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Abstract: Transient receptor potential (TRP) channels represent a large family of cation channels
and many members of the TRP family have been shown to act as polymodal receptor molecules
for irritative or potentially harmful substances. These chemosensory TRP channels have been
extensively characterized in primary sensory and neuronal cells. However, in recent years the
functional expression of these proteins in non-neuronal cells, e.g., in the epithelial lining of the
respiratory tract has been confirmed. Notably, these proteins have also been described in a number of
cancer types. As sensor molecules for noxious compounds, chemosensory TRP channels are involved
in cell defense mechanisms and influence cell survival following exposure to toxic substances via the
modulation of apoptotic signaling. Of note, a number of cytostatic drugs or drug metabolites can
activate these TRP channels, which could affect the therapeutic efficacy of these cytostatics. Moreover,
toxic inhalational substances with potential involvement in lung carcinogenesis are well established
TRP activators. In this review, we present a synopsis of data on the expression of chemosensory TRP
channels in lung cancer cells and describe TRP agonists and TRP-dependent signaling pathways with
potential relevance to tumor biology. Furthermore, we discuss a possible role of TRP channels in the
non-genomic, tumor-promoting effects of inhalational carcinogens such as cigarette smoke.
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1. Introduction

Lung cancer can be divided into four subtypes: adenocarcinoma (~40% of all cases), squamous
carcinoma (30%), large cell carcinoma and small cell carcinoma (SCLC) (15% each) [1]. Due to their
clinical similarities, adeno-, large cell and squamous cell carcinoma are often grouped as non-small
cell lung carcinoma (NSCLC). In NSCLC therapy, remarkable progress has been made in the last
~15 years, including targeted therapies and immunotherapies such as EGFR blockers, dual kinase
inhibitors or check point inhibitors [2–4] that are usually combined with classical and well-established
chemotherapies (etoposide, cisplatin). However, there is still an urgent need for improved therapeutic
strategies based on the interference of critical oncogenic signaling pathways. In the case of SCLC,
the therapeutic options have even more limitations. SCLC patients often present with advanced disease
at the time of diagnosis, i.e., with metastases, thus limiting local therapy options (surgery or other local
intervention, local radiation) in favor of combination chemotherapy [5,6]. Due to its rapid proliferation
rate, the initial response is often remarkably high, with, unfortunately, subsequent development of
chemoresistance and disease progress, which highlights the need for novel target molecules and
pathways and more detailed knowledge regarding underlying drivers of SCLC carcinogenesis [7].
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To date, novel therapeutic approaches targeting specific oncogenic signaling pathways have
focused on the interference of critical membrane receptors (e.g., receptor tyrosine kinases) or
downstream signaling molecules (e.g., receptor-regulated kinases or transcription factors). However,
the modulation of tumor-relevant ion channels (by stimulating tumor-inhibiting channels or by
blocking tumor-promoting channels) represents an interesting alternative concept. Thus, TRP (transient
receptor potential) channels are promising candidates for innovative anticancer therapies [8].

The discovery of TRP channels is related to a Drosophila mutant already described in the 1960s [9]
showing an altered light reaction. The TRP-gene encoding a rhodopsin-activated calcium channel
was cloned 20 years later [10]. Subsequent studies indicated the existence of multiple different TRP
homologues in other species [11]. Thus, TRP channels comprise a large and divergent family of
channel proteins, expressed in various tissues and cell types in vertebrates as well as in invertebrates.
A common feature of the TRP superfamily of cation channels are six transmembrane segments and a
certain sequence homology. On the other hand, the major differences to other families of ion channels
lie in their diversity of cation selectivities and specific mechanisms of activation. Notably, a given TRP
channel can be activated, and its response can be modulated by entirely different mechanisms, which
has led to the concept of TRP channels as ‘multiple signal integrators’. Furthermore, another common
feature seems to lie in the TRP channels’ response to all large classes of external stimuli such as light,
sound, chemicals, temperature, changes in osmolarity and direct contact [12–14].

The TRP superfamily can be subdivided into six subfamilies that are ordered into two groups:
group 1 comprises the subfamilies TRPC (canonical), TRPV (vanilloid), TRPM (melastatin) and
TRPA (ankyrin), while group 2 consists of only two subfamilies, TRPP (polycystin) and TRPML
(mucolipin) [12,15]. It is not possible to predict the mechanism(s) of activation of a given channel based
on its affiliation to a subfamily. Moreover, natural compounds such as capsaicin or menthol activate
the heat-sensitive TRPV1 and the cold-sensitive TRPM8 channels, defining these channels as not only
temperature sensors but also chemosensory channels.

In the following, TRP subfamilies, which include chemosensory channels, e.g., TRPV, TRPM,
and TRPA are briefly characterized. The ‘classical’ TRPC channels (for a review see: [16–18] are not
chemosensory channels sensu stricto and are therefore omitted.

TRPV channels share about 25% sequence homology with the TRPC channels in a region spanning
the transmembrane domains 5 and 6. TRPV1 is activated by heat (≥43 ◦C) [19] and chemicals
such as endocannabinoids, anandamide, camphor and others, with low pH, ethanol, nicotine or
pro-inflammatory cytokines leading to further enhancement of cation flux. Again, this leads to the
concept of TRPV1 acting as a multiple signal integrator. TRPV2, TRPV3 and TRPV4, but not TRPV5
and V6, are also heat activatable [14].

The TRPM channels share about 20% amino acid sequence identity with the TRPC channels
over the five C-terminal transmembrane domains and contain a TRP domain C-terminally to the
transmembrane segments [20]. While the total length and sequence of their C-terminal regions shows
major differences, they can be subdivided into three subfamilies: TRPM1/3, TRPM4/5 and TRPM6/7.
Despite some similarities, TRPM2 and M8 do not form another subfamily. TRPM1 was the first TRPM
identified in mammals [21], and in some melanoma cell lines its expression level inversely correlates
with their metastatic potential. TRPM4 and M5 are voltage gated, calcium-activated, monovalent
cation-selective channels (VCAMs), based on a short acidic stretch of six amino acids in the pore loops.
TRPM2, M6 and M7 are characterized by a C-terminal kinase domain allowing for channel-independent
signaling and are therefore designated as chanzymes. TRPM7 is a divalent-permeable cation channel
that conducts, inter alia, Mg2+ ions, which in turn regulate the channel activity (as free Mg2+ or
Mg-complexed nucleotides).

TRPA1 is the only member of the TRPA channels to have been characterized in man so far (for a
review see: [22]). It is characterized by the presence of around 17 ankyrin-repeats in its N-terminus.
Furthermore, it contains a zinc binding site in the C-terminus and a calcium binding site in the
N-terminus. To date, three cysteine residues have been identified that are thought to be responsible
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for TRPA1 activation through covalent modification [23,24]. TRPA1 is activated by a wide variety
of substances [25]. Of note, beyond the ‘classical’ mechanism that relies on the binding of agents in
their binding pocket (key lock principle), many electrophilic compounds activate TRPA1 through a
specific mechanism, i.e., their covalent coupling to TRPA1. Below, activators of TRPA1, especially with
tumor-biological relevance, will be discussed in more detail.

2. Airway Expression of Chemosensory TRP Channels

TRP channels are expressed throughout the airways from the nasal mucosa to the alveolo-capillary
system. They have been found in neuronal cells in the airways, especially in the nerve endings of C
fibers, but also in non-neuronal cells, e.g., in the pulmonary epithelium, in smooth muscle cells of the
bronchi and vasculature as well as in pulmonary endothelial cells.

Regarding the function of TRP channels (in particular TRPA1 and TRPV1) in neuronal cells,
a critical role as toxicant sensor has been established (for review: [26,27]). The activation of these
sensory TRP channels in the nerve endings of the airways leads to the stimulation of protective reflexes
(cough, increased mucus production, enhanced mucociliary clearance) [27–30], but also to neurogenic
inflammation, which suggests an involvement of these channels in chronic obstructive lung diseases
(asthma, COPD).

Of note, sensor TRPs, like TRPV4 or TRPA1 have recently been described in non-neuronal cells as
well [31–33].

In fact, TRPV4 has been found expressed in many ciliary cells, e.g., in the ovarian duct [34],
in cholangiocytes [35], and in bronchial epithelial cells [36,37]. The stimulation of tracheal cells with
ATP, a well-known activator of ciliary beat frequency in the bronchial system, led to a receptor-operated
calcium signal strongly dependent on TRPV4 [36]. Intriguingly, the activation of TRPV4 has been
described as stimulating the release of ATP by airway epithelial cells, a process that is induced by
cell swelling in a pathway involving pannexin 1, RhoA and myosin light chain phosphorylation [37].
These findings suggest that TRPV4 and ATP may form a part of a self-amplifying system with TRPV4
being responsible for ATP-promoted calcium signaling and the subsequent triggering of ATP release
with activation.

The TRPA1 channel has long been regarded as a sensor protein for harmful stimuli (for a review,
see: [25]) mainly expressed in neuronal and neuroendocrine cells. However, non-neuronal functions of
this channel, especially in the context of the airway epithelium have been proposed in recent years
(for a review, see: [26,38]).

3. TRP Channels and Cancer

The involvement of TRP channels in tumor-relevant processes is plausible since calcium per se as
well as calcium-dependent signaling molecules, play a pivotal role in the regulation of proliferation,
apoptosis and cellular differentiation [39–42]. In fact, an association with cancer has been suggested for
a number of chemosensory TRP channels based on altered expression levels (up- or downregulation in
cancerous tissue as compared to normal tissue) or functional studies (TRP-promoted stimulation of
oncogenic signaling and/or tumor-promoting or inhibitory effects). Of note, most analyses of TRP
channels in cancer cells did not find critical mutations in these proteins that would affect the channel
activity, but instead altered the expression levels of wild-type channels on the mRNA and/or protein
level [42].

It is remarkable that some members of the TRP family have been found to be involved in
tumor-promoting processes, whereas other TRP channels have been linked with the suppression of
tumor growth. The postulated opposing functions of TRP channels are in line with the complex role of
calcium in the orchestration of cell growth as well as apoptosis.

Regarding the family of TRPM (melastatin) channels, a number of members have been associated
with tumor progression (see [43] for a review). For example, the founding member, TRPM1 was first
described as a gene downregulated in melanoma cells as compared to benign melanocytes [21,44].



Pharmaceuticals 2018, 11, 90 4 of 10

This led to the hypothesis of TRPM1 acting as a tumor suppressor (hence the name melastatin). In line
with this assumption, the induction of cellular differentiation in melanoma cells by treatment with
hexamethylenbisacetamide caused an upregulation of TRPM1 transcripts [45]. In contrast to the
potential tumor suppressor TRPM1, other members of this family have been implicated in oncogenic
processes. For example, TRPM8 (initially named Trp-p8) was first been described in a screening
experiment analyzing upregulated transcripts in prostate cancer tissue [46]. Since then, a number
of reports have shown that this channel is involved in various tumor-biology relevant processes in
prostate cancer (for a review, see [47]).

Likewise, a role in cancer cells has been described for several members of the TRPV family.
For example, an implication of TRPV1 in the regulation of apoptotic pathways induced by cannabinoids
in gynecologic carcinoma was described [48–50]. Another member of the TRPV family, TRPV6,
is overexpressed in prostate cancer [51] and the expression level has been correlated with tumor
grading, suggestive of a potential oncogenic role of TRPV6 in this tumor entity.

With respect to the TRPA1 channel, most publications addressing a protective role in cancer cells
focus on lung cancer (see below). Of note, the very first papers identifying and describing TRPA1 [52,53]
associated this protein with a tumor-suppressor function, since its expression was downregulated in
tumor cells. It was only later that studies identified this novel protein as an important chemosensor for
pain-eliciting substances or potentially harmful irritants [54]. While this finding shifted the interest in
the TRPA1 field from tumor cells to neuronal or toxicological aspects of this channel, it was also found
that TRPA1 may exert tumor-promoting effects (see below).

4. Expression of Sensory TRP Channels in Lung Cancer Cells

A functional expression of TRPA1 in lung cancer cells has been detected in a broad panel of
SCLC cell lines [55]. As mentioned above, SCLC cells show many neuroendocrine features, so that
the expression of TRPA1 in these cells is in line with the well-established role of this channel in
neurons [54,56–59] or neuroendocrine cells [60–63]. In SCLC cells, the activation of TRPA1 led to
increased cell survival [55], in line with a potential role of TRPA1 in the regulation of apoptosis under
stress conditions (see also next paragraph). Interestingly, in Lewis lung carcinoma cells both TRPA1 and
TRPM8 were functionally expressed and regulated critical cellular functions (metastasis, autophagy,
energy metabolism) [64].

Expression of TRPV1 has been demonstrated in lung adenocarcinoma cells [65–67]. TRPV1
expression has also been also demonstrated in lung fibroblasts [68] as well as in normal lung epithelium
and sensory nerves (see above). Thus, the expression of this channel in lung tumors may be in part
attributable to non-malignant stroma cells.

Moreover, Li et al. reported that TRPV3 was overexpressed in NSCLC tissue as compared to
adjacent noncancerous lung tissue [69] and that TRPV3 overexpressed was correlated with worse
survival rates.

5. Activation of Sensory TRP Channels by Inhalative Carcinogens and Chemotherapeutics

TRPV1 and TRPA1 are involved in the detection of potentially harmful inhalants, e.g. by reactive
electrophiles. However, these channels display a remarkable promiscuity with regard to their activators.
For example, TRPA1 is activated by a large number of chemically unrelated substances (Table 1).
Regarding the activation mechanism, the TRP channel can be stimulated by the direct reaction of
the cysteine residues of the channel with an electrophilic agent [23,24,70], or by the reaction of the
electrophilic compounds with constituents of the plasma membrane leading to the generation of
secondary TRP activators [71,72].
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Table 1. Overview of some established TRPA1 activators with potential pathogeneic or therapeutic
relevance for lung tumors.

Substance Potential Source References

Acrolein Cigarette smoke [73,74]

2-Chloroethyl-ethylsulfide Analogue of sulfur mustard
(chemical warfare agent) [75]

Crotonaldehyde Cigarette smoke [73]
15-Deoxy-Delta(12,14)-prostaglandine J(2) Endogenous inflammatory mediator [76]

Formaldehyde Cigarette smoke [74,77]
Hydrogen peroxide Endogenous inflammatory mediator [76]

Nicotine Cigarette smoke [78,79]
Nitric oxide Endogenous inflammatorymediator [76]
Oxaliplatin Chemotherapeutic agent [80,81]

In the case of TRPA1, it has been shown that tumor-relevant compounds like cigarette smoke or
DNA-damaging electrophiles can activate this channel [73–75]. Of note, the activation of TRPA1 in
SCLC cells can promote cell survival [55] suggesting a potential role in tumor progression. Moreover,
in lung adenocarcinoma cells, a direct interaction of TRPA1 with FGFR2 has been demonstrated,
which may regulate the metastatic propensity of the cancer cells [82]. Thus, apart from the
well-established direct genotoxic, tumor-initiating effects of DNA-damaging electrophiles, TRPA1
may also provide the mechanistic basis for a tumor-promoting role of these compounds via their
potential to modify critical proteins like Keap1 or TRP channels (see Figure 1) with possible therapeutic
implications. In this context, it is noteworthy that Takahashi et al. recently demonstrated an increased
cellular resistance towards oxidative stress in breast and in lung cancer spheroids dependent on TRPA1
function [83]. In this latter paper, a self-amplifying mechanism was suggested, since reactive chemicals
can activate NRF2-regulated transcription, which in turn leads to an induction of TRPA1 (Figure 1).
Of note, the activation of NRF2 can also induce detoxifying enzymes [84,85] in this way inactivating
potential carcinogens (Figure 1) leading to a complex picture, in which chemosensory TRP channels
exert pivotal, regulatory functions.

Figure 1. Proposed involvement of chemosensory TRP channels in tumor-promoting molecular effects
elicited by harmful inhalants.
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6. Outlook

Chemosensory TRP channels such as TRPA1, TRPV1, and TRPV4 have emerged as important
regulators of the epithelial integrity and mucociliary clearance of the airways. They are activated
by exposure to potentially harmful inhalants (diesel exhaust, formalin, acrolein) or known lung
carcinogens (electrophilic components of cigarette smoke). The activation of these channels is
associated with inflammatory effects in the bronchial system and, more important in the context
of lung tumorigenesis, some TRP members are involved in the regulation of oncogenic signaling
pathways and may be involved in tumor-promoting effects.

Owing to the expression of TRP channels on the plasma membrane and the existence of more
or less selective channel blockers or activators, these proteins are accessible to drug interventions.
Even some approved drugs or novel drugs in clinical trials are available, which modulate some
potentially tumor-relevant TRP channels, e.g., GRC 17536 (TRPA1) [86], XEN-D0501 (TRPV1) [80],
SB705498 (TRPV1) [87]. Therefore, the elucidation of the cancer-relevant effects of TRP channels has a
high translational impact and may define novel targets for therapeutic intervention.
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