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Abstract

Purpose

To investigate αvβ3-integrin-targeted optoacoustic imaging and MRI for monitoring a BRAF/

MEK inhibitor combination therapy in a murine model of human melanoma.

Materials and methods

Human BRAF V600E-positive melanoma xenograft (A375)-bearing Balb/c nude mice (n =

10) were imaged before (day 0) and after (day 7) a BRAF/MEK inhibitor combination therapy

(encorafenib, 1.3 mg/kg/d; binimetinib, 0.6 mg/kg/d, n = 5) or placebo (n = 5), respectively.

Optoacoustic imaging was performed on a preclinical system unenhanced and 5 h after i. v.

injection of an αvβ3-integrin-targeted fluorescent probe. The αvβ3-integrin-specific tumor sig-

nal was derived by spectral unmixing. For morphology-based tumor response assessments,

T2w MRI data sets were acquired on a clinical 3 Tesla scanner. The imaging results were

validated by multiparametric immunohistochemistry (ß3 –integrin expression, CD31 –micro-

vascular density, Ki-67 –proliferation).

Results

The αvβ3-integrin-specific tumor signal was significantly reduced under therapy, showing a

unidirectional decline in all animals (from 7.98±2.22 to 1.67±1.30; p = 0.043). No significant

signal change was observed in the control group (from 6.60±6.51 to 3.67±1.93; p = 0.500).

Immunohistochemistry revealed a significantly lower integrin expression (ß3: 0.20±0.02 vs.

0.39±0.05; p = 0.008) and microvascular density (CD31: 119±15 vs. 292±49; p = 0.008) in

the therapy group. Tumor volumes increased with no significant intergroup difference (ther-

apy: +107±42 mm3; control +112±44mm3, p = 0.841). In vivo blocking studies with αvβ3-

integrin antagonist cilengitide confirmed the target specificity of the fluorescent probe.
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Conclusions

αvβ3-integrin-targeted optoacoustic imaging allowed for the early non-invasive monitoring of a

BRAF/MEK inhibitor combination therapy in a murine model of human melanoma, adding

molecular information on tumor receptor status to morphology-based tumor response criteria.

Introduction

Overactivation of the mitogen-activated protein kinase (MAPK) signal pathway by b-rapidly

accelerated fibrosarcoma (BRAF) gene mutations V600E/K leads to uncontrolled proliferation

of human cells and is a central mechanism of oncogenesis in melanoma [1, 2]. Selective BRAF

inhibitors (BRAFi) disrupt this oncogenic stimulus and demonstrate high initial tumor

response rates in metastatic melanoma [3, 4]. However, intrinsic or acquired BRAFi resistance

limits long-term tumor response to BRAFi monotherapies [5]. One major mechanism of

acquired BRAFi resistance is MAPK pathway activation by the mitogen-activated extracellular

signal-regulated kinase (MEK), which may be overcome by selective MEK inhibitors (MEKi)

[6]. Dual targeting of the MAPK signal pathway by a BRAFi/MEKi combination therapy dem-

onstrated significantly improved overall and progression-free survival in patients with

advanced BRAF-mutant melanoma compared to BRAFi monotherapy [7]. BRAFi/MEKi com-

bination therapy is a first-line option in patients with BRAF-mutant metastatic melanoma

(National Comprehensive Cancer Network Guidelines Version 1.2017, www.nccn.org).

Targeted therapies yield only subtle effects on tumor size and therefore limit the applicabil-

ity of morphology-based criteria of tumor response [8]. As functional and molecular imaging

allow for the non-invasive characterization of the tumor microenvironment beyond morphol-

ogy, they bear the potential to provide novel, complementary imaging biomarkers of tumor

response [9]. Functional and molecular imaging biomarkers may be better suited than size-

based response criteria in correlation with clinical endpoints such as early therapy response or

progression-free survival [10, 11].

αvß3-integrin is a transmembrane protein overexpressed on angiogenic endothelium and

tumor cells [12]. Depending on the investigated tumor model, αvß3-integrin is a target structure

for the non-invasive in vivo investigation of tumor angiogenesis and tumor cell populations [13].

In melanoma, αvß3-integrin plays an important role in neoangiogenesis and tumor progression

from the non-invasive, radial to the invasive, vertical growth phase [14, 15]. Herzog et al. demon-

strated the applicability of optoacoustic imaging with a targeted fluorescent probe for the charac-

terization of αvß3-integrin receptor status in human tumor xenografts in vivo [16].

The purpose of this experimental proof-of-principle study was to investigate αvß3-integrin-

targeted optoacoustic imaging and MRI for the non-invasive in vivo monitoring of a BRAFi/

MEKi combination therapy in a murine xenograft model of human melanoma, validated by

multiparametric ex vivo immunohistochemistry. We hypothesized that the αvß3-integrin-spe-

cific optoacoustic signal would be significantly reduced under targeted therapy, delivering a

surrogate of suppressed tumor αvß3-integrin expression over the treatment course and adding

quantitative, dual time point molecular information on the tumor microenvironment to mor-

phology-based assessments of tumor response.

Materials and methods

The study was approved by the Government of Upper Bavaria Committee of Animal Research

(Gz. ROB-55.2-2532.Vet_02-15-204) and conducted in accordance with the National Institutes
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of Health Guide for the Care and Use of Laboratory Animals. All applicable institutional and/

or national guidelines for the care and use of animals were followed. Every effort was taken to

reduce animal suffering. We kept the mice in individually ventilated cages (n = 4 mice per

cage, relative air humidity 65% at n = 18 room air changes/h, temperature 26˚C, light-dark-

cycle 12 h), nourished with water and small animal nutrition. Nest boxes and nestles ensured

environmental enrichment. Daily animal monitoring including weighing and tumor growth

measurement was conducted. Abnormal inactivity was considered an indicator of pain and

was treated by analgesia (0.5 mg/kg buprenorphine s. c.). The experiments were performed

under isoflurane anesthesia (2.5% in 1.0 L of 100% O2 per min for induction and 2.5% in 1.0 L

of 100% O2 per min for maintenance). Humane endpoints leading to euthanization were: max-

imum tumor diameter >1.5 cm, tumor exulceration, weight loss >15%, apathy, defense reac-

tion when palpating tumors, respiratory problems, paresis, non-physiological body posture.

Tumor model and experimental setup

Human BRAF V600E-positive melanoma cells (A375; ATCC CRL-1619, CLS Cell Lines Ser-

vice GmbH, Eppelheim, Germany) were diluted in 0.1 mL of a 1:1 mixture of phosphate-buff-

ered saline (PBS pH 7.4; GIBCO Life Technologies, Darmstadt, Germany) and Matrigel (BD

Biosciences, San Jose, CA). The resulting mixture was subcutaneously injected into the left

abdominal flank of n = 10 Balb/c nude mice (Charles River, Sulzfeld, Germany; 3 x 106 cells/

mouse). After reaching a tumor diameter of 0.5 cm, animals were randomized to either the

therapy (n = 5) or the control group (n = 5). αvß3-integrin-targeted optoacoustic imaging and

magnetic resonance imaging (MRI) were performed on day 0 (baseline) and day 7 (follow-up).

After optoacoustic imaging, animals were transferred to the MRI suite. T2-weighted (T2w)

MRI was performed for anatomic colocalization and morphologic tumor response assessments

(MR volumetry). Between baseline and follow-up imaging, animals were treated daily for one

week with either BRAFi/MEKi combination therapy (BRAFi: encorafenib, 1.3 mg/kg/d; MEKi:

binimetinib, 0.6 mg/kg/d; both Array BioPharma Inc., Boulder, CO) or a volume-equivalent

placebo solution (1% carboxymethyl cellulose and 0.5% Tween-80 in ddH20). After follow-up

imaging, animals were sacrificed and the explanted tumors were fixed in formalin. Multipara-

metric immunohistochemical workup included ß3-integrin expression, microvascular density

(CD31), and tumor cell proliferation (Ki-67).

Optoacoustic imaging

Optoacoustic imaging was performed on a dedicated small animal imaging system (inVision

256-TF, iThera Medical GmbH, Munich, Germany) [17]. Briefly, a tunable optical parametric

oscillator pumped by a neodymium-doped yttrium aluminum garnet laser provided excitation

pulses with a duration of 9 ns at wavelengths from 680 nm to 980 nm at a repetition rate of 10

Hz with a wavelength tuning speed of 10 ms and a peak pulse energy of 100 mJ at 730 nm. Ten

arms of a fiber bundle provided even illumination of a ring-shaped light strip of approximately

8 mm width. For ultrasound detection, 256 toroidally focused ultrasound transducers with a

center frequency of 5 MHz (60% bandwidth), organized in a concave array of 270˚ angular

coverage and a radius of curvature of 4 cm, were used. Animals were scanned at the following

n = 11 wavelengths: 700 nm, 730 nm, 740 nm, 750 nm, 760 nm, 770 nm, 780 nm, 790 nm, 800

nm, 850 nm, 900 nm. N = 10 pulses were averaged per wavelength, giving a temporal resolu-

tion per multispectral cycle of 11 s. After animals were placed into the system, the positions of

the rostral and caudal ends of the tumor were identified to mark the start and stop locations of

the scan (typically approximately 1 cm). A step size of 0.5 mm was used to scan through the

tumor. Animals were scanned before and 5 h after i. v. injection of a commercially available
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αvß3-integrin-targeted fluorescent probe (IntegriSense 750, 4 nmol; Perkin Elmer, Waltham,

MA). The data was reconstructed with ViewMSOT (iThera Medical GmbH, Munich, Ger-

many) using the back projection method. Reconstructed baseline images were used to model

the optoacoustic profile of the tumor using an adaptive match filter spectral unmixing algo-

rithm [18]. These models were then applied on a per mouse basis to the 5 h scans, where devia-

tions from the model consistent with the absorption spectrum of the αvß3-integrin-targeted

fluorescent probe were revealed. Regions of interest (ROI) were manually drawn on single

wavelength images to identify the tumor, and the average spectrally unmixed αvß3-integrin-

targeted optoacoustic signal was quantified (arbitrary units, a. u.). Single wavelength back-

ground images were displayed in greyscale with a Frangi filter applied to enhance anatomical

detail [19].

MRI

MRI was performed on a clinical 3 Tesla scanner (MAGNETOM Skyra, Siemens Healthineers,

Erlangen, Germany). Animals were scanned head-first in prone position. T2w data sets were

acquired using a 2D Turbo Spin Echo sequence (TR = 5470 ms, TE = 91 ms, in-plane resolu-

tion 0.3 x 0.3 mm, matrix size 192 x 192, slice thickness 1.5 mm). MR volumetry was con-

ducted on an external workstation using dedicated post-processing software written in-house

(PMI; Platform for Research in Medical Imaging, version 0.4) [20].

Planar whole-animal cryofluorescence imaging

In order to visualize the biodistribution of the targeted fluorescent probe, planar cryofluores-

cence images were acquired as described elsewhere [21]. Briefly, a cryostat was retrofitted with

a light source, filters, and a camera which enabled acquisition of color images as well as fluo-

rescence images of frozen specimen.

In vivo blocking studies

Competitive in vivo blocking studies were performed to confirm the target specificity of the

αvß3-integrin-targeted fluorescent probe. For blocking, αvß3-integrin receptor antagonist

cilengitide (800 μg; Selleck Chemicals, Houston, TX) was injected i. v. 15 min prior to injection

of the αvß3-integrin-targeted fluorescent probe (4 nmol). Optoacoustic imaging and signal

quantification were then performed as described above and signal intensities of blocked and

unblocked animals were compared accordingly.

Immunohistochemistry

Microscope slides with 3 μm sections from paraffin-embedded tissue were dewaxed and rehy-

drated following standard procedures (preheating at 60˚C, xylene substitute [Neo-Clear,

Merck KgaA, Darmstadt, Germany] graded series of ethanol (100%, 96%, 80% and 70%), fol-

lowed by double distilled water). After antigen demasking (microwave irradiation at 600 W,

0.1 M citrate buffer pH 6.0) and overnight incubation with the primary antibodies (anti-ß3-

integrin antibody Abcam ab179473, 1:500, anti-CD31 antibody Abcam ab28364 1:50, anti-Ki-

67 antibody SP6 Abcam ab16667 1:100 [all Cambridge, United Kingdom]) at 4˚C, tissue sam-

ples were further processed using the EnVision+ System HRP (DAB or AEC) (DAKO Diag-

nostika, Hamburg, Germany) kit according to the manufacturer´s instructions. Slides were

counterstained with Mayer´s Haemalaun (Merck KgaA, Darmstadt, Germany) and covered

with Kaiser´s Glycerin Gelatine (Merck KgaA, Darmstadt, Germany). The optical density of

ß3-integrin expression was measured in ten random fields at 200x magnification using ImageJ
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(“Fiji” version, www.fiji.sc). CD31-positive microvessels and Ki-67-positive nuclei were quan-

tified in ten random high-power fields at 200x magnification.

Statistical analysis

Statistical analysis was performed using commercially available statistics software (SPSS 24,

IBM Corp., Armonk, NY). The continuous parameters were expressed as means with standard

deviations (95% confidence intervals). For intragroup comparisons (follow-up vs. baseline),

the Wilcoxon test was applied, while the Mann-Whitney U test was applied for intergroup

comparisons. The confirmatory tests (αvß3-integrin-specific optoacoustic signal at follow-up

vs. baseline; ß3-integrin in the therapy vs. the control group) were compared against Bonfer-

roni-Holm-adjusted α’ levels (α = 0.05). All other tests were compared against α = 0.05 as they

were considered exploratory.

Results

Optoacoustic imaging

The αvß3-integrin-specific optoacoustic signal was significantly reduced under therapy, dem-

onstrating a unidirectional decline in all animals (mean signal: from 7.98±2.22 a. u. to 1.67

±1.30 a. u.; p = 0.043). No statistically significant change of the optoacoustic signal was

observed in the control group, with a heterogeneous development of individual values (mean

signal: from 6.60±6.51 a. u. to 3.67±1.93 a. u.; p = 0.500). There was no statistically significant

difference in baseline optoacoustic signals between the therapy and the control group (mean

signal: therapy 7.98±2.22 a. u. vs. control 6.60±6.51 a. u.; p = 0.690). Individual optoacoustic

signal intensities at baseline and follow-up are displayed in Table 1 and Fig 1. Fig 2 shows a

single wavelength optoacoustic image for anatomical reference in greyscale and the spectrally

unmixed, αvß3-integrin-specific signal in fire. Representative color-coded tumor maps of

exemplary animals from the therapy and the control group before and after treatment are pro-

vided in Fig 3. Competitive blocking studies confirmed the target specificity of the αvß3-integ-

rin-targeted fluorescent probe (Fig 4). The αvß3-integrin-targeted fluorescent probe

Table 1. Optoacoustic tumor signals and tumor volumes at baseline and follow-up. Optoacoustic signal intensities displayed in [a. u.]. Volumes (Vol) displayed in

[mm3].

Animal no. T/C� SignalBaseline SignalFollow-Up VolBaseline VolFollow-Up ΔVol

1 T 10.40 1,24 23.5 190.7 167.7

2 T 9.92 0.78 32.0 143.4 111.4

3 T 7.82 1.10 51.1 144.8 93.7

4 T 5.09 1.26 38.6 88.1 49.5

5 T 6.66 3.96 30.0 144.2 114.2

Mean±SD† T 7.98±2.22 1.67±1.30 35±10 142±36 107±43

6 C 15.30 6.60 117.1 244.6 127.5

7 C 11.80 2.67 60.4 120.4 60.0

8 C 3.15 1.51 57.4 205.7 148.3

9 C 1.14 3.27 43.5 197.3 153,8

10 C 1.60 4.39 29.4 101.8 72,4

Mean±SD† C 6.60±6.51 3.67±1.93 62±33 174±54 112±39

�: T = therapy group; C = control group

†: SD = standard deviation

https://doi.org/10.1371/journal.pone.0204930.t001
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demonstrated tumor-specific binding in all animals with a representative biodistribution of

the fluorescent probe shown in Fig 5.

MRI

Tumor volumes increased in both the therapy and the control group with no statistically

significant intergroup difference (ΔVolTherapy +107±42 mm3 vs. ΔVolControl +112±44

mm3; p = 0.841). There was no difference in baseline tumor volumes between the therapy

and the control group (VolTherapyBL 35±10 mm3 vs. VolControlBL 62±33 mm3; p = 0.151).

Individual tumor volumes at baseline and follow-up are provided in Table 1 and Fig 6.

T2w images of a representative animal from the control group at baseline and follow-up

are provided in Fig 7.

Immunohistochemistry

In line with the optoacoustic imaging results, ß3-integrin expression was statistically signifi-

cantly lower in the therapy group (ß3: 0.20±0.02 vs. 0.39±0.05; p = 0.008). We observed a statis-

tically significantly lower microvascular density in the therapy group compared to the control

group (CD31: 119±15 vs. 292±49; p = 0.008). There was a statistically non-significant lower

tumor cell proliferation in treated compared to untreated animals (Ki-67: 3,925±1,693 vs.

5,782±1,092 p = 0.151). Individual values for the immunohistochemical parameters are pro-

vided in Table 2. Immunohistochemical stainings of representative tumor sections are pro-

vided in Fig 8.

Fig 1. Optoacoustic signal intensities at baseline and follow-up. Solid lines: therapy group. Dashed lines: control

group. Note the unidirectional signal decrease in the therapy group and the omnidirectional development of signal

intensities in the control group.

https://doi.org/10.1371/journal.pone.0204930.g001
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Discussion

In the present study, we investigated αvß3-integrin-targeted optoacoustic imaging and mor-

phologic MRI for the non-invasive in vivo monitoring of a BRAFi/MEKi combination therapy

in a murine model of human melanoma. Imaging was validated in and ex vivo: (1) In vivo

blocking studies verified the αvß3-integrin specificity of the targeted fluorescent probe, (2) ex

vivo planar whole-animal cryofluorescence imaging confirmed tumor-specific probe binding,

and (3) ex vivo immunohistochemistry demonstrated a statistically significant suppression of

ß3-integrin expression under therapy. In correlation with the ex vivo immunohistochemistry,

the αvß3-integrin-targeted optoacoustic signal was statistically significantly reduced under

therapy, while no statistically significant change was observed in the control group. Tumor vol-

umes increased in both the therapy and the control group. This proof-of-principle study dem-

onstrates the feasibility of optoacoustic imaging with a targeted fluorescent probe for the

longitudinal, quantitative dual time point monitoring of a molecular cancer therapy in vivo,

Fig 2. Overview of αvß3-integrin-specific optoacoustic imaging. Balb/c nude mouse. Axial plane. Tumor margins

indicated by white dashed line. A: Optoacoustic image (850 nm). B: Spectrally unmixed αvß3-integrin-specific signal.

C: Overlay of A and B. Note the tumor-specific binding of the αvß3-integrin-targeted fluorescent probe.

https://doi.org/10.1371/journal.pone.0204930.g002

Fig 3. αvß3-integrin-specific signal before and after treatment of Balb/c nude mice. A: therapy, baseline. B: therapy,

follow-up. C: control, baseline, D: control, follow-up. Note the significant decrease in αvß3-integrin-specific

optoacoustic signal following BRAFi/MEKi combination therapy (B vs. A). No significant change in αvß3-integrin-

specific optoacoustic signal is observed in the control group (D vs. C).

https://doi.org/10.1371/journal.pone.0204930.g003
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adding complementary molecular information on αvß3-integrin receptor status to morphol-

ogy-based assessments of tumor response.

Several groups investigated the potential of preclinical optoacoustic imaging with targeted

probes for the non-invasive characterization of the tumor microenvironment in vivo [16, 22–

25]. αvß3-integrin-targeted fluorescent probes were studied to qualitatively visualize experi-

mental human breast carcinomas and glioblastomas [16, 24]. However, reproducible signal

quantifiability is an essential prerequisite for therapy monitoring. Our study adds to the litera-

ture as it presents a first approach to quantify the fluorescent signal at different time points

under therapy validated by immunohistochemistry, evaluating the potential of optoacoustic

Fig 4. In vivo blocking experiments. Competitive in vivo blocking studies with αvß3-integrin receptor antagonist

cilengitide confirmed the specificity of the targeted fluorescent probe. Note the significant optoacoustic tumor signal

increase in unblocked animals (control). No significant change in optoacoustic tumor signal was observed in blocked

animals.

https://doi.org/10.1371/journal.pone.0204930.g004

Fig 5. Planar whole-animal cryofluorescence imaging. Balb/c nude mouse. A: macroscopic color image. B:

fluorescence image. T: tumor; K: kidneys; I: intestines. The targeted fluorescent probe showed a tumor-specific

binding. Analogous to the in vivo optoacoustic images, little background signal is noted in the intestines.

https://doi.org/10.1371/journal.pone.0204930.g005
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imaging for therapy monitoring in future clinical trials. Optoacoustic imaging yields high

translational potential with a focus on tumors located close to the body surface. Clinical optoa-

coustic imaging systems were already investigated in melanoma, inflammatory bowel disease,

breast cancer, and thyroid cancer [26–29]. Clinical optoacoustic imaging allows for the acqui-

sition of anatomical and functional information on tumors and healthy tissues exploiting

intrinsic tissue contrast and visualizing endogenous absorbers (melanin and oxygenated/deox-

ygenated hemoglobin) [26, 27]. However, in order to generate molecular information such as

Fig 6. Tumor volumes at baseline and follow-up. Solid lines: therapy group. Dashed lines: control group. In both

therapy and control group, tumor volumes increased over the treatment course with no significant intergroup

difference.

https://doi.org/10.1371/journal.pone.0204930.g006

Fig 7. Morphologic MRI data sets of a representative animal from the control group at baseline and follow-up.

Balb/c nude mouse. A: baseline. B: follow-up. Tumor indicated by red dashed line. Note the tumor volume increase

from baseline to follow-up.

https://doi.org/10.1371/journal.pone.0204930.g007
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tumor receptor status, exogenous absorbers, i. e., targeted probes, are necessary [30]. Despite

the promising preclinical results reported in the literature, data on clinical optoacoustic imag-

ing with targeted fluorescent probes are still lacking and data on the use of targeted fluorescent

probes in humans are limited. Indocyanine green and methylene blue are two non-targeted

near-infrared range fluorochromes approved by the Food and Drug Administration for the

use in humans, but these unspecific blood pool agents fail to provide information on tumor-

inherent target structures [31]. In clinical studies, targeted fluorescent agents were already

investigated for the guidance of surgical and endoscopic procedures [32–34]. For instance, a

folate-receptor α-targeted fluorescent probe emitting in the visible spectrum (500 nm) was

recently investigated in patients with ovarian or breast cancer to intraoperatively detect addi-

tional tumor lesions and to aid the definition of tumor margins [33]. Contrast agents that

absorb in near-infrared, which would enable the deepest possible imaging in tissue for optoa-

coustics, are also available and were applied in clinical studies for optical imaging. For exam-

ple, bevacizumab-IRDye800CW was used to detect colorectal peritoneal metastases

intraoperatively with the use of a fluorescence camera [35]. Optoacoustic imaging could be

used for similar applications, though its capability of deeper tissue penetration could poten-

tially offer additional benefits intraoperatively or in non-invasive settings. However, biodistri-

bution and biocompatibility of targeted, near-infrared fluorescence imaging agents in humans

remain major issues that need to be addressed before clinical translation. Binding to non-tar-

get tissues as well as the enhanced permeability and retention effect may lower the target-to-

background signal and therefore limit the applicability for therapy monitoring [31, 36]. For

local staging under therapy, subcutaneous injection of the targeted probe analogously to inter-

stitial MR lymphography with consecutive lymphatic transport to the target tumor (mela-

noma) would be a possible approach to reduce the systemic side effects in humans and may be

investigated in future studies.

The role of optoacoustic imaging compared to alternative αvß3-integrin-targeted imaging

modalities remains to be defined. Positron emission tomography (PET) with targeted radionu-

clides as well as MRI using targeted contrast agents also allow for the non-invasive characteri-

zation of αvß3-integrin receptor status in vivo [13, 37–39]. Compared to optoacoustic imaging,

these modalities are not limited by low tissue penetration depth and are superior with regard

Table 2. Individual immunohistochemical parameters.

Animal no. T/C� ß3-Integrin CD31 Ki-67

1 T 0.172 133 2,937

2 T 0.178 123 2,587

3 T 0.209 123 2,713

4 T 0.205 93 6,389

5 T 0.218 121 5,001

Mean±SD† T 0.20±0.02 119±15 3,925±1,693

6 C 0.358 300 4,623

7 C 0.475 254 6,508

8 C 0.371 371 4,700

9 C 0.352 282 6,000

10 C 0.402 252 7,078

Mean±SD† C 0.39±0.05 292±49 5,782±1,092

�: T = therapy group; C = control group

†: SD = standard deviation

https://doi.org/10.1371/journal.pone.0204930.t002
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to whole-body tumor staging. However, the lack of ionizing radiation, lower costs compared

to PET and MRI, and the availability of clinical imaging devices for bedside use are major

advantages of optoacoustic imaging. One potential application of handheld optoacoustic scan-

ners may be the monitoring of superficially-located target lesions, i. e., lymph node metastases,

cutaneous metastases, or the primary tumor (if unresectable). This could be performed as part

of a multimodality imaging protocol complementary to established imaging modalities such as
18F-fluorodeoxyglucose-PET/computed tomography or MRI, generating a surrogate of whole-

body tumor receptor status under targeted therapy.

Fig 8. Immunohistochemical stainings of representative tumor sections from the therapy and the control group.

A: ß3-integrin, therapy. B: ß3-integrin, control. C: CD31, therapy. D: CD31, control. E: Ki-67, therapy. F: Ki-67,

control. Note the lower ß3-integrin expression (A vs. B; p = 0.008), microvascular density (CD31, C vs. D; p = 0.008),

and tumor cell proliferation (Ki-67, E vs. F; p = 0.151) in the therapy group compared to the control group.

Magnification: 200x.

https://doi.org/10.1371/journal.pone.0204930.g008
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Limitations

We acknowledge several limitations of the present study. First, the animal number was small

and the results including reproducibility of the quantitative data need to be validated in larger

cohorts. However, this can be considered appropriate for the study purpose, which was to pro-

vide a first proof-of-principle of quantitative dual time point optoacoustic imaging for therapy

monitoring in a small animal model of human melanoma. In addition, Joseph et al. recently

provided evidence for the reproducibility and repeatability of quantitative in vivo optoacoustic

imaging [40]. Second, the imaging results were validated by single time point immunohis-

tochemistry and the follow-up interval was limited to one week. Additional follow-up intervals

for both imaging and immunohistochemistry may reveal deeper insights into the development

of αvß3-integrin expression and the according optoacoustic signal over the therapy course.

Third, αvß3-integrin-targeted imaging may be limited by elevated background signal as αvß3-

integrin is not only expressed by tumors, but also several non-target tissues including the gut

and the liver [41]. The localization of the tumor may thus have an effect on ROI selection and

signal quantifiability. Nevertheless, the detected αvß3-integrin-specific optoacoustic signal

allowed for a good depiction of the tumor against the background in all animals, which can be

attributed to the relatively high αvß3-integrin expression of the A375 cell line compared to

other available melanoma models [42].

Conclusions

In this experimental study, αvß3-integrin-targeted optoacoustic imaging allowed for the in

vivo monitoring of a BRAFi/MEKi combination therapy in a murine model of human mela-

noma. Our results provide a proof-of-principle of quantitative dual time point optoacoustic

imaging for therapy monitoring in vivo.
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