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Background: Previous research has shown evidence for transient neuronal loss after

repetitive head impacts (RHI) as demonstrated by a decrease inN-acetylaspartate (NAA).

However, few studies have investigated other neuro-metabolites that may be altered

in the presence of RHI; furthermore, the relationship of neuro-metabolite changes to

neurocognitive outcome and potential sex differences remain largely unknown.

Objective: The aim of this study was to identify alterations in brain metabolites and

their potential association with neurocognitive performance over time as well as to

characterize sex-specific differences in response to RHI.

Methods: 33 collegiate ice hockey players (17 males and 16 females) underwent 3T

magnetic resonance spectroscopy (MRS) and neurocognitive evaluation before and

after the Canadian Interuniversity Sports (CIS) ice hockey season 2011–2012. The

MRS voxel was placed in the corpus callosum. Pre- and postseason neurocognitive

performances were assessed using the Immediate Post-Concussion Assessment and

Cognitive Test (ImPACT). Absolute neuro-metabolite concentrations were then compared

between pre- and postseason MRS were (level of statistical significance after correction

for multiple comparisons: p < 0.007) and correlated to ImPACT scores for both sexes.

Results: A significant decrease in NAA was observed from preseason to postseason

(p = 0.001). Furthermore, a trend toward a decrease in total choline (Cho) was observed

(p= 0.044). Although no overall effect was observed for glutamate (Glu) over the season,
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a difference was observed with females showing a decrease in Glu and males showing

an increase in Glu, though this was not statistically significant (p = 0.039). In both males

and females, a negative correlation was observed between changes in Glu and changes

in verbal memory (p = 0.008).

Conclusion: The results of this study demonstrate changes in absolute concentrations

of neuro-metabolites following exposure to RHI. Results suggest that changes in Glu

are correlated with changes in verbal memory. Future studies need to investigate further

the association between brain metabolites and clinical outcome as well as sex-specific

differences in the brain’s response to RHI.

Keywords: magnetic resonance spectroscopy, ice hockey, sex difference, traumatic brain injury, repetitive head

injury

INTRODUCTION

Concussions and head injuries in general are a frequent
occurrence in contact sports, representing the most common
injury in women’s ice hockey and the second most common
injury in men’s ice hockey (1, 2). Further, ice hockey is a contact
sport that predisposes players to concussive and subconcussive
repetitive head impacts (RHI) based on the inherent nature of
the sport. Though females make up nearly half of all collegiate
student-athletes, females are an understudied population as
few studies have included female athletes or focused on
the differences in outcomes between males and females (3).
Previous research nonetheless suggests that females generally
have worse outcomes following concussion compared to males.
More specifically, females demonstrate worse performance on
neurocognitive evaluation, increased symptom severity, and have
a longer recovery period compared to males (4, 5). However, the
impact exposures in ice hockey in females are less frequent and of
a lower magnitude compared to males (6). It is thus important to
elucidate potential brain alterations in both sexes to understand
how the brain responds to RHI in both sexes.

Magnetic resonance spectroscopy (MRS) has been repeatedly
used to detect and to characterize changes in neuro-metabolites
due to different degrees of brain injury, providing insight into
the underlying mechanism of even subtle changes that can
occur (7–14). MRS is a non-invasive technique that allows
for the detection and quantification of neuro-metabolites in
vivo. The primary neuro-metabolites typically assessed are
N-acetylaspartate (NAA), a marker of neuronal and axonal
integrity, creatine (Cr), often used as an internal reference for
comparison to other metabolites, glutamate (Glu), a marker of
excitatory neurotransmission, and myoinositol (mI), a marker

Abbreviations: AD, Alzheimer’s disease; Cho, choline; CIS, Canadian

Interuniversity Sports; Cr, creatine; CRLB, Cramer-Rao lower bounds; CSF,

cerebrospinal fluid; GABA, gamma-aminobutyric acid; Glu, glutamate; GSH,

glutathione; HCEP, Hockey Concussion Education Project; ImPACT, Immediate

Post-Concussion Assessment and Cognitive Test; mI, myoinositol; MRI,

magnetic resonance imaging; MRS, magnetic resonance spectroscopy; NAA,

N-acetylaspartate; NMDA, N-methyl-D-aspartate; PRESS, Point RESolved

Spectroscopy; RHI, repetitive head impacts; rmANCOVA, repeated measures

analysis of covariance; SD, standard deviation; SNR, signal-to-noise ratio; TE,

echo time; TR, repetition time.

for gliosis (15–17). Prior research suggests decreased levels of
NAA following both acute and subacute phases of concussion
(8, 14, 16). Furthermore, prior research suggests an increase
in choline (Cho) and reductions in mI following brain injury
(14, 16, 18, 19). More recently, changes in gamma-Aminobutyric
acid (GABA) and glutathione (GSH) in response to concussion
have also been reported (20, 21). In addition, and based on the
literature, the corpus callosum is particularly vulnerable to the
biomechanical forces suffered during RHI (22). There is therefore
a need to determine the alteration of brain metabolites in regions
vulnerable to RHI, such as the corpus callosum.

The aim of this study was to investigate the interactions
between time and sex in male and female ice hockey players
regarding changes in neuro-metabolites in the corpus callosum
due to RHI during a season of collegiate ice hockey. This study
evaluates the absolute concentrations of NAA, Glu, Cho, Cr,
and mI at baseline and postseason. We hypothesized a decrease
in NAA and an increase in total Cho (glycerophosphocholine
and phosphocholine) from pre- to postseason based on previous
research (7, 16, 17). Additionally, we correlated changes in
neuro-metabolites due to RHI to neurocognitive performance,
and hypothesized sex-specific differences in the aforementioned
neuro-metabolites and correlations over time. To our knowledge,
there is one study using MRS to detect sex-specific alterations
in absolute neuro-metabolite concentrations due to RHI
(23).

MATERIALS AND METHODS

Participants and Study Methods
All study participants were part of the Hockey Concussion
Education Project (HCEP), which was conducted during the
U Sports (formerly Canadian Interuniversity Sports (CIS))
ice hockey season of 2011–2012. The HCEP used clinical
examination, neurocognitive assessment via the Immediate Post-
Concussion Assessment and Cognitive Test (ImPACT), and pre-
and postseason magnetic resonance imaging (MRI) as well as
sequential testing and imaging at three time points after any
concussion among ice hockey players.

MRS data of the HCEP participants from the 2011–2012
season have previously been evaluated for a different purpose
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(7). In contrast to the present study, the previous publication
(1) primarily focussed on concussive RHI, (2) used ratios
instead of absolute neuro-metabolite concentrations, (3) only
considered NAA, Glu, and mI (in relation to Cr) during data
analysis, (4) did not apply partial-volume correction, and (5)
did not correlate findings of neuro-metabolite changes with
neurocognitive performance (7).

Written informed consent and release of medical information
was obtained from all participants prior to investigations. The
study was approved by a university research ethics board.
The clinical data for this study are described by Echlin et
al. (24). Individuals were excluded from participation in this
study based on general MRI exclusion criteria (i.e., metallic
implants), structural MRI abnormalities, previous eye surgery,
severe cognitive impairment, and/or a history of any psychiatric
or neurological diseases. Concussion was diagnosed by the team
physician, using the Zürich consensus statement (25). For this
study, participants that completed pre- and postseasonMRSwere
considered.

In total, 45 ice hockey players (25 males and 20 females) were
enrolled in the 2011–2012HCEP. Among this cohort, eight males
and four females were excluded in the present study for the
following reasons: missing pre- or postseason MRS (six males,
two females), poor scan quality in either pre- or postseason
MRS (two males and one female) based on signal-to-noise ratio
(SNR) less than six, linewidths greater than 0.08 ppm, and visual
inspection for substational artifacts, and the incidental finding
of a large arachnoid cyst (one female). Thus, 33 participants (17
males and 16 females) were included in the analyses (Table 1).

Neurocognitive Testing
Neurocognitive function was assessed using the ImPACT at two
time points: before the season and after the hockey-playing
season ends. The ImPACT is a computer-based assessment
composed of a concussion symptom inventory as well as modules
for assessment of neurocognitive function. Based on the results
from the neurocognitive test modules, four composite scores
were generated (verbal memory, visual memory, visual motor
speed, and reaction time). ImPACT composite scores have
been used in previous investigations among the 2011–2012
HCEP participants (26). The ImPACT results were independently
evaluated by a neuropsychologist.

Acquisition of Magnetic Resonance
Spectroscopy
Data acquisition was performed using a 3T MRI machine
(Achieva 3T, Philips Medical Systems, The Netherlands B.V.)
equipped with an eight-channel SENSE head coil array. Each
player involved in this study received a baseline and postseason
MRI evaluation. Athletes who sustained a concussion underwent
additional imaging at 72 h, 2 weeks, and 2 months post-injury.
This additional imaging data is not part of the current analysis.

The corpus callosum was chosen as the MRS region of
interest because it forms the highest-density commissural white
matter bundle in the brain. Additionally, it provides connections
between hemispheres that project to the cerebrum. Furthermore,
the corpus callosum is suspected to be vulnerable to damage from

the biomechanical forces involved in concussion and is more
predictive of outcomes compared to cortical regions (22, 27–
30). The placement of the voxel within the corpus callosum also
ensured an adequate distance from the ventricles, fatty tissue, and
bone.

Each patient was placed in the MRI machine and underwent
a standard localizer and SENSE calibration scan. Voxels
were applied for the corpus callosum (10 × 20 × 30mm).
Spectroscopic examination was carried out using a Point
RESolved Spectroscopy (PRESS) pulse sequence with the
following settings: echo time (TE) = 35ms, repetition time
(TR) = 2,000ms, 128 acquisitions, and 1,024 points. Each
voxel underwent automated optimization including three-
dimensional shimming, transmit gain, and water suppression.
A representative spectrum and corresponding voxel location is
shown in Figure 1.

Analysis of Magnetic Resonance
Spectroscopy
Phase drift correction and frequency correction were performed
prior to analysis with a linear combination model. A linear
combination model was also used for metabolite quantification
(31). The operator-independent spectral analysis software
estimates metabolite concentrations using a set of basis
reference spectra acquired from individual metabolites on the
MRI instrument and using the water reference spectrum for
quantitation. Concentrations are derived from the areas under
the corresponding peaks. Cramer-Rao lower bounds (CRLB)
were calculated for each neurochemical estimation. Only those
metabolites with a CRLB less than 20% were used for data
analysis. The following neurochemicals were quantified: NAA,
Glu, Cho, Cr, and mI. It should be noted that while Glu
CRLB was low, it cannot be ensured that glutamine did not
contribute to some extent to the Glu resonance though its
contribution is likely to be minimal. Concentrations were partial-
volume corrected by segmenting gray matter, white matter, and
cerebrospinal fluid (CSF) within the voxel by mapping the voxel
onto the T1-weighted image and extracting their volumes. Water
concentrations were corrected by multiplying by the following
factor:

[(55,556/35,880) × (1.000 × partial volume fraction of
CSF) + (0.779 × partial volume of gray matter) + (0.645 ×

partial volume of white matter)]
This equation corrects for the assumed LCModel water

concentration (WCONC; 35,880mM) with the actual water
concentration (55,556mM), and then corrects for partial volume
of each compartment of water, where CSF is assumed 100% water
content, gray matter is 77.9%, and white matter is 64.5%. T1 and
T2water relaxation times at 3T (1.0 for CSF, 0.779 for graymatter,
and 0.645 for white matter) are incorporated into this equation
to correct for the water attenuation in LCmodel (ATTH20) as
described previously (32).

Statistical Analyses
All statistical analyses were performed using SPSS (version
24; IBM SPSS Statistics for Windows, IBM Corp., Armonk,
NY, USA). The MRS metabolites were examined as absolute
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TABLE 1 | Participant-related characteristics.

Males Females p-value

Number of players 17 16 –

Age (in years)

(mean ± SD)

22.0 ± 1.4 20.2 ± 4.5 0.135

Handedness

(right/left/ambidextrous)

13/3/1 15/1/0 0.364

ImPACT score

(preseason testing)

(mean ± SD)

Verbal memory 81.8 ± 9.5 81.2 ± 14.2 0.188

Visual memory 91.1 ± 6.2 86.0 ± 13.4 0.012

Visual motor speed 42.5 ± 5.1 40.7 ± 6.8 0.665

Reaction time 0.5 ± 0.04 0.6 ± 0.1 0.180

ImPACT score

(postseason testing)

(mean ± SD)

Verbal memory 82.1 ± 13.0 78.6 ± 12.2 0.426

Visual memory 91.2 ± 7.0 92.5 ± 6.9 0.830

Visual motor speed 47.3 ± 5.2 43.6 ± 5.4 0.597

Reaction time 0.5 ± 0.1 0.55 ± 0.1 0.797

This table gives an overview of participant-related characteristics, including the number of male and female participants, age, handedness, and pre- and postseason scores according to

the four composite scores (verbal memory, visual memory, visual motor speed, and reaction time) derived from the results of the Immediate Post-concussion Assessment and Cognitive

Test (ImPACT). Results are shown as absolute numbers or mean ± standard deviation (SD). One female participant did not undergo neurocognitive assessment by the ImPACT. The

only statistically significant finding was that females had a lower preseason visual memory score compared to males (p = 0.012).

FIGURE 1 | Representative spectrum and voxel location. Voxel positioning in the corpus callosum is shown on the left. The spectrum derived from measurements in

this region is shown on the right. The red line indicates the basis set fit of the acquired data (black lines) and the bar at the top shows the residual difference between

the fit and the spectrum.

concentrations. Repeated measures analysis of covariance
(rmANCOVA) was used to examine pre- to postseason changes
in the mean concentrations of each MRS metabolite. Sex was
included as a between-group factor, in order to examine the
presence of a sex × time interaction effect. Any history of
a concussion during the season of play was included as a

covariate to determine whether season changes in the MRS
metabolites were independent of a concussion and associated
with subconcussive RHI. This rmANCOVA was conducted for
each MRS metabolite and the significance level was adjusted
for the family-wise error rate using a Bonferroni adjustment
for multiple comparisons, resulting in a significance level set at
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p < 0.007. A series of bivariate correlations were then conducted
to examine the associations among each of the MRS metabolites
and the ImPACT composite scores (i.e., verbal memory, visual
memory, visual motor speed, and reaction time), which were not
separately corrected for multiple comparisons. Figures on results
were created using GraphPad Prism (version 6.0; GraphPad
Software Inc., La Jolla, CA, USA).

RESULTS

Changes of Neuro-Metabolite
Concentrations
Descriptive statistics for each metabolite at preseason and at
postseason assessment are presented in Table 2. The average SNR
was 8.69 for the preseason scans and 8.94 for the postseason
scans. NAA was found to be significantly lower at the end
of the season (postseason: 9.02 ± 0.55mM) compared to the

beginning in bothmales and females (preseason: 9.37± 0.59mM;
p = 0.001), regardless of whether the players had a concussion
during the season (Figure 2A). Interestingly, when NAA/Cr ratio
is used, there is no significant difference found (p = 0.228). No
sex differences were observed in total change in NAA.

A decrease in total Cho was observed, but this decrease
was not statistically significant (preseason: 1.48 ± 0.16mM,
postseason: 1.41 ± 0.18mM; p = 0.044). No sex differences
were observed in change in total Cho. A sex effect, however,
was observed for Glu, though the difference was only of trend
level significance (males preseason: 6.57 ± 1.15mM, postseason:
7.35± 1.16mM; females preseason: 7.24± 1.11mM, postseason:
6.76 ± 1.41mM; p = 0.039), indicating that while males had an
increase in Glu from pre- to postseason assessment, females had
a decrease (Figure 2B). No time effect was observed from pre-
to postseason MRS in regards to Glu. There was no statistically
significant sex or time interactions with respect to concentrations
of Cr or mI.

TABLE 2 | Descriptive statistics for each neuro-metabolite at preseason and postseason.

NAA Cr Cho Glu mI

Mean SD Mean SD Mean SD Mean SD Mean SD

PRESEASON

Male 9.29 0.61 5.05 0.76 1.53 0.17 6.57 1.15 4.49 0.97

Female 9.46 0.59 4.49 0.65 1.41 0.09 7.24 1.11 4.68 0.89

POSTSEASON

Male 9.03 0.51 4.85 0.62 1.43 0.20 7.35 1.16 4.74 0.57

Female 9.01 0.61 4.53 0.46 1.39 0.17 6.76 1.41 4.75 0.87

This table depicts mean± standard deviation (SD) for absolute neuro-metabolite concentrations at preseason and postseason assessment considering N-acetylaspartate (NAA), creatine

(Cr), choline (Cho), glutamate (Glu), and myoinositol (mI). Concentrations are measured in mM.

FIGURE 2 | Results of repeated measures analysis of covariance (A) depicts box plots of average values of the concentration of N-acetylaspartate (NAA) at two time

points: preseason and postseason. There was a statistically significant difference between pre-and postseason NAA concentrations (p = 0.001). In both males and

females, NAA decreased when comparing the preseason to the postseason concentrations (males: p = 0.057, females: p = 0.006). (B) shows box plots of average

values of the concentration of glutamate (Glu) at two time points: preseason and postseason. There was a trend regarding the difference between pre- and

postseason Glu concentrations (p = 0.039). Females showed a decrease in Glu over time (p = 0.490), whereas males had an increase in Glu over time (p = 0.198).
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FIGURE 3 | Scatter plot showing change in glutamate (Glu) against change in

verbal memory. This figure illustrates the negative correlation (R2 = 0.206, p =

0.008) between the change in verbal memory and the change in Glu

concentration over time (postseason minus preseason for males and females

together). Data derived from male players are shown in blue, whereas data

belonging to female players are shown in red. One female participant did not

undergo neurocognitive assessment by the Immediate Post-Concussion

Assessment and Cognitive Test (ImPACT); thus, only 32 data points are shown.

Correlation of Neuro-Metabolite
Concentrations With ImPACT Scores
A negative correlation was found between change in Glu
from preseason to postseason assessments and verbal memory
(p = 0.008; Figure 3). There were no statistically significant
neurocognitive differences between male and female participants
except that females had a lower average visual memory score
at preseason (p = 0.012; Table 1); however, there were no
postseason differences.

DISCUSSION

This study found a significant decrease in NAA between pre-
and postseason assessment in both male and female athletes
(p= 0.001). A decrease in total Cho over the course of the season
was observed but did not reach statistical significance when
considering correction for multiple comparisons (p = 0.044).
Females demonstrated a trend toward a decrease in Glu over
the course of the play season while males demonstrated a trend
toward an increase in Glu (p= 0.039). In both males and females,
however, a negative correlation was observed between changes in
Glu and changes in verbal memory (p = 0.008), as measured by
the ImPACT.

Changes in N-Acetylaspartate
The significant decrease in NAA, a marker of viable neurons,
from pre- to postseason was observed regardless of sex or
whether the player had an in-season concussion. This result does
not directly corroborate the findings of previous researchers,
which have demonstrated a transient decrease in NAA after

concussion, followed by a recovery in NAA (8, 33). The results
of the present study suggest a persistent decrease in NAA that
is still present at the end of the playing season, as opposed to a
transient decrease followed by a recovery in NAA levels.

There are, however, several reasons why our findings differ
from previous research. First, most previous studies investigated
NAA levels in other cerebral areas, including the (dorsolateral)
prefrontal cortex, posterior cingulate gyrus, or primary motor
cortex (8–14). The present study investigated neuro-metabolic
alterations in the corpus callosum. Therefore, it is possible
that the recovery of NAA is specific to cortical areas, whereas
white matter dense areas such as the corpus callosum may not
be as amenable to recovery compared to cortical regions. In
this context, long-coursing axons, as are present in the corpus
callosum, may be more vulnerable to injury and evince less
transient changes when compared to other regions (22, 30).
Secondly, previous studies that demonstrated a recovery in NAA
have studied concussed subjects, whereas the present study
investigates both subjects with exposure to subconcussive and
concussive RHI (8, 34). A previous study using participants
also from the HCEP demonstrated that females who did
not have an in-season concussion had a persistent decrease
in NAA (i.e., at the postseason measurement), while males
did not demonstrate any changes in NAA (7). One key
difference between the (7) study and this study is that the
NAA/Cr ratio was utilized whereas the present study used the
absolute concentration of NAA (and absolute concentrations
of other neuro-metabolites) (7). We chose to use absolute
concentrations as opposed to the NAA/Cr ratio because it is
known that Cr levels change in brain injury; therefore, we
cannot distinctly assume Cr as a constant and thus should not
use Cr as an internal reference standard for MRS (35, 36).
As shown in the results, NAA/Cr did not show differences
in this particular cohort whereas NAA concentration was
significant.

The decrease in NAA levels from pre- to postseason,
regardless of sex or the presence of an in-season concussion,
further suggests that RHI contribute to diffuse axonal injury and
neuronal loss in the corpus callosum. In this context, decreases
in NAA, a marker of axonal function and integrity, are suggestive
for axonal degeneration or loss (15–17, 37). Decreases in NAA
are also observed in neuroinflammation and demyelination (38,
39). However, NAA alterations due to recent vigorous physical
training cannot be excluded (40, 41). Thus, our results may reflect
a mixed picture with the above-mentioned and other factors
contributing to the observed NAA decline.

Changes in Glutamate
A trend of sex-specific difference was observed for Glu in that
females had a decrease in Glu from pre- to postseasonwhilemales
had an increase in Glu. This sex difference may be attributed
to hormonal regulation of this excitatory neurotransmitter. The
neuroprotective properties of estrogen and progesterone are well-
known (42). Progesterone is thought to suppress the excitatory
Glu response, while estrogen is thought to facilitate the effects
of Glu transmission (43). This balance of ovarian hormones is
essential for protecting the female brain from insults such as Glu
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excitotoxicity and oxidative stress (44, 45). Thus, the trend for
a decrease in Glu in response to RHI observed in the present
study may be attributed to hormonal regulation of Glu and
neuroprotective properties of ovarian hormones in preventing
Glu-mediated excitotoxicity.

Furthermore, previous research suggests Glu levels increase
in response to injury in the male brain (11). Therefore, it
is possible that the male brain does not have the hormonal
neuroprotection against brain insults in the same way the
female brain does. However, it is important to note that
neuro-metabolite concentrations vary depending on which brain
region is studied. From previous research, it is likely that
Glu increases in response to brain injury, possibly potentiating
aberrant neuronal signaling and propagating further signaling
cascades in response to injury (11, 46). However, the regions
assessed in previous research are gray matter regions; thus,
the generalizability of these findings to the present study
is limited. Other studies have demonstrated an increase in
Glu in the splenium of the corpus callosum following mild
traumatic brain injury, while a decrease in Glu in gray matter
was observed (36, 47). This observation affirms the increased
vulnerability of the corpus callosum to head injury, and possibly
contributes to an increased likelihood of excitotoxicity in white
matter regions compared to gray matter regions. However,
sex differences were not investigated; thus, it is unclear if the
same relationship was observed in both males and females.
Furthermore, a recent study also including subjects of the HCEP
demonstrated sex-dependent changes in white matter diffusivity
following subconcussive head impacts, which could be due to
differential hormonal regulation between males and females (48).
Taken together, it is possible that hormonal regulation may
play an essential role in differing levels of Glu in the corpus
callosum. However, further studies are needed to elucidate the
downstream consequences of increased Glu in white matter
regions, and to clarify whether these downstream effects are
sex-dependent.

The overall change in Glu was negatively correlated with
changes in verbal memory. Previous research suggests Glu
is increased in Alzheimer’s disease (AD), playing a role in
the pathophysiology of excitotoxicity due to an excess of N-
methyl-D-aspartate (NMDA) receptor activation (49). The drug
memantine is used for the treatment of cognitive impairment
symptoms in AD and other dementias, and by acting as
an NMDA receptor antagonist, it further supports the idea
that Glu excitotoxicity may play a role in the cognitive
symptomology of AD (50). To our knowledge, there are no
studies linking an excess of Glu to a decline in verbal memory;
however, it has been shown that Glu is necessary in order
to perform verbal memory tasks (51, 52). Hence, an excess
of Glu may be related to impaired verbal memory. This
suggests an inverse relationship between excess of Glu and
memory, which is in line with the findings of the present
study.

Changes in Choline
A decrease, though not statistically significant, was seen in Cho, a
marker of cell turnover, from pre- to postseason. Previous studies

have demonstrated conflicting evidence for how Cho changes
in brain injury. Many studies have reported an increase in Cho
in response to brain injury, suggesting tissue breakdown and
inflammation (11, 19, 53). On the other hand, another study did
not find a change in Cho due to mild traumatic brain injury (54).
There is modest evidence for a decrease in Cho in a cohort of
retired rugby players (21). However, further studies need to be
conducted in order to elucidate the complex relationship between
Cho and RHI.

Limitations
There are several limitations to this study. First, the
generalizability of our findings is limited by the small sample
size and the lack of a control group which would have been
helpful to determine if baseline metabolite levels differ between
athletes and non-athletes and whether the NAA changes are
chronic or if the changes observed may be the result of data
acquisition or analysis. However, this study used a prospective
study design including imaging and clinical assessment in
which independent non-biased specialist physician investigators
were present at each game. The study investigates a broad
sample of neuro-metabolites that are not routinely used in
MRS studies on brain injury, and it is one of the first studies
to investigate sex-specific differences in neuro-metabolites over
time.

Secondly, the ImPACT, primarily designed for the detection
of concussion-related symptoms, may not be sufficiently sensitive
for the detection of subtle neurocognitive alterations of subjects
also exposed to subconcussive RHI. At the time of data
acquisition, the ImPACT assessment represented one of the
few widely accessible tools to measure specific changes in
neurocognitive function; however, later studies investigatedmore
sensitive methods to assess the effects of RHI (55–57). Future
studies on RHI should utilize improved, valid, and more reliable
neuropsychological measures.

Thirdly, the quality of the MRS data obtained was not optimal
as each scan had a comparatively low SNR. Future studies should
use a larger voxel size and increase the number of averages
when acquiring MRS data to ensure high data quality. Another
weakness is that by using a single voxel in the corpus callosum, we
were not able to study other brain regions that may be vulnerable
to RHI. Future studies need to use multiple voxel locations.

Lastly, we are not able to assess whether or not the
concentrations of any of the neuro-metabolites changed
following the end of the season since we do not have follow-
up measurements after the postseason MRS assessments. Future
longitudinal studies should include follow-up examinations at
different time points after the end of a period of exposure
to RHI to assess if neuro-metabolite levels remain persistently
altered, or if it simply takes longer to recover after RHI.
Prolonged recovery after NAA decrease due to RHI has been
suggested previously (58). Furthermore, prospective studies
should assess hormone levels andmedications taken (particularly
hormonal contraceptives) during the season to assess a possible
relationship between hormonal changes and neuro-metabolite
changes.
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CONCLUSION

This study investigated differences in the change in absolute
concentrations of a broad spectrum of neuro-metabolites
in athletes exposed to concussive and subconcussive RHI
while playing collegiate ice hockey, and, importantly, it also
evaluated sex differences in these changes. Results of this
study demonstrate a significant decrease in NAA, a marker
of viable neurons, following exposure to RHI in both female
and male athletes. Moreover, results suggest possible sex-
specific differences in changes in Glu, though not statistically
significant after correction for multiple comparisons. In both
sexes, a negative correlation was observed between changes
in Glu and changes in verbal memory. Future studies need
to investigate further the association between neuro-metabolite
concentration changes and clinical outcomes as well as the
association of individual hormone levels and the differences
in the brain’s response to RHI between male and female
athletes.
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