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The current evidence of cognitive disturbances and brain alterations in schizophrenia

does not provide the plausible explanation of the underlying mechanisms.

Neuropsychological studies outlined the cognitive profile of patients with schizophrenia,

that embodied the substantial disturbances in perceptual and motor processes, spatial

functions, verbal and non-verbal memory, processing speed and executive functioning.

Standardized scoring in the majority of the neurocognitive tests renders the index

scores or the achievement indicating the severity of the cognitive impairment rather

than the actual performance by means of errors. At the same time, the quantitative

evaluation may lead to the situation when two patients with the same index score of

the particular cognitive test, demonstrate qualitatively different performances. This may

support the view why test paradigms that habitually incorporate different cognitive

variables associate weakly, reflecting an ambiguity in the interpretation of noted cognitive

constructs. With minor exceptions, cognitive functions are not attributed to the localized

activity but eventuate from the coordinated activity in the generally dispersed brain

networks. Functional neuroimaging has progressively explored the connectivity in the

brain networks in the absence of the specific task and during the task processing. The

spatio-temporal fluctuations of the activity of the brain areas detected in the resting

state and being highly reproducible in numerous studies, resemble the activation and

communication patterns during the task performance. Relatedly, the activation in the

specific brain regions oftentimes is attributed to a number of cognitive processes. Given

the complex organization of the cognitive functions, it becomes crucial to designate the

roles of the brain networks in relation to the specific cognitive functions. One possible

approach is to identify the commonalities of the deficits across the number of cognitive

tests or, common errors in the various tests and identify their common “denominators”

in the brain networks. The qualitative characterization of cognitive performance might

be beneficial in addressing diffuse cognitive alterations presumably caused by the

dysconnectivity of the distributed brain networks. Therefore, in the review, we use this

approach in the description of standardized tests in the scope of potential errors in

patients with schizophrenia with a subsequent reference to the brain networks.
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INTRODUCTION

Cognitive dysfunction in schizophrenia has been propagated
as a core component of the illness since Kraepelin (Kraepelin,
1919). Until now, there is no evident comprehension of the
mechanisms of cognitive disturbances in schizophrenia. On the
one hand, regional brain volume alterations in patients with
schizophrenia as compared to healthy individuals, are associated
with IQ-dependent cognitive measures, e.i verbal and non-
verbal memory, processing speed (for review see Antonova et al.,
2005). Though, the patterns of cognitive deficits seem to be
more complex that the pattern of structural alterations. On the
other hand, the dysconnectivity theory (referred to as “cognitive
dysmetria”) of schizophrenia suggests that the cognitive deficits
might originate from the aberrant functional brain networks
activity (Andreasen et al., 1996). This disrupted connectivity
results in altered functional integration since it involves either
exaggerated connections or weakened pathways (Stephan et al.,
2006; Fornito et al., 2011). The deficits in attention and working
memory, as it was shown by Whitfield-Gabrieli et al, correlate
with the alterations in networks coupling. Specifically, the lack
of suppression of the default-mode network (DMN), which
intends to suppress during information processing, implies the
disbalanced excitatory/inhibitory brain circuits in schizophrenia
(Whitfield-Gabrieli et al., 2009).

For the successful information processing, well-coordinated
functioning of the distinct brain structures is essential (Pöppel,
1989). Neurological, neuropsychological and neuroimaging
studies show that genuinely all cognitive functions rely on
the enactments of the dispersed cortical and subcortical brain
structures and are not restrained to the specific structures
(Singer, 2013; Sporns, 2013). Presumably, cognitive operations
arise out of a composed action in the brain networks. Given
the multidimensional organization of cognitive functions, the
identification of the neural networks responsible for the specific
cognitive functions seems to be problematic, especially since
the brain structures are oftentimes associated with a number
of cognitive operations. The one-to-one relationship of specific
brain region and cognitive function does not seem to hold true
to the psychiatric diseases in general and to schizophrenia in
particular.

Definition of the Qualitative Characteristics
of Cognitive Functioning in Patients With
Schizophrenia
Neuropsychological studies of schizophrenia have a long
history. The functional alterations are pronounced in motor
and perceptual processes, spatial functions, verbal and non-
verbal memory, attention and executive functioning (Green
and Harvey, 2014). Consistent results across the studies
demonstrated that if not all, the majority of schizophrenia
patients perform more poorly than healthy controls (Mesholam-
Gately et al., 2009). In accordance with Harvey (Harvey, 1997),
the depth of the deficit can be described relatively to the
corresponding reduction of performance in the number of
SDs compared to the population norm and the number of
affected functions as following: “mild,” 0.5–1.0 SD, perceptual

capacity, remote memory; “moderate,” 1.0–2.0, remote, short
and working memory, attention, and visuomotor functions;
and “severe cognitive disability,” 2.0–5.0 SD, learning, executive
function, memory, vigilance, motor functions, verbal fluency).
Subgroups of individuals with SZ may cluster together according
to their pattern of cognitive deficits, suggesting the existence
of subtypes of dysfunction (Rodriguez et al., 2015). Previous
findings agree on two extreme clusters, characterized by near-
normal performance on one side (e.g., Goldstein et al., 1998) and
profound global dysfunction on the other side (e.g., Goldstein
and Shemansky, 1995). One or two remaining subsets are in
agreement with the partial deficit (e.g., visual memory and
processing speed in Gilbert et al., 2014) with mild cognitive
impairment. Standardized scoring in the majority of the
neurocognitive tests renders the index scores or the achievement
indicating the severity of the cognitive impairment rather than
the actual performance. Though such approach facilitates the
tracking of the cognitive functioning during the follow-up, at the
same time it may lead to the situation when two patients with
the same index score of the particular cognitive test demonstrate
qualitatively different performances. This may support the
view that test paradigms that habitually incorporate different
cognitive variables associate weakly, reflecting an ambiguity
in the interpretation of noted cognitive constructs (Poldrack,
2011).

Therefore, qualitative approach, being focused on the
performances, allows to characterize the types of errors and
track of them throughout the testing procedure (Zaytseva
et al., 2015). The commonality of the errors across the
number of tests may identify the impaired brain structures
or networks. Qualitative analysis of tests with the definition
of errors (Golden et al., 2000; Strauss et al., 2006) is
widely applied in patients with mild cognitive impairment
or neurodegenerative diseases (for instance, see Collie and
Maruff, 2002; Thompson et al., 2005) that are also known
to present with generalized cognitive deficits. The qualitative
characterization of cognitive performance might be beneficial
in addressing diffuse cognitive alterations presumably caused
by the dysconnectivity of the distributed brain networks. The
present selective review is focused on the description of the errors
in widely used cognitive tests and highlighting the specificities
of the performance in schizophrenia patients, hence providing
a reference frame for the search of the underlying neural
mechanisms.

TRAIL MAKING TEST (TMT)1

Behavioral Performance (Errors) and Brain
Correlates of TMT in Healthy and Lesion
Cohorts
The trail making task includes two variants: TMT-A examines
mainly visuoperceptual abilities and processing speed, TMT-
B reflects working memory as well as task-switching ability.
Two parameters, the time required to complete the test
and the number of errors are typically used to measure

1The Trail Making Test (TMT) is divided into two parts, in part A (TMT-A),
typically the subject connects 25 encircled numbers randomly scattered on a page
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performance in TMT (Lezak et al., 2012). Subtraction B-A
or ratio B/A of the completion time are used to minimize
visuoperceptual and working memory demands, thus specifically
evaluating mental flexibility and executive control (Sánchez-
Cubillo et al., 2009). A study in healthy elderly subjects
(Oosterman et al., 2010) supported this functional construction
of the TMT scores showing that the predictive value of individual
neuropsychological test scores (working memory, executive
function, speed and attention, episodic memory) differed among
the various TMT-B variables. While the TMT-B total completion
time was associated with all neuropsychological scores, only
executive function predicted the ratio score (TMT-B/A). In
terms of qualitative analysis, the following general categories of
observed errors in TMT are omission, perseveration, repetition,
sequential and proximity errors (Lezak et al., 2012). Omission

errors apply mostly to TMT-A and refer to skipping a number
in the sequence. Perseveration errors, referred to as set-shifting
errors, are only seen in TMT-B, when the subject fails to change
a set from number to letter and vice versa. Repetition errors

are made when the same circle is selected more than once.
Sequential errors can be seen in both TMT variants when the
number or letter sequence is incorrect. Spatial or proximity

errors, also known as capture responses, represent errors in
the sequence which occur when the subject circles an incorrect
number or letter that is located nearby. Most TMT variants
are designed in such a way that pulls for such proximity

errors (Lezak et al., 2012). Research has shown that normal
control subjects can make at least one error on both parts
of the TMT (Ruffolo et al., 2000; Lezak et al., 2012) In fact,
several factors such as age (Płotek et al., 2014) or educational
level (Płotek et al., 2014) and even shift work history (Titova
et al., 2016) can affect performance. However, an increased
number of errors, especially on TMT-B, has been associated
with dorsolateral frontal lobe lesions (Kopp et al., 2015) and
this finding has been consistent even when compared to subjects
with inferior medial frontal lobe and posterior lobe lesions,
who made fewer errors or were completely unaffected (Stuss
et al., 2001; Lezak et al., 2012). Chan et al. (2015) challenged
the notion that increased number of errors on TMT-B was
specific to frontal lesions but did confirm that there was a
significant difference in a number of errors when comparing
groups with either frontal or non-frontal lesions to healthy
controls. Moreover, medial temporal lobe atrophy has been
shown to be the strongest neuroanatomical predictor of TMT-B
performance in elderly subjects (Oosterman et al., 2010), when
analyzed together with periventricular and white matter MRI
hyperintensities.

Several variants of the TMT task have been applied as
fMRI paradigms. Verbal variant (counting from 1 to 24
or alternate numbers and letters), showed brain activations
predominantly in the left frontal lobe hemisphere structures
including dorsolateral prefrontal cortex (DLPFC), ventralateral
prefrontal cortex (VLPFC) and premotor and motor areas, and

in ascending order by drawing a pencil line. In part B (TMT-B) there are 25
encircled numbers and letters that should be connected in alternating order.

in the right hemisphere the cingulate and intraparietal sulci (Moll
et al., 2002).

Zakzanis et al. (2005) used MRI compatible writing device
called virtual stylus to perform the original visuospatial TMT
task. The study elicited the brain activity in three clusters.
The first cluster involved activity in frontal lobe areas of the
left hemisphere as reported previously by Moll et al. (Moll
et al., 2002), including the medial and dorsolateral prefrontal
cortex (PFC), precentral gyrus, cingulate gyrus, and insula.
The second cluster in the right hemisphere included cingulate
cortex and insula. The smallest third cluster included the left
middle and superior temporal gyrus suggesting the utilization
of internal speech processing. Similar findings suggesting the
involvement of PFC, visuomotor and speech processing areas,
including Broca’s area, have been reported also in functional
near-infrared spectroscopy (fNIS) study by Hagen et al. (Hagen
et al., 2014). Another TMT adaptation with fMRI event-related
design (Allen et al., 2011) was used in healthy participants,
who had to visually scan image with a pseudo-randomly
distributed array of 22 items and press the button when
correct letter/number was localized. Interestingly, this study
failed to find PFC activation previously reported in mental set
switching. The results highlighted bilateral activations in ventral
and dorsal visual streaming and motor response related brain
areas.

Few studies have demonstrated the difference between TMT
B and A variants (Moll et al., 2002; Jacobson et al., 2011),
showing that TMT-B task elicited stronger brain activity in the
bilateral DLPFC, right VLPFC and precentral gyrus and left
temporoparietal area. Similarly, combined usage of computer
version of TMT and fNIS reported blood flow increases in the
bilateral PFC when contrasting TMT B vs. TMT A (Kubo et al.,
2008).

The number of studies comparing resting state fMRI (rsfMRI)
activity and neuropsychological tests performance is sparse. A
recent study in healthy volunteers (James et al., 2016) showed a
significant effect of the TMT B performance (time to complete)
to resting-state connectivity of two regions of interest (ROIs), the
right VLPFC and left superior parietal lobule.

The summary of the brain activations is schematically
depicted in Figure 1.

Behavioral TMT Performance and Brain
Correlates in Schizophrenia Patients
Although errors on the TMT are not specific to one
psychiatric condition (Moritz et al., 2001), there is
evidence that schizophrenia patients show an overall
slower processing speed, impaired visuomotor tracking
and switching ability (Rodriguez et al., 2015). The studies
focusing on the specific TMT errors in schizophrenia are
limited, though they have demonstrated that patients with
schizophrenia tend to make some errors more consistently.
Notably, Mahurin et al. (2006) showed that schizophrenia
patients make more sequencing, or as operationally
defined in this research “tracking,” errors compared to
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FIGURE 1 | The summary of the brain structures that are recruited in the selected cognitive tests is depicted: TMT A/B, Trail making test, A and B versions (red color

for TMT A, red+blue for TMT B); VFT, Verbal fluency test; DS, Digit span; CPT, Continuous performance task; AVLT, Auditory verbal learning test (reported separately

for left (L) and right (R) hemisphere). List of abbreviations of brain areas in alphabetical order: ACC, anterior cingulate cortex; AG, angular gyrus, Ant Temp lobes –

anterior temporal lobes; ARAS, ascending reticular activation system; Basal g, basal ganglia; DLPFC, dorsolateral prefrontal cortex; CRBL, cerebellum; ETC,

entorhinal cortex; HPC, Hippocampus; IFC, interior frontal cortex (e.g., Broca’s area); IPG, inferior parietal gyrus; MFG, middle frontal gyrus; mPFC, medial prefrontal

cortex; MTG, middle temporal gyrus; OFC, orbitofrontal cortex; Roland op, Rolandic operculum; SMG, supramarginal gyrus; SPG, superior parietal gyrus; STG,

superior temporal gyrus; Striatum,– incl. putamen, nucleus caudatus, globus pallidum; Subcall, subcallosum; TPC, temporo-parietal cortex; VLPFC, ventrolateral

prefrontal cortex.

both depressed patients and healthy controls, which they
attributed to a greater degree of cognitive disorganization in
schizophrenia.

Imaging studies using TMT task in schizophrenia are sparse.
Some studies reported that TMT performance in schizophrenia
patients could be predicted by resting state metabolismmeasured
using positron emission tomography (PET) (Horacek et al.,
2006) or by resting state connectivity (Argyelan et al., 2013). A
recent study using transcranial direct-current stimulation (tDCS)
reported altered hemodynamic pattern during the TMT task
performance inmiddle cerebral arteries (Schuepbach et al., 2016).

CONTINUOUS PERFORMANCE TEST
(CPT)2

Behavioral Performance (Errors) and Brain
Correlates of CPT in Healthy and Lesion
Cohorts
In order to test sustained attention and vigilance, many tasks
using similar paradigm have been developed. One of the
most applied measures is the Continuous performance test
(CPT), which assesses four aspects of attention: inattentiveness,
impulsivity, sustained attention, and vigilance. The main

2The test is administered by PC software and takes approximately 15min. In
standard CPT-X version respondent is required to respond when any letter, except
the letter “X,” appears on the screen (Conners, 2014).

categories of errors performed in the CPT are omissions and
commissions. Omissions are made when the respondent does
not react to target letters (“non-X”). Results from studies
with patients who had damage to the basal ganglia showed
more omissions errors (Levin et al., 1986; Wolfe et al., 1990).
More omissions errors, longer reaction time and the greatest
vigilance decrement are associated with right frontal damage
(Rueckert and Grafman, 1996). Commissions result from the
response to non-target letters (“X”). There are several subtypes
of commissions errors: “fast reaction-time response” that is
associated with impulsivity and a “slow reaction time response”
or “delayed response” as a result of inattention; and a “random”
type that is associated with a lack of control (Halperin et al.,
1991). Perseverations can be also considered as a type of error.
The perseverative response in CPT is any reaction time that is
less than 100ms. Such responses are: a slow response to the
preceding stimuli, a random response, an anticipatory response,
or a response repeated without consideration of the stimuli or
task requirements (Conners, 2014).

CPT test is known as a reliable measure of attention
(Rosvold et al., 1956; Riccio et al., 2002). Lesion studies show
that especially lesions and damages in the right frontal area
effect CPT performance. The more severe lesions, the bigger
attentional problems, and worse CPT performance has been
reported (Katz et al., 1996; Riccio et al., 2002). Riccio et al.
(2002) see CPT test as a good symptom-specific measurement
but a poor disorder-specific test. They suggested the term
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“asymmetry” attention and show in their review that the
right hemisphere is more activated during the CPT test and
that the test is connected with models of attention including
cortical (frontal, temporal, parietal), subcortical [limbic, basal
ganglia and ascending reticular activating system (ARAS)]
and functional systems (pathways between the basal ganglia,
thalamus and frontal lobes) (Riccio et al., 2002). Ogg et al.
(2008) show correlation between healthy adults’ reaction time
in Conners’ CPT test and anterior cingulate cortex activation.
Activation in the right hemisphere was generally correlated with
the reaction time. They also point out an extensive network of
brain regions associated with visual processing, motor control,
and visual attention that is activated during the test, while some
areas, such as posterior cingulate gyrus are deactivated (Ogg et al.,
2008).

Behavioral CPT Performance and Brain
Correlates in Schizophrenia Patients
In the CPT test the respondent has to decide whether to
respond or not, as well as the maintaining arousal and self-
monitoring of behavior (self-control) are needed. Schizophrenia
patients are prone to attention/vigilance impairments and self-
monitoring dysfunction (e.g., Stirling et al., 1998). A large multi-
site study of the Consortium on the Genetics of Schizophrenia
(COGS) showed that schizophrenia patients performed poorly
compared to healthy subjects, even when controlled for
differences in age, sex, education, and racial distribution (Gur
et al., 2007). The studies focusing on neurocognitive deficits in
schizophrenia and including CPT measures are consistent in
their results, showing more commission and omission errors in
schizophrenia patients (Earle-Boyer et al., 1991; Elvevag et al.,
2000).

First study combining fMRI with CPT task in schizophrenia
was performed by Volz et al. (Volz et al., 1999). Systematic
review of scientific literature on fMRI studies using a sustained
attention task was published by Sepede et al. (Sepede et al., 2014).
The review included 11 studies of patients with schizophrenia,
of which four studies used the CPT test paradigm: 2 studies
used CPT-X (i.e., Eyler et al., 2004; Honey et al., 2005) and
2 studies CPT-IP (i.e., Volz et al., 1999; Salgado-Pineda et al.,
2004). A recent imaging study applied an fMRI paradigm
of the dual response AX-CPT test version (i.e., Lesh et al.,
2013). Significant differences in activation patterns between
patient and control groups were found in all studies selected
by Sepede et al. (Sepede et al., 2014), even in case the patients
performed comparable to the control group (e.g., Eyler et al.,
2004). All of the mentioned studies support the finding of
the attentional deficit in schizophrenia tested in CPT variants.
This deficit was mainly related to hypoactivity in anterior
and posterior cingulate cortex and in the right prefrontal
cortex (Sepede et al., 2014). Thalamus activation results are
inconsistent, reported to be either hyperactivated in SZ patients
during CPT (Honey et al., 2005), or hypoactivated (Volz
et al., 1999; Salgado-Pineda et al., 2004). Altered activation
pattern was also reported in the thalamus. However, both

thalamic hypoactivation and hyperactivation have been reported
(for more details on imaging studies in schizophrenia see
Table 1).

VERBAL FLUENCY (VFT)3

Behavioral Performance (Errors) and Brain
Correlates of VFT in Healthy Individuals
and in Lesion Studies
Verbal fluency tests (VFT) require the subject to produce
words according to a specific rule and were designed to
evaluate several aspects of verbal behavior including cognitive
flexibility, switching response sets, self-regulating and self-
monitoring (Lezak et al., 2012). Primarily, the VFT assesses
higher functions of verbal organization and management
(Bertola et al., 2014). The typical two verbal fluency tests
defined by Lezak et al. (2012) and Laine (1988) are a
category fluency and a letter fluency. In category or semantic
fluency test, the subject is required to generate a list of
words that are associated with their meaning (e.g. a list of
animals or fruits). In letter or phonemic fluency, phonological
clusters are made that are either words with the same initial
letter or homonyms (e.g., fair, fare) (Lezak et al., 2012).
Participants are not allowed to repeat the same word thus
indirectly assessing their short-term memory, since they have
to remember which words have already been said (Estes,
1974; Lezak et al., 2012; Fischer-Baum et al., 2016). Other
significant cognitive functions that the VFT assesses are lexical-
semantic knowledge and automatic retrieval (Hurks et al., 2010),
controlled information processing (Hurks et al., 2006), sustained
attention, strategic planning, searching and inhibition (Birn et al.,
2010).

Qualitative errors encountered in a verbal fluency test
include breaking set errors (intrusions) and repetition

(perseverations) errors. The latter can be further divided
(Galaverna et al., 2016) into simple repetitions, true
perseverations and using the same stem in two words (e.g.
“paint,” “painter”). True perseverations occur in consecutive
words whereas simple repetitions are made after a few seconds,
possibly showing decreased searching and inhibition skills or
even deficits in working memory (Azuma, 2004; Lezak et al.,
2012; Fischer-Baum et al., 2016). The intrusions or breaking

set errors refer to inappropriate responses with production
of words with a different initial letter or different category
than the assigned one (Lezak et al., 2012; Galaverna et al.,
2016). Intrusions are associated with decreased inhibition
and/or increased susceptibility to interference (Mahone et al.,
2001).

Chertkow and Bub (1990) noted that generating words
beginning from the same letter is not practiced as a skill in
everyday life thus requiring strategic thinking whereas category

3Performance on the VFT is measured by the number of words generated within a
set time limit, usually, 1min, and normative data have been collected for different
age groups, suggesting average ranges of words/min that should be expected from
healthy subjects (Lezak et al., 2012).
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TABLE 1 | summarizes the brain correlates and test performance in schizophrenia.

TASK Study

references

Task variant Study sample Imaging method Reported brain areas Task-related results and

comments

TMT Horacek et al.,

2006

TMT A and B SZ (N = 42), HC(N
= 42)

(18) FDG positron

emission tomography

(PET), TMT A and B

performance as

covariates.

Higher metabolic activity in temporal,

parietal, pre- and postcentral gyri,

precuneus, limbic regions (anterior

cingulate, uncus) and pons predicted

better performance on TMT B

(independent of the group).

TMT A and TMT B

“time”—SZ (↓↓) vs. HC.

Argyelan et al.,

2013

TMT A SZ (N = 18),

BD (N = 19), HC(N
= 32)

Resting state fMRI Decreased functional connectivity of

the left caudate nucleus, temporal

occipital fusiform cortex/lingual gyrus,

left thalamus predicts worse

performance on TMT A in SZ patients

(effect gradient: SZ>BD>HC)

TMT A “time”—SZ(↓) and

BD vs. HC.

Schuepbach

et al., 2016

TMT A and B FEP (N = 15),

HC (N = 15)

Functional transcranial

Doppler sonography

The blood flow velocity (BFV)

measured in middle cerebral arteries

during TMT B was significantly

increased in patients in comparison to

HC. In contrast to patients, BFV of HC

subjects returned during TMT to low

initial levels.

TMT A and TMT B

“time”—SZ (↓↓) vs. HC,

“number of errors” (no

group differences).

Liu et al., 2017 TMT A Adolescent-onset

SZ (AOS) (N = 48),

HC (N = 31)

rsfMRI, voxel-mirrored

homotopic connectivity

(VMHC) and support

vector machine (SVM)

analyses

AOS group vs. HC exhibited

decreased VMHC values in the

following brain regions: fusiform gyrus,

superior temporal gyrus (STG)/insula,

precentral gyrus, and precuneus.

TMT A “time”—SZ (↓) vs.

HC Decreased VMHC

values in the superior

temporal gyrus/insula

correlated with slower

TMT-A performance.

CPT Volz et al., 1999 CPT-IP SZ (N = 14),

HC (N = 20)

fMRI SZ patients exhibited decreased CBF

in the right medial PFC, the right

cingulate cortex and the left thalamus

in comparison to HC.

CPT-IP performance—SZ

vs. HC (no group effect)

CPT-IP performance in male

subjects was associated

with activation pattern (poor

performers with SZ showed

more active brain regions

than HC group and good

performers with SZ. Poor

performers with SZ vs. poor

HC performers decreased

dorsolateral PFC activation,

increased in right temporal

lobe).

Eyler et al., 2004 CPT-X Chronic SZ (N = 9),

HC (N = 10)

fMRI Activation of the frontal cortex was

impaired in SZ compared to HC,

specifically in the inferior frontal gyrus.

These findings confirm the results of

(Volz et al., 1999) and (Lesh et al.,

2013), however, the localization of the

prefrontal deficit differs.

CPT-X performance—SZ vs.

HC (no group effect).

Honey et al.,

2005

CPT-X (addition of

degraded stimuli to

test cognitive

dysmetria)

SZ with positive and

negative symptoms

(N = 11),

SZ with predominant

positive symptoms

(N = 11), HC (N=12)

fMRI SZ group showed abnormally high

response to the CPT task in thalamus,

left caudate nucleus and in frontal and

temporal regions. Contrary,

hypoactivation was observed in the

middle frontal gyrus, putamen and

angular gyrus.

CPT-X performance—SZ vs.

HC: “target discrimination”

(↓) in SZ, “reaction time” (no

group effect)

SZ subjects failed to elicit a

task-related activation in

response to the demands of

the degraded stimuli. The

pattern of task-related

connectivity was disrupted

in SZ.

(Continued)
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TABLE 1 | Continued

TASK Study

references

Task variant Study sample Imaging method Reported brain areas Task-related results and

comments

Lesh et al., 2013 AX-CPT test version FEP (N = 43), HC (N
= 54)

fMRI The dorsolateral PFC (DLPFC)

activation in FEP was significantly

associated with disorganization

symptoms and performance during

proactive cognitive control measured

by CPT [AX-CPT]. SZ vs. HC: reduced

recruitment of DLPFC and parietal

cortex during CPT.

AX-CPT performance—FEP

(↓↓) vs. HC.

VFT Baaré et al.,

1999

Category and letter

VFT

SZ (N = 14),

HC (N = 14)

Structural MRI, VBM Lower semantic fluency scores in SZ

patients correlated with smaller

volumes of prefrontal gray matter

bilaterally.

SZ vs. HC: letter VFT score

(↓), semantic VFT score (↓↓)

in SZ.

Sanfilipo et al.,

2002

Letter VFT Male SZ medically

stable (N = 62),

HC (N = 27)

High-resolution MRI Lower VFT scores in SZ correlated

with smaller gray matter volumes in the

prefrontal and temporal lobes

bilaterally.

VFT score—SZ (↓↓) vs. HC

Inverse correlations

observed between cognitive

abilities (psychomotor

speed, cognitive flexibility

and verbal fluency) and

negative symptom.

Weiss et al.,

2004

Letter VFT High-functioning SZ

(N = 9),

HC (N = 9)

fMRI Bilateral activation inferior frontal gyrus

area in a group of SZ patients, in

contrast to the activation in left Broca’s

area seen in HC.

Letter VFT score—SZ vs.

HC (no group effect)

Boksman et al.,

2005

Letter VFT FEP (N = 10),

HC (N = 10)

fMRI HC group showed activations in the

posterior parietal lobe, occipital lobe

and cerebellum that were not detected

in SZ patients.

Letter VFT “words”—FEP

(↓) vs. HC.

Fu et al., 2005 Letter VFT with 4

different letter sets

(2x easy, 2x difficult

conditions)

SZ, acute psychosis

(N = 9), SZ in

remission (N = 10),

HC (N = 11)

fMRI Increasing task demands (difficulty) led

to greater anterior cingulate and right

middle frontal activation in patients

with active psychosis than in patients

in remission. Decreased activation in

SZ compared to HC in the anterior

cingulate and the right prefrontal

cortex (inferior and middle frontal

cortices) independent of psychotic

state and task demands.

VFT “number of errors”—SZ

vs. HC (no group effect); in

both groups, more errors

observed during the difficult

condition.

Weiss et al.,

2006

Letter VFT Unmedicated SZ

patients during an

acute psychotic

episode (N = 7)

fMRI Bilateral activation of inferior frontal

gyrus in SZ patients group was

associated with the impaired verbal

fluency performance.

Letter VFT score—SZ (↓) vs.

HC. No evidence of

decreased language-related

activity in the left

hemisphere of the SZ group.

Gender differences in

Processing strategies for

phonemic verbal

fluency tests were obtained.

Takizawa et al.,

2008

Letter VFT SZ (N = 55),

HC (N = 70)

52-channel near-infrared

spectroscopy

(oxy-hemoglobin

concentration)

SZ patients’ performance associated

with slower and reduced increase in

the prefrontal activation as compared

to HC.

Letter VFT—SZ (↓↓) vs. HC.

Bhojraj et al.,

2009

Letter VFT and

category VFT (20 s

trials) from

Multilingual Aphasia

Examination: Manual

of instructions (Benton
and Hamsher,

1978)—total VFT

scores

HC: young healthy

adults- high genetic

risk for SZ (N = 60),

no-risk HC (N = 42)

MRI surface based

volumetry (Freesurfer)

The high-risk subjects had verbal

fluency deficits and decreased

volumes of gray matter in the left pars

triangularis, left supramarginal gyrus

and right angular and Heschl’s gyri.

High risk subjects vs.

no-risk HC: “letter VFT (↓),

category VFT (no group

effect)”. Left over right

hemispheric asymmetry in

the pars triangularis of the

no-risk HC group (reversed

in high risk HC group)

suggested as a predictor for

improved performance on

VFT in both groups.

(Continued)
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TABLE 1 | Continued

TASK Study

references

Task variant Study sample Imaging method Reported brain areas Task-related results and

comments

Lynall et al.,

2010

Letter VFT (FAS

version of the

Controlled Oral Word

Association Test)

SZ (N = 12),

HC (N = 15)

rs-fMRI In SZ, the reduced degree and

clustering were locally significant in

medial parietal, premotor, cingulate,

and right orbitofrontal cortical nodes of

functional networks. Functional

connectivity and topological metrics

correlated with each other and with

behavioral performance on VFT.

Letter VFT—SZ vs. HC (no

group effect) When using a

DS score as covariate,

functional brain networks

resulted in the reduced

clustering and

small-worldness and

reduced probability of high

degree hubs in the SZ

group.

Meijer et al.,

2011

Category VFT Ultra-high risk (UHR)

of psychosis

subjects

(N = 37)

Structural MRI, VBM Lower VFT scores correlated with

lower density in the gray matter of the

right superior and middle temporal

gyrus, right insula, and left anterior

cingulate cortex.

Performance on the VFT

may correspond to

structural alterations in the

brain. No difference in VFT

performance between UHR

subjects who developed a

psychotic illness in the

2-year follow-up and

subjects who did not transit

to psychosis.

Vandevelde

et al., 2017

Letter VFT SZ (N =15),

BD (N =14),

HC(N = 20)

fMRI Study identified three activation

clusters. In patients with schizophrenia

there was reduced connectivity in a

specific

medio-prefronto-striato-thalamic

network, unlike the bipolar patients

and HC group. Suggesting a potential

diagnostic significance of this network

in SZ.

No group effect in VFT

performance. Functional

disturbances and different

brain connectivity patterns

may also be an etiologic

factor of poor VFT

performance.

DS Minatogawa-

Chang et al.,

2009

DS forward and

backward

FEP (N = 88),

HC (N = 86)

Structural MRI, VBM Correlations between the performance

in the neuropsychological tests and

the GM volume in the DLPFC as well

as lateral parietal and superior

temporal gyrus.

DS score—SZ vs. HC

(group comparison not

reported).

Lynall et al.,

2010

DS forward and

backward

SZ (N = 12), HC (N
= 15)

rs-fMRI, DS score as

covariate The study

measured aspects of

both FC and functional

network topology.

There were no significant associations

between any connectivity or

topological metrics and either forward

or backward DS scores.

DS score—SZ vs. HC

(group comparison not

reported).

AVLT Crespo-Facorro

et al., 1999

RAVLT A/B

recall—recall of both

well-learned and

novel word lists (A

and B list of the Rey

AVLT)

SZ (N = 14), HC (N
= 13)

PET Patients fail to activate

cortical-cerebellar-thalamic-cortical

circuitry during recall of both

well-learned and novel word lists.

RAVLT “practiced and novel

conditions”—SZ vs. HC (no

group effect)

Hazlett et al.,

2000

CVLT based—errors

related activity

Unmedicated

SZ (N = 20), HC (N
= 32)

fMRI Serial-ordering strategy was

associated with decreased activity in

frontal cortex and increased activity in

temporal cortex. Patients also

exhibited hypofrontality (lower ratio of

frontal to occipital activations)

compared with healthy group.

CVLT “number of recalled

words”—SZ vs. HC (↓↓).

More severe hypofrontality

associated with increased

perseveration errors in SZ.

Hofer et al.,

2003

Verbal recognition SZ in remission (N =

10), HC (N = 10)

fMRI SZ group exhibited lower activation of

right dorsolateral and anterior PFC,

right anterior cingulate and left lateral

temporal cortex during encoding; less

activation in bilateral prefrontal and

lateral temporal cortex during

recognition.

AVLT “recognition task

accuracy”—SZ vs. HC (no

group effect).

(Continued)
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TABLE 1 | Continued

TASK Study

references

Task variant Study sample Imaging method Reported brain areas Task-related results and

comments

Ragland et al.,

2004

Verbal encoding SZ (N = 14), HC (N
= 15)

fMRI SZ group showed impairment in

activation measured by BOLD signal in

bilateral prefrontal cortex during

encoding of words, but increase

activation in parahippocampal gyrus.

AVLT “recognition task

accuracy”—SZ (↓↓) vs. HC

Words recognition showed

decreased activation of the

left PFC.

Allen et al., 2009 Deese-Roediger-

McDermott false

memory task

At-risk mental state

(ARMS) subjects (N
= 18)

HC (N = 22)

fMRI The high-risk group showed

decreased activation in the medial

temporal cortex and prefrontal regions,

during both verbal encoding and

recognition. These differences were

associated with decreased recognition

performance and the increased risk of

psychosis.

ARMS vs. HC: “target items

accuracy” (↓), lure words

accuracy (ns.), “false

recognition responses for

novel words” (↓)

Correct recognition relative

to false alarms was

associated with differential

engagement of the

hippocampus bilaterally in

HC, this difference was

absent in the high-risk

group.

Hurlemann et al.,

2008

RAVLT Early prodromal

states (EPS) (N =

20), late prodromal

states (N = 16), HC

(N = 30)

Structural MRI, VBM Reduction of hippocampal volumes in

late but not early prodromal states

correlates with poorer performance in

RAVLT delayed recall.

The groups differed only in

delayed recall LPS (↓) vs.

EPS vs. HC

Arrows are applied in means of group performance evaluated (independent of the parameter measured in the task) and display significance level of performance (↓ - p<0.05; ↓↓ -
p < 0.01). Abbreviations: FEP, first episode psychosis; SZ, schizophrenia; HC, healthy controls; SA, schizoaffective disorder; BD, bipolar disorder; EPS, early prodromal states; LPS,
late prodromal states; DCS, transcranial direct current stimulation; fMRI, functional magnetic resonance imaging; PET, positron emission tomography; VBM, voxel-based morphometry;
rsfMRI, resting state functional magnetic resonance imaging; CBF, cerebral blood flow; PFC, prefrontal corte.

fluency is based on “conceptual knowledge.” This may be one
of the reasons why category fluency scores are overall better
than letter fluency, even in healthy control groups (Laws et al.,
2010). Several studies have shown that increasing age and lower
education level strongly correlate with poorer performance on
category fluency, both in terms of volume of words generated
and number of errors made (Mitrushina et al., 2005; Lezak
et al., 2012). Importantly, Weiss et al. (2003) showed that, when
controlling for performance differences, males and females show
the same brain activation pattern during the verbal fluency task.

Shao et al. (2014) evaluated specific skills required for
the VFT, including vocabulary knowledge, lexical access speed
and executive control ability and how they correlate with
category and letter fluency scores. Vocabulary knowledge and
lexical access speed were shown to be more predictive of the
category fluency performance compared to the letter fluency,
while executive control ability did not have a significant
effect on one variant over the other (Shao et al., 2014). The
distinct aspects of cognitive performance that the VFT examines
are further verified by studies showing that different brain
regions are involved in letter and category fluency. In a meta-
analysis of 31 studies, Henry and Crawford (2004) compared
patients with focal cortical lesions to healthy controls. They
showed that temporal lobe damage correlated with poorer
performance on category fluency tasks whereas lesions in the
frontal lobe negatively affected both category and letter fluency
to the same extent (Henry and Crawford, 2004). Particularly
left inferior frontal lobe was repeatedly demonstrated to be

active to a various extend in both VFT variants [meta-
analysis and systematic reviews by Costafreda et al. (2006)
and Wagner et al. (2014)]. A recent study highlighted the
important role of the basal ganglia in both letter and category
fluency. Chouiter et al. (2016) examined a group of 191
right-handed patients who had suffered a first, unilateral,
focal lesion either in the left or right hemisphere. Results
showed that letter and category fluency had certain identical
regional associations in the left hemisphere, namely putamen,
caudate nucleus, globus pallidum, superior and middle temporal
gyri, angular gyrus, insula and parts of the supramarginal
gyri, supporting the notion of a common word-producing
mechanism (Chouiter et al., 2016). Additionally, letter fluency
performance correlated with lesions in the rolandic operculum
and the supramarginal gyrus unlike category fluency, which
was preferentially affected by lesions in the posterior middle
temporal gyrus and pallidum (Chouiter et al., 2016). Marien
et al. (2001) proposed a significant role of the right cerebellum
in retrieval and other non-motor language aspects, observing
the significant linguistic deficits in patients with lesions in this
area.

Behavioral Performance and Brain
Correlates of VFT in Schizophrenia
Deficits in verbal fluency in schizophrenia patients are not
a surprising finding but there are two competing theories
on whether they should be attributed to a diminished access
to the semantic store (Joyce et al., 1996) or to a disrupted
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semantic store (McKay et al., 1996). In the former case, category
and letter fluency scores should be equally affected whereas,
according to the latter theory, category fluency performance
would be lower than letter fluency, since it is more dependent
on semantic memory. Henry and Crawford (2005) conducted
a large meta-analysis on 84 studies, comparing verbal fluency
scores between schizophrenia patients and healthy controls, and
found that deficits in category fluency are more pronounced
compared to letter fluency, thus supporting the concept of a
compromised semantic store despite generally lower retrieval
ability. They also proposed that category fluency can be a
predictive test in estimating the probability of future psychosis
development.

Volumetric differences in specific brain areas, such as gray
matter volume in the prefrontal and temporal lobes, related to
altered VFT performance in schizophrenia patients have been
documented using both voxel-based morphometry (VBM) by
Meijer et al. (2011) and high resolution MRI methods (Baaré
et al., 1999; Sanfilipo et al., 2002). Functional disturbances
and different brain connectivity patterns might also present an
etiologic factor of poor VFT performance (for more details
see Table 1). Several fMRI studies have indicated decreased
activity in the right anterior cingulate cortex, prefrontal, inferior
frontal and middle frontal lobe in patients with schizophrenia
undergoing verbal fluency tasks (Boksman et al., 2005; Fu et al.,
2005).

DIGIT SPAN (DS)4

Behavioral Performance and Brain
Correlates of DS in Healthy and Lesion
Cohorts
The Digit Span test (DS), which is part of the Wechsler
batteries (the intelligence and memory scales), is widely used
for measuring of the immediate and working memory. Beside
standard performance scores, the errors that are possible to
detect in DS, can be divided into two categories: item errors

and order errors. In item errors there is a change in the length
of the span. In order errors, there is a change in the order
of the digits in the sequence but the length of the sequence
remains the same. In the item error category, one can distinguish
two types of errors: omission and insertion. These types of
errors occur at the end of the span length (in DSF they occur
at the beginning and in DSB in the end). They are also more
common for longer sequences (Woods et al., 2011). Omission

errors occur when a subject fails to repeat one or more digits
of the sequence, while the rest of the span is in a correct order.
Kaplan (1991) suggested that an omission in shorter span can be

4TheDS test is composed of two different types, the Digit Span Forward (DSF), and
Digit Span Backward (DSB), each testing different cognitive functions (Banken,
1985; Kaplan, 1991). In DSF test, the subject is requested to repeat a specific
sequence of numbers, in the same order as presented. The DSB test follows the
same principle and the main difference is that the subject is requested to repeat
the sequence in a reverse order. DSB is an active procedure that requires effort, as
it is composed by the encoding of the span, the manipulation, and reverse of the
order and the recall of the correct digits, which makes it more demanding than
DSF [(Banken, 1985; Black, 1986)].

a result of attention shifting, while an omission in longer span
might signify a true memory deficit. An insertion error is the
addition of an extra digit, which results in a longer span. In the
order error category, there can be 3 different types of errors:
sequencing, substitution, and repetition. These types of errors
occur usually in the middle of the span and are more common
for spans of shorter digits (Woods et al., 2011). Sequence errors
present as a span with the correct length but a part of the span
is in incorrect order (e.g., 1367 à 1637). Substitution errors

occur when a subject replaces one digit for another, that could
be part of the sequence or not (e.g., 23,578 and 23,478); here
again, the span has the right length. A repetition error is the
duplication of a digit, that appears in the same span (Woods et al.,
2011).

The various MRI studies have helped to identify the
brain activity associated with the performance of the DS.
As demonstrated by Taki et al. (2011), the performance
of DG positively correlated with the percentage of gray
matter volume in the intracranial volume in the bilateral
anterior temporal lobes. Another study that utilized voxel-based
morphometry (VBM) and functional connectivity measures,
confirmed the bilateral activation of anterior temporal lobes
together with the left inferior frontal gyrus and the left
Rolandic operculum, which constitute the critical areas in the
auditory phonological loop of the verbal working memory
(Goldman-Rakic, 1996). Along with the structural findings,
DS scores were positively correlated with the resting state
networks (rsN), namely the salience network (SN), that is,
between the right anterior STG, the dorsal anterior cingulate
cortex and the right fronto-insular cortex. It anti-correlated
with the resting state functional connectivity (rsFC) within
an anti-correlation network of the SN, between the right
posterior superior temporal gyrus and the left posterior insula.
Authors suggested such pattern of the activation reflected the
neural organization of the phonological loop (Goldman-Rakic,
1996).

Another study demonstrated age-related and independent
brain correlates with DS performance (Yang et al., 2015),
specifically dorsal anterior cingulate gyrus showed distinctive
roles in forward and backward span, whereas age dependent
structures of the angular gyrus and sub-callosum were associated
with DSF performance, and visual cortex and VLPFCwere linked
to DSB performance depending on age.

Lesion studies contribute to the understanding of the
neural processes during DS performance challenging previously
hypothesized neural targets. A study by Cave and Squire (Cave
and Squire, 1992) showed in a sample of amnestic patients
with hippocampal lesions and those with Korsakoff syndrome
with a diencephalic damage that the DS scores of amnestic
patients were performing close to controls, while the scores
were significantly lower in the Korsakoff syndrome group.
These findings support the view that the deficit in performance
is independent of the hippocampal function. Another study
challenged the role of the cerebellum in DS processing. In a
single case study, a patient with a bilateral cerebellar ischemic
lesion showed preserved DS performance (Chiricozzi et al.,
2008).
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Behavioral DS Performance and Brain
Correlates in Schizophrenia Patients
Behavioral studies utilizing the digit span test have repeatedly
shown a significantly impaired performance in individuals
suffering from schizophrenia when compared to the healthy
controls (Haenschel et al., 2009; Park and Gooding, 2014).
In DSF the differences are controversial since some studies
have shown that there are differences in span length between
patients and healthy controls (Conklin et al., 2000; Galaverna
et al., 2012) whereas others demonstrated similar performance
in both groups (Moritz et al., 2001; Frydecka et al., 2016),
suggesting the DSF test is not as demanding as DSB. On the
other hand, the differences in DSB between patient and controls
are quite significant. Several studies assessing working memory
in individuals with schizophrenia using DS, have shown that not
only the patients (Brébion et al., 2009) but also their first-degree
relatives are able to remember shorter spans than the healthy
controls (Conklin et al., 2000; Park and Gooding, 2014), which
shows that working memory impairment is schizophrenia can
have an endophenotypic character.

Studies reporting morphological or functional alterations
associated with poor DS performance in schizophrenia are
surprisingly rare (see Table 1). Minatogawa-Chang et al. (2009)
reported significant correlations between the performance in DS
task and the gray matter (GM) volume of DLPFC, parietal and
temporal regions in first-episode psychosis (FEP) patients and
healthy subjects. Interestingly, the middle frontal gyrus (BA46)
GM volume was correlated only with the performance in FEP.
On the other hand, the study by Lynall et al. (2010) failed to find
any association between functional alterations in connectivity
patterns measured during resting state and DS performance
of schizophrenia patients. Studies reporting qualitative analyses
of DS-related errors in schizophrenia and its association with
functional or morphological changes are completely missing.

AUDITORY VERBAL LEARNING TASK
(AVLT)5

Behavioral Performance (Errors) and Brain
Correlates of AVLT in Healthy Individuals
and in Lesion Studies
One of the most often applied learning and memory tests is
the Rey Auditory-Verbal Learning Test (RAVLT) with a list
containing 15 semantically unrelated words, contrary to the
other AVLT variant, the California Verbal Learning Test (CVLT),
which includes 16 semantically-related words (Mitrushina et al.,
2005)5. The RAVLT method is very popular among clinicians
for a good reason, as it allows to separate individual memory

5The standard administration of RAVLT includes five successive presentations
(T1–T5) of the 15 words list (A) followed by free recall on each learning trial, (T6)
presentation and recall of the “interference” list (B), a post-interference recall trial
of the original list (A); and finally, the delayed recall (T7) and recognition (R) trials
of the original list (A) with delay varying from 15 to 60min (Mitrushina et al.,
2005; Lezak et al., 2012; Preiss et al., 2012). Even that some studies do not apply the
delayed recall or recognition trials, all parts of the test are clinically important.

processes that could be responsible for the identified disturbances
of learning and memory.

The most commonly used measure in AVLT is the total
number of correct responses (T1−5)6 that informs us about
the immediate recall score and, in terms of repeated trials,
about the learning curve. Complete list of possible performance
scores that can be calculated in RAVLT are well documented
in Bezdicek et al. (2014). Here we will mention only the error-
related qualitative approaches. The analysis of errors provides
information about the memory processes and their integrity.
Usually, only errors made during five consecutive learning
trials (T1–T5) are reported (see e.g., Schmidt, 1996; Preiss
et al., 2012). However, the quality of individual errors both
during recall and recognition trials can also be recorded and
analyzed. Two type of errors are usually detected: Repetition
errors or perseverations are counted if the same correct word
is listed more than once during one recall trial (recurring
words), and are an important sign of impaired self-monitoring
function (Lezak et al., 2012)7. Intrusion errors (confabulations
or false productions) bring us more detailed information about
the memory processes. Schnider et al. (1996) suggests that
intrusions partially reflect the process of the effortful retrieval
of memories despite the weak memory trace. Cunningham
et al. (1997) suggested utilization of the so called “confabulation
index” for quantification of confabulations in research studies,
calculated as the proportion of novel recall intrusions to total
responses. It is, however, important to distinguish provoked and
spontaneous intrusions. Provoked intrusions from the list A to
the interference list B or from the interference list B to post-
interference recall of list A indicate sensitivity toward proactive
interference and weakness of the context memory as suggested
by Geffen et al. (1990). According to Barba et al. (2002), a
weak memory trace may be a prerequisite for the occurrence
of intrusions (promoted by interference at encoding). On the
other hand, the extra-list intrusions (non-related or spontaneous
intrusions) may be treated as a form of confabulation. Such
intrusions may also reveal tendencies for semantic (category)
or phonetic confusion of the original words (Mitrushina et al.,
2005). Intrusion errors may thus serve as a measure of impaired
executive functions applied in memory processes and should
be analyzed in more detail, in order to prevent the vague
interpretation produced by grouping all confabulations together
(Cunningham et al., 1997). False recollections (increased number
of intrusions) have been together with low recall performance
previously described as a pattern typical for patients with focal
frontal lobe lesions (Baldo et al., 2002) and dementia with
prominent frontal lobe semiology (see Rouleau et al., 2001).
Several studies also reported that false positives in recognition
tests and intrusions on free recall trials are increased in
confabulating patients (Bigler et al., 1989; DeLuca, 1993; Fischer
et al., 1995; Cunningham et al., 1997). On the other hand,
Nahum et al. (2012) shows that intrusions in memory tests have

6given over individual recall trials (T1+T2+T3+T4+T5).
7However, self-recognized repetitions, without an increased number of
confabulations and intrusions, may be interpreted as an increased effort to
recall as many words as possible (e.g., Bleecker et al., 2005).
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no association with behaviorally spontaneous confabulations or
disorientation.

Brain areas responsible for learning and memory as measured
by verbal learning tasks, such as the RAVLT/CVLT, involve
mainly frontal and temporal lobe areas, supported both by lesion
and imaging studies (Savage et al., 2001; Baldo et al., 2002).
Lesion studies, namely, Schouten et al. (2009) demonstrated that
poor verbal memory performance as a result of the performance
on both immediate and delayed recall and recognition in
RAVLT8 could be predicted by lesion characteristics. In their
study patients with left hemispheric lesions, subcortical and
large lesions performed poorly on the verbal memory measures.
Medial temporal lobe (MTL) volume predicted the rate of
learning in RAVLT in healthy volunteers as well (Fernaeus et al.,
2013). Bilateral involvement of frontotemporal areas was also
observed in studies that applied AVLT-based verbal memory
fMRI paradigms. Johnson et al. (2001) provided evidence of the
right frontal and left MTL involvement in verbal memory during
CVLT task and documented a positive correlation between the
activation of this network and task performance.

In terms of individual AVLT measures, the RAVLT first recall
(Trial I) demonstrated the inferior parietal, middle frontal, and
temporal activation (Wolk and Dickerson, 2011). Lezak et al.
(2012) reported the involvement of MTL in last recall Trial V
and hippocampal involvement during a delayed recall. More
specifically, the head of the hippocampus is involved in verbal
memory tasks (Hackert et al., 2002). Johnson et al. (2001)
report the additional involvement of right anterior hippocampus.
Recognition scores have been previously associated with the
volume of perirhinal and entorhinal cortices Lezak et al. (2012)
and right DLPFC activity, particularly in subjects with better
memory abilities (Johnson et al., 2001). In healthy controls, the
task of recalling the original list of 15-items after 24 h compared
to resting baseline showed activation in frontal (left superior, and
bilateral inferior and middle frontal gyrus) and parietal cortex
(superior parietal gyrus bilaterally, right supramarginal gyrus)
(Mensebach et al., 2009).

While the majority of studies focused on the exploration of
cortical and hippocampal areas, other cortical and subcortical
structures contribute to verbal memory too. Resting state
functional connectivity (rsFC) study in a healthy population
sample (Ystad et al., 2010) identified the correlations between
CVLT measures and thalamic FC9. Another study on healthy
subjects with memory complaints found RAVLT measures to
be associated with glucose metabolism in posterior cingulate,
precuneus, and orbitofrontal cortex (Brugnolo et al., 2014).

Behavioral Performance and Brain
Correlates of AVLT in Schizophrenia
Verbal learning and memory deficits measured by AVLT tasks
(related to frontotemporal dysfunction) have been repeatedly
reported both in first episode schizophrenia subjects (FES)

8Both immediate and delayed recall and recognition in RAVLT.
9The study showed negative correlations between behavioral measures and
the thalamus—functional connectivity of putamen and dorsomedial nucleus to
thalamus and thalamus to caudate connectivity.

(González-Blanch et al., 2007; Pérez-Iglesias et al., 2010;
Rodriguez et al., 2015) and chronic schizophrenia patients (for
review see Aleman et al., 1999; Boyer et al., 2007) and are
considered as some of the main characteristics of cognitive
deficits in schizophrenia (Keefe, 2008). One study assessing
prodromal states of schizophrenia reported that reduction of
hippocampal volumes in late but not early prodromal states
correlates with poorer performance in RAVLT delayed recall
(Hurlemann et al., 2008).

Even though the study sample of schizophrenia spectrum
disorders often presents with a mixture of diagnoses, deficits
in RAVLT performance may be a common denominator
of the illness, as they are present in both paranoid and
undifferentiated schizophrenia subtypes (Seltzer et al., 1997). The
RAVLT performance is affected both in drug-free patients and
patients on antipsychotic medication and is inversely correlated
with negative symptoms (Manglam and Das, 2013), while no
association with positive symptoms is observed. In contrary to
CVLT, the RAVLT has been selected as a sensitive measure of
outcome in schizophrenia (see Lepage et al., 2014) based on
findings of several studies that failed to show differences in verbal
memory between groups of patients with a different outcome
(remitted vs. non-remitted) using CVLT. This could be due to
semantically-related words that might help during the encoding
process as was suggested by Lepage et al. (2014).

Despite the growing number of studies assessing verbal
memory in schizophrenia using RAVLT, most of these studies
only report total recall score (Trial 1–5; e.g., in Karilampi
et al., 2007) and/or delayed recall performance in T7 (Pérez-
Iglesias et al., 2010), while a minority of them report
performance measured in particular trials (T1, T5, T6 for
retention and recognition trial; e.g., Hurlemann et al., 2008).
Specific characteristics of the RAVLT performance, such as
errors, are often omitted in reported studies completely. Despite
this lack of relevant RAVLT error-related literature, patients with
schizophrenia show a higher total number of intrusions not
affected by age, sex but correlating with patient IQ (Badcock et al.,
2011). Our study performed in a group of FES patients showed
an increased number of repetitions but not confabulations
(intrusions) in comparison to a group of matched healthy
volunteers (Rodriguez et al., 2015).

It has been suggested that errors in general or source memory
deficits (repetitions of the correct answers and intra- and extra-
list intrusions) underlie the positive symptoms of schizophrenia
(Frith, 1995; Brébion et al., 2008, 2009). Some authors observed
an association between the global number of extra- and intra-
list intrusions and the positive symptoms score (Moritz et al.,
2001) or thought disorder (Subotnik et al., 2006). In addition,
the tendency to make false recognitions of non-target words
may reflect a reality monitoring deficit associated with delusions
and thought disorder as suggested by Ragland et al. (2003), and
with hallucinations as reported in other studies (Brébion et al.,
1998, 2005). In contrast, an inverse association was observed
between the global number of intrusions and the negative
symptom score (Heinrichs and Vaz, 2004) that might result from
intensification of inhibitory processes that prevent intrusions.
The higher number of extra-list intrusions during the free recall
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was negatively associated with certain negative symptoms, such
as anhedonia, lack of spontaneity and emotional withdrawal
(Brébion et al., 2002). Similar negative correlation with affective
flattening was reported by Turetsky et al. (2002). As reported
previously, mostly frontotemporal and subcortical networks are
active during the performance in AVLT. These same networks are
impaired in patients with schizophrenia. Several studies report
functional or morphological changes in the medial temporal lobe
and/or prefrontal areas related to observed disturbances in the
AVLT performance (for more details see Table 1). While PFC
activation was mostly reported only during encoding process
(Hofer et al., 2003; Ragland et al., 2004), an error-related analysis
in the study by Hazlett et al. (2000) showed that perseveration
errors in schizophrenia are associated with hypoactivation of
frontal areas.

GENERAL DISCUSSION

Theoretical Modeling of Generalized
Cognitive Dysfunction in Schizophrenia by
Classifying Errors and Underlying Brain
Mechanisms
Standardized cognitive tests that are applied in schizophrenia
research usually provide overall scores for individual tests,
neglecting their qualitative characteristics. The test performance
in healthy individuals, directly or indirectly supported by brain
imaging data suggests the recruitment of the various cortical
and subcortical brain structures, which also points to the
compounded processing. Oftentimes, in order to explain the
complex brain response, we find the explanation that proposes
the involvement of various cognitive processes such as attention,
memory executive functioning being themselves fairly complex.
To date, there are no studies that would match the individual
performances with the subject’s brain activity, though this could
be a desirable approach in clarifying the picture. Furthermore, the
studies that are currently present are discrepant, each identifying
novel brain structures involved during performance in particular
cognitive task. Such a discrepancy in identified brain areas
might be explained either by the heterogeneity of the tests’
execution among patients or by the improvement of imaging
techniques and statistical analysis. Whichever is true, a lack of
a strong theoretical framework is obviously a disadvantage in the
cognitive neuroscience of schizophrenia.

The attempt of modeling a cognitive dysfunction in
schizophrenia proposed by Silverstein (2008) was based on
the definition of specific and generalized cognitive dysfunction
and was implemented in the large-scale schizophrenia research
project CNTRICS. Since the neuropsychological tests are
generally confounded by the multiple processes and a number
of factors can impact cognitive functioning (fatigue, lack of
motivation), in order to address specific deficits, Silverstein
suggested: (1) to use a match task approach (application of two
tasks that match on the variance and reliability) and (2) to apply
process-specific task with the subsequent analysis of the changes
across multiple conditions and multiple time points in order.
Being complementary, the first approach would help to identify

the specific deficits on the behavioral level, while the second—
would help building up a mathematical model by application
of the analysis of the covariance, principal component analysis,
aggregation of scores into the cognitive subdomains, partially
ordered sets and process-oriented strategies.

Indeed, the modeling approach has been widely used in
cognitive psychology proposing the models for elementary
cognitive processing including the reaction times (Townsend and
Ashby, 1983) and more complex processing such as memory
and reinforcement learning in healthy and clinical populations
(Neufeld, 2007, 2015). Several studies aimed at mathematical
modeling of the specific cognitive task on learning and memory
[e.g., Continuous Presentation Task by Atkinson et al. (1967)],
including the cognitive neuroimaging approaches in assessing the
process of the decision making (Ahn et al., 2011; White et al.,
2012).

Though Silverstein called for the specification of the deficits
in schizophrenia, the mechanisms of the generalized deficits
(possibly specific for some clusters of schizophrenia patients)
seem to be overlooked. The approach based on the analysis of
the similar errors that may occur in cognitive tests would allow
to identify the common denominators of the generalized deficits.
In the current review, we have gathered the characteristics
of qualitative performance (errors) that can be detected in
commonly used neuropsychological tests. From the summary
provided, the similarities and differences in the errors across
tests can be identified. For example, in the variety of tests,
one can detect perseverative errors or repetition errors that
are defined as the immediate inappropriate repetition of a
prior response and are common for dorsolateral prefrontal
cortex and basal ganglia dysfunction (Schindler et al., 1984;
Hauser, 1999; Nys et al., 2006). However, Ramage et al. (1999)
have shown that about four percent of the healthy cohort
with both young and older subjects commit perseverations.
Indeed, in children perseverations are normal and are attributed
to the brain immaturity and lack of inhibitory mechanisms
(Hauser, 1999). The development of the prefrontal cortex can
reduce perseverations by supporting the strengthening of active
representations in a competition between latent memory traces
for previously relevant information and active memory traces for
current information (Munakata et al., 2003). Intrusion errors

(form of confabulations) refer to the inappropriate repetition of
prior responses after intervening stimuli (Lorente-Rovira et al.,
2011). Schindler et al. proposed that spontaneous confabulations
(unprovoked) might be a result of a disconnection between
orbitofrontal cortex (through the dorsomedial nucleus) with
the amygdala (Schindler et al., 1984). Lesion studies suggest
that confabulations are associated with damage in the right
ventromedial frontal lobes, cingulate gyrus, cingulum, anterior
hypothalamus, and head of the caudate nucleus (Moscovitch and
Melo, 1997) and, similarly to perseverations, are detectable in
healthy subjects (Burgess, 1996).

Further, omission errors correspond to the missing target;
and commission errors imply the response to any stimulus
other than the target as suggested by the instruction; those
are typically detected in various GO/noGO task. In the study
of Menon and Uddin (2010), the left and right insula and
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adjoining inferior frontal cortex, right anterior cingulate, and
left precuneus/posterior cingulate showed significantly greater
activation during error processing (omission), compared to
response inhibition (commission) and competition.

Lastly, sequential processing refers to the mental integration
of the stimuli in a particular serial order. Sequential errors are
presumably dependent on the cognitive domain (perceptual,
motor). Thus, in the motor system, the underlying pattern
of activation involves the primary motor and sensory areas,
cerebellum, and basal ganglia (Ghilardi et al., 2009). Also,
the sequential errors can be common in phonological
processing (Whitaker, 1972). For example, Kuchinke et al.
(2009) demonstrated that semantic processing of sequential
relations additionally activated left medial and middle frontal
gyrus, and left inferior frontal gyrus (Kuchinke et al., 2009).
Therefore, each of the types of errors seem to have the unique
pattern of the brain activity.

Importantly, besides generating performance errors, the
human brain employs a meta-function aimed at monitoring
the errors. This prefrontal monitoring system has been studied
extensively, with its’ center proposed in the anterior cingulate
cortex (ACC). ACC is known to serve cognitive control functions
enabling the brain to adapt the behavior in accordance to
the changing task demands as well as the environmental
circumstances (Botvinick et al., 2001).

Given the results of studies reported above, one can
hypothesize that the brain encompasses the error detection
system that prevents the errors occurrence and keeps monitoring
the ongoing performance. Both the failure of error monitoring
system and the errors described above can be detected
across multiple tests indicating the generalized deficits that
has been repeatedly reported in patients with schizophrenia
(Goldstein and Shemansky, 1995). In other words, for instance,
perseverations could be detected in several tests (not necessarily
similar tests) that are predisposed to this type of errors. With
respect to the brain activations that are associated with the
specific errors, the pattern seems to lie in the central hubs of
the cortex (DLPFC, OFC, ACC, PCC, precuneus) or within large
scale networks (the description is below) with projections into
subcortical structures (basal ganglia, amygdala). In line with error
analysis, current evidence suggests an existence of a multiple
error processing network in the brain, involving frontal and
parietal regions and specifically ACC (Stevens et al., 2009). The
structures are usually involved in the successful performance
but the degree of activation fluctuates when the error occurs.
From the experiment conducted, Stevens et al. also conclude
that adults show a greater response amplitude in several error-
related networks in comparison to adolescents suggesting that the
normal maturation implements the greater responsiveness of the
relevant brain structures to errors. Another study of Wierenga
et al. (2015) suggested that the connectivity of the unimodal
regions strengthens in childhood, while in adolescence the largest
changes occur within and between frontal and parietal lobes,
presumably indicating the greater flexibility of these regions.
Indeed, it seems that the circuits require to sustain a certain
level of activity in order to prevent the commission of the
errors.

From the summary of the studies provided above, the
cognitive test performance is not limited to error detection and
“prevention” circuits. From our review of the task performance
studies, it seems that many additional probably task/function-
related structures are activated during the task performance.
Moreover, the subsequent analysis in schizophrenia studies has
revealed a diverse constellation of brain structures that are
activated during the test performance or when correlating with
cognitive performance (distinct from healthy individuals). How
can this data discrepancy be interpreted? Firstly, assuming
structural and functional brain alterations in schizophrenia,
cognitive processing becomes more effortful creating the
necessity of additional circuits to be involved. Secondly, in all
scrutinized tests, patients exhibited a decreased activity in the
medial temporal gyrus or superior temporal gyrus (Goldman
et al., 2008). This finding is common in schizophrenia, and may
not be related to the test performance per se, but rather indicate
the group-specific and possibly symptoms related alterations. On
the other hand, the alterations in cortical structures, parts of the
associative cortex (temporal, parietal, occipital) could contribute
to the specific cognitive deficits. The immense variability of
the results (activation patterns) obtained from task-related
performance studies therefore suggests more general error-
related approach as more useful to model cognitive dysfunction
in schizophrenia.

Optimizing the Research Strategies of
Brain Network Analysis
MRI and related methods have been prolific in the identification
of networks that may be associated with specific functions. Thus,
in the resting state, the cerebral cortex produces consistent
spatiotemporal patterns of activity (Damoiseaux et al., 2006).
These spontaneously emerging fluctuations map the cortex in
a similar way as they are produced during task performance
(Deco et al., 2013) being in a “stand-by mode” and indicating
the readiness of the system to respond to stimuli (Van
Vreeswijk et al., 1994). Resting-state networks (RSNs) are
slightly discrepant across different studies (Lowe et al., 1998;
Cordes et al., 2001; Damoiseaux et al., 2006), though some
studies classify the networks according to their functional role
in cognitive processing. The large-scale networks include a
salience network (SN), DMN and central executive network
(CEN) each of which correspond to a specific functional
role, though being functionally linked with each other. The
SN involves the dorsal-anterior cingulate and anterior insula
regions and is involved in the selection of salient external
and interceptive signals (Sridharan et al., 2008). The DMN
consists of midline structures, notably the medio-frontal cortex
and posterior cingulate, being dominant in the resting state
and deactivating during focused activity (van Buuren et al.,
2010). The CEN includes the regions in the middle and
inferior prefrontal and parietal cortices that are engaged in
many higher-level cognitive tasks (Menon, 2011). In the task-
related activity, these networks act consensually; CEN activates
while being triggered by the externally oriented stimuli while
DMN shows decreased activation. The SN causally influences
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the activation of DMN/CEN by switching between these two
networks (Nekovarova et al., 2014). Another classification of
functional network was proposed by Power et al. who divided
the networks into “processing” or “control” categories (Power
et al., 2011). Processing-type networks are static and modular,
and control networks are dynamic and adaptable to various tasks.
Furthermore, frontal-parietal networks (FPN) that include the
lateral prefrontal cortex and posterior parietal cortex presumably
play a role in the top-down control (Dosenbach et al., 2008). One
more classification of task-positive and task negative networks
has been proposed (Fox et al., 2009). It is based on the assumption
that the activity within the specific networks correlates positively
or negatively based on analogous or opposite functional roles.
Task-positive and negative networks are constituted of a set
of regions that repeatedly increase-decrease in activity during
attention-demanding stats (Fox et al., 2009).

Currently, different approaches for identifying patterns of
coherent activity are used for the analysis of resting state
networks (for a review see Cole et al., 2010). Functional and
effective connectivity are concepts critical to this framework.
Seed-to-voxel connectivity approach (VanDijk et al., 2010) assists
in identifying the specific connections that might be attributed
to the type of errors in the cognitive tests. Given the fact that
the specific type of errors can be detected across the tests (for
example sequential errors in a Trail Making Test, Digit Span etc.),
this connectivity approach might help to identify the associated
brain connections.

A clustering-approach, based on single-subject independent
component analysis (ICA) has been introduced by Esposito et al.
(2005). The algorithm introduces a complex similarity measure
by taking into account spatial and temporal characteristics for
clustering. As temporal RSN patterns do not imply very diverse
temporal characteristics this leads to unpredictable outcomes.

Functional connectivity fMRI explores correlations between
time series from one region of interest (ROI) to another but
cannot make inferences about influences between these regions.
One can estimate causality of direction between activation in
one brain node and another one with the methods based
on effective connectivity. The most used means to estimate
effective connectivity are Structure Equation modeling (SEM),
Psychophysiological interactions (PPI) and Granger Causality
(GC)—(can make inferences about linear states) (for review see
Stephan and Friston, 2010). There are several differences between
these approaches. The Granger Causality models the dependence
among observed neural responses or patterns of activity (Friston
et al., 2013). The Graph theory envisages the brain as a networked
system composed of nodes and links. The various brain sites
and anatomical tracts connecting them and their interrelations
are encoded in the measures of the statistical dependencies.
The networks architecture presumes the existence of the neural
hubs, referring to the brain areas that are localized centrally
and are densely connected with the other structures, together
constituting a “rich club” (van denHeuvel and Sporns, 2013). The
rich club networks are also referred to as large-scale networks,
notably DMN, CEN and salience network. These networks hold
long-range connections between the distant brain areas. On the
other hand, the “small-world” networks consist of dense local

clusters of connections between neighboring nodes and have a
short path length between distant pair of nodes, at the same time
being more specialized in function. Over the past years, several
reports have consistently suggested that brain hubs and their rich
club connections imply the efficient neural communication and
integration, constituting “a central communication backbone
that boosts the functional repertoire of the system” (van den
Heuvel and Sporns, 2013). Schizophrenia patients exhibit the
reduced connectivity between the rich club nodes of the brain
as well as the small world nets. The same patterns are also
present in siblings of patients and in their healthy offsprings (van
den Heuvel and Sporns, 2013). Using the information on the
networks from the previous step, the number and the properties
of connections (centrality, assortativity, transitivity and path
length etc.) within and between the defined networks using graph
theoretical approach can be explored.

Patients with schizophrenia tend to have a less integrated
functional brain connectivity (Lynall et al., 2010). However,
the current status quo misses the aspect of the interactions
between and within the cognitive functions and brain circuits.
In the early review, Pantelis and Brewer (1996) provide an
example of the study that tapped into specific errors in the
performance. Thus, Owen et al. (1990) have decomposed the
analysis of the set-shifting task (WCST) based on the failure
in set-shifting or perseverations. This strategy has helped to
identify the brain circuits associated with set-shifting (cortical-
subcortical axis, basal ganglia) and perseveration errors (frontal),
respectively. In this sense, they proposed a dichotomy between
component-specific (cortical-subcortical networks that can be
prompted by decomposing the complex cognitive functions) and
network-specific (frontal-striatal-thalamic circuits coupled with
the specific/solid pattern of function or behavior) brain functions.
Twenty years later, Sheffield and Barch (2016) highlight the
circuits that could serve as a reference point to study cognitive
deficits in schizophrenia: (a) task-positive and task-negative
functional brain (DMN, frontal-parietal, cingulo-opercular
networks); (b) Cortico-Cerebellar-Thalamic-Cortical Circuit
(CCTCC) to support main cognitive abilities (DMN, frontal-
parietal, cingulo-opercular networks, subcortical networks and
cerebellum) (c) the Go/NoGo pathway of reinforcement
learning (encompassing the CCTCC networks+activation in the
striatum). They point out the necessity to examine interactions
between systems in schizophrenia, since the complexity and
a range of dysfunctions are hardly due to single system
impairments (Barch and Ceaser, 2012). Referring to the recent
literature on connectomics (Park and Friston, 2013), it is less
likely that only one part of the brain could be responsible for
errors during performance. Rather, there is a probability of
specific networks impairment. Although it is difficult to derive
specific networks from studies above, we can see several areas of
the brain that could serve as hubs for these networks.

Limitations
Several limitations of the study should be mentioned. Firstly,
the temporal characteristics of the cognitive processing is not
discussed in the review, though it can impact greatly the
actual outcome of the brain analysis (Smith et al., 2012). Large
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scale networks that encompass long-distance projections usually
create a faster dynamic and are easily detected in contrast to
the local networks (Shaposhnyk and Villa, 2012). However, the
local processes presumably occur in the shorter time windows
and might be problematic for detection with the current MRI
technology. The interactions between the systems are also
not mentioned in the current review though the experimental
evidence is limited and does not allow to make any predictions
(Wang et al., 2016; Dixon et al., 2018; Senden et al., 2018).
Moreover, the application of simultaneous EEG-fMRI might be
beneficial since to date no studies of this kind exist. In addition,
the use of Granger causality methods could be problematic in
fMRI as the hemodynamic response function is different between
brain areas. This could be confounder in the temporal precedence
of neuronal events as well as lower sampling rates or noise
(Bajaj et al., 2016). While method is dependent on the selected
model there is risk of spurious influence in eluding region, that
drives the interactions in the model. The basic model of dynamic
causal modeling (DCM) was enriched of modeling of neuronal
fluctuations, called the stochastic modeling or spectral models.
Thus, DCM could be used also for resting state fMRI data
(Frässle et al., 2018). The debate is whether model involves all
possible biological knowledge to model neuronal function. Some
authors suggest that for example activity dependent plasticity
or back-propagation is neglected in standard DCM (Daunizeau
et al., 2011) But, Daunizeau also questioned if these specific “fine
grained” mechanisms could be captured in BOLD signal. The
other limitation of DCM is that the model is limited to maximum
10 regions, though new regression DCM method could possibly
extend to whole-brain connectome analysis (Frässle et al., 2018).

Secondly, the selection of the proposed cognitive tasks was
driven by the following arguments: (1) all the tasks are a
part of the routine neuropsychological examination and are
incorporated into the majority of the cognitive batteries used
in the cognitive assessment of the patients with schizophrenia;
(2) the tests do not explicitly tap into decision making process,
requiring only simple manipulation with numbers, letters or
words without making a choice (except for CPT test assessing
also basic inhibition processes); (3) it was possible to dissect the
tests based on the specific types of errors and to track common
errors across the tests which served for the modeling purposes.
Cognitive mechanisms or cognitive models of other cognitive
tasks [for instance, Go/No-Go task (Yechiam et al., 2006)], Iowa
Gambling Task (Fridberg et al., 2010), Wisconsin Card Sorting

test (Bishara et al., 2010) or Stroop task (Taylor et al., 2016) should
be considered in the future analysis.

CONCLUSION

Investigation of interconnections between brain networks
and cognitive functioning referring to cognitive deficits
in schizophrenia on different levels (behavioral (cognitive
performance) and physiological (brain networks) of disruptions
is currently in progress though it requires a more rooted
direction. By decomposing cognitive tests into more simple
and accessible constructs and using additional qualitative
characteristics of the performance, one can assort the related
brain activity. Since the cognitive tests performances are often
characterized bymultiple errors, which can also be indirectly seen
from a variety of brain activations, the possible approach could
be to scrutinize the performance and to match the behavioral
and neural patterns with the help of the recent mathematical
modeling and connectivity tools. The error monitoring system
should be also taken into account when investigating the
complex brain-behavioral interactions in healthy subjects and in
schizophrenia patients.
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