able LGE on bSSFP-IR. With both bSSFP-PSIR se-
quences, two small LGE lesions (< 1 g scar size) were
visually not detected in one patient with chronic infarc-
tion and one patient with HCM by two blinded readers.
On visual assessment, circumferential extent of scars

was similar in all sequences; summation of scores
showed excellent matching with reference standard
FLASH-PSIR sequence (total score 3875) for bSSFP-
PSIR with (total score 3903) and without breathhold
(total score 3886) while on bSSFP-IR circumferential
scar extent was slightly underestimated (total score
3726). Details are shown in Fig. 3a.
On all multi-slice sequences, the visual allocation of

LGE within the myocardial wall (subendocardial, subepi-
cardial, intramural, transmural) showed good matching
with FLASH-PSIR for the chronic infarction and inflam-
matory heart disease group while for inflammatory heart
disease there was a higher number of visually transmural
LGE areas on bSSFP-PSIR versus FLASH-PSIR (14%
versus 10% segments with transmural LGE, see Fig. 3b).

Quantitative LGE analysis
There were no significant differences in mean LGE size
between reference standard FLASH-PSIR and multi-slice

sequences independent from LGE origin (Table 4). How-
ever, Bland-Altman analysis showed that on bSSFP-PSIR
LGE size showed a non-significant trend to be smaller in
all study groups compared to reference standard - mean
difference in LGE size towards reference standard being
0.58 ± 1.99 g on bSSFP-PSIR with breathhold, 0.96 ±
2.03 g on bSSFP-PSIR with free breathing and 0.26 ±
2.4 g on bSSFP-IR (see Fig. 4 for Bland-Altman plots).
The presence or absence of breathhold during LGE

imaging using bSSFP-PSIR had no impact on LGE size
for any disease entity (Table 4).
Intraobserver agreement (Pearson coefficient) on LGE

size was > 0.95 for all sequences. Interobserver agree-
ment was 0.92 for bSSFP-PSIR under free breathing and
0.88 for all other sequences.
In patients with arrhythmia during image acquisition

mean LGE size did not differ in any multi-slice se-
quence, with bSSFP-IR 7.6 ± 6.1 g and bSSFP-PSIR 7.7 ±
5.6 g under breathhold and 7.4 ± 5.6 g under free breath-
ing. Reference standard FLASH-PSIR sequence was not
evaluated in arrhythmic patients due to mostly non-
diagnostic image quality.

Discussion
The present study compared for the first time a refer-
ence standard segmented (FLASH-PSIR) with two
multi-slice LGE sequences (bSSFP-IR and bSSFP-PSIR)
in 298 patients with ischemic and non-ischemic
cardiomyopathies.

Fig. 2 Image quality scores. Values represent average image quality score for all patients in each group. Score system: 1 = excellent quality, no
artifacts; 2 = good quality, minimal artifacts; 3 = moderate quality, some artifacts which may impair diagnostic quality; 4 = poor quality,
unacceptable artifacts. * p < 0.05 within sequence. ** p < 0.05 towards FLASH-PSIR. ns = non-significant, p > 0.05. SR = sinus rhythm

Table 3 Contrast-to-noise ratios

All groups Chronic infarction HCM Inflammatory heart disease

FLASH-PSIR 65.9 ± 71.9 67.9 ± 58.5 * 80.4 ± 126.8 37.0 ± 21.3 *

SSFP-IR 40.1 ± 26.8† 43.2 ± 28.4 *† 38.5 ± 19.9 † 31.5 ± 22.2†

SSFP-PSIR 137.8 ± 103.7† 149.8 ± 114.9 *† 118.4 ± 66.9† 95.7 ± 49.2 *†

SSFP-PSIR nonbh 125.9 ± 72.5† 134.5 ± 72.5 *† 101.7 ± 65.8† 109.0 ± 73.4 †

*p < 0.05 towards the other disease entities for the individual LGE sequence. † p < 0.05 towards FLASH-PSIR gold standard for individual disease entity
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Our key findings were: Firstly, image quality and CNR
were highest on multi-slice bSSFP-PSIR with and with-
out breathhold. Secondly, acquisition time is relevantly
shorter on any multi-slice sequence compared to refer-
ence standard. Thirdly, visual detection of LGE and vis-
ual assessment of LGE extent was consistently very good
and equivalent in all sequences. Fourthly, quantification
showed no significant difference in LGE size for any
multi-slice sequence. Fifthly, in patients with arrhythmia
all multi-slice sequences generated good image quality

and consistent LGE quantification results, whereas the
reference standard provided non-diagnostic image qual-
ity in half of all exams. Finally, acquisition of bSSFP-
PSIR under free breathing or under breathhold had no
impact on LGE detection and quantification. Results
were independent of the cause of LGE from ischemic or
non-ischemic etiology.
The assessment of myocardial fibrosis has enormous

diagnostic and prognostic impact in ischemic and non-
ischemic cardiomyopathy [5–7]. Over the last decade

a

b

Fig. 3 Visual assessment of LGE. a: Visual assessment of circumferential LGE extent. Columns represent number of segments with LGE for
different circumferential extents across all study groups (chronic myocardial infarctions, HCM, inflammatory heart disease). b: Visual assessment of
in-wall LGE location

Table 4 Quantitative Assessment - LGE size

All groups Chronic infarction HCM Inflammatory heart disease

FLASH-PSIR 8.96 ± 10.64 g 7.47 ± 6.65 g 15.42 ± 20.00 g 9.39 ± 10.28 g

SSFP-IR 8.69 ± 10.75 g 7.26 ± 7.03 g 15.31 ± 20.02 g 8.67 ± 9.66 g p > 0.05

SSFP-PSIR 9.05 ± 10.84 g 7.68 ± 7.18 g 15.51 ± 20.31 g 8.89 ± 9.30 g p > 0.05

SSFP-PSIR nonbh 8.85 ± 10.71 g 7.41 ± 6.91 g 15.38 ± 19.96 g 8.97 ± 9.94 g p > 0.05

Values represent mean LGE size in gram. P values for each multi-slice sequence compared to FLASH-PSIR in all study groups
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many clinical studies have paved the way for CMR to be
integrated into a variety of cardiologic, radiologic and
other clinical guidelines [9]. The role of LGE in detec-
tion of myocardial fibrosis remains unequivocally im-
portant despite the development of new parametric
mapping techniques, which play an increasing role
especially in detection of diffuse fibrosis [28, 29].
Our study demonstrates that bSSFP-PSIR and bSSFP-

IR multi-slice LGE sequences provide excellent alterna-
tives to segmented FLASH-PSIR in routine CMR proto-
cols. We showed that not only for ischemic LGE lesions
but also for more diffuse lesions in inflammatory heart
disease or HCM multi-slice sequences are sufficient to
visualize fibrosis and – when quantified in size – show
equivalent results compared to the reference standard.
The equivalence of multi-slice LGE sequences to seg-
mented sequences has previously been shown in studies
for either HCM, ischemic or inflammatory heart disease
[18, 19, 30]. However, these studies each used different
sequences, smaller patient groups and mostly looked at
single disease entities.
The superiority of multi-slice over segmented PSIR

sequences in regard to image quality and CNR is in line
with other publications [18, 19]. This is attributable to
the reduction of motion artifacts and artifacts due to
arrhythmia. CNR also depends on the amount of
gadolinium-based contrast media in the myocardium,
which is influenced by amount and molarity of contrast
agent, distribution volume and hemodynamics. As we
strictly dosed gadolinium to body weight and tested
sequences in a random order, effects on results should
be neglectable.
We have also seen variations in CNR between the

different disease entities. Since CNR is dependent on
the voxel composition of fibrotic tissue, LGE in
chronic infarction with more compact fibrosis is ex-
pected to result in higher CNR values than LGE in
more diffusely fibrotic tissue such as in HCM and in-
flammatory heart disease.

On bSSFP-PSIR sequence visual assessment revealed
slightly larger scar transmurality as compared to the ref-
erence standard. We believe that visual assessment of
bSSFP-PSIR images is impacted by its comparably higher
CNR values which may lead to subjectively higher trans-
murality of scars.
In two patients, small LGE lesions detectable with the

reference standard sequence, were not detected with
multi-slice bSSFP-PSIR but, nevertheless, could be visu-
alized with bSSFP-IR. Note that for these two patients
LGE amount was less than one gram, which suggests
that partial volume effects or shifted slice position due
to heavy respiratory motion may have caused the missed
lesion. However, it cannot be safely excluded that very
small LGE lesions may be missed with multi-slice
bSSFP-PSIR due to its different matrix size as compared
to the reference standard.
It has been shown that even a small amount of

LGE has prognostic implications in cardiomyopathies
[31–34]. In case of inflammatory heart disease missed
small subepicardial LGE may even impact diagnosis
[35], as Lake Louise criteria define myocarditis as two
out of three parameters, LGE being one of them [36].
Our results suggest that in patients with known or

suspected myocardial infarction bSSFP-PSIR or bSSFP-
IR multi-slice sequences can be primarily utilized for
LGE detection. In case of an unknown cardiomyopathy
or for assessment of HCM and inflammatory heart dis-
ease segmented FLASH-PSIR images should be used in
scenarios of stable sinus rhythm and sufficient breath-
hold capabilities. For patients with arrhythmia and/or in-
sufficient breathhold capabilities at the time of CMR
scan we showed that segmented sequences fail to pro-
vide sufficient image quality. This is in line with previous
studies [37, 38]. In these patients we suggest to primarily
use multi-slice sequences such as bSSFP-PSIR and/or
bSSFP-IR.
In this study two different contrast media were

used; gadoteridol in CAD and HCM patients and

Fig. 4 Bland-Altman plots of LGE mass. Blue dots represent mean LGE size (x-axis) versus delta LGE mass towards FLASH-PSIR (y-axis) in gram for
each LGE sequence
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gadopentate for inflammatory heart disease. The rea-
son for use of gadopentate was established normal
values for relative enhancement sequences, which
were acquired in these patients independently from
this study. However, there is good evidence that
relaxivity and contrast enhancement are nearly identi-
cal for both agents so that impact on results should
be neglectable. [39]
In our study we explicitly did not exclude patients

with arrhythmia. We demonstrated good to excellent
image quality and equivalent amount of LGE quantifica-
tion with all multi-slice sequences. There is no gold
standard for LGE detection and quantification in
arrhythmic patients. Hence, we cannot definitely state
that results are perfectly correct using multi-slice se-
quences. Still, due to the consistently high image quality
scores and – as compared to patients with sinus rhythm
– similar CNR values we feel confident that usage of any
multi-slice sequence is superior to attempts of seg-
mented image acquisition and shortens scan protocols
significantly in these patients.
Interestingly, presence or absence of breathhold

during image acquisition on bSSFP-PSIR did not
affect detection or quantification of LGE across all
study groups. While there must be minimal slice
shifting due to respiratory motion on acquisition of
an entire LV short axis package within approximately
20 s of acquisition time we could show in a large
number of patients that this has no statistically sig-
nificant effect on diagnostic value. Lower numbers of
breathhold cycles may also positively affect patient
comfort and may be considered in all patients when
SSFP-PSIR sequence is used.
Alternative methods for LGE assessment include 3D

sequences, which have been shown to also accurately
visualize fibrosis and scarring [40, 41]. These 3D se-
quences have the advantage of potentially higher spatial
resolution, especially in the vertical axis, and the possi-
bility of free movement through the ventricular myocar-
dium. On the other hand, 3D sequences typically require
a relatively long acquisition time. This necessitates a
continuous adaptation of the optimal myocardial inver-
sion time, which may impair image quality and CNR.
Implementation of 3D LGE sequences with dynamic in-
version time adjustments may help to overcome this
obstacle [42].
In another recent study dark blood PSIR imaging

was published using T2 preparation pulses for im-
proved visualization of fibrosis close to the adjacent
LV blood pool in 30 patients with subendocardial in-
farction [43]. This promising technique also included
motion correction for acquisition under free breathing
but needs to be validated across myocardial disease
entities in larger studies.

Conclusions
LGE sequences are a mandatory part of most CMR pro-
tocols in ischemic and non-ischemic cardiomyopathy
[8]. The broader spread of CMR in clinical routine has
several implications: demand for CMR access increases
and there is a continuous need for fast scanning proto-
cols [14]. While segmented LGE sequences may give
excellent image quality under stable sinus rhythm and
sufficient breathhold the issue of time investment pre-
vails. We demonstrated equivalence of multi-slice LGE
sequences (bSSFP-IR and bSSFP-PSIR) and segmented
FLASH-PSIR sequence in a large number of patients
with ischemic and non-ischemic cardiac disease.
For that reason we suggest further strengthening the

role of multi-slice sequences in routine CMR protocols
whenever it is reliable to use.

Limitations
In spite of the large patient number in this study, all pa-
tients were scanned and analyzed in a single CMR center.
Male gender was overrepresented in all study groups.
Comparability of LGE sequences maybe impacted by dif-
ferent matrix size and, hence, different in-plane resolution
used for each sequence. This may also affect SNR and
CNR as well as assessment of LGE-positive areas.

Abbreviations
2D: Two-dimensional; AHA: American Heart Association; BMI: Body mass
index; bSSFP: Balanced steady-state free precession; CMR: Cardiovascular
magnetic resonance; CNR: Contrast-to-noise ratio; FLASH: Fast low angle
shot; HCM: Hypertrophic cardiomyopathy; HR: Heart rate; IR: Inversion
recovery; LGE: Late gadolinium enhancement; LV: Left ventricle/left
ventricular; LVEDV: Left ventricular end-diastolic volume; LVEDV-I: Left
ventricular end-diastolic volume index; LVEF: Left ventricular ejection fraction;
LVM: Left ventricular mass; LVM-I: Left ventricular mass index; MR: Magnetic
resonance; nbh: Non-breathhold (free breathing); PSIR: Phase-sensitive
inversion recovery; ROI: Region-of-interest; RV: Right ventricle/right
ventricular; SD: Standard deviation; SNR: Signal-to-noise ratio; SR: Sinus
rhythm; STRM: Semi-automated signal threshold versus reference mean; SV-
I: Stroke volume index; TE: Echo time; TI: Inversion time

Acknowledgements
We sincerely acknowledge the support of our CMR technicians Denise
Kleindienst, Kerstin Kretschel and Evelyn Polzin as well as our study nurses
Annette Köhler-Rohde and Elke Nickel-Szczech in conducting all study scans.
We sincerely thank Carsten Schwenke PhD for his continuous support in
matters of study statistics and power calculation throughout this study. We
also acknowledge the help of Johannes Kuttner during internal manuscript
review.

Consent for study participation
Study individuals have given their written consent for participating in this
study.

Funding
No external funding has been received for the realization of this study.

Availability of data and materials
The datasets analyzed during the current study are available from the
corresponding author upon reasonable request. Original imaging data are
not publicly available due to lawful data protection in Germany.

Muehlberg et al. Journal of Cardiovascular Magnetic Resonance  (2018) 20:13 Page 9 of 11



Authors’ contributions
FM developed study design, applied for ethic board approval, conducted
major part of CMR scans, led image analysis and data interpretation and was
the major contributor in writing the manuscript. KA conducted major parts
of image analysis and statistical data interpretation. SiF was involved in
image analysis and manuscript writing. StF was involved in image analysis
and manuscript writing. MP conducted CMR scans and was involved in
image analysis. JK was involved in image analysis and manuscript writing. LZ
was involved in data analysis and manuscript writing. FK was involved in
data analysis and manuscript writing. JS supervised overall study design,
ensured quality control on image analysis and data interpretation, supervised
manuscript writing and provided continuous guidance throughout study
realization as head of the working group. All authors have read and
approved the final manuscript.

Ethics approval and consent to participate
The study was approved by Charité University Medicine ethics board at
Charité Campus Mitte, Berlin, Germany.

Consent for publication
Individuals have given their written consent for anonymous publication.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Author details
1Working Group on Cardiovascular Magnetic Resonance, Experimental and
Clinical Research Center - a joint cooperation between the Charité Medical
Faculty and the Max-Delbrück Center for Molecular Medicine and HELIOS
Hospital Berlin-Buch, Department of Cardiology and Nephrology,
Lindenberger Weg 80, 13125 Berlin, Germany. 2Clinic Agatharied,
Department of Cardiology, Ludwig-Maximilians-University Munich,
Norbert-Kerkel-Platz, 83734, Hausham, Germany.

Received: 10 July 2017 Accepted: 5 February 2018

References
1. Kim RJ, Wu E, Rafael a, Chen EL, Parker MA, Simonetti O, Klocke FJ,

Bonow RO, Judd RM. the use of contrast-enhanced magnetic resonance
imaging to identify reversible myocardial dysfunction. N Engl J Med.
2000;343(20):1445–53.

2. Saeed M, Weber O, Lee R, Do L, Martin A, Saloner D, Ursell P, Robert P,
Corot C, Higgins CB. Discrimination of myocardial acute and chronic (scar)
infarctions on delayed contrast enhanced magnetic resonance imaging
with intravascular magnetic resonance contrast media. J Am Coll Cardiol.
2006;48(10):1961–8.

3. Bondarenko O, Beek AM, Nijveldt R, McCann GP, van Dockum WG, Hofman
MB, Twisk JW, Visser CA, van Rossum AC. Functional outcome after
revascularization in patients with chronic ischemic heart disease: a
quantitative late gadolinium enhancement CMR study evaluating
transmural scar extent, wall thickness and periprocedural necrosis. Journal
of cardiovascular magnetic resonance : official journal of the Society for
Cardiovascular Magnetic Resonance. 2007;9(5):815–21.

4. Fluechter S, Kuschyk J, Wolpert C, Doesch C, Veltmann C, Haghi D,
Schoenberg SO, Sueselbeck T, Germans T, Streitner F, et al. Extent of late
gadolinium enhancement detected by cardiovascular magnetic resonance
correlates with the inducibility of ventricular tachyarrhythmia in
hypertrophic cardiomyopathy. Journal of cardiovascular magnetic
resonance : official journal of the Society for Cardiovascular Magnetic
Resonance. 2010;12:30.

5. Adabag AS, Maron BJ, Appelbaum E, Harrigan CJ, Buros JL, Gibson CM,
Lesser JR, Hanna CA, Udelson JE, Manning WJ, et al. Occurrence and
frequency of arrhythmias in hypertrophic cardiomyopathy in relation to
delayed enhancement on cardiovascular magnetic resonance. J Am Coll
Cardiol. 2008;51(14):1369–74.

6. Ise T, Hasegawa T, Morita Y, Yamada N, Funada A, Takahama H, Amaki M,
Kanzaki H, Okamura H, Kamakura S, et al. Extensive late gadolinium
enhancement on cardiovascular magnetic resonance predicts adverse
outcomes and lack of improvement in LV function after steroid therapy in
cardiac sarcoidosis. Heart. 2014;100(15):1165–72.

7. Neilan TG, Shah RV, Abbasi SA, Farhad H, Groarke JD, Dodson JA, Coelho-
Filho O, McMullan CJ, Heydari B, Michaud GF, et al. The incidence, pattern,
and prognostic value of left ventricular myocardial scar by late gadolinium
enhancement in patients with atrial fibrillation. J Am Coll Cardiol. 2013;
62(23):2205–14.

8. Kramer CM, Barkhausen J, Flamm SD, Kim RJ, Nagel E. Society For
cardiovascular magnetic resonance Board of Trustees Task Force on
standardized P: standardized cardiovascular magnetic resonance (CMR)
protocols 2013 update. Journal of cardiovascular magnetic resonance : official
journal of the Society for Cardiovascular Magnetic Resonance. 2013;15:91.

9. von Knobelsdorff-Brenkenhoff F, Schulz-Menger J. Role of cardiovascular
magnetic resonance in the guidelines of the European Society of
Cardiology. Journal of cardiovascular magnetic resonance : official journal of
the Society for Cardiovascular Magnetic Resonance. 2016;18:6.

10. Ponikowski P, Voors AA, Anker SD, Bueno H, Cleland JG, Coats AJ, Falk V,
Gonzalez-Juanatey JR, Harjola VP, Jankowska EA, et al. 2016 ESC guidelines
for the diagnosis and treatment of acute and chronic heart failure. Revista
espanola de cardiologia. 2016;69(12):1167.

11. Kellman P, Arai AE, McVeigh ER, Aletras AH. Phase-sensitive inversion
recovery for detecting myocardial infarction using gadolinium-delayed
hyperenhancement. Magnetic resonance in medicine : official journal of the
Society of Magnetic Resonance in Medicine / Society of. Magn Reson Med.
2002;47(2):372–83.

12. Simonetti OP, Kim RJ, Fieno DS, Hillenbrand HB, Wu E, Bundy JM, Finn JP,
Judd RM. An improved MR imaging technique for the visualization of
myocardial infarction. Radiology. 2001;218(1):215–23.

13. Sievers B, Rehwald WG, Albert TS, Patel MR, Parker MA, Kim RJ, Judd RM.
Respiratory motion and cardiac arrhythmia effects on diagnostic accuracy of
myocardial delayed-enhanced MR imaging in canines. Radiology. 2008;
247(1):106–14.

14. Muehlberg F, Neumann D, Von Knobelsdorff-Brenkenhoff F, Traber J,
Alwardt N, Schulz-Menger J. a multicenter cardiovascular MR network for
tele-training and beyond: setup and initial experiences. Journal of the
American College of Radiology : JACR. 2015;12(8):876–83.

15. Hendel RC, Friedrich MG, Schulz-Menger J, Zemmrich C, Bengel F, Berman
DS, Camici PG, Flamm SD, Le Guludec D, Kim R, et al. CMR first-pass
perfusion for suspected inducible myocardial ischemia. JACC Cardiovascular
imaging. 2016;9(11):1338–48.

16. Sievers B, Elliott MD, Hurwitz LM, Albert TS, Klem I, Rehwald WG, Parker MA,
Judd RM, Kim RJ. Rapid detection of myocardial infarction by subsecond,
free-breathing delayed contrast-enhancement cardiovascular magnetic
resonance. Circulation. 2007;115(2):236–44.

17. Nguyen TD, Spincemaille P, Weinsaft JW, Ho BY, Cham MD, Prince MR,
Wang Y. A fast navigator-gated 3D sequence for delayed enhancement MRI
of the myocardium: comparison with breathhold 2D imaging. Journal of
magnetic resonance imaging : JMRI. 2008;27(4):802–8.

18. Viallon M, Jacquier A, Rotaru C, Delattre BM, Mewton N, Vincent F, Croisille
P. Head-to-head comparison of eight late gadolinium-enhanced cardiac MR
(LGE CMR) sequences at 1.5 tesla: from bench to bedside. Journal of
magnetic resonance imaging : JMRI. 2011;34(6):1374–87.

19. Morita K, Utsunomiya D, Oda S, Komi M, Namimoto T, Hirai T, Hashida M,
Takashio S, Yamamuro M, Yamashita Y. Comparison of 3D phase-sensitive
inversion-recovery and 2D inversion-recovery MRI at 3.0 T for the
assessment of late gadolinium enhancement in patients with hypertrophic
cardiomyopathy. Acad Radiol. 2013;20(6):752–7.

20. Thiele H, Paetsch I, Schnackenburg B, Bornstedt A, Grebe O, Wellnhofer E,
Schuler G, Fleck E, Nagel E. Improved accuracy of quantitative assessment of
left ventricular volume and ejection fraction by geometric models with
steady-state free precession. Journal of cardiovascular magnetic resonance :
official journal of the Society for Cardiovascular Magnetic Resonance. 2002;
4(3):327–39.

21. Rudolph A, Messroghli D, Von Knobelsdorff-Brenkenhoff F, Traber J,
Schuler J, Wassmuth R, Schulz-Menger J. prospective, randomized
comparison of gadopentetate and gadobutrol to assess chronic
myocardial infarction applying cardiovascular magnetic resonance. BMC
Med Imaging. 2015;15(1):55.

Muehlberg et al. Journal of Cardiovascular Magnetic Resonance  (2018) 20:13 Page 10 of 11



22. Gupta A, Lee VS, Chung YC, Babb JS, Simonetti OP. Myocardial infarction:
optimization of inversion times at delayed contrast-enhanced MR imaging.
Radiology. 2004;233(3):921–6.

23. Dietrich O, Raya JG, Reeder SB, Reiser MF, Schoenberg SO. Measurement of
signal-to-noise ratios in MR images: influence of multichannel coils, parallel
imaging, and reconstruction filters. Journal of magnetic resonance imaging :
JMRI. 2007;26(2):375–85.

24. Kino A, Zuehlsdorff S, Sheehan JJ, Weale PJ, Carroll TJ, Jerecic R, Carr JC.
Three-dimensional phase-sensitive inversion-recovery turbo FLASH
sequence for the evaluation of left ventricular myocardial scar. AJR Am J
Roentgenol. 2009;193(5):W381–8.

25. Bruder O, Wagner A, Jensen CJ, Schneider S, Ong P, Kispert EM, Nassenstein
K, Schlosser T, Sabin GV, Sechtem U, et al. Myocardial scar visualized by
cardiovascular magnetic resonance imaging predicts major adverse events
in patients with hypertrophic cardiomyopathy. J Am Coll Cardiol. 2010;
56(11):875–87.

26. Rudolph A, Von Knobelsdorff-Brenkenhoff F, Wassmuth R, Prothmann M, Utz
W, Schulz-Menger J. assessment of nonischemic fibrosis in hypertrophic
cardiomyopathy: comparison of gadopentetate dimeglumine and
gadobenate dimeglumine for enhanced cardiovascular magnetic resonance
imaging. Journal of magnetic resonance imaging : JMRI. 2014;39(5):1153–60.

27. Mikami Y, Kolman L, Joncas SX, Stirrat J, Scholl D, Rajchl M, Lydell CP, Weeks
SG, Howarth AG, White JA. Accuracy and reproducibility of semi-automated
late gadolinium enhancement quantification techniques in patients with
hypertrophic cardiomyopathy. Journal of cardiovascular magnetic
resonance : official journal of the Society for Cardiovascular Magnetic
Resonance. 2014;16:85.

28. Messroghli DR, Nordmeyer S, Dietrich T, Dirsch O, Kaschina E, Savvatis K, D
oh-I KC, Berger F, Kuehne T. assessment of diffuse myocardial fibrosis in rats
using small-animal look-locker inversion recovery T1 mapping. Circulation
Cardiovascular imaging. 2011;4(6):636–40.

29. Messroghli DR, Radjenovic A, Kozerke S, Higgins DM, Sivananthan MU,
Ridgway JP. Modified look-locker inversion recovery (MOLLI) for high-
resolution T1 mapping of the heart. Magnetic resonance in medicine : official
journal of the Society of Magnetic Resonance in Medicine / Society of. Magn
Reson Med. 2004;52(1):141–6.

30. Kellman P, Larson AC, Hsu LY, Chung YC, Simonetti OP, McVeigh ER, Arai AE.
Motion-corrected free-breathing delayed enhancement imaging of
myocardial infarction. Magn Reson Med. 2005;53(1):194–200.

31. Mikami Y, Cornhill A, Heydari B, Joncas SX, Almehmadi F, Zahrani M, Bokhari
M, Stirrat J, Yee R, Merchant N, et al. Objective criteria for septal fibrosis in
non-ischemic dilated cardiomyopathy: validation for the prediction of future
cardiovascular events. Journal of cardiovascular magnetic resonance : official
journal of the Society for Cardiovascular Magnetic Resonance. 2016;18(1):82.

32. Lee SA, Yoon YE, Kim JE, Park JJ, Oh IY, Yoon CH, Suh JW, Kim JS, Chun EJ,
Cho YS, et al. Long-term prognostic value of late gadolinium-enhanced
magnetic resonance imaging in patients with and without left ventricular
dysfunction undergoing coronary artery bypass grafting. Am J Cardiol. 2016;
118(11):1647–54.

33. Hulten E, Agarwal V, Cahill M, Cole G, Vita T, Parrish S, Bittencourt MS,
Murthy VL, Kwong R, Di Carli MF, et al. Presence of late gadolinium
enhancement by cardiac magnetic resonance among patients with
suspected cardiac sarcoidosis is associated with adverse cardiovascular
prognosis: a systematic review and meta-analysis. Circulation Cardiovascular
imaging. 2016;9(9):e005001.

34. Chan RH, Maron BJ, Olivotto I, Pencina MJ, Assenza GE, Haas T, Lesser JR,
Gruner C, Crean AM, Rakowski H, et al. Prognostic value of quantitative
contrast-enhanced cardiovascular magnetic resonance for the evaluation of
sudden death risk in patients with hypertrophic cardiomyopathy.
Circulation. 2014;130(6):484–95.

35. Grun S, Schumm J, Greulich S, Wagner A, Schneider S, Bruder O, Kispert EM,
Hill S, Ong P, Klingel K, et al. Long-term follow-up of biopsy-proven viral
myocarditis: predictors of mortality and incomplete recovery. J Am Coll
Cardiol. 2012;59(18):1604–15.

36. Friedrich MG, Sechtem U, Schulz-Menger J, Holmvang G, Alakija P, Cooper
LT, White JA, Abdel-Aty H, Gutberlet M, Prasad S, et al. Cardiovascular
magnetic resonance in myocarditis: a JACC white paper. J Am Coll Cardiol.
2009;53(17):1475–87.

37. Knowles BR, Caulfield D, Cooklin M, Rinaldi CA, Gill J, Bostock J, Razavi R,
Schaeffter T, Rhode KS. 3-D visualization of acute RF ablation lesions using

MRI for the simultaneous determination of the patterns of necrosis and
edema. IEEE Trans Biomed Eng. 2010;57(6):1467–75.

38. Weingartner S, Akcakaya M, Basha T, Kissinger KV, Goddu B, Berg S, Manning
WJ, Nezafat R. Combined saturation/inversion recovery sequences for
improved evaluation of scar and diffuse fibrosis in patients with arrhythmia
or heart rate variability. Magn Reson Med. 2014;71(3):1024–34.

39. Rinck PA, Muller RN. Field strength and dose dependence of contrast
enhancement by gadolinium-based MR contrast agents. Eur Radiol. 1999;
9(5):998–1004.

40. Kido T, Kido T, Nakamura M, Kawaguchi N, Nishiyama Y, Ogimoto A,
Miyagawa M, Mochizuki T. Three-dimensional phase-sensitive inversion
recovery sequencing in the evaluation of left ventricular myocardial scars in
ischemic and non-ischemic cardiomyopathy: comparison to three-
dimensional inversion recovery sequencing. Eur J Radiol. 2014;83(12):2159–
66.

41. Morsbach F, Gordic S, Gruner C, Niemann M, Goetti R, Gotschy A, Kozerke S,
Alkadhi H, Manka R. Quantitative comparison of 2D and 3D late gadolinium
enhancement MR imaging in patients with Fabry disease and hypertrophic
cardiomyopathy. Int J Cardiol. 2016;217:167–73.

42. Keegan J, Gatehouse PD, Haldar S, Wage R, Babu-Narayan SV, Firmin DN.
Dynamic inversion time for improved 3D late gadolinium enhancement
imaging in patients with atrial fibrillation. Magnetic resonance in medicine :
official journal of the Society of Magnetic Resonance in Medicine / Society of.
Magn Reson Med. 2015;73(2):646–54.

43. Kellman P, Xue H, Olivieri LJ, Cross RR, Grant EK, Fontana M, Ugander M,
Moon JC, Hansen MS. Dark blood late enhancement imaging. Journal of
cardiovascular magnetic resonance : official journal of the Society for
Cardiovascular Magnetic Resonance. 2016;18(1):77.

•  We accept pre-submission inquiries 

•  Our selector tool helps you to find the most relevant journal

•  We provide round the clock customer support 

•  Convenient online submission

•  Thorough peer review

•  Inclusion in PubMed and all major indexing services 

•  Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central 
and we will help you at every step:

Muehlberg et al. Journal of Cardiovascular Magnetic Resonance  (2018) 20:13 Page 11 of 11


	Abstract
	Background
	Methods
	Results
	Conclusions
	Trial registration

	Background
	Methods
	Study population
	Image protocol
	Qualitative and quantitative image analysis
	Image quality

	Visual LGE assessment
	Quantitative LGE assessment
	Statistical analysis

	Results
	Patient characteristics
	Acquisition time
	Image quality assessment
	Qualitative LGE analysis
	Quantitative LGE analysis

	Discussion
	Conclusions
	Limitations
	Abbreviations

	Acknowledgements
	Consent for study participation
	Funding
	Availability of data and materials
	Authors’ contributions
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Publisher’s Note
	Author details
	References

