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Autoantibodies binding to the extracellular domains of desmoglein (Dsg) 3 and 1 are 
critical in the pathogenesis of pemphigus by mechanisms leading to impaired func-
tion of desmosomes and blister formation in the epidermis and mucous membranes. 
Desmosomes are highly organized protein complexes which provide strong intercellular 
adhesion. Desmosomal cadherins such as Dsgs, proteins of the cadherin superfam-
ily which interact via their extracellular domains in Ca2+-dependent manner, are the 
transmembrane adhesion molecules clustered within desmosomes. Investigations on 
pemphigus cover a wide range of experimental approaches including biophysical meth-
ods. Especially atomic force microscopy (AFM) has recently been applied increasingly 
because it allows the analysis of native materials such as cultured cells and tissues under 
near-physiological conditions. AFM provides information about the mechanical properties 
of the sample together with detailed interaction analyses of adhesion molecules. With 
AFM, it was recently demonstrated that autoantibodies directly inhibit Dsg interactions 
on the surface of living keratinocytes, a phenomenon which has long been considered 
the main mechanism causing loss of cell cohesion in pemphigus. In addition, AFM allows 
to study how signaling pathways altered in pemphigus control binding properties of 
Dsgs. More general, AFM and other biophysical studies recently revealed the importance 
of keratin filaments for regulation of Dsg binding and keratinocyte mechanical properties. 
In this mini-review, we reevaluate AFM studies in pemphigus and keratinocyte research, 
recapitulate what is known about the interaction mechanisms of desmosomal cadherins 
and discuss the advantages and limitations of AFM in these regards.

Keywords: atomic force microscopy, desmosome, pemphigus, desmosomal cadherin, cell adhesion

inTRODUCTiOn

Pemphigus with the two main forms pemphigus vulgaris (PV) and pemphigus foliaceus (PF) rep-
resents a group of autoimmune blistering skin diseases in which autoantibodies develop primarily 
against the desmosomal cadherins desmoglein (Dsg) 1 and 3. This leads to weakened keratinocyte 
cohesion by a vast and yet only partially understood set of mechanisms and in consequence causes 
intraepidermal splitting (1, 2). Patients suffer from painful blistering affecting skin and mucous 
membranes, including the risk of infections and nutritive problems (3, 4). A broad range of methods, 
including functional adhesion assays, molecular biology, and immunological approaches as well as 
animal models are used study pemphigus pathogenesis (2, 5). The investigation of some mecha-
nisms underlying desmosome dysfunction, e.g., impaired desmosome turnover, requires complex 
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model systems such as passive IgG transfer in mouse models 
or ultrastructural analysis of human skin ex vivo (6). However, 
reductionist approaches such as atomic force microscopy (AFM) 
analysis of Dsg-binding properties and distribution either in 
cell-free models or 2D keratinocyte cultures yield important 
information about the effects of autoantibodies on the func-
tion of cell adhesion molecules. Moreover, these effects can be 
analyzed in concert with morphological alterations typical for 
pemphigus such as keratin filament retraction and changes in 
overall mechanical properties of keratinocytes. Insights in the 
mechanisms of desmosomal cadherin interactions and their 
regulation by intracellular signaling and plaque proteins may 
provide the molecular basis for targeted therapies in pemphigus. 
In the following, we will summarize the conclusions that could 
be drawn from studies utilizing AFM force spectroscopy and  
elasticity mapping to investigate pemphigus pathogenesis and 
outline strengths and weaknesses of this experimental approach.

PRinCiPLe OF CeLL-FRee AnD CeLL 
SURFACe AFM MeASUReMenTS

Atomic force microscopy is used to construct topography maps 
based on the deflections of a flexible cantilever equipped with a 
sharp detection tip. Driven by highly accurate piezo steppers, the 
tip scans a freely definable region of interest while deflection of 
the cantilever is detected by the displacement of a laser beam on 
a photodiode (Figure 1A). This setup allows the measurement 
of virtually all kinds of materials. Being a non-optical imaging 
technique, the resolution is not limited by diffraction of light and 
reaches a spatial resolution down to 0.5–1 nm (7). Important for 
the field of basic biology, living cells, e.g., keratinocytes, can be 
imaged under near-physiological conditions (37°C, medium) 
without the necessity of fixation (8, 9). Depending on the imaging 
mode, mechanical properties such as elasticity of the sample can 
be acquired together with information about the surface topog-
raphy (10, 11) (Figure 1B). The combination of AFM topography 
and elasticity mapping with force spectroscopy provides an 
additional set of data that can be extracted from the same scan 
(Figure 1B). In this approach, recombinant adhesion molecules, 
e.g., the extracellular domains of desmosomal cadherins, are 
coupled to the AFM tip (Figures 1C,D). The tip is repetitively 
lowered to and retracted from a given surface, e.g., a cell mem-
brane. Scanning with these functionalized tips provides informa-
tion about the binding partners of the respective molecule, their 
localization (e.g., position in the membrane) (Figure  1B), and 
a set of biophysical properties of single-molecule interactions, 
such as binding forces, lifetimes of the respective bonds, and step 
position (12, 13).

Several methods are established for protein functionalization 
of AFM cantilevers (14). However, usage of heterobifunctional 
PEG-linkers is often preferred because it allows coupling of the 
molecule of interest to the distal end of the linker and ensures a 
reproducible detection radius throughout the experiments (15). 
In addition, these linkers allow coupling with a broad range of 
molecules through amino groups (15). Thus, it is possible to 
coat full-length extracellular domains of desmosomal cadherins 

which has been done with his-tagged monomers (Figure 1C) (16) 
as well as with Fc-tagged dimers (Figure 1D) (17). The second 
setup was applied based on experiments using classical cadherins, 
in which cis-dimerization was thought to be crucial for proper 
adhesive function (18, 19). However, both approaches showed 
specific homophilic and heterophilic binding events (16, 20–22). 
Due to the freely moving linkers, the achievable resolution is 
reduced to around 50  nm (14) which is suitable for capturing 
desmosomal cadherin clusters at the surface of living keratino-
cytes. Importantly, AFM force spectroscopy can be combined 
with other imaging modalities. These range from conventional 
and superresolution fluorescence microscopy techniques to 
electron microscopy and may help to overcome technical limita-
tions, such as non-specificity of adhesion measurements and low 
imaging speed (23, 24). Together, this highly flexible AFM-based 
multimodal imaging allows the simultaneous acquisition of a 
wide range of different parameters.

For characterization of binding properties of desmosomal 
cadherins often cell-free approaches are used in which recombi-
nant proteins are immobilized not only on the scanning tip but 
also on the surface of, e.g., a silicon nitrite mica-sheet (25). This 
reductionist model allows unequivocal evaluation of binding 
partners and forces because the possible interaction partners are 
clearly defined (Figure  1E). By contrast, keratinocytes express 
several isoforms of desmosomal cadherins (Figure  1F) which 
hinders a clear identification of interaction partners. Moreover, 
cell monolayers are more complicated to handle because of the 
necessity of measurements under near-physiological conditions, 
including temperature control and application of media to avoid 
starving (8). The continuous reorganization and morphological 
changes of the monolayer limit lateral resolution and are chal-
lenging because of the time necessary for AFM measurements 
(14). On the other side, the increased complexity by application of 
living cells has numerous advantages and adds novel possibilities 
to characterize desmosomal adhesion. Changes of cell topogra-
phy and mechanical properties can be monitored in response 
to manipulation of signaling pathways or genetic depletion of 
specific proteins (26–28). In addition, alterations in the localiza-
tion of Dsg clusters at the surface of living keratinocytes, their 
mobility (20, 29), and the binding properties can be elucidated 
(20, 30). Vice versa, changes in cell behavior or intracellular sign-
aling activity can be detected following AFM-based manipulation 
such as indentation of the membrane or severing of cytoskeletal 
components (31, 32).

AFM TO eLUCiDATe Dsg-BinDinG 
PARTneRS AnD TO STUDY THe eFFeCTS 
OF AUTOAnTiBODieS

Desmogleins and desmocollins have been shown to bind 
both in homophilic- and heterophilic fashion under cell-free 
conditions (17, 33, 34). By cell-free single-molecule AFM 
force spectroscopy using recombinant Fc-dimers of the entire 
extracellular domain, we found that Dsg1, Dsg2, Dsg3, and 
Dsc3 can interact homophilically. Importantly, these homo-
philic interactions were blocked by both EGTA treatment as 
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FiGURe 1 | Atomic force microscopy (AFM) setup for cadherin binding studies. (A) Schematic of an AFM setup. A flexible cantilever equipped with a sharp tip is 
repetitively lowered to and retracted from the surface of the probe. Deflection of the cantilever while contacting the surface is detected by a laser pointed on the 
cantilever and provides information about surface topography and mechanical properties. (B) Example for simultaneous measurement of topography (with elevated 
cell borders and filamental structures on the cell surface), elasticity (Young’s modulus) and Dsg3 adhesion map (with each blue pixel represents on Dsg3-dependent 
binding event, arrow points on the cell border) on living murine keratinocytes. (C,D) To study single-molecule interaction tips can be functionalized with recombinant 
adhesion molecules using PEG-linkers. For desmosomal cadherins coating was conducted using full-length extracellular domains as either monomers  
(C) or Fc-tagged dimers (D). (e) Probe setup for cell-free measurements on mica sheets coated with Fc-tagged dimers of desmosomal cadherin extracellular 
domains. (F) Probe setup for measurements on living keratinocytes. Cells express several desmosomal cadherin isoforms on their cell surface.
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well as incubation with specific antibodies (16, 20, 21, 35, 36). 
As another indication for specific homophilic interactions, 
the bond rupture forces increased with the applied loading 
rate similar to classical cadherins (18, 37–39). Corresponding 
lifetimes were delineated at τ0≈0.17 for Dsg1, τ0≈0.31 for Dsg3, 
and τ0≈0.24s for Dsc3 in cell-free AFM experiments and τ0≈0.31 
for Dsg3-dependent binding events on murine keratinocytes 
(20, 29, 35, 36) which were significantly lower than detected 
for classical cadherins (18, 37). Homophilic interactions of 
Dsc2 but not Dsg2 monomers were also observed recently (16). 
With regard to heterophilic interactions, binding of Dsg2 to 
Dsc2 and Dsg3 was observed by AFM as well as interactions 

between Dsg1 and Dsc3 (16, 20, 35). In a systematic approach, 
only heterophilic interactions of Dsgs and desmocollins were 
found by surface plasmon resonance measurements although 
homophilic interactions were observed when high concentra-
tions of molecules were applied, which allowed to determine 
the crystal structure of two interacting Dsg2 molecules (40). 
The reasons for these in part contradictory in vitro findings are 
unclear yet. Nevertheless, in living keratinocytes, homophilic 
interactions appear to be a primary mode of interaction as 
revealed by extracellular cross-linking (41). In line with this, 
we detected primarily homophilic interactions of Dsg3 on the 
surface of living keratinocytes (20, 29).
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FiGURe 2 | Autoantibody effects on desmosomal cadherin binding properties. (A) To cause direct inhibition of desmoglein (Dsg)-binding autoantibodies may either 
sterically hinder desmosomal cadherin interaction by preferentially targeting the adhesive EC1 domain or allosterically lead to conformational changes, which also 
may involve the adhesive interface. (B) Autoantibodies induce intracellular signaling leading to reorganization and internalization of Dsg molecules. (C) Schematic of 
autoantibody effects on desmosomal cadherin distribution. For simplification, only Dsgs are shown. Under control conditions, Dsg3 is uniformly distributed over the 
cell surface whereas Dsg1 shows dense clustering along cell–cell contacts. Binding of pathogenic autoantibodies causes direct inhibition of Dsg3 but not of Dsg1 
interactions. For both, Dsg1 and 3, binding of autoantibodies induces redistribution of binding events away from cell–cell contact sites, a process that is likely 
regulated through by keratin uncoupling and activation of p38MAPK.
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Atomic force microscopy was further used to study the effects 
of pemphigus autoantibodies on Dsg binding. To be patho-
genic and result in loss of cell cohesion, autoantibodies would 
either need to block Dsg interactions or lead to reorganization 
and internalization of Dsg molecules (Figure  2A). In the first 

concept, autoantibodies may sterically hinder interaction by 
preferentially targeting the adhesive EC1 domain of Dsgs or 
allosterically lead to conformational changes of the adhesive 
interface. These modes of interactions may be summarized as 
direct inhibition (Figure 2A). Release of Dsgs from desmosomes 
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and endocytosis would require additional cellular mechanisms 
and intracellular signaling (Figure  2B). For instance, it is 
possible that extradesmosomal molecules serve as scaffolds 
which, dependent on autoantibody binding modulate signaling 
pathways and, thus, influence the composition and turnover of 
desmosomes. We sought to apply pemphigus autoantibodies in 
cell-free AFM in order to demonstrate direct inhibition of Dsg 
binding which represented the most likely mechanism of anti-
body action (42). However, we were surprised that PF-IgG did 
not directly interfere with Dsg1 binding (17). Meanwhile, using 
various IgG fractions of both PF-IgG and PV-IgG, we were not 
able to detect direct inhibition of Dsg1 interaction, both in cell-
free and in cell-based measurements (34, 43, 44). By contrast, in 
all experiments using PV-IgG or the monoclonal Dsg3-specific 
antibody AK23 derived from a pemphigus mouse model (45) 
direct inhibition of Dsg3 binding was demonstrated (26, 34, 43, 
44, 46). Thus, these data do not rule out that some autoantibod-
ies targeting Dsg1 may occur which also cause steric hindrance, 
especially since some antibodies isolated from patients by phage 
display have been shown to interact with both Dsg1 and Dsg3 
(47). However, the amount of these appears to be low if present 
in IgG fractions of many patients.

Atomic force microscopy studies also showed that a Dsg-
specific tandem peptide designed to cross-link interacting Dsgs 
was effective to abrogate PV-IgG- and AK23-induced loss of 
keratinocyte cohesion in culture and in living mice indicating 
that direct inhibition of Dsg3 binding contributes to blister 
formation (46, 48). However, since the peptide approach also 
abolished activation of pathogenic signaling pathways such 
as p38MAPK and pharmacologic inhibition of p38MAPK 
was effective to override autoantibody-induced loss of cell 
adhesion in the presence of autoantibodies directly inhibiting 
Dsg3 interaction, steric hindrance alone appears not to be 
sufficient to cause full loss of keratinocyte cohesion (26, 48). 
It has to be noted that a limitation of AFM interaction stud-
ies is that recombinant Dsg molecules attached to the AFM 
probe primarily will interact with extradesmosomal Dsg rather 
than Dsg1 and 3 in the core of desmosomes. This means that 
AFM studies cannot definitely prove that PV-IgG and AK23 
are directly inhibiting the interaction of Dsg3 molecules 
inside of desmosomes. Nevertheless, because it was shown by 
immune-electron microscopy that the IgG-variant but not the 
IgM-variant of AK23 accessed the desmosomal core (49), it is 
likely that direct inhibition of Dsg3 binding in pemphigus also 
occurs in desmosomes and thereby contributes to desmosome 
dysfunction (6).

AFM TO QUAnTiFY ALTeRATiOnS OF 
KeRATinOCYTe eLASTiCiTY AnD 
CYTOSKeLeTAL ReORGAniZATiOn in 
ReSPOnSe TO AUTOAnTiBODieS

The cytoskeleton of eukaryotic cells comprises actin filaments, 
intermediate filaments, and microtubules. Keratin filaments, 
the intermediate filaments in cells of epithelial origin anchoring 
desmosomes, are pronouncedly affected in pemphigus. The so 

called “keratin retraction” describes the uncoupling of keratin 
filaments from desmosomes and the clustering around the 
nucleus. By AFM, keratin filaments can be visualized as stiff 
bundles underneath the membrane in the cell periphery insert-
ing perpendicular to areas of cell–cell contact into desmosomes 
(26, 28). Interestingly, changes in the peripheral keratin network 
occur very rapidly within 1 h after autoantibody incubation and 
appear to even precede Dsg3 endocytosis, another hallmark of 
pemphigus (26, 50). Here, the first visible alteration is a reduced 
amount of keratin filaments in the basal part of the cell near areas 
of cell–cell contact, a region implicated in assembly of keratin 
filaments (51).1 Furthermore, as demonstrated by AFM elastic-
ity mapping and optical stretching, keratin filaments in contrast 
to the actin cytoskeleton are the main constituents responsible 
for keratinocyte stiffness (52–54). In line with these data and 
the observations that keratin filaments are rapidly altered upon 
application or pemphigus autoantibodies, elasticity changes 
in response to autoantibody binding were described (31). By 
probing the membrane above the nucleus, a rapid reduction in 
cellular stiffness was observed within minutes followed by an 
increase after several hours, the latter of which may be a result of 
keratin clustering around the nucleus. Nevertheless, it is unclear 
whether these changes are mainly a result of keratin reorganiza-
tion or whether other mechanisms contribute, as these changes 
were related to FasL-dependent apoptotic signaling (31).

The actin cytoskeleton is also severely altered by autoanti-
body binding (55, 56). Strengthening of the cortical actin mesh-
work prevented autoantibody-induced loss of cell cohesion in 
keratinocytes, indicating a contribution of actin reorganization 
to epidermal blistering (57). In principle, the actin meshwork 
underneath the membrane is accessible for AFM-based 
imaging (58–60), albeit with reduced resolution compared to 
approaches involving a membrane “deroofing” step or inside-
out measurements of membrane patches (61, 62). By AFM, the 
differentiation between the cortical actin and other cytoskeletal 
components is barely possible, especially because a cortical 
keratin filament meshwork may exist (63). Nevertheless, the 
observation that the delicate mesh pattern of the membrane of 
murine keratinocytes appears similar in cells with and without 
expression of keratin filaments indicates that these structures 
represent the cortical actin cytoskeleton (20). If and in which 
timeframe specific changes of the cortical actin cytoskeleton 
can be detected by AFM imaging remains to be elucidated.

STUDieS On Dsg DiSTRiBUTiOn 
PATTeRnS AnD BinDinG PROPeRTieS 
MODULATeD BY PeMPHiGUS 
AnTiBODieS

In keratinocytes, Dsg3 and 1 are differentiation-dependently 
localized at sites of cell–cell junctions (64, 65). Interestingly, AFM 

1 Schlögl E, Radeva M, Vielmuth F, Schinner C, Waschke J, Spindler V. (under 
review). Keratin retraction and Dsg3 internalization independently contribute 
to autoantibody-induced cell dissociation in pemphigus vulgaris. Submitted to 
Immunology.
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measurements showed that Dsg3 binding events are uniformly 
distributed on the surface of living keratinocytes (29) (Figure 2C). 
This could be related to Dsg3 molecules that are detectable away 
from junctions and referred to as extradesmosomal (30, 66, 67). 
Thus, molecules detected close to cell–cell junctions may be 
extradesmosomal, located in desmosomal precursors or located 
at the edge of the desmosomal core, as the “center” of the tightly 
packed desmosomes is most likely not accessible for the AFM 
scanning tip. Nevertheless, these molecules differ with regard to 
their binding properties. Molecules at cell–cell junctions reveal 
higher binding forces compared to molecules on the cell surface 
above the nucleus (29). By contrast, Dsg1 binding events are not 
distributed uniformly but rather show higher binding frequencies 
along cell–cell junctions, indicating that clustering of Dsgs differs 
between isoforms (44, Figure 2C). In this context, keratins not 
only regulate cell mechanics (53, 54) but also differentially regu-
late Dsg-binding properties. For example, keratins are crucial for 
maintenance of Dsg3 binding strength as well as for distribution 
of Dsg1 at cell junctions (20, 44).

Binding of pemphigus autoantibodies to the extracellular 
domains of Dsg1 and 3 on the surface of living keratinocytes 
was shown to induce altered clustering of the targeted molecules 
(68–70). Using AFM, redistribution of Dsg1 binding events away 
from cell junctions occurred after treatment with pemphigus 
IgG fractions containing a-Dsg1 antibodies which may explain 
the structural changes described above (44). Dsg1 redistribution 
seems to be dependent on uncoupling from the keratin filaments 
which is a common phenomenon after treatment with patho-
genic autoantibodies and precedes reduction of Dsg1 binding 
strength (Figure  2C) (44, 48, 55). Due to direct inhibition of 
Dsg3 interaction, redistribution of Dsg3 molecules could not 
be evaluated after autoantibody treatment (26, 34). However, 
modulation of signaling pathways such as p38MAPK was used 
to mimic some effects of pemphigus autoantibodies on Dsg3 
binding properties. p38MAPK is a central signaling molecule 
in pemphigus which is activated by binding of autoantibodies 
and was demonstrated to form a signaling complex containing 
Dsg3 and Dsc3 (71). Furthermore, activation of p38MAPK 
has been linked to keratin retraction and Dsg internalization 
whereas inhibition of p38MAPK prevented loss of intercellular 
adhesion (Figure  2C) (55, 66, 71–73). Interestingly, activa-
tion of p38MAPK led to keratin retraction and redistribution 
of Dsg1 and 3 binding events away from junctions indicating 
that p38MAPK signaling participates in the regulation of 

Dsg clustering (Figure  2C) (44). Furthermore, inhibition of 
p38MAPK prevented autoantibody-induced redistribution of 
Dsg1 binding events and restored Dsg3 binding strength under 
conditions where keratinocytes were depleted from keratins 
(20, 44) indicating that Dsg-binding properties are strongly 
dependent on p38MAPK. Taken together, AFM adds important 
information on molecule distribution and binding properties of 
Dsgs after autoantibody incubation.

COnCLUSiOn

Atomic force microscopy complements a broad range of methods 
in pemphigus research. Under cell-free conditions, AFM enables 
characterization of single-molecule desmocadherin interactions 
with and without the presence of pemphigus autoantibodies. 
When applied on living keratinocytes, this can be complemented 
by monitoring cytoskeletal alterations. So far, AFM is the only 
technique with which direct inhibition of Dsg interactions by 
pemphigus autoantibody binding was detected on the single-
molecule level. Furthermore, it provides insights into altera-
tions of keratinocyte properties. Although interaction partners 
on living cells cannot be completely identified and temporal 
resolution is low compared to other live-cell imaging approaches, 
investigation of Dsg mobility and redistribution in response 
to autoantibodies may add important information about the 
underlying mechanisms of loss of cell cohesion in pemphigus. 
Similarly, combination of Bio-AFM with high-resolution imag-
ing techniques such as STED microscopy may elucidate whether 
alterations of Dsg binding properties in response to autoantibody 
binding maybe mediated by different association with signaling 
molecules and plaque proteins.
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