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Abstract

Despite efforts in prevention and intensive care, trauma and subsequent sepsis are still associated with a high
mortality rate. Traumatic injury remains the main cause of death in people younger than 45 years and is thus a
source of immense social and economic burden. In recent years, the knowledge concerning gender medicine has
continuously increased. A number of studies have reported gender dimorphism in terms of response to trauma,
shock and sepsis. However, the advantageous outcome following trauma-hemorrhage in females is not due only to
sex. Rather, it is due to the prevailing hormonal milieu of the victim. In this respect, various experimental and
clinical studies have demonstrated beneficial effects of estrogen for the central nervous system, the
cardiopulmonary system, the liver, the kidneys, the immune system, and for the overall survival of the host.
Nonetheless, there remains a gap between the bench and the bedside. This is most likely because clinical studies
have not accounted for the estrus cycle. This review attempts to provide an overview of the current level of
knowledge and highlights the most important organ systems responding to trauma, shock and sepsis. There
continues to be a need for clinical studies on the prevailing hormonal milieu following trauma, shock and sepsis.
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Background
Despite efforts in resuscitation measures and intensive
care, acute trauma and the resulting shock and subse-
quent sepsis remain associated with a high mortality
[1]. A great deal of work has also been done in the
prevention of traumatic injury. Nevertheless, trau-
matic injury is the major cause of death in people
younger than 45 years of age and thus remains a
major public issue [2–4]. Traumatic brain injury
(TBI) accounts for 25% of long-term disabilities in in-
dividuals younger than 35 years of age. With an esti-
mated annual incidence of 1.7 million individuals in
the United States and a cost of $76.1 billion, TBI is a
major social and economic burden [3, 5, 6].
Severe blood loss, often linked to traumatic injury,

is associated with a high morbidity and mortality. The
US Armed Forces reported 4,596 battlefield deaths
from 2001 to 2011. Of these casualties, only 13%
reached medical facilities prior to death. The authors

classified 24% of the premedical facility deaths as po-
tentially survivable, of which 90% were due to severe
hemorrhage [7, 8]. Hemorrhagic shock and subse-
quent hypoperfusion to the body lead to hypoxia and
eventual death. Therefore, controlling blood loss and
administering resuscitative fluids are standard recom-
mendations for the treatment of major blood loss [9].
In remote, distant military situations, management of
hemorrhagic shock is challenging since large fluid vol-
umes cannot be routinely supplied. Therefore, the US
Department of Defense is supporting research to im-
prove medical treatment on the battlefield [10]. In
this respect, experimental animal studies have demon-
strated that a single, small-volume infusion of ethinyl
estradiol-3-sulfate (EES) has beneficial effects follow-
ing trauma-hemorrhage, even in the absence of fluid
resuscitation [11, 12].
Survivors of severe blood loss concomitant with

trauma have a high risk of developing subsequent sepsis
and multiple organ failure. Regardless of outstanding ad-
vances in the understanding and treatment of sepsis, the
mortality rate remains at 30% [13, 14]. In the last de-
cades, numerous studies have demonstrated gender
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dimorphism in response to trauma and sepsis with re-
spect to immunological, cardiovascular and pathophysio-
logical mechanisms [15–20]. Several studies have
reported that women are less susceptible to posttrau-
matic infections and multiple organ failure [21–24]. A
large body of evidence from animal studies definitively
supports these findings [11, 12, 25–27]. The more favor-
able outcome in female patients following trauma and
blood loss is mediated via sex hormones and in particu-
lar, the binding of estrogen to the estrogen receptors
[10, 26, 28, 29].
Given the previously demonstrated gender differ-

ences following trauma and shock in experimental (in
vitro as well as in vivo) and clinical studies, it is es-
sential that future studies take gender into account.
Since May of 2014, the National Institutes of Health
(NIH) accordingly requires information about the
composition of cells and animal gender in preclinical
studies.
In addition, there is an apparent genetic disparity since

females carry two inherently polymorphic X chromo-
somes, while males have only one polymorphic X
chromosome passed from the mother [30–33].

Gender dimorphism in trauma, shock and sepsis
As mentioned above, there is evidence for a gender di-
morphism in the morbidity and mortality following
trauma, hemorrhage and sepsis (Fig. 1). It was reported
for the first time in 1975, that males are more prone to
posttraumatic infections [34]. Since then, several studies
have indicated that male gender and age are major risk

factors for infections and multiple organ failure after
trauma and blood loss [22, 23, 32–35].
Inflammation represents a common line of defense for

maintaining the physiological homeostatic balance following
infection or trauma. Subsequently, the inflammatory process
leads to complex pro- and anti-inflammatory mechanisms.
Additionally, the immune response to acute vs. chronic in-
flammatory processes is different and must be considered. In
clinical reality, those acute and chronic inflammatory pro-
cesses commonly together occur in the same patient (e.g., a
patient with chronic pulmonary obstructive disease and in-
volved in a car accident). This complexity in inflammatory
processes, preexisting comorbidities and possible patient
medication directly affects the inflammatory response. How-
ever, even highly sophisticated animal models cannot reflect
this complexity of real life, which may account for other
factors in addition to sex hormones, and thus contributes to
divergent results between experimental and clinical studies.
However, a further discussion of differences in the response
to acute vs. chronic inflammatory disease processes is be-
yond the scope of this review.
The majority of studies also demonstrated an im-

proved outcome in females after trauma. Interestingly,
gender itself may not be an independent prognostic fac-
tor. Retrospective analyses revealed that female patients
had a higher mortality rate if an infection or severe sep-
sis occurred after trauma [36–38]. In contrast to these
findings, other studies reported a significantly better out-
come for women after traumatic injury, severe blood loss
and sepsis [22, 33, 39]. The contradictory findings are
most likely because Eachempati et al. [36] and Napolitano
et al. [37] did not consider age and prevailing hormonal

Fig. 1 Trauma, shock and sepsis have several deleterious effects on organ systems depending on gender and the prevailing hormonal milieu
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milieu as confounders. However, age may play a less im-
portant role at the time of injury than hormonal status
since hormone blood levels differ significantly during the
menstrual cycle. In a large multicenter analysis including
more than 20,000 patients, the authors demonstrated a
significant survival benefit for female patients younger
than 50 years [40]. In accordance with these findings,
posttraumatic sepsis and multiple organ failure was re-
duced in women when age was taken into account [41,
42]. In contrast to the abovementioned studies, clinical
findings have demonstrated diminished survival in females
following adverse circulatory conditions [43–46]. In this
respect, the endocrine milieu in females is regularly influ-
enced by the estrous cycle and by the onset of menopause.
In the United States, the average onset of menopause oc-
curs at the age of 50 years [47]. Thus, it is important that
age and the prevailing hormonal status be taken into ac-
count as a first step in all gender-related studies. Further-
more, exogenous hormones are frequently administered
and further influence the hormonal status. The intake of
oral contraceptives and hormone replacement therapy is
not documented in most clinical studies investigating
gender-specific outcomes in critically ill patients. It is esti-
mated that 21% of the women in the United States take
hormone replacement therapy, which represents a sub-
stantial percentage of female patients [48]. Since no stud-
ies were stratified by exogenous hormone treatment or
the phase of the estrous cycle, prospective clinical studies
in trauma victims that take into account the hormonal sta-
tus at the time of injury are needed.

The central nervous system
As mentioned above, sex differences in the immune sys-
tem and the inflammatory response are evident. Glial
cells of the central nervous system are key players in the
inflammatory response. These cells mediate the immune
response by an inflammatory cytokine burst consisting
of tumor necrosis factor α (TNF-α), prostaglandin E2
and interleukin-1β (IL-1) [49–51]. The secretion of pro-
inflammatory cytokines is a major step in the deleterious
cascade of traumatic brain injury following intra- and
extracerebral bleeding, contusion and swelling. This cas-
cade ends in destruction of the blood-brain barrier, re-
duced cerebral blood flow and necrosis of neuronal cells
[52, 53].
There is evidence that after endotoxin injection, female

rodents can attenuate systemic inflammation through a
reduction of the hypothalamic IL-1 response [54]. This
finding is further supported by the fact that the effects of
IL-1 administration are estrous cycle-dependent [55].
Moreover, ovariectomy leads to increased IL-1 levels,
which can in turn be reduced by administration of estra-
diol benzoate [56].

Studies have also shown that administration of estro-
gen 1 hour following traumatic brain injury produces
various beneficial effects, such as markedly reduced
cerebral edema, decreased neuronal degeneration and
improvement of memory and cognitive functions [57–
59]. Furthermore, studies have shown that estrogen ad-
ministration following spinal cord injury also produces
salutary effects [60, 61].

The cardiovascular system
Severe trauma-hemorrhage associated with hemorrhagic
shock is a major cause of death [4]. Preservation of cardiac
function and vascular responsiveness is crucial for main-
taining hemodynamic stability. To achieve stability, fluid
management and the use of vasopressors and inotropes
are established in intensive care medicine. In this regard,
studies have shown that administration of estrogen sulfate
following severe blood loss improves outcomes in
hemorrhagic shock models [11, 12]. Additionally, follow-
ing severe blood loss, exogenous estradiol administration
exerted protective effects and improved myocardial func-
tion, as well as vascular responsiveness [62, 63].
The beneficial effects may be explained by the altered

expression levels of heat shock proteins (HSPs) following
estrogen administration. The main role of HSPs is to
protect cells, and they therefore play an important role
in protein folding, apoptosis and signaling [64]. Expres-
sion of HSP70 is increased in response to severe blood
loss, subsequently leading to a reduced rate of myocar-
dial necrosis [65]. It has been demonstrated that estra-
diol administration improves cardiac function via
upregulation of HSP expression [66–68].
Additionally, Szalay et al. showed that estradiol in-

duces heme oxygenase-1 (HO-1) expression [67]. HO-1
is the rate-limiting enzyme in the degradation of heme
into the bioactive signaling molecules free iron, biliver-
din and carbon monoxide. In this regard, previous stud-
ies have shown that induction of HO-1 and its products
exert cardioprotective effects [69, 70].
There is further compelling evidence of a gender di-

morphism in the incidence of cardiovascular disease.
Males are more prone than females to develop cardio-
vascular disease and to experience sudden cardiac death
[71–73].

The respiratory system
Patients are highly susceptible to sepsis and multiple
organ failure after severe trauma-hemorrhage. Cyto-
kines and adhesion molecules mediate neutrophil in-
filtration to the lung and subsequent inflammation.
These molecules are mainly cytokine-induced neutro-
phil chemoattractant 1 (CINC-1), CINC-3 and inter-
cellular adhesion molecule 1 (ICAM-1) [74]. Studies
have revealed that high levels of female sex hormones
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attenuated the pulmonary inflammatory response to
severe blood loss [75, 76]. Moreover, exogenous estra-
diol administration mimicked these protective effects
in male mice following trauma-hemorrhage. Male ani-
mals showed significantly less pulmonary edema and
neutrophil infiltration following trauma-hemorrhage
and estrogen administration [77]. In accordance with
these findings, Doucet et al. demonstrated that ovari-
ectomy had deleterious effects on lung injury follow-
ing severe blood loss. However, exogenous estradiol
administration in those animals could in part improve
pulmonary function [78].
The underlying mechanism(s) of the salutary effects of

estradiol administration have not been fully elucidated. How-
ever, it has been shown that extracellular signal-regulated
(ERK) protein kinase partially mediates these effects. Male
rats subjected to trauma-hemorrhage showed increased ERK
phosphorylation, lung myeloperoxidase activity, and in-
creased levels of IL-6, TNF-α, ICAM-1 and CINC-1, which
were attenuated by estradiol administration following
trauma-hemorrhage [79].

The hepatic system
Multiple organ failure subsequent to trauma-hemorrhage,
shock and sepsis remains the major cause of death. It is
well known that the maintenance of normal hepatic func-
tion is pivotal for outcomes following severe traumatic in-
jury [80–82]. Cytokine-mediated tissue inflammation is
the first step in the development of sepsis and profound
organ damage. Similar to other organ systems, there is
also a gender dimorphic response to hepatic injury follow-
ing trauma-hemorrhage [83–85].
Kupffer cells are hepatic macrophages located in the

liver sinusoids and are an important source of proin-
flammatory chemokines, such as IL-6, IL-10, and
TNF-α. It was demonstrated that estradiol treatment
downregulated the proinflammatory cytokine burst fol-
lowing trauma-hemorrhage [86, 87]. The salutary effects
of post-treatment with estradiol are in part mediated via
the p38 mitogen activated protein kinase (MAPK)-de-
pendent HO-1 pathway. Several lines of evidence have
established the beneficial effects on hepatic HO-1 induc-
tion [88–90]. Severe trauma-hemorrhage resulted in
significantly decreased p38 phosphorylation in the liver.
Estradiol treatment following trauma-hemorrhage in-
creased p38 phosphorylation and HO-1 induction and
attenuated apoptosis. Conversely, administration of a
p38 MAPK inhibitor prevented p38 phosphorylation and
the increase in HO-1 induction [91].
An additional pathway by which exogenous estradiol ex-

erts its salutary effects following low flow conditions has
been shown in further studies. Toll-like receptor 4 (TLR4)
is a crucial player in mitochondrial DNA damage and me-
diates proinflammatory chemokine release [92]. Trauma-

hemorrhage led to an increase in TLR4 expression, which
was associated with a release of proinflammatory cytokines.
However, administration of estradiol following trauma-
hemorrhage decreased p38 phosphorylation, as well as
levels of the proinflammatory cytokines IL-6, TNF-α,
macrophage inflammatory protein-1α (MIP-1α) and MIP-2.
Furthermore, estradiol normalized the levels of inducible
nitric oxide synthase (iNOS) and adenosine triphosphate
(ATP) [92, 93]. In this regard, increased iNOS activity is ob-
served following hepatic tissue injury and is known to be
detrimental [94].
According to findings in the cardiovascular system, HSP

induction should also be protective following hepatic in-
jury [95]. It was shown that estradiol administration fol-
lowing trauma-hemorrhage induced HSP expression in
the injured liver [67, 96, 97]. These findings suggest that
the protective effects of estradiol are in part mediated via
HSP expression. Furthermore, the reported beneficial ef-
fects of estradiol in the hepatic system are mediated via
estradiol receptor-α (ER-α) [98]. This was further con-
firmed by the findings that an ER-α agonist, propyl pyra-
zole triol (PPT), evoked salutary effects following
trauma-hemorrhage. PPT reduced the expression of
iNOS, NF-κB and activating protein-1 (AP-1), which are
detrimental through their release of proinflammatory che-
mokines [95]. Moreover, the administration of flutamide,
an androgen receptor antagonist, following trauma-
hemorrhage prevented hepatic injury in rats subjected to
hemorrhagic shock. The salutary effects of flutamide were
partially mediated by the estrogen receptor pathways [99].
In addition to ER-α mediated signaling, another estrogen
receptor, G protein-coupled receptor 30 (GPR30), has
been revealed to play a role in trauma-hemorrhage.
GPR30 acts independently of ER and mediates the nonge-
nomic salutary effects of estradiol. Following trauma-
hemorrhage, GPR30 acts in a protective manner via the
protein kinase A pathway. Alternatively, GPR30 suppres-
sion leads to increased apoptosis [100].

The renal system
Trauma and shock lead to impaired organ function and
are associated with a high morbidity and mortality.
Acute kidney injury (AKI) is seen in up to 70% of pa-
tients with septic shock. Among these patients, the mor-
tality rate reaches nearly 50% [101, 102]. Furthermore, a
frequent type of AKI is ischemia-reperfusion injury (IRI).
Impaired renal function subsequent to IRI is due to
tubular cell damage, apoptosis and the release of proin-
flammatory cytokines [103–105]. In this respect, studies
have revealed gender dimorphism in the susceptibility to
AKI. Administration of estradiol attenuated renal IRI
whereas testosterone enhanced IRI [106, 107]. Further-
more, administration of estradiol reduced apoptosis and
inflammation, and increased endothelial cell survival
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[108]. Additionally, the levels of proinflammatory TNF-α
were reduced and levels of anti-inflammatory IL-10 were
increased when estradiol was administered following
trauma-hemorrhage. The modulated immune response
appears to be due to a decreased number of infiltrating
neutrophils [108, 109].

The immune system
In several disease processes, gender and sex hormones have
been shown to affect immunological responses. In this re-
spect, enhanced humoral and cell-mediated immune re-
sponses in females are associated with an increased
incidence of autoimmune and certain inflammatory dis-
eases (i.e., Hashimoto’s thyroiditis, systemic lupus erythe-
matosus, rheumatoid arthritis, primary biliary cirrhosis and
asthma). Further support comes from findings that circulat-
ing plasma antibodies are more prevalent in female patients
and that women display an increased immune response fol-
lowing immunization [110–116].
The immune response is altered following traumatic

injury, and subsequent sepsis, multiple organ failure and
mortality is occur more frequently [117–119] in males.
Decreased survival rates and a higher frequency of infec-
tions and sepsis are reported by large analyses. A registry
study of more than 680,000 patients demonstrated a de-
crease in complication and mortality rates after trauma
[120]. A study that included more than 30,000 patients
demonstrated that pneumonia is more frequent in males
after traumatic injury [33]. Furthermore, in a prospective
observational study of 2,183 patients and community-ac-
quired pneumonia, older men had a lower survival rate
[121].
Additionally, patients who have undergone surgery are

more susceptible to infections. Wichmann et al. found a
significant reduction in the number of immune-competent
cells in postsurgical men [122]. Moreover, Offner et al.
demonstrated gender dimorphism in the onset of postsurgi-
cal infections, with male gender as an independent risk
factor [123]. The pathogenesis of immune system imbal-
ance is multifactorial. The gender dimorphism is likely due
to the divergent expression of pro- and anti-inflammatory
cytokines. During sepsis, the secretion of proinflammatory
cytokines such as IL-6, IL-8, IL-10, and TNF-α, is increased
in male patients [41, 124, 125].
Experimental studies further support these findings.

Male mice subjected to polymicrobial sepsis by cecal
ligation and puncture showed impaired survival rates
compared to female mice [126]. In an experimental
endotoxin model, male mice had significantly higher
IL-1 blood levels after endotoxin injection [127]. In line
with these findings are in vitro experiments with human
peripheral blood mononuclear cells exposed to endo-
toxin. The authors demonstrated that proinflammatory
TNF-α was significantly higher in endotoxemic male

samples; however, administration of estrogen stimulated
cytokine expression [128].
It is important to note that it is not the gender but spe-

cifically the sex hormones that influence outcome [129].
This is further underscored by the fact that the immune
response is more pronounced during the proestrus phase
compared to the diestrus phase [56, 130, 131]. Thus,
exogenous administration of estrogen enhanced the
ER-α-mediated functions of macrophages and dendritic
cells [132–134]. Treatment of septic male or ovariecto-
mized female rats with ER-α agonists significantly attenu-
ated sepsis-induced leukocyte-endothelial interactions
(rolling, adherent leukocytes and neutrophil extravasation)
and improved intestinal integrity [135]. Moreover, follow-
ing trauma-hemorrhage and subsequent sepsis, adminis-
tration of estrogen increased the activity of macrophages
and survival rates [136].

Discrepancy of clinical and experimental results
Although the beneficial effects of estrogens on trauma,
shock and sepsis have been demonstrated in various
studies (Fig. 2), there remains a gap between the bench
and the beside. Recently, a nationwide review indicated
that female gender represents an independent risk factor
for mortality in cases of spontaneous bacterial peritonitis
[137]. These findings are in contrast to experimental and
clinical results. Although patient number with more
than 88,000 is high, those registry-based surveys do have
some major limitations. Clinical studies mainly report
on heterogeneous populations and are probably ham-
pered by incomplete data sets. Most of these trials lack
information regarding hormonal status at the time of

Fig. 2 Protective effects of 17β-estradiol on the CNS, heart, lung,
liver, kidney and immune cells CNS: central nervous system; HSP:
heat shock protein; HO-1: heme oxygenase-1; IRI: ischemia-
reperfusion injury; IL-6: interleukin-6
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injury or the onset of sepsis. Furthermore, information
about intake of oral contraceptives, menstrual cycle sta-
tus and hormone replacement therapy is not provided.
Additionally, information should be provided if a female
victim is pre- or postmenopausal.
In contrast, experimental studies provide a body of

evidence indicating that estrogens are beneficial follow-
ing adverse circulatory conditions. This might be due in
part to the fact that most experimental studies were con-
ducted using young male animals. Moreover, experimen-
tal studies follow a highly structured protocol in a
homogenous cohort where the use of various agents
such as fluid resuscitation (blood, crystalloids or plasma)
can be easily defined and controlled, which is usually in
contrast to the situations in trauma victims.

Can estrogens be used to prolong permissive
hypotension in the absence of fluid resuscitation?
Frequently, the transportation of the injured from re-
mote areas may be hampered and it may take longer
than the “golden hour” for the patient to reach a defini-
tive care center. In light of this, attempts have been
made to determine if the interval of permissive
hypotension can be increased pharmacologically without
fluid resuscitation. Experiments conducted in rats and
minipigs showed that administration of estrogens (in a
volume of 0.4 ml/kg BW) following major blood loss
(60% of the circulating blood volume) maintained per-
missive hypotension and improved survival rates of ani-
mals to over 50% for the examined period of up to 6
hours. Furthermore, if fluid resuscitation was provided
at the end of the experiment, it resulted in long-term
survival [11, 12, 138, 139]. Thus, administration of estro-
gens can be carried out at the scene of an accident to
stabilize the injured for transportation from rural areas
to a definitive care facility for a period involving at least
3 hours. These findings therefore suggest that the
so-called “golden hour” can be increased to at least 3
hours for transportation of the injured from the site of
injury to definitive care treatment center.
With regards to the mechanism by which EES produces

its salutary effects on cardiac functions in the absence of
fluid resuscitation, studies have shown this hormone
downregulated cardiac NF-κB and restored Nrf2 30 min
after EES administration. Furthermore, EES improved but
did not restore left ventricular performance at this early
interval after treatment. Thus, a major contributor to the
beneficial effects of EES on cardiac function following
blood loss in the absence of fluid resuscitation is probably
via downregulation of cardiac nuclear NF-κB and restor-
ation of cardiac nuclear Nrf2. Furthermore, the restoration
of this signaling pathway occurs prior to restoration of
cardiac functions [140].

Studies have also shown that major blood loss induces a
significant increase in plasma nitrate/nitrite and aortic
iNOS. In contrast, trauma-hemorrhage induces a significant
decrease in aortic phospho-endothelial NOS (p-eNOS).
These alterations correlated closely with trauma-hemorrha-
ge-induced cardiac depression. EES treatment following
trauma-hemorrhage downregulated the trauma-hemorrha-
ge-induced increase in plasma nitrate/nitrite and aortic
iNOS. Furthermore, it restored p-eNOS expression at 30
min after trauma-hemorrhage-MBO, even in the absence
of fluid resuscitation. Thus, the salutary effects of EES on
cardiac function following severe blood loss in the absence
of fluid resuscitation are linked to the normalization of
plasma nitrate/nitrite concentrations, aortic iNOS and res-
toration of p-eNOS expression [29].
Studies have shown that administration of ICI

182,780 (estrogen receptor antagonist) 30 min prior to
EES completely abolished the salutary effect of EES on
cardiac function. Furthermore, the specific ER-β antag-
onist PHTPP, but not the specific ER-α antagonist MPP,
completely abrogated the salutary effect of EES on car-
diac function at 30 min post-MBO. Thus, the beneficial
effects of EES on cardiac function following severe
blood loss without fluid resuscitation occur via cardiac
estrogen receptors and primarily via cardiac ER-β [141].
Additional studies have shown that trauma-hemorrhage

induced a significant decrease in cardiac Bcl-2 and a signifi-
cant increase in cardiac Caspase-3 and -8. Both signaling al-
terations were closely correlated with T-H-induced cardiac
depression. EES treatment following trauma-hemorrhage
without fluid resuscitation restored cardiac Bcl-2 and the
trauma-hemorrhage-induced increase in cardiac Caspase-3
and -8. Thus, the major contributing factor to the beneficial
effect of EES on cardiac function following severe blood loss
appears to be induced via the inhibition of T-H-induced car-
diac apoptosis, mediated by restoration of cardiac Bcl-2 and
normalization of the T-H-induced increase in cell death sig-
naling pathways [142].

Conclusion
An abundance of evidence exists highlighting the salutary
effects of estrogens following adverse circulatory condi-
tions. Studies reveal that estrogens beneficially influence
cytokine release, chemotaxis of neutrophils, expression of
HSP, induction of HO-1 and the restoration of organ func-
tion following shock and sepsis. Accordingly, estrogens
contribute to the higher survival rates in the aforemen-
tioned studies. The exact mechanism by which estrogen ex-
erts its beneficial immunomodulatory effects has not been
fully elucidated until now. However, there are studies
reporting direct and indirect synergistic effects on signaling
mechanisms and pathways. Since the hormonal milieu ra-
ther than gender influences outcomes after trauma and sep-
sis, prospective clinical trials are needed to address this
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issue. It should also be noted that estrogens may be used to
prolong the permissive hypotension period and thus aid in
the prolonged transportation of the injured from the scene
of the accident.
The consideration of gender and sex hormone status

for treatment in the clinical arena represents an import-
ant and novel step towards personalized medicine.
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