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Background: Hyperkalemia in neonatal diarrheic calves can potentially result in serious cardiac

conduction abnormalities and arrhythmias.

Objectives: To document electrocardiographic (ECG) findings and the sequence of ECG changes

that are associated with increasing plasma potassium concentrations (cK1) in a large population of

neonatal diarrheic calves.

Animals: One hundred and thirty neonatal diarrheic calves (age �21 days).

Methods: Prospective observational study involving calves admitted to a veterinary teaching

hospital.

Results: Hyperkalemic calves (cK1: 5.8-10.2, blood pH: 6.55-7.47) had significantly (P< .05) longer

QRS durations as well as deeper S wave, higher T wave, and higher ST segment amplitudes in lead

II than calves, which had both venous blood pH and cK1 within the reference range. The first ECG

changes in response to an increase in cK1 were an increase in voltages of P, Ta, S, and T wave

amplitudes. Segmented linear regression indicated that P wave amplitude decreased when cK1

>6.5 mmol/L, S wave amplitude voltage decreased when cK1 >7.4 mmol/L, QRS duration

increased when cK1 >7.8 mmol/L, J point amplitude increased when cK1 >7.9 mmol/L, and ST

segment angle increased when cK1 >9.1 mmol/L. P wave amplitude was characterized by a sec-

ond common break point at cK158.2 mmol/L, above which value the amplitude was 0.

Conclusions and Clinical Importance: Hyperkalemia in neonatal diarrheic calves is associated

with serious cardiac conduction abnormalities. In addition to increased S and T wave amplitude

voltages, alterations of P and Ta wave amplitudes are early signs of hyperkalemia, which is consist-

ent with the known sensitivity of atrial myocytes to increased cK1.
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1 | INTRODUCTION

Neonatal diarrhea in calves can result in metabolic derangements

including electrolyte and acid-base imbalances. Acidemia and metabolic

acidosis are frequently evident in diarrheic calves and are typically

characterized by a low strong ion difference as a result of hyponatre-

mia (accompanied by normochloremia or hyperchloremia) and an

increase of unmeasured anions such as D-lactate.1–3 Although neonatal

diarrheic calves have a negative potassium balance because of intesti-

nal potassium losses and low milk intake,4 they usually have normoka-

lemic or hyperkalemic plasma concentrations in the presence of

acidemia, with hypokalemia being infrequently observed.5,6

Hyperkalemia is a clinically relevant electrolyte imbalance in diar-

rheic calves7 that has historically been attributed to an acidemic state

with intracellular buffering of hydrogen ions and impaired Na1/K1-

ATPase activity with transcellular movement of potassium ions into the
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extracellular space as the proposed underlying mechanism.8,9 A poten-

tially viable mechanism for acidemia-induced hyperkalemia is activation

of a cell membrane potassium channel called TREK-1 by low intracellu-

lar pH, resulting in potassium efflux from the cell.10,11 The presence of

a hyperkalemic state in diarrheic calves strictly depends on the nature

of an existing acidosis but not on acidemia per se, as D-lactic acidosis is

only rarely associated with increased plasma potassium concentrations

(cK1).5 More importantly, increased plasma cK1 in diarrheic calves is

closely associated with severe dehydration, indicating that decreased

glomerular filtration rate plays a central pathophysiological role in the

development of hyperkalemia.5,7,12

Abnormal plasma cK1 can have a profound effect on excitable tis-

sues because the ratio of the extra- to intracellular potassium concen-

tration is a major determinant of the resting membrane potential,

resulting in skeletal muscle weakness and cardiac conduction abnormal-

ities.13 Moreover, the cardiotoxic effects of hyperkalemia are exacer-

bated by the presence of hyponatremia and metabolic acidosis,14,15

conditions, which are usually present in neonatal diarrheic calves. Elec-

trocardiographic (ECG) manifestations in hyperkalemic human patients

typically include tall and symmetric T waves, widening of the QRS com-

plex, progressive flattening and eventually disappearance of P waves, and

life threatening dysrhythmias or ventricular escape rhythms.16,17 Similar

findings occur in calves with experimentally induced hyperkalemia,18 and

experimentally induced8 or naturally acquired diarrhea.19–22 However,

knowledge on ECG findings in calves with naturally acquired diarrhea is

based on case reports,22 case series,19 or small study populations of

calves with marked increases in cK1.21 Moreover, retrospective studies

on the presence of ECG changes in hyperkalemic human patients

reported a low sensitivity of the ECG for diagnosing the presence of

hyperkalemia.23,24 Also, ECG abnormalities such as tall and tent-shaped

appearing T waves have been observed in acidemic human patients with-

out hyperkalemia.25 Consequently, the aim of the present prospective

observational study was to determine how frequent ECG abnormalities

can be found in a large study population of calves with a broad range of

cK1 values and other metabolic disorders and to assess what kind of

ECG findings are associated with certain levels of increased cK1. Another

aim of our study was to evaluate the association of metabolic imbalances,

such as acidemia and dysnatremias, with the presence of ECG abnormal-

ities in neonatal diarrheic calves.

2 | MATERIALS AND METHODS

2.1 | Calves

Between January 2015 and March 2017 a prospective study was con-

ducted involving a convenience sample of 130 calves up to an age of

21 days that were admitted to the Clinic for Ruminants with Ambula-

tory and Herd Health Services, LMU Munich, with a clinical diagnosis

of diarrhea. A subset of included hyperkalemic calves was also used in

a recent study focusing on the potassium-lowering effect of different

hypertonic infusion solutions.26 According to previous publications,2,27

diarrhea was defined as fecal consistency that permitted feces to run

through slightly open fingers. The presence of concurrent problems

was not an exclusion criteria for study enrollment; however, calves

were not included if diarrhea was not considered to be the main prob-

lem on admission. Specifically 2 calves with acute respiratory distress,

4 calves with acute abdominal emergencies (gastrointestinal ileus or

peritonitis), 3 calves with neurologic abnormalities and a postmortem

diagnosis of meningitis, and 2 calves with complicated navel infections

requiring surgical intervention were therefore excluded from the study.

Our investigation was approved by the Ethics committee of the Center

of Veterinary Clinical Medicine, LMU Munich (permit No. 84-21-

0922016; 29-04-0622014).

2.2 | Electrocardiographic examinations

Electrocardiographic examinations were performed using a PC based

ECG system (PC-EKG 2000, Eickemeyer, Tuttlingen, Germany) after

the initial clinical examination was completed on admission to the hos-

pital. Electrocardiograms were recorded in a standardized body position

by placing calves in sternal recumbency with the legs positioned paral-

lel to the long axis and folded normally at the carpal and tarsal joints

(Figure 1). Electrocardiography electrodes were attached to the skin

using alligator clips over the olecranon on the caudal aspect of the

forelimbs, over the patellar ligament on the cranial aspect of the hin-

dlimbs, and at the 8th intercostal space of the left thorax close to the

costochondral junction (the neutral electrode was placed over the right

patellar ligament). For placement of electrodes, a small area of the skin

was clipped, cleaned with alcohol (70% solution) and ECG gel applied.

An ECG was recorded at least for a 5 minutes period and monitored

for the presence of arrhythmias.

The ECG software program digitized the signal at 500 Hz at a

band width of 0.05–120 Hz and amplitude error measurement <1%.

Digital filters were not applied. The digitization rate and low-frequency

cutoff filter of 0.05 Hz met current American Heart Association recom-

mendations.28 The high-frequency cutoff filter of 120 Hz was less than

FIGURE 1 Electrocardiographic examination in a diarrheic calf.
Electrocardiograms were recorded in a standardized body position

by placing calves in sternal recumbency with the legs positioned
parallel to the long axis and folded normally at the carpal and tarsal
joints
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the recommended filter of 150 Hz; however, the maximal measured Q,

R, or S wave amplitude was 3.6 mV, which at an amplitude error mea-

surement of <1% corresponded to <36 lV. Amplitudes and durations

of the ECG complexes were determined using the bipolar limb lead II

from a software program that averaged the amplitude and duration of

the complexes during a selected 32 seconds period, thereby producing

a single template of P, QRS, and T waves.

The software program required placement of markers for the start

and end points of the P, QRS, and T waves. The markers were placed

as follows. The start of the P wave was identified as the 1st deviation

from a stable plateau of the TP line, which was defined as the isoelec-

trical line.29 In case of an absent P wave, the TR line was considered to

be the isoelectrical line. Because of the presence of Ta waves, the end

of the P wave and the start of the QRS complex was identified by

means of abrupt slope changes in respect to the PR line. As ST-

segment elevations and slope changes were observed in a large propor-

tion of calves, a tangent was drawn from the ST segment centered on

the approximate mid part of the QT interval, and the first and second

deviations from this tangent defined as the J-point (junction point) and

start of the T-wave, respectively.30,31 The end of the T wave was

defined as the point where the tangent of the steepest downslope of

the T wave intersected with the isoelectrical line.29,30,32 Representative

graphical displays of the placement of markers for software based ECG

analyses are provided by Figure 2.

Heart rate, durations and amplitudes of P, QRS, and T waves as

well as the duration of the PR interval, QT interval, and ST segment

were then measured by the ECG analysis software program. All ampli-

tude measurements were performed by referring to the isoelectrical

line, except of measurement of the R wave, which was determined as

deviation from the PR line.

The amplitude of the T wave was indexed to the modulus of S

wave amplitude to provide a relative measure of changes in T wave

amplitude. Furthermore, the ratio of T wave amplitude to P wave

amplitude was calculated. The angle of the ST segment above the iso-

electric line, deviations of the J point and start of T wave from the iso-

electric line (J respective ST segment amplitude), as well as the

intervals from the J point to the peak of the T wave (JT max) and to

the end of the T wave (JT end) were also determined.30 The value for

JT end is equivalent to that of QT interval minus QRS duration, and

corrects the QT interval for prolongation of the QRS duration.33

FIGURE 2 Representative graphical display of software-based ECG analysis, which required placement of markers for the start and end
points of the P, QRS, and T waves (paper speed 50 mm/s, sensitivity 10 mm/mV). A, ECG with horizontal ST segment. B, ECG with a prom-
inent Ta wave and an almost horizontal ST segment but increased ST segment amplitude. C, ECG showing a Ta wave and J point depression
(arrow) with ascending ST segment. D, E, ECGs showing missing P waves and increased ST segment amplitudes. Note the endpoints for T
wave, which were defined as the points where the tangent of the steepest downslope of the T wave (dashed blue line) intersects with the
isoelectric line (dashed red lines). ST-angle was defined as the angle formed by the baseline and the tangent of the ST segment (dashed
green line)
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The measured QT interval was corrected for heart rate (QTcor-

rected [QTc]) using the formula according to Fridericia with the RR

interval measured in seconds:

QTc interval Fridericia5QT=
ffiffiffiffiffiffi
RR3

p
(1)

Tall and peak-shaped appearing T waves were defined as the pres-

ence of T wave amplitude �0.75 mV and a “peakedness index” �8.0

lV/ms, which was calculated by dividing T wave amplitude by T wave

duration. Arrhythmias were defined as a deviation of 2 consecutive RR

intervals of more than 10%.34 Based on an established reference inter-

val for heart rate of 90–110 beats/min for calves,35 bradyarrhythmias

were defined as the presence of arrhythmias and a heart rate <90

beats/min. Analysis of ECG measurements could not be masked as clin-

ical and laboratory examinations were performed by the same

investigator.

2.3 | Determination of repeatability of ECG

measurements

Additionally, in a total of 20 consecutively admitted calves, the repeat-

ability of bipolar limb lead II measurements was assessed by taking the

electrodes on and off and recording the ECG measurements twice. In

those 20 calves the coefficients of variation, amplitudes, and duration

from the duplicate measurements of limb lead II were compared to

those of limb leads I and III and a base-apex lead. Base-apex leads were

recorded by attaching the positive electrode of lead I to the skin of the

left thorax in the vicinity of the apex beat at the 5th to 6th intercostal

space immediately caudal to the olecranon, and the negative electrode

on the skin over the jugular furrow in the caudal 3rd of the right

neck.36

2.4 | Laboratory examinations

Within 15 minutes after recording the ECG, a lithium-heparinized blood

sample was anaerobically collected from the jugular vein and blood pH,

partial pressure of carbon dioxide (pCO2) and oxygen (pO2), sodium

(cNa1), chloride (cCl–), potassium (cK1), and ionized calcium concentra-

tions (cCa21) determined using a blood pH, gas, and electrolyte ana-

lyzer with ion-selective electrodes (Rapidpoint 405, Siemens

Healthcare Diagnostics, Tarrytown). Further detailed information con-

cerning the determination of acid-base variables can be found

elsewhere.26

An automated analyzing system (Cobas c 311, Roche Diagnostics,

Mannheim, Germany) was used for the biochemical analysis including

determination of magnesium (Xylidyl blue), total protein (biuret), albu-

min (bromocresol green), and creatinine (picric acid) from serum sam-

ples and glucose (hexokinase) as well as D-lactate (D-lactate

dehydrogenase) and L-Lactate (L-lactate dehydrogenase) from hepari-

nized blood samples containing potassium fluoride as glycostatic agent.

2.5 | Statistical analysis

Commercially available software programs were used for the statistical

analysis of the results (SPSS, version 23, IBM, New York; GraphPad

Prism, version 7.01, GraphPad Software, La Jolla; SAS, version 9.4, SAS

Inc, Cary North Carolina) and P values of <.05 were considered to be

statistical significant. Data are presented as medians and interquartile

ranges (Q1/Q3) because a large proportion of the variables were not

considered to be normally distributed as indicated by the results of a

Shapiro-Wilk test and visual examination of QQ-plots.

A subset of calves with cK1 and venous blood pH within the refer-

ence range was used to compare results of ECG measurements to the

remaining calves of our study population, which were assigned to one

of the groups according to the measured cK1 (hypokalemia, normoka-

lemia, and hyperkalemia). For this purpose, a reference range for

plasma cK1 of 3.9 to 5.8 mmol/L and for venous blood pH of 7.35-

7.50 was used.36 Categorized variables were compared using a chi-

square test or Fisher’s exact test if the expected frequency in one or

more of the cells of the contingency table was <5. Comparisons of

continuous variables between the defined groups were made using a

non-parametric Kruskal-Wallis test. For the subsequent pair-wise com-

parisons, a Mann-Whitney U test was used and the level of significance

adjusted using the Bonferroni method (P� .0167). The same approach

was also used to compare limb lead II measurements with those of limb

l and III and a base apex lead. Repeatability for each lead were deter-

mined by calculating a variability index which was defined as the ratio

between the intraquartile interval and the median.

Spearman’s coefficients of correlation (rs) were also used to charac-

terize associations between ECG measurements and laboratory varia-

bles. Using stepwise forward linear regression analysis, models for the

P and T amplitudes, QRS duration, T wave peakedness index, and ST

segment duration, angle, and amplitude were constructed including var-

iables of clinical pathology significantly correlated to the dependent

variable or considered relevant from a biological standpoint of view. To

minimize the effects of collinearity, when 2 variables were closely cor-

related to each other (rs>0.70), only the variable that had the highest

rs in the preliminary univariable analysis was entered into the model.

The relative importance of the included variables was assessed by the

order of entry into the model as well as by the change of the model R2

value (DR2). Standardized residual plots of each multivariable model

were examined to confirm an approximately normal distribution of

residuals. Based on the examination of residual plots, the duration of

the QRS interval and ST segment had to be log transformed to the

base of 10 and a quadratic transformation of plasma cK1 was used in

all models that incorporated a linear value for cK1 to prevent a non-

hierarchical analysis.37 Additionally, interaction terms for plasma cK1

and cNa1 as well as venous blood pH were calculated and included

into the models as centered variables by multiplying the differences

from the mean of each variable.

Univariable logistic regression was also used to determine the

associations between the presence of arrhythmias (yes51; no50),

bradyarrhythmias (yes51; n50), tall and peak shaped appearing T

waves (yes51; no50) as well as the absence of P waves (yes51;

no50) and plasma cK1, cNa1, the K1/Na1-ratio (calculated by divid-

ing cK1 with cNa1 and multiplying values with 100), venous blood pH,

plasma glucose and serum magnesium concentration, and rectal tem-

perature as continuous variables (determined as part of the clinical
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the QRS interval and ST segment had to be log transformed to the

base of 10 and a quadratic transformation of plasma cK1 was used in

all models that incorporated a linear value for cK1 to prevent a non-

hierarchical analysis.37 Additionally, interaction terms for plasma cK1

and cNa1 as well as venous blood pH were calculated and included

into the models as centered variables by multiplying the differences

from the mean of each variable.

Univariable logistic regression was also used to determine the

associations between the presence of arrhythmias (yes51; no50),

bradyarrhythmias (yes51; n50), tall and peak shaped appearing T

waves (yes51; no50) as well as the absence of P waves (yes51;

no50) and plasma cK1, cNa1, the K1/Na1-ratio (calculated by divid-

ing cK1 with cNa1 and multiplying values with 100), venous blood pH,

plasma glucose and serum magnesium concentration, and rectal tem-

perature as continuous variables (determined as part of the clinical
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examination on hospital admission). This was conducted by calculation

of Odds ratios (OR) and associated 95% confidence intervals (95% CI).

Additionally segmented linear regression38,39 was used to charac-

terize the relationship between each ECG variable of interest and cK1

by sequentially modeling the ECG variable-plasma cK1 relationship

using 3 models. Because the focus of the study was on the ECG

changes in hyperkalemia, data from calves with hypokalemia (plasma

cK1 <3.9 mmol/L)6 were not included in this statistical analysis.

The first model used ordinary linear regression to apply a linear

regression equation to the data, such that y5 b01 b1 3 [K]. The sec-

ond model used nonlinear regression to apply 2 sequential linear

regression equations with different slopes and a common break point

([K]1) to the data, such that if x� [K]1 then y5 b01 b1 3 x; if x> [K]1

then y5 b01 b1 3 [K]11 b2 3 (x - [K]1). The 3rd model used nonlinear

regression to apply 3 sequential linear regression equations with differ-

ent slopes (the 3rd was constrained to a slope50) and 2 common

break points ([K]1, [K]2) to the data, such that if x� [K]1 then

y5 b01 b1 3 x; if [K]1< x� [K]2 then y5 b01 b1 3 [K]11 b2 3 (x –

[K]1), and if x> [K]2 then y5 b01 b1 3 [K]11 b2 3 ([K]2 – [K]1). The

last equation assumes that y50 when plasma [K]> [K]2. When 1 or 2

break points were identified, the estimated cK1 for the break point and

the 95% confidence interval for the estimate were calculated to charac-

terize the sequence of ECG changes as plasma cK1 increased. Model

fit was evaluated using residual plots and summarized as R2 from ordi-

nary linear regression or pseudo R2 from nonlinear regression, where

pseudo R25 (Model SS – Mean SS)/(Total SS – Mean SS), where Mean

SS is the sum of squares due to the mean, Model SS is the sum of

squares due to the model, and Total SS is the total (uncorrected) sum

of squares of Y (the dependent variable).

3 | RESULTS

3.1 | General conditions

The median value (and interquartile range) for age was 9 (7–12) days.

Because of regional preferences, 90% (n5117) of calves belonged to

the Simmental breed (German Fleckvieh). Figure 3 illustrates individual

values for venous blood pH and plasma cK1 of calves of the present

study population. Hyperkalemia was present in 44 calves (34%), nor-

mokalemia in 73 calves (56%), and hypokalemia in 13 calves (10%). A

total of 16 out of 73 normokalemic calves had venous blood pH values

in the range of 7.35-7.50 and were therefore used for comparison of

ECG measurements. Selected laboratory findings in the defined groups

of calves are given in Table 1.

3.2 | Specific ECG findings

Table 2 compares the results of lead II ECG measurements between

the 4 defined groups of calves with statistically significant differences

being found for the majority of ECG variables. Selected ECG findings

of calves are shown in Figure 4. Ta waves were detectable in a total of

121 calves and Q waves in 9 calves. P waves were not detectable in 8

markedly hyperkalemic calves (Figure 4H-J). These calves had a median

plasma cK1 of 8.9 mmol/L (range: 7.8–10.2) and a median cNa1 of 124

mmol/L (range: 120–147 mmol/L).

Bradycardia (<90 beats/min) was observed in 24 calves of which 4

calves suffered from hypokalemia and 9 calves from hyperkalemia.

Arrhythmias were seen in 26 calves of which 12 were presented in a

hyperkalemic state with a median cK1 of 7.5 mmol/L (range: 6.0–9.9

mmol/L). An irregular sinus rhythm was evident in all 14 nonhyperkale-

mic calves of which 6 calves were also bradycardic. In 1 hypokalemic

calf with 1st degree A-V block, arrhythmias were related to supraven-

tricular or junctional premature complexes (Figure 4C). Six out of the

12 hyperkalemic calves with arrhythmias had an irregular sinus rhythm,

which was related to premature ventricular complexes in one of them

(Figure 4F). The remaining 6 hyperkalemic calves had a slow irregular

escape rhythm with missing P waves (Figure 4H).

Of the 8 calves with missing P waves, 2 had ventricular tachycardia

(Figure 4I) and 1 calf a R-on-T configuration of ECG complexes

(Figure 4J).

Tall (>0.75 mV) and peak-shaped appearing T waves (Figure 4D,E,

H,I) were observed in 37 calves (28%) of which 1 calf was hypokalemic,

14 calves normokalemic, and 22 calves hyperkalemic, respectively.

Those 37 calves had a median venous blood pH of 7.01 (range: 6.55-

7.43).

3.3 | Associations between ECG findings and variables

of clinical pathology

Results of a univariable logistic regression analysis for the prediction of

the presence of arrhythmias, bradyarrhythmias, tall and peak-shaped

appearing T waves and absence of P waves are presented in Table 3.

The K1/Na1-ratio was a statistically significant predictor in all models,

but the absence of P waves and the presence of arrhythmias was not

significantly associated with cK1.

As shown in Figure 5, no statistically significant association

(rs50.14, P5 .12) was found between plasma cK1 and heart rate. Also

no or weak to moderate correlations were found between other ECG

measurements and laboratory variables (Supporting Information Table

S1). Multivariable stepwise linear regression analysis indicated that a

FIGURE 3 Venous blood pH and plasma potassium concentrations
of calves of our study population (n5130). Gray-shaded areas rep-

resent the reference ranges for plasma potassium concentration
(3.9-5.8 mmol/L) and venous blood pH (7.35-7.50)
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quadratic transformation of plasma cK1 was the most important pre-

dictor for the log10 transformed QRS and ST segment duration, P, T,

and ST amplitude, and the ST angle (Table 4). Serum magnesium con-

centration was the most important predictor for S wave amplitude and

venous blood pH was identified as a statistically significant predictor in

the models for T wave amplitude and T wave peakedness index.

Figures 6 and 7 illustrate the association between cK1 and further

selected ECG findings. An interesting and previously unreported finding

was that the first ECG changes associated with an increase in plasma

cK1 were increased voltages of P, Ta, S, and T wave amplitudes (Figure 6).

As also shown in Figures 6 and 7, 8 ECG indices were characterized

by 2 linear regression equations with different slopes and a different

break point of cK1 as listed in Table 5. Of these 8 indices, P wave

amplitude and Ta wave amplitude were also characterized by a sec-

ond common break point at cK158.2 and 8.4 mmol/L, respectively,

above which value the amplitude was 0.

3.4 | Comparison of ECG measurements between

bipolar limb leads and base apex lead

A comparative analysis of bipolar limb lead and base-apex lead meas-

urements is given in Supporting Information Table S2. The values for

cK1 and venous blood pH in those 20 calves ranged from 3.3 to 8.0

mmol/l and 6.55 to 7.40, respectively. Statistically significant

differences were found for the P, T, S, and ST segment amplitudes, T

duration as well as for values of the ST angle and T to S amplitude

ratio. However, pair-wise comparisons did not reveal a statistically sig-

nificant difference between lead II and base-apex lead measurements.

Coefficients of variation indicated a higher variation and poorer repeat-

ability of lead I and III measurements when compared to lead II and

base-apex lead measurements. Similar coefficients of variation were

however observed for base-apex and lead II measurements, but values

indicated a smaller variation for S and T amplitudes and the ST angle in

lead II.

3.5 | Outcome of therapy

A total of 90% of calves (n5118) of our study population recovered

and were discharged after a median duration of 11 days of

hospitalization.

4 | DISCUSSION

Our study confirms that hyperkalemia is a clinically relevant electrolyte

imbalance in neonatal diarrheic calves that is associated with typical

ECG manifestations such as increased QRS duration, tall and peak-

shaped appearing T waves, and findings of atrial standstill and life-

threatening arrhythmias, that have also been previously described in

TABLE 1 Selected findings of acid-base and electrolyte status in 130 neonatal diarrheic calves

Variable

Group I Group II Group III

P value

Normokalemia Hypokalemia Normokalemia Group IV
pH�7.35 pH<7.35 pH<7.35 Hyperkalemiaa

n5 16 n5 13 n557 n544

Plasma/serum electrolyte concentration

K1 (mmol/L) 4.62 (4.40/4.82) 3.36 (3.12/3.66)* 4.85 (4.25/5.37) 6.75 (6.26/7.68)* <.001
Na1 (mmol/L) 137.9 (135.9/142.6) 148.6 (141.8/158.2)* 136.1 (131.1/144.9) 135.6 (125.8/143.2) .002
K1/Na1-ratio 3.33 (3.15/3.59) 2.34 (2.01/2.45)* 3.45 (3.02/3.96) 5.02 (4.61/5.81)* <.001
Cl– (mmol/L) 98 (95/102) 118 (111/124)* 105 (98/112)* 96 (91/103) <.001
Ca21 (mmol/L) 1.19 (1.14/1.24) 1.43 (1.35/1.49)* 1.30 (1.22/1.40)* 1.23 (1.14/1.35) <.001
Mg21 (mmol/L)b 0.80 (0.74/0.85) 0.88 (0.86/1.27)* 0.93 (0.83/1.14)* 1.31 (1.10/1.51)* <.001

Acid-base status

Venous blood pH 7.389 (7.359/7.410) 6.957 (6.920/7.053)* 7.144 (6.988/7.288)* 7.136 (7.005/7.249)* <.001
pCO2 (mm Hg) 51.9 (48.6/56.0) 35.7 (28.6/41.0)* 44.7 (34.3/51.5)* 49.9 (40.8/61.1) <.001
pO2 (mm Hg)c 32.7 (30.8/38.9) 47.1 (38.1/53.8)* 38.8 (33.8/43.9) 30.7 (25.3/37.2) <.001
HCO–

3 (mmol/L) 31.4 (26.4/34.7) 8.4 (5.5/10.4)* 13.0 (7.6/23.6)* 16.1 (10.8/22.9)* <.001
Base Excess (mmol/L) 5.6 (1.5/8.7) 222.3 (–26.5/–19.1)* 215.6 (–22.7/–2.5)* 213.2 (–19.3/–5.1)* <.001
Anion gap (mEq/L) 12.8 (11.8/16.6) 26.1 (22.9/28.0)* 22.1 (16.1/27.1)* 26.4 (22.7/31.7)* <.001
D-lactate (mmol/L) 0.8 (0.3/1.7) 9.7 (7.8/11.6)* 5.2 (1.5/9.2)* 1.9 (1.3/6.1)* <.001
L-lactate (mmol/L) 1.9 (1.4/2.7) 0.9 (0.7/1.1)* 1.4 (1.0/2.4) 4.4 (2.4/7.1)* <.001

Hydration status

Creatinine (lmol/L) 91 (80/152) 166 (112/235) 119 (87/160) 365 (236/570)* <.001
Total protein (g/L) 51.7 (47.4/58.3) 55.7 (51.7/62.0) 54.8 (48.8/62.5) 63.8 (58.7/69.1*) <.001
Albumin (g/L) 26.8 (23.8/28.4) 29.1 (27.7/30.2) 30.1 (26.9/33.1)* 33.4 (30.8/35.5)* <.001

A subset of 16 calves with venous blood pH and plasma potassium concentrations in the reference range (group I) was used to compare respective
findings to the remaining calves of our study population, which were assigned to one of the groups II-IV according to categories of plasma potassium
concentrations.
Values are reported as median and interquartile ranges. P values indicate a statistically significant difference between groups and asterisks indicate
values, which are significantly different from group I (P� .0167).
aFive calves of group IV had venous blood pH in the reference range.
bInformation was missing in 1 calf of group III.
cInformation was missing in 2 calves of group III.
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quadratic transformation of plasma cK1 was the most important pre-

dictor for the log10 transformed QRS and ST segment duration, P, T,

and ST amplitude, and the ST angle (Table 4). Serum magnesium con-

centration was the most important predictor for S wave amplitude and

venous blood pH was identified as a statistically significant predictor in

the models for T wave amplitude and T wave peakedness index.

Figures 6 and 7 illustrate the association between cK1 and further

selected ECG findings. An interesting and previously unreported finding

was that the first ECG changes associated with an increase in plasma

cK1 were increased voltages of P, Ta, S, and T wave amplitudes (Figure 6).

As also shown in Figures 6 and 7, 8 ECG indices were characterized

by 2 linear regression equations with different slopes and a different

break point of cK1 as listed in Table 5. Of these 8 indices, P wave

amplitude and Ta wave amplitude were also characterized by a sec-

ond common break point at cK158.2 and 8.4 mmol/L, respectively,

above which value the amplitude was 0.

3.4 | Comparison of ECG measurements between

bipolar limb leads and base apex lead

A comparative analysis of bipolar limb lead and base-apex lead meas-

urements is given in Supporting Information Table S2. The values for

cK1 and venous blood pH in those 20 calves ranged from 3.3 to 8.0

mmol/l and 6.55 to 7.40, respectively. Statistically significant

differences were found for the P, T, S, and ST segment amplitudes, T

duration as well as for values of the ST angle and T to S amplitude

ratio. However, pair-wise comparisons did not reveal a statistically sig-

nificant difference between lead II and base-apex lead measurements.

Coefficients of variation indicated a higher variation and poorer repeat-

ability of lead I and III measurements when compared to lead II and

base-apex lead measurements. Similar coefficients of variation were

however observed for base-apex and lead II measurements, but values

indicated a smaller variation for S and T amplitudes and the ST angle in

lead II.

3.5 | Outcome of therapy

A total of 90% of calves (n5118) of our study population recovered

and were discharged after a median duration of 11 days of

hospitalization.

4 | DISCUSSION

Our study confirms that hyperkalemia is a clinically relevant electrolyte

imbalance in neonatal diarrheic calves that is associated with typical

ECG manifestations such as increased QRS duration, tall and peak-

shaped appearing T waves, and findings of atrial standstill and life-

threatening arrhythmias, that have also been previously described in

TABLE 1 Selected findings of acid-base and electrolyte status in 130 neonatal diarrheic calves

Variable

Group I Group II Group III

P value

Normokalemia Hypokalemia Normokalemia Group IV
pH�7.35 pH<7.35 pH<7.35 Hyperkalemiaa

n5 16 n5 13 n557 n544

Plasma/serum electrolyte concentration

K1 (mmol/L) 4.62 (4.40/4.82) 3.36 (3.12/3.66)* 4.85 (4.25/5.37) 6.75 (6.26/7.68)* <.001
Na1 (mmol/L) 137.9 (135.9/142.6) 148.6 (141.8/158.2)* 136.1 (131.1/144.9) 135.6 (125.8/143.2) .002
K1/Na1-ratio 3.33 (3.15/3.59) 2.34 (2.01/2.45)* 3.45 (3.02/3.96) 5.02 (4.61/5.81)* <.001
Cl– (mmol/L) 98 (95/102) 118 (111/124)* 105 (98/112)* 96 (91/103) <.001
Ca21 (mmol/L) 1.19 (1.14/1.24) 1.43 (1.35/1.49)* 1.30 (1.22/1.40)* 1.23 (1.14/1.35) <.001
Mg21 (mmol/L)b 0.80 (0.74/0.85) 0.88 (0.86/1.27)* 0.93 (0.83/1.14)* 1.31 (1.10/1.51)* <.001

Acid-base status

Venous blood pH 7.389 (7.359/7.410) 6.957 (6.920/7.053)* 7.144 (6.988/7.288)* 7.136 (7.005/7.249)* <.001
pCO2 (mm Hg) 51.9 (48.6/56.0) 35.7 (28.6/41.0)* 44.7 (34.3/51.5)* 49.9 (40.8/61.1) <.001
pO2 (mm Hg)c 32.7 (30.8/38.9) 47.1 (38.1/53.8)* 38.8 (33.8/43.9) 30.7 (25.3/37.2) <.001
HCO–

3 (mmol/L) 31.4 (26.4/34.7) 8.4 (5.5/10.4)* 13.0 (7.6/23.6)* 16.1 (10.8/22.9)* <.001
Base Excess (mmol/L) 5.6 (1.5/8.7) 222.3 (–26.5/–19.1)* 215.6 (–22.7/–2.5)* 213.2 (–19.3/–5.1)* <.001
Anion gap (mEq/L) 12.8 (11.8/16.6) 26.1 (22.9/28.0)* 22.1 (16.1/27.1)* 26.4 (22.7/31.7)* <.001
D-lactate (mmol/L) 0.8 (0.3/1.7) 9.7 (7.8/11.6)* 5.2 (1.5/9.2)* 1.9 (1.3/6.1)* <.001
L-lactate (mmol/L) 1.9 (1.4/2.7) 0.9 (0.7/1.1)* 1.4 (1.0/2.4) 4.4 (2.4/7.1)* <.001

Hydration status

Creatinine (lmol/L) 91 (80/152) 166 (112/235) 119 (87/160) 365 (236/570)* <.001
Total protein (g/L) 51.7 (47.4/58.3) 55.7 (51.7/62.0) 54.8 (48.8/62.5) 63.8 (58.7/69.1*) <.001
Albumin (g/L) 26.8 (23.8/28.4) 29.1 (27.7/30.2) 30.1 (26.9/33.1)* 33.4 (30.8/35.5)* <.001

A subset of 16 calves with venous blood pH and plasma potassium concentrations in the reference range (group I) was used to compare respective
findings to the remaining calves of our study population, which were assigned to one of the groups II-IV according to categories of plasma potassium
concentrations.
Values are reported as median and interquartile ranges. P values indicate a statistically significant difference between groups and asterisks indicate
values, which are significantly different from group I (P� .0167).
aFive calves of group IV had venous blood pH in the reference range.
bInformation was missing in 1 calf of group III.
cInformation was missing in 2 calves of group III.
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single reports of affected neonatal diarrheic calves19,20,22 or experi-

mental investigations.8,18 However, to the author’s knowledge, this is

the first study to statistically determine the sequence of ECG changes

as plasma cK1 increases in domestic animals or humans with naturally

acquired hyperkalemia. All previous studies have been descriptive stud-

ies and have not employed objective quantitative analytical techniques.

We applied segmented regression instead of quantile regression or

restricted cubic splines regression for 4 reasons. First, the focus of the

study was to identify and statistically prioritize cK1 break points for

commonly observed ECG abnormalities in hyperkalemia. Segmented

regression provides 95% confidence intervals for an objectively identi-

fied break point,40 whereas quantile regression and cubic splines fail to

provide this desired information38,39; in fact, the researcher typically

assigns values for the knots in the last 2 statistical methods.41 Second,

segmented regression typically requires fewer data points than quantile

regression.41 Third, the use of polynomial modelling is appropriately

criticized in biology because a polynomial model is not relevant for

many biological systems. Finally, examination of the scatterplots with

TABLE 2 Lead II ECG findings and measurements in 130 neonatal diarrheic calves

Variable

Group I Group II Group III

P value

Normokalemia Hypokalemia Normokalemia Group IV
pH�7.35 pH<7.35 pH<7.35 Hyperkalemiaa

n5 16 n5 13 n5 57 n544

Heart rate (beats/min) 115 (100/144) 106 (83/121) 107 (96/126) 122 (95/148) .19

Bradycardia (<90 beats/min) 2/16 4/13 9/57 9/44 .55

Arrhythmiasb 1/16 2/13 11/57 12/44 .35

Bradyarrhythmiasc 1/16 0/13 5/57 7/44 .44

Absence of P-waves 0/16 0/13 0/57 8/44 .001

Tall and peaked T waves 1/16 1/13 13/57 22/44* .001

P amplitude (mV) 0.17 (0.15/0.24) 0.24 (0.16/0.29) 0.19 (0.15/0.25) 0.21 (0.14/0.25) .60

R amplitude (mV) 0.06 (0.02/0.20) 0.05 (0.02/0.09) 0.04 (0.02/0.17) 0.03 (0.02/0.06) .12

S amplitude (mV) 21.31 (21.53/21.14) 21.90 (22.29/21.62)* 21.58 (21.88/21.31)* 21.93 (22.18/21.72)* <.001

T amplitude (mV) 0.53 (0.40/0.61) 0.68 (0.51/0.95) 0.63 (0.48/0.83) 0.91 (0.64/1.16)* <.001

J point amplitude (mV) 0.00 (20.02/0.01) 0.03 (0.02/0.05)* 0.00 (20.01/0.02) 0.03 (20.01/0.06)* <.001

Ta amplitude (mV) 20.05 (20.08/20.03) 20.05 (20.07/20.04) 20.06 (20.07/20.04) 20.05 (20.07/20.03) .78

P wave durationd (ms) 58 (56/76) 74 (66/83) 66 (61/74) 66 (60/78) .098

PR intervald (ms) 116 (108/138) 136 (129/157)* 120 (113/136) 115 (102/134) .003

QRS duration (ms) 55 (52/64) 76 (69/84)* 66 (61/72)* 74 (67/92)* <.001

QT interval (ms) 242 (212/274) 292 (258/329)* 260 (230/288) 247 (212/279) .009

QTc interval Fridericia (ms) 301 (285/330) 350 (324/369)* 316 (290/331) 311 (283/327) .002

ST segment duration (ms) 90 (72/125) 96 (70/134) 92 (67/111) 64 (39/78)* <.001

ST segment amplitude (mV) 0.05 (0.02/0.06) 0.09 (0.05/0.14)* 0.05 (0.04/0.08) 0.07 (0.04/0.12)* .003

ST angle (8) 2.5 (0.5/4.0) 4.0 (2.0/5.5) 3.0 (2.0/4.5) 5.5 (3.0/9.0)* .004

JT max (ms) 152 (131/185) 180 (144/201) 160 (132/187) 126 (100/152)* <.001

JT end (ms) 181 (158/219) 222 (183/249) 192 (163/221) 163 (137/193) <.001

T wave peakedness index (lV/mS) 5.2 (3.6/6.6) 6.3 (4.2/7.3) 6.0 (4.6/7.9) 8.9 (5.7/11.4)* <.001

T to P amplitude ratiod 3.0 (1.8/3.6) 3.3 (2.9/4.3) 3.2 (2.1/4.4) 3.5 (2.4/5.0) .27

T to S amplitude ratio 0.41 (0.31/0.44) 0.36 (0.30/0.48) 0.39 (0.27/0.52) 0.44 (0.34/0.58) .21

A subset of 16 calves with venous blood pH and plasma potassium concentrations in the reference range (group I) was used to compare respective
findings to the remaining calves of our study population, which were assigned to one of the groups II-IV according to categories of plasma potassium
concentrations.
Values are reported as ratios or median and interquartile ranges. P values indicate a statistically significant difference between groups and asterisks
indicate values, which are significantly different from group I (P� .0167).
aFive calves of group IV had venous blood pH in the reference range.
bIncluding ventricular or supraventricular premature complexes.
cHeart rate<90 beats/min and presence of arrhythmias.
dValues from 8 hyperkalemic calves with missing P waves were not included in the analysis.
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the fitted segmented regression model indicated good model fit to the

data.

Segmented regression analysis indicated that the first ECG evi-

dence of hyperkalemia were increased voltages of P, Ta, S, and T wave

amplitudes. Although increased T wave amplitudes have been well

documented in hyperkalemia,17,42,43 we are unaware of any studies

documenting an increase of voltages of P, Ta, and S wave amplitudes

associated with early stages of hyperkalemia. These ECG changes are

consistent with the well documented higher sensitivity of atrial myo-

cytes to increased cK1 when compared with ventricular myocytes.14,44

This also explains the absence of P waves, as an ECG manifestation of

atrial standstill, which was seen in 8 calves of the present study. Miss-

ing atrial activity was also reported in markedly hyperkalemic (and

hyponatremic) diarrheic calves.19,20,22 and in markedly hyperkalemic

human patients.15,17,42 In our study, the plasma potassium to sodium

ratio, was significantly associated with the absence of P waves in the

ECG. Low sodium concentrations also decrease the amplitude and the

rate of rise of phase 0 of the cardiac action potential and therefore

probably exaggerate the cardiotoxic effect of hyperkalemia.14 This

interrelation between increased cK1 and low cNa1 is of some thera-

peutic usefulness because the cardiotoxic effects of hyperkalemia can

be rapidly reversed by increasing plasma cNa1, which has been demon-

strated for hypertonic saline in hyperkalemic humans, dogs, and a diar-

rheic calf.15,20,45

Hyperkalemia results in a lower transmembrane potassium gradi-

ent and therefore a less negative resting membrane potential. This

magnitude of the transmembrane resting potential is a major determi-

nant of upstroke velocity of the cardiac action potential (phase 0) and

therefore the speed of cardiac conduction. Consequently hyperkalemia

TABLE 3 Univariable binary logistic regression analysis for the
prediction of specific ECG findings in a study population of 130
neonatal diarrheic calves

Variable OR 95% CI for OR P value

Presence of arrhythmias (n5 26)

Na1 0.956 0.916-0.997 .034
K1/Na1-ratio 1.52 1.082-2.135 .016

Presence of bradyarrhythmias (n513)

K1 1.70 1.18-2.43 .004
K1/Na1-ratio 2.03 1.31-3.16 .002

Presence of tall and peak-shaped T waves (n537)

K1 2.0 1.43-2.70 <.001
K1/Na1-ratio 2.03 1.42-2.90 <.001
Mg21 20.4 4.7–87.8 <.001
Venous blood pH 0.02 0.002-0.174 <.001

Absence of P waves (n5 8)

K1/Na1-ratio 66.5 3.0–1501.0 .008
Mg21 9.82 1.15–83.84 .037

Abbreviations: OR, odds ratio; 95% CI for OR, 95% confidence interval
for odds ratio.
Plasma concentrations of potassium and sodium as well as venous blood
pH, the K1/Na1-ratio, plasma glucose and serum magnesium concentra-
tions, and rectal temperature were used as independent variables. Only
statistically significant associations are shown.

FIGURE 4 Selected lead II ECG findings in calves with diarrhea (paper
speed 25 mm/s, sensitivity 5 mm/mV). A, Normal appearance of an ECG
in a diarrheic calf (cK1: 4.5 mmol/L, cNa1: 137 mmol/L, pH 7.41) with a
Ta wave present (arrows). B, ECG of a severely acidemic and hypokalemic
diarrheic calf (cK1: 2.9 mmol/L, cNa1: 147 mmol/L, blood pH 6.74; rectal
temperature: 36.78C; plasma glucose concentration: 4.2 mmol/L) showing
sinus bradycardia (atrial and ventricular rate, 76 beats/min), deep and
prominent S waves (arrows), and decreased T wave amplitudes (asterisks).
C, Prolonged PR intervals (asterisks) and a supraventricular or junctional

premature complex (arrow) in a hypokalemic and severely acidemic
diarrheic calf (cK1: 3.1 mmol/L, cNa1: 157 mmol/L, blood pH: 6.75). D,
Sinus tachycardia (atrial and ventricular rate, 170 beats/min), Ta waves
(arrows) and increased amplitude and slightly peaked T waves (asterisks) in
a hyperkalemic diarrheic calf (cK1: 6.3 mmol/L; cNa1: 150 mmol/L, blood
pH: 7.01). E, Large amplitude “tented” symmetric T waves and prominent
S waves in a hyperkalemic diarrheic calf (cK1: 6.8 mmol/L, cNa1: 135
mmol/L, blood pH: 7.04). Also note the increased QRS duration (asterisks)
and ST amplitude (arrows) when compared with A. F, Unifocal premature
ventricular complexes (arrows) in a hyperkalemic diarrheic calf (cK1: 6.3
mmol/L, cNa1: 126 mmol/L, blood pH: 7.10). G, Almost disappeared P
waves (asterisks), marked ST segment elevation (arrows) and prominent S
wave amplitudes in a hyperkalemic diarrheic calf (cK1: 7.8 mmol/L, cNa1:
118 mmol/L, blood pH 7.38). H, Bradycardia (ventricular rate, 56 beats/
min) and missing P waves (arrows) and arrhythmias in a severely
hyperkalemic diarrheic calf (cK1: 9.4 mmol/L, cNa1: 124 mmol/L, blood
pH: 7.08). I, Ventricular tachycardia (ventricular rate, 133 beats/min) in a
severely hyperkalemic diarrheic calf (cK1: 10.2 mmol/L, cNa1: 147, blood
pH 7.15). J, Irregular wide-QRS rhythm in a severely hyperkalemic diar-
rheic calf (cK1: 9.9 mmol/L, cNa1: 139 mmol/L, blood pH 7.25)
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the fitted segmented regression model indicated good model fit to the

data.

Segmented regression analysis indicated that the first ECG evi-

dence of hyperkalemia were increased voltages of P, Ta, S, and T wave

amplitudes. Although increased T wave amplitudes have been well
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documenting an increase of voltages of P, Ta, and S wave amplitudes
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strated for hypertonic saline in hyperkalemic humans, dogs, and a diar-

rheic calf.15,20,45

Hyperkalemia results in a lower transmembrane potassium gradi-

ent and therefore a less negative resting membrane potential. This

magnitude of the transmembrane resting potential is a major determi-

nant of upstroke velocity of the cardiac action potential (phase 0) and
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for odds ratio.
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tions, and rectal temperature were used as independent variables. Only
statistically significant associations are shown.
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can slow depolarization of the myocardium which can manifest in the

ECG as prolongation of the PR interval (representing the time interval

between the onset of atrial and ventricular depolarization) and more

commonly as an increased QRS duration (representing the duration of

ventricular depolarization).14,43,46

Another effect of hyperkalemia is an increased membrane perme-

ability of potassium ions and an increase in the velocity of phase 3 of

the cardiac action potential and therefore shortening of the action

potential and acceleration of repolarization.42,46 The latter produces

the typical changes of T wave morphology (representing ventricular

repolarization) with tall, spiked (symmetric) or peak-shaped appearance

which is considered to be the earliest ECG sign of hyperkalemia in

humans.17,42,43 More pronounced hyperkalemia increases the risk for a

further depression of sinoatrial and atrioventricular conduction which

has been described to manifest in the appearance of escape rhythms

and complexes17 as also seen in calves of the study reported here (Fig-

ure 4H and J). Along with a further prolongation of QRS duration, a

fusion of the QRS complex with the T wave can occur,16,17 leading to a

sine wave appearance of the ECG, which was also observed in a calf of

our study population (Figure 4J).

Increased cK1 was also associated with alterations of Ta wave

amplitude of calves in the study reported here. Ta waves represent the

atrial repolarization phase and are usually broader, of lower amplitude,

and in the opposite direction to the P wave. Studies about Ta waves

are scarce as they are difficult to identify because the Ta amplitude is

usually small and they merge with the QRS complex under normal con-

ditions.47,48 Therefore studies about Ta wave characteristics are usually

based on patients with atrioventricular blocks.47,48 A small increase in

Ta wave amplitude was reported as an early sign of experimentally

induced hyperkalemia in mice,49 which was similar to the findings of

the study reported here.

Increased voltages of S wave amplitude (manifest as increased

QRS peak to peak amplitude) was an early sign of hyperkalemia in

calves of the present study population. Our finding was consistent with

previous observations in calves with diarrhea21 and critically ill humans

TABLE 4 Results of a stepwise forward linear regression analysis for
predicting the log10 transformed duration of the QRS interval, P, T, S,
and ST segment amplitude as well as a T wave peakedness index, ST
angle and the log10 transformed duration of the ST segment by means
of variables of clinical pathology in calves of the study population

Order of
entry Variable Coefficient 6 SE P value DR2

Model
R2

Log10 transformed QRS durationa

Constant 3.294 0.246 <.001
1 K 3 K 0.015 0.002 <.001 .402 .402
2 K 20.154 0.022 <.001 .141 .543
3 pH 20.127 0.030 <.001 .055 .598
4 Creatinine 0.0001 0.00004 .001 .028 .626
5 Na 20.001 0.001 .005 .023 .649

P amplitudeb

Constant 0.004 0.069 .949
1 K 3 K 20.011 0.002 <.001 .122 .122
2 Log Mg 0.348 0.062 <.001 .200 .322
3 K 0.095 0.023 <.001 .081 .403

T amplitudec

Constant 5.725 0.883 <.001
1 K 3 K 0.025 0.008 .001 .250 .250
2 pH 20.663 0.122 <.001 .152 .402
3 K 20.198 0.094 .037 .021 .422

S amplituded

Constant 25.966 1.604 <.001
1 Log Mg 21.840 0.383 <.001 .298 .298
2 pH 0.595 0.224 .009 .037 .335

T peakedness indexe

Constant 32.705 13.455 .016
1 AG 0.102 0.050 <.043 .240 .240
2 K 0.867 0.196 <.001 .078 .318
3 pH 24.580 1.808 .013 .033 .352

Log10 transformed ST segment durationf

Constant 2.080 0.032 <.001
1 K 3 K 20.006 0.001 <.001 .266 .266

ST segment amplitudeg

Constant 0.496 0.049 <.001
1 K 3 K 0.017 0.001 <.001 .341 .341
2 K 20.175 0.017 <.001 .302 .644

ST segment angleh

Constant 22.516 3.625 <.001
1 K 3 K 0.844 0.099 <.001 .341 .341
2 K 28.639 1.194 <.001 .168 .509
3 K 3 Na 0.054 0.019 .005 .028 .537
4 AG 0.107 0.041 .010 .024 .561

aThe variables K 3 pH, pH, and pCO2 were not retained in the final model.
bThe variables Na and K 3 Na, K 3 pH, and pH were not retained in
the final model.
cThe variables Na, K 3 Na, K 3 pH, Creatinine, and AG were not
retained in the final model.
dThe variables K 3 K, K, K 3 pH, K 3 Na, and Na were not retained in
the final model.
eThe variables Na, K 3 K, K 3 pH, K 3 Na, and Creatinine were not
retained in the final model.
fThe variables Na, K, pH, K 3 pH, and K 3 Na, pH, Creatinine, and AG
were not retained in the final model.
gThe variables pH, Na, K 3 pH, and K 3 Na, Creatinine, and AG were
not retained in the final model.
hThe variables pH, Na, K 3 pH, and Creatinine were not retained in the
final model.

FIGURE 5 Heart rate and plasma potassium concentrations of
calves of the present study population (n5130). Gray-shaded areas
represent the reference range for plasma potassium concentration
(3.9-5.8 mmol/L) and the line the result of simple linear regression
analysis
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with hyperkalemia, acidemia, and diarrhea because of cholera.50 Dehy-

dration and hemoconcentration are common in hyperkalemic diarrheic

calves5,7,12 and the resultant hypovolemia decreases ventricular cham-

ber volumes. The effect of heart chamber volume on the amplitude of

Q, R, and S waves is called the Brody phenomenon,51 whereby the

intracavitary blood mass augments the radial components and reduces

the tangential components of the cardiac dipole. The Brody phenom-

enon explains why decreased ventricular chamber volumes result in

alterations of Q, R, and S wave amplitudes.52–55 However, the Brody

phenomenon would predict that Q, R, and S wave amplitude voltages

in diarrheic dehydrated calves would decrease as plasma cK1 increased

because of the decrease in plasma volume and consequently chamber

volume, which is opposite to the relationship identified in the study

reported here and elsewhere.21 We found a negative association

between hypermagnesemia and S wave amplitude, which at rs520.59

represented the strongest association between a serum biochemical

analyte and an ECG variable in our study. Stepwise multivariable

regression identified that the 2 independent predictors of S wave

amplitude were log10(serum magnesium concentration) and blood pH.

Marked hypermagnesemia has been associated with ECG abnormalities

such as tall T waves, prolonged PR intervals, and increased QRS duration

and amplitude18,56,57 and consequently hypermagnesemia might contrib-

ute to the observed ECG abnormalities in neonatal diarrheic calves. Simi-

larly, low blood pH can produce ECG abnormalities similar to those seen

with hyperkalemia,58 and consequently acidemia might also contribute to

the observed ECG abnormalities in neonatal diarrheic calves.

FIGURE 6 Scatterplots illustrating the association between plasma potassium concentration and P amplitude, Ta amplitude, S amplitude, T
amplitude, ratio of T amplitude to P amplitude and the ratio of T amplitude to S amplitude. The lines represent the result of simple linear
regression (T amplitude) and segmented regression analysis (P amplitude, Ta amplitude, S amplitude, ratios of T amplitude to P amplitude
and T amplitude to S amplitude). Gray-shaded areas represent the reference range for plasma potassium concentration (3.9-5.8 mmol/L)
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A recent study59 reported ST segment elevation in a high propor-

tion of neonatal diarrheic calves with hyperkalemia, which was also

commonly seen in calves of the present study (Table 2, Figure 4C-H).

ST segment elevation was also described as a rare manifestation of

hyperkalemia in humans (most frequently in patients with diabetic

ketoacidosis) where the ECG findings can resemble acute myocardial

infarction and have therefore been described as pseudoinfarct or pseu-

doinjury ECG pattern.60,61 The mechanisms for hyperkalemia associ-

ated ST segment elevation in humans are not well understood, but

repolarization abnormalities and other concurrent metabolic abnormal-

ities such as acidosis have been discussed.62

Although typical ECG abnormalities were seen in hyperkalemic

calves of our study population, bradycardia, or bradyarrhythmia was a

rare finding in calves with increases in cK1. There was also no associa-

tion between heart rate and cK1, which is in agreement to previous

clinical studies in diarrheic calves as well as dogs and cats who also

found no significant relationship63,64 or even a slight positive associa-

tion.7,65 Arrhythmias were detectable in 26 calves of the present study

population of which 20 calves had an irregular sinus rhythm. However,

it should be considered that the presence of sinus arrhythmias does

not necessarily represent a pathologic alteration as it was reported to

be detectable in 10% of healthy Holstein calves in a recent study using

24-h ECG Holter monitoring.34

Nonsignificant or only weak to moderately significant coefficients

of correlation between cK1 and specific ECG measurements such as

QRS duration or T amplitude were found in our study (Supporting

Information Table S1). Studies on the frequency of ECG changes in

hyperkalemic dogs and cats64 and human patients23,24 reported a high

variability of ECG manifestations and a low sensitivity of the ECG for

diagnosing a hyperkalemic state. Also reports on cases of severe

FIGURE 7 Scatterplots illustrating the association between plasma potassium concentration and P wave duration, PR interval, QRS
duration, corrected QT interval according to Fridericia, J point amplitude, and ST angle. The lines represent the result of simple linear
regression (P wave duration, PR interval, QTc interval) and segmented regression analysis (QRS duration, J point amplitude, ST angle). Gray-
shaded areas represent the reference range for plasma potassium concentration (3.9-5.8 mmol/L)
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hyperkalemia with minimal or no ECG manifestations in humans have

been published.66,67 This indicates that an increase of extracellular

potassium concentration per se is not the single most important factor

for the development of ECG manifestations associated with hyperkale-

mia. There is some evidence that the rate of rise of cK1 is also playing

a role in this respect68 and it is conceivable that some calves of our

study experienced a slow increase of cK1 such that compensatory

mechanisms probably allowed to stabilize the transmembrane resting

potential. However, an important finding of our study was that ECG

abnormalities such as tall and peak-shaped appearing T waves, deep S

waves, widening of QRS complex or ST segment elevation were also

seen in acidemic calves that were normo- or even hypokalemic. Similar

findings were reported in a study25 where tall and tent shaped appear-

ing T-waves in acidemic humans without hyperkalemia have been

documented. Experimental and in-vitro studies additionally suggested a

direct effect of acidemia on cardiac conduction. In dogs, ECG abnor-

malities were observed during different types of experimentally

induced acidosis that were similar to those of induced hyperkalemia,

even in the absence of a hyperkalemic response.58 Also a delayed atrio-

ventricular conduction was reported after exposing heart preparations

in an acidic extracellular solution.69,70

However, in calves of the present study another issue needs to be

considered, as the transmembrane resting potential is not only dependent

from alterations of extracellular but also from alterations of intracellular

cK1. Neonatal diarrheic calves have a negative potassium balance because

of intestinal losses and low milk intake,4 which is likely enhanced by alter-

ations of internal potassium balance because of an acidemic state and

resulting intracellular losses of potassium ions. It is therefore conceivable

that in some calves an intracellular depletion of potassium stores and con-

comitant alterations of internal potassium balance because of acidemia

(leading to normokalemia) resulted in a similar extracellular to intracellular

potassium ratio than in calves with marked increases in cK1 but normal or

only slightly decreased intracellular K1. This would explain the presence

of ECG abnormalities in acidemic but non-hyperkalemic calves.

Although our study documented ECG findings in a large study

population of diarrheic calves with a broad range of acid-base and

potassium balance disorders, our analysis has also some limitations. A

potential limitation of our study represents the choice of bipolar limb

lead II for analysis, which was selected as it is a frequently used ECG

lead in small animal medicine. A previous study on ECG parameters in

healthy lactating Holstein cows, however, revealed lower amplitudes

and greater wave form variability of limb lead measurements (including

lead II) when compared to standard base-apex lead analyses.71 Those

differences can be explained by the positions of the electrodes relative

to the position of the heart in the thorax of the bovine species, a higher

susceptibility of limb leads to movement artefacts, and species specific

characteristics of the distribution of the conduction system within the

myocardium, which may cause cancellation of wave fronts in limb lead

measurements.71–74 However, in our study limb lead II measurements

produced clear waveforms and a comparative analysis of limb lead II

and base-apex lead did not reveal major differences in respect to ampli-

tudes, durations and variability of ECG parameters (Supporting Infor-

mation Table S2). In addition, analysis of ECG measurements in a

nonblinded manner might be considered as a limitation although the

use of a software program provided a standardized method of meas-

uring the amplitudes and durations of selected ECG complexes.

Another limitation of our study was the lack of a healthy control group.

Although calves of the reference groups had venous blood pH and

plasma cK1 in the reference range it is possible that other metabolic

conditions might have affected the ECG measurements in those calves.

5 | CONCLUSIONS

Results of our study confirm that hyperkalemia is a clinically relevant

and potentially cardiotoxic electrolyte imbalance in neonatal diarrheic

calves. However, increased plasma cK1 only partly explained the

observed ECG abnormalities in our study population. Especially the

findings that venous blood pH was significantly associated with the

presence of specific ECG abnormalities such as tall and peak-shaped

appearing T waves, and that those abnormalities were also seen in

acidemic but nonhyperkalemic calves, indicate that acidemia is a con-

tributing factor that predisposes to cardiac conduction abnormalities in

TABLE 5 Results of a segmented linear regression analysis for modeling the relationship between 8 ECG variables and plasma potassium con-
centrations in calves of our study population

Variable n Intercept Slope 1
Break
point [K]1

95% CI
for [K]1 Slope 2

Break
point [K]2

95% CI
for [K]2

Ta wave amplitude 117 0.02 20.02 5.7 5.0–6.4 0.03 8.4 6.7–10.1

P wave amplitude 117 0.01 0.04 6.5 6.1–6.9 20.16 8.2 7.5–8.9

T to P amplitude ratio 109 3.18 0 6.6 6.2–6.9 5.53 – –

S wave amplitude 117 20.34 20.25 7.4 6.0–8.9 0.34 – –

QRS duration 117 38.1 5.44 7.8 7.4–8.1 38.27 – –

J point amplitude 117 20.05 0.01 7.9 7.5–8.3 0.12 – –

T to S amplitude ratio 117 0.40 0 7.8 6.8-8.7 0.16 – –

ST segment angle 117 20.74 0.84 9.1 8.8–9.3 24.9 – –

The slope in the 3rd model for P and Ta wave amplitude was 0.
Data from 13 hypokalemic calves were not included in the analysis.
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calves. However, increased plasma cK1 only partly explained the

observed ECG abnormalities in our study population. Especially the

findings that venous blood pH was significantly associated with the

presence of specific ECG abnormalities such as tall and peak-shaped

appearing T waves, and that those abnormalities were also seen in

acidemic but nonhyperkalemic calves, indicate that acidemia is a con-

tributing factor that predisposes to cardiac conduction abnormalities in

TABLE 5 Results of a segmented linear regression analysis for modeling the relationship between 8 ECG variables and plasma potassium con-
centrations in calves of our study population

Variable n Intercept Slope 1
Break
point [K]1

95% CI
for [K]1 Slope 2

Break
point [K]2

95% CI
for [K]2

Ta wave amplitude 117 0.02 20.02 5.7 5.0–6.4 0.03 8.4 6.7–10.1

P wave amplitude 117 0.01 0.04 6.5 6.1–6.9 20.16 8.2 7.5–8.9

T to P amplitude ratio 109 3.18 0 6.6 6.2–6.9 5.53 – –

S wave amplitude 117 20.34 20.25 7.4 6.0–8.9 0.34 – –

QRS duration 117 38.1 5.44 7.8 7.4–8.1 38.27 – –

J point amplitude 117 20.05 0.01 7.9 7.5–8.3 0.12 – –

T to S amplitude ratio 117 0.40 0 7.8 6.8-8.7 0.16 – –

ST segment angle 117 20.74 0.84 9.1 8.8–9.3 24.9 – –

The slope in the 3rd model for P and Ta wave amplitude was 0.
Data from 13 hypokalemic calves were not included in the analysis.
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diarrheic calves. We anticipate that application of the segmented

regression approach used in the critically ill calves in the study reported

here will provide additional insight into the sequence of ECG changes

and facilitate the diagnosis and treatment of hyperkalemia in critically

ill domestic animals and humans.
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